
POWER SOLUTIONS March 200494

Simplifying Linux Management with

Dynamic Kernel Module Support
At times, administrators may need newer drivers than the ones found in the Linux

operating system kernel. Dynamic Kernel Module Support, a software project created
by the Dell™ Linux Engineering team, efficiently decouples driver releases from kernel
releases, helping to provide an orderly method for distributing the latest drivers even
when they are not yet merged into the Linux kernel.

As the Linux® operating system (OS) gains a deeper

foothold in enterprise environments, system admin-

istrators have become increasingly concerned about the

management of Linux kernel modules. In the best-case

scenario, every driver needed to run every piece of system

hardware would come precompiled with the Linux kernel.

In practice, however, hardware drivers often are released

separately from the kernel, and updates for drivers native

to the kernel also are released independently, supersed-

ing the drivers within the latest kernel version.

Until the ultimate goal of pushing all driver modifi-

cations back into the kernel is met, Dynamic Kernel

Module Support (DKMS), a software project created by

the Dell™ Linux Engineering team, can help administra-

tors add, build, install, remove, and track Linux kernel

modules. DKMS aims to create a standardized framework

for collecting driver source code, building this source code

into loadable compiled-module binary files, and then

installing and uninstalling these modules into the Linux

kernel as needed. In addition, DKMS provides powerful

features for managing and maintaining modules across

multiple systems and keeping track of which module

version is installed on which kernel version.

By creating a separate framework for driver source

code and the module binary files that are compiled from

that source code, DKMS efficiently decouples driver

releases from kernel releases. Decoupling driver and kernel

releases permits administrators to update drivers on exist-

ing kernels in an orderly and supportable manner as soon

as they are available. Thus, DKMS serves as a stopgap,

providing a way to distribute the latest driver updates

until the source code can be merged back into the kernel.

In addition, DKMS streamlines the process of com-

piling from source code. Rebuilding RPM™ (Red Hat®

Package Manager) source

packages can be time-

consuming and problem-

atic. DKMS helps simplify

Linux development by

creating a single exe-

cutable that can be called

to build, install, or unin-

stall modules.

Further, DKMS makes

configuring modules on

new kernels particularly

LINUX ENVIRONMENT

BY GARY LERHAUPT AND MATT DOMSCH

In the best-case scenario,

every driver needed

to run every piece of

system hardware would

come precompiled

with the Linux kernel.

easy for less-experienced Linux

developers: The modules to be

installed can be based solely on

the configuration of a kernel that

was previously running. In pro-

duction environments, this repre-

sents an immediate advantage. For

example, using DKMS, IT man-

agers no longer have to choose

between a predefined solution

stack or the security enhancements

of a newer kernel.

DKMS has two target audi-

ences: developers who maintain

and package drivers, and system

administrators. This article focuses

on DKMS from the system administrator perspective of using

DKMS to simplify Linux enterprise computing management.1

Understanding basic DKMS commands
Before exploring the uses of DKMS, it is helpful to understand the

life cycle by which DKMS maintains kernel modules. Figure 1 rep-

resents each potential state for a module—Added, Built, and

Installed—and each arrow indicates a DKMS action that can be used

to switch between the various states. The sections that follow exam-

ine each of these DKMS actions further.

Most importantly, DKMS was designed to work with RPM.

Using DKMS to install a kernel module often can be as easy as

installing a DKMS-enabled module RPM, because module pack-

agers can use DKMS to add, build, and install modules within

RPM packages. Wrapping DKMS commands inside an RPM

package preserves the benefits of RPM—package versioning,

security, dependency resolution, and package distribution

methodologies—while DKMS handles the work that RPM does

not: the versioning and building of individual kernel modules.

Of course, DKMS works just as well when not used in conjunc-

tion with RPM, so it is important to understand how to use these

basic commands to fully leverage the capabilities of DKMS.

Add command adds a module and module version to the tree
DKMS manages kernel modules at the source-code level. First,

the module source code must be located in the directory

/usr/src/module - module-version on the build system. A

dkms.conf file with appropriately formatted directives also must

reside within this configuration file to tell DKMS where to install

the module and how to build it. The dkms.conf file should come

from the module packager and be included with the module

source code. Once these two requirements have been met and

DKMS has been installed on a system, administrators can begin

using DKMS by adding a module and module version to the

DKMS tree. For example:

dkms add –m megaraid2 –v 2.00.9

This sample add command would add megaraid2/2.00.9 to the

already existing /var/dkms tree, leaving the module in an Added state.

Build command compiles the module
Once in the Added state, the module is ready to be built using

the DKMS build command. The build command requires that

the proper kernel source code be located on the system in the

/lib/module/kernel -version/build directory. The make command

that is used to compile the module is specified in the dkms.conf

configuration file. The following sample build command con-

tinues the megaraid2/2.00.9 example:

dkms build –m megaraid2 –v 2.00.9 –k 2.4.21-4.ELsmp

The build command compiles the module but stops short of

installing it. As this example indicates, the build command expects

a kernel-version parameter. If this kernel name is left out, it

assumes the currently running kernel. The build command also

can build modules for kernels that are not currently running; this

functionality is provided through use of a kernel preparation

subroutine that runs before any module build is performed. The

subroutine ensures that the module being built is linked against

the proper kernel symbols.

In this example, successful completion of a build creates

the /var/dkms/megaraid2/2.00.9/2.4.21-4.ELsmp directory as

well as the log and module subdirectories within this directory.

The log directory holds a log file of the module make and

the module directory holds copies of the resultant .o binary files

that were compiled.

LINUX ENVIRONMENT

www.dell.com/powersolutions POWER SOLUTIONS 95

1 For a detailed discussion about creating and developing DKMS-enabled module packages from the developer’s perspective, see “Exploring Dynamic Kernel Module Support” in Linux Journal, September 2003,
http://www.linuxjournal.com/article.php?sid=6896.

Not in tree Added
state

Built
state

Installed
state

installbuildadd

remove

uninstall

Figure 1. The DKMS life cycle

Decoupling driver

and kernel releases

permits administrators

to update drivers on

existing kernels in an

orderly and supportable

manner as soon as

they are available.

Install command copies the compiled module binary files to the kernel tree
Upon completion of a build, the module can be installed on the kernel

for which it was built. The install command copies the compiled

module binary files to the correct location in the /lib/modules tree

as specified in the dkms.conf file. If a module by that name already

resides in that location, DKMS saves the existing module in the

/var/dkms/module-name/original_module directory. This process

helps ensure that the older module can be put back into place if,

at a later date, the newer module is uninstalled. A sample install

command is as follows:

dkms install –m megaraid2 –v 2.00.9 –k 2.4.21-4.ELsmp

In this example, if an original megaraid2 module existed within

the 2.4.21-4.ELsmp kernel, it would be saved to /var/dkms/

megaraid2/original_module/2.4.21-4.ELsmp.

Uninstall and remove commands expunge modules to differing degrees
The DKMS life cycle also enables administrators to uninstall or

remove a module from the tree. The uninstall command removes

the installed module and, if applicable, replaces it with the original

module. When multiple versions of a module are located within the

DKMS tree, if one version is uninstalled, DKMS does not try to deter-

mine which of these other versions to put in its place. Instead, if a

true “original_module” was saved from the very first DKMS instal-

lation, it will be put back into the kernel and all other versions of

that module will be left in the Built state. A sample uninstall com-

mand is as follows:

dkms uninstall –m megaraid2 –v 2.00.9

–k 2.4.21-4.ELsmp

Again, if the kernel-version parameter is unset, the currently run-

ning kernel is assumed. However, this same behavior does not occur

with the remove command. Although the remove and uninstall

commands are similar, some important differences exist. The remove

command uninstalls, but also is used to clean the DKMS tree. If the

module version being removed is the last instance of that module ver-

sion for all kernels on a system, after the uninstall portion of the

remove command completes, the remove command will physically

delete all traces of that module from the DKMS tree. That is, when

the uninstall command completes, modules are left in the Built state;

when the remove command completes, an administrator would have

to start over from the add command before being able to again use the

module with DKMS. Two sample remove commands are shown here:

dkms remove –m megaraid2 –v 2.00.9

–k 2.4.21-4.ELsmp

dkms remove –m megaraid2 –v 2.00.9 --all

The first sample command

would uninstall the module; if this

module and module version were not

installed on any other kernel, the

command would remove the module

from the DKMS tree altogether. If,

however, megaraid2/2.00.9 module

and module version also were

installed on the 2.4.21-4.ELhugemem

kernel, the first remove command

would leave the module alone, and

thus it would remain intact in the

DKMS tree. Because the second

sample command contains the --all

parameter, not the –k kernel parameter, the second command

would uninstall all versions of the megaraid2/2.00.9 module from

all kernels and then completely expunge any references of

megaraid2/2.00.9 from the DKMS tree.

Extending DKMS functionality with auxiliary commands
and services
The add, build, install, uninstall, and remove commands—

which correlate to the DKMS life cycle—are the fundamental

DKMS commands. The auxiliary DKMS functionality discussed in

this section extends and improves upon the capabilities of these

basic commands.

Status command returns data about modules currently located in the tree
DKMS also includes a fully functional status command that returns

information about the modules and module versions currently

located in the tree. The specificity of the information returned

depends on which parameters are passed to the status command.

If no parameters are set, this command will return all information

found. Each status entry will return output—added, built, or

installed—to indicate the state; and if an original module has been

saved, this information also will be displayed. Several sample status

commands are shown here:

dkms status

dkms status –m megaraid2

dkms status –m megaraid2 –v 2.00.9

dkms status –k 2.4.21-4.ELsmp

dkms status –m megaraid2 –v 2.00.9

–k 2.4.21-4.ELsmp

Match command applies module configurations from one kernel to another
Another major feature of DKMS is the match command. The match

command takes the configuration of a DKMS-installed module for

one kernel and applies the same configuration to another kernel.

LINUX ENVIRONMENT

POWER SOLUTIONS March 200496

DKMS serves as a

stopgap, providing a

way to distribute the

latest driver updates

until the source code

can be merged back

into the kernel.

When the match command completes, the same module and module

versions that were installed for one kernel are installed on the other

kernel. This is helpful to administrators who are upgrading from

an existing kernel to a newer kernel, but would like to keep the same

DKMS modules in place for the new kernel. A sample match com-

mand is as follows:

dkms match --templatekernel 2.4.21-4.ELsmp

–k 2.4.21-5.ELsmp

As shown in the preceding example, the --templatekernel

parameter is the kernel on which the configuration is based, while

-k is the kernel upon which the configuration is instated.

Dkms_autoinstaller service automatically installs a designated module
The dkms_autoinstaller service is similar in behavior to the match

command. This service is installed in the /etc/init.d directory as part

of the DKMS RPM. If an autoinstall parameter is set within the

dkms.conf configuration file in a module, that module is eligible for

the dkms_autoinstaller service to automatically, upon booting, build

it into a new kernel. When the administrator later boots a system into

a new kernel, the dkms_autoinstaller service will then automatically

build and install modules designated for use with this service.

Mkdriverdisk command creates a driver disk image
The final auxiliary DKMS command is mkdriverdisk. As its name

suggests, the mkdriverdisk command builds modules to create a

driver disk image for use in distributing updated drivers to Linux instal-

lations. A sample mkdriverdisk command might look like this:

dkms mkdriverdisk –d redhat –m megaraid2

–v 2.00.9 –k 2.4.21-4.ELBOOT

Currently, the only supported distribution driver disk format

is Red Hat. For more information on the extra necessary files

and their required formats for DKMS to create Red Hat driver

disks or for general information on Red Hat driver disks, see

http://people.redhat.com/dledford. When creating driver disks

with DKMS, administrators should place these files in a sub-

directory underneath the module source directory: for example,

/usr/src/module-module-version/redhat_driver_disk.

Managing multiple systems using mktarball
and ldtarball commands
As the preceding examples demonstrate, DKMS provides a simple

mechanism to build, install, and track driver updates. This func-

tionality not only is applicable to stand-alone machines, but also is

useful for IT departments that administer multiple similar servers. The

DKMS mktarball and ldtarball commands enable organizations

having a compiler and kernel source

on only one system—a master build

system—to deploy a new driver to

multiple additional systems.

The mktarball command pack-

ages copies of each .o binary file from

the module directory that was com-

piled using the DKMS build com-

mand into a compressed tar file. This

compressed tar file may then be copied

to each target system. Administrators

can use the DKMS ldtarball com-

mand to load the compressed tar files into a DKMS tree, leaving each

module in the Built state, ready to be installed. The mktarball and

ldtarball commands keep administrators from having to install

both kernel source code and compilers on every target system.

The following example assumes that an administrator has

built the megaraid2 driver, version 2.00.9, for two different kernel

families—2.4.20-9 and 2.4.21-4.EL—on a master build system:

dkms status

megaraid2, 2.00.9, 2.4.20-9: built

megaraid2, 2.00.9, 2.4.20-9bigmem: built

megaraid2, 2.00.9, 2.4.20-9BOOT: built

megaraid2, 2.00.9, 2.4.20-9smp: built

megaraid2, 2.00.9, 2.4.21-4.EL: built

megaraid2, 2.00.9, 2.4.21-4.ELBOOT: built

megaraid2, 2.00.9, 2.4.21-4.ELhugemem: built

megaraid2, 2.00.9, 2.4.21-4.ELsmp: built

To deploy this version of the driver to several systems without

rebuilding from the source code each time, an administrator can use

the mktarball command to generate two compressed tar files—one

for each kernel family:

dkms mktarball -m megaraid2 -v 2.00.9

-k 2.4.21-4.EL,2.4.21-4.ELsmp,2.4.21-4.ELBOOT,

2.4.21-4.ELhugemem

Marking /usr/src/megaraid2-2.00.9 for archiving...

Marking kernel 2.4.21-4.EL for archiving...

Marking kernel 2.4.21-4.ELBOOT for archiving...

Marking kernel 2.4.21-4.ELhugemem for archiving...

Marking kernel 2.4.21-4.ELsmp for archiving...

Tarball location: /var/dkms/megaraid2/2.00.9/

tarball/megaraid2-2.00.9-kernel2.4.21-4.EL-

kernel2.4.21-4.ELBOOT-kernel2.4.21-4.ELhugemem-

kernel2.4.21-4.ELsmp.dkms.tar.gz

Done.

LINUX ENVIRONMENT

www.dell.com/powersolutions POWER SOLUTIONS 97

DKMS helps simplify

Linux development

by creating a single

executable that can be

called to build, install,

or uninstall modules.

When one large compressed tar file that contains modules for

both families is preferred, administrators can omit the -k param-

eter and kernel list; DKMS then will include a module for every kernel

version found.

After creating one or more compressed tar files, administrators

should run the status command to ensure that the target DKMS

tree does not already contain the modules to be loaded:

dkms status

Nothing found within the DKMS tree for this

status command.

If your modules were not installed with DKMS,

they will not show up here.

Next, the compressed tar file can be renamed, if desired, and

copied to each of the target systems using any mechanism. The com-

pressed tar file is then loaded on the target system:

dkms ldtarball --archive=megaraid2-2.00.9-

kernel2.4.21-4.EL-kernel2.4.21-4.ELBOOT-

kernel2.4.21-4.ELhugemem-kernel2.4.21-4.ELsmp.dk

ms.tar.gz

Loading tarball for module: megaraid2 / version:

2.00.9

Loading /usr/src/megaraid2-2.00.9...

Loading /var/dkms/megaraid2/2.00.9/2.4.21-4.EL...

Loading /var/dkms/megaraid2/2.00.9/2.4.21-

4.ELBOOT...

Loading /var/dkms/megaraid2/2.00.9/2.4.21

-4.ELhugemem...

Loading /var/dkms/megaraid2/2.00.9/2.4.21-4.ELsmp...

Creating /var/dkms/megaraid2/2.00.9/source symlink...

The DKMS ldtarball command leaves modules in the Built

state, not the Installed state. Administrators should verify both that

the modules are present and that they are in the Built state:

dkms status

megaraid2, 2.00.9, 2.4.21-4.EL: built

megaraid2, 2.00.9, 2.4.21-4.ELBOOT: built

megaraid2, 2.00.9, 2.4.21-4.ELhugemem: built

megaraid2, 2.00.9, 2.4.21-4.ELsmp: built

The preceding steps must be repeated for each kernel version

into which modules are to be installed.

Simplifying administration and increasing system stability
with DKMS
DKMS can simplify Linux system administration by providing a

versioning framework for installing driver modules on kernels.

DKMS integrates with RPM for package distribution and instal-

lation, facilitates OS installation on new hardware, and helps

maintain driver consistency across multiple servers. By enabling

deployment of driver updates independent of kernel updates,

DKMS reduces the scope of change for configuration manage-

ment, and thus can help increase system stability.

DKMS is licensed under the GNU General Public License

(GPL). Interested parties may contribute to its development by

signing up for the dkms-devel@lists.us.dell.com mailing list

located at http://lists.us.dell.com. DKMS can be downloaded

from http://linux.dell.com/dkms.

Gary Lerhaupt (gary_lerhaupt@dell.com) is a software engineer on the Linux Engineering

Team of the Dell Product Group, and is the author of the Dynamic Kernel Module Support

project. Gary is a Red Hat Certified Engineer (RHCE) and has a B.S. in Computer Science and

Engineering from The Ohio State University.

Matt Domsch (matt_domsch@dell.com) is a lead and senior engineer on the Linux

Engineering Team of the Dell Product Group, which tests Linux on all Dell PowerEdge™

servers. Matt has an M.S. in Computer Science from Vanderbilt University and a B.S. in

Computer Science and Engineering from the Massachusetts Institute of Technology. His

primary areas of interest include networking and operating systems.

LINUX ENVIRONMENT

POWER SOLUTIONS March 200498

FOR MORE INFORMATION

DKMS project home page:
http://linux.dell.com/dkms

DKMS mailing list:
http://lists.us.dell.com

DKMS information for driver maintainers:
http://www.linuxjournal.com/article.php?sid=6896

Red Hat driver disk reference:
http://people.redhat.com/dledford

