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BIRLA INSTITUTE OF TECHNOLOGY AND SCIENCE

Abstract
Bachelor of Engineering (Hons.) Computer Science

Disruption Tolerant Networks for Underwater Communications

by Arnav DHAMIJA

Disruption Tolerant Networks (DTNs) are employed in applications where the network is likely to

be disrupted due to environmental conditions or where the network topology makes it impossible

to find a direct route from the sender to the receiver. Underwater networks typically use acoustic

waves for transmitting data. However, these waves are susceptible to interference from sources

of noise such as the wake from ships, sounds from snapping shrimp, and collisions from acoustic

waves generated by other nodes.

DTNs are good candidates for situations where successfully delivering the message is more

important than low delivery times and high network throughput. This is true for certain

applications of underwater networks. DTNs can also create new options for network topologies,

such as opening up the possibility of using “data muling” nodes if the network is resilient to

delays.

The Acoustic Research Laboratory (ARL) at NUS has developed their own Groovy-based underwa-

ter network simulator called UnetStack, in which network protocols can be designed and tested

in a simulator. These protocols can later be directly deployed on physical hardware, such as

Subnero’s underwater modems. Hence, this project revolves around creating a new UnetStack

protocol called DtnLink for enabling disruption tolerant networking in various use cases of the

ARL.

http://universe.bits-pilani.ac.in/
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Chapter 1

Introduction

1.1 Overview

1.1.1 Disruption Tolerant Networks

Disruption Tolerant Networks (DTNs) are used in a number of applications where conventional

communication schemes are inadequate due to erratic network conditions, lack of network

infrastructure, or long propagation delays in the communication medium. Unlike conventional

network protocols which rely on end-to-end connectivity at a given instant of time, DTNs do not

require a complete path from the source to the destination when transmitting the message.

Furthermore, some DTN protocols [1] create multiple copies of the messages, expecting at least

one of these copies to opportunistically reach the destination node. All types of DTN protocols

employ a type of Store-Carry-And-Forward (SCAF) mechanism to store the message until it can

be sent to the destination. The message can either be sent directly to the destination or via

another node in multi-hop routing.

This makes DTNs very useful for sending data when the network used inherently unreliable

due to environmental conditions and when delivery is prioritised over network throughput. For

example, NASA used their own implementation of a DTN to communicate with the ISS from

Earth [2].

1.1.2 Underwater Acoustic Networks

Underwater wireless communication is a developing field [3], which presents several issues which

are not typically encountered in terrestrial wireless networks. For one, electromagnetic waves

do not propagate through water due its high dielectric constant, so conventional RF wireless

protocols can not be used. Instead, acoustic waves are used for encoding and transmitting

1
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information. However, being based on sound waves, this is much more susceptible to interference

from sources of noise such as the wake from ships, sounds from animals, and collisions from

acoustic waves generated by other nodes. In particular, Singapore is a challenging environment

for deploying underwater acoustic networks due to the noise created from its busy shipping

industry. Singapore also is the natural habitat of snapping shrimp, which produce a distinct

sound wave which interferes with these acoustic waves [4]. Due to all these issues, there is a

higher probability of transmitted messages being dropped due to the lossy channel medium than

there is typical RF networks. Hence, the network is more likely to be disrupted.

Acoustic waves travel at the speed of sound in water (around 1500m/s), which is several orders

of magnitude slower than EM waves which travel at the speed of light. This can result in high

propagation delays (dprop). The bitrates of acoustic networks is low, usually in the order of 5

KB/sec. This leads to longer transmission delays (dtrans). Processing of acoustic waves can

involve significant error correction and signal processing which contributes to a higher processing

delay as well (dproc). Putting all this together, we get the following delay for sending a single

message:

dend−to−end = dprop + dtrans + dproc

Therefore, delays can be significant in underwater networks and protocols need to be designed

which take these delays into account.

We can see that underwater networks can be affected by both disruptions and delays in the

channel medium. DTN protocols are meant to alleviate the affect of both of these issues, making

them a good fit for underwater networks.

1.1.2.1 UnetStack

The Unet (Underwater Networks) project is jointly developed by the Acoustics Research Labo-

ratory (ARL) and its commercial partner, Subnero1. UnetStack [5] is an agent-based network

simulator which is used for testing the protocols that are used in real-world deployments of

underwater networks. UnetStack uses a software-in-the-loop network stack based on the Java

Virtual Machine (JVM) which allows protocols developed in UnetStack to be directly deployed

on hardware. It has APIs for Groovy, Java, Python, and C.

UnetStack does not use the conventional layered network model. Instead, the network stack is

divided into “agents” which handle different concerns of the network. For example, the ROUTING

agent handles the management of routes of messages and the PHYSICAL agent can be used as a

driver for an underwater modem. Messages can be directly passed from one agent to another.

1https://subnero.com/

https://subnero.com/
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FIGURE 1.1: UnetStack Agent Architecture

This flexibility is particularly important in underwater networks where network bandwidth is at

a premium.

1.2 Use Cases

This project is about developing a new LINK agent which will implement a DTN protocol. This

agent will be called DtnLink throughout this report. It is designed for the use cases of some of

ARL’s projects.

Some of these are as follows:

• Data Muling: UnetStack is used on sensor nodes for collecting sensor measurements from

parts of the ocean. The sensor stores the data until a diver can retrieve the sensor. This is a

labour intensive procedure. To supplant this, DtnLink can be used for sending the sensor’s

data to an AUV [6] when it comes in range of the sensor. Unet AUV’s have sophisticated

algorithms for navigating towards a sensor for establishing a link for communication [7].

• Time Varying Links: A concern in underwater networks is that certain links are only

available under certain conditions. For example, high bandwidth optical links are short-

ranged and require a Line of Sight to the destination for communication. Ideally, DtnLink

should be able to choose the most optimal link depending on the link’s availability and

bitrate.

• USB Link: DtnLink will maintain a list of pending messages in the node’s non-volatile

storage. As a potential alternative to sending these messages wirelessly, a USB Link agent
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could work in conjunction with DtnLink for automatically copying these messages to an

external storage device.

FIGURE 1.2: The NUSwan Robot

• NUSwan: The NUSwan [8] in Figure 1.2 is a water surface dwelling robot which au-

tonomously collects data about the water quality in Singapore’s reservoirs with its sensors.

This data is relayed to the cloud using an LTE connection. However, in large reservoirs, the

LTE connection may be temporarily unavailable due to lack of coverage. DtnLink can store

pending messages and then send these messages when the LTE link is available.

1.3 Modelling a DTN Protocol for Underwater Networks

DtnLink aims to be a drop-in addition to UnetStack for adding disruption tolerant communication

support. Hence, it is essential to define some of the features which are required for disruption

tolerant communication in underwater networks:

1.3.1 Node Advertisement Messages

As previously mentioned, underwater communication is adversely affected by packet collisions.

Hence, a pending message should only be sent when the sender is within communication range

of another node to avoid flooding the network with messages which cannot reach the destination.

To accomplish this, DtnLink SHOULD periodically send a message without any data at a set

interval to advertise its existence to nearby nodes (a so-called “Beacon” message). On receiving

this Beacon message, a node can start sending datagrams to the Beacon’s sender.

UnetStack nodes also have the capability to snoop on the messages destined for other nodes

sharing the same physical medium for communication. This capability is used for discovery of

other nodes without having to send an explicit Beacon message. Additionally, DtnLink SHOULD

NOT send an additional Beacon message if it has sent a datagram on a particular link in that

time period.



Chapter 1. Introduction 5

DtnLink MUST support the capability to store datagrams on the non-volatile storage of nodes

until it can be sent to the destination. It MUST also delete datagrams whose TTL has expired.

Note that the working of this Beacon functionality is under the assumption that the connectivity

of the links is symmetric. That is, if Node A can receive a transmission from Node B, Node B is

also able to receive a transmission from Node A. However, this assumption may not be valid for

certain underwater applications.

1.3.2 Required Features

• Storage: DtnLink MUST store datagrams on the node’s non-volatile storage until the

datagram can be sent to the destination.

• TTL: Datagrams saved to the node’s non-volatile storage MUST be deleted when the TTL of

the datagram is exceeded. TTL information for a datagram MUST be propagated through

the network. DtnLink SHOULD do so by encapsulating a datagram in its own PDU as

described in Section 2.1. As each node may not have its clock in sync with other nodes,

TTL SHOULD be stored as the time left till the message expires instead of an expiry time

for a particular node.

• Reliability: DtnLink only uses Link agents supporting reliability for sending messages.

Hence, we are guaranteed to know if a datagram has failed or has been successfully de-

livered. DtnLink SHOULD forward a DatagramDeliveryNtf to the requesting application.

On the other hand, if a datagram times out, DtnLink SHOULD send a DatagramFailureNtf

to the application.

• Node Advertisement: As explained in Section 1.3.1, DtnLink SHOULD periodically send

“Beacons” on all its underlying Link agents for alerting other nodes about its presence. On

receiving a Beacon, a node can start sending messages residing in its non-volatile storage

to that node.

• Multiple Links: A particular node may have multiple available Link agents. DtnLink

SHOULD populate a list of all the Link agents which support reliability. DtnLink MAY also

automatically switching between links depending on whether they have a connection to

the next hop for a message.

• Power Failure Recovery: Power failure on a node will typically cause the node to drop

all pending messages in its buffers. DtnLink MAY implement a mechanism of gracefully

recovering from power loss by resending messages which are pending in the node’s non-

volatile storage provided their TTLs have not expired.

• Fragmentation: Messages which exceed the MTU of the underlying links MAY be split by

DtnLink into smaller fragments which are sent like regular message. If the implementation
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supports fragmentation, the receiving instance of DtnLink MUST wait for the reception

of all of these fragments before reassembling the original message. Fragments MUST be

encoded in the DtnLink’s PDU format.

• Randomised Sending: While a very rare issue in real-world deployments, message sent at

exactly the same time can result in collisions in simulations. Hence, DtnLink MAY delay

sending message by a random amount of time.

• Stop-And-Wait Sending: To avoid congesting the channel medium, DtnLink MAY adopt

the strategy of only sending one message at a time and waiting for a notification about its

receipt before sending the next one.

• Short-circuit Sending: As implemented by the newer UnetStack3 agents, DtnLink MAY

support short-circuiting messages on single-hop routes by sending the message without its

PDU headers. This reduces the message size. Regardless, messages exceeding the MTU will

still need to be encoded in PDUs to be reassembled at the receiver’s instance of DtnLink.

However, messages sent through short-circuiting may be duplicated at the receiver.

• Single-copy Routing: Some DTN routing algorithms use packet replication to send mes-

sages to the destination. This approach might be sub-optimal for underwater networks

which are constrained by transmission power limitations and suffer from packet collisions

when the network is flooded with messages. Therefore, an implementation of DTNs for

UnetStack MAY NOT use packet replication.

From this set of requirements, we can identify which ones can be included in our protocol.

The DtnLink agent supports all of theses features, including the optional ones as illustrated in

Chapter 2.



Chapter 2

Design

DtnLink is written in Apache Groovy, the lingua franca of the fjåge and the Unet project [9].

Groovy runs on the JVM and can be used either statically and dynamically. This allows it to be

fully compatible with all Java code and its associated libraries.

2.1 Message Sending

2.1.1 The DtnLink PDU

FIGURE 2.1: The DtnLink Protocol Data Unit (PDU)

Before sending messages, DtnLink encodes the data in a PDU (Protocol Data Unit) which is

encapsulated in a DatagramReq before sending on a link.

7
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The structure of this PDU is shown in Figure 2.1. The following is the data represented in this

PDU:

• 24-bit TTL, representing the lifetime of the message in seconds.

• 1-bit To Be Continued (TBC) bit, for informing the receiver if more fragments are ex-

pected for large messages which do not fit in the LINK’s MTU. A value of 0 indicates the

transmission is complete for that payload.

• 7-bit Protocol number of the original message. This is used by UnetAgents for identifying

which DatagramNtfs are intended for them.

• 8-bit Unique ID, for uniquely identifying messages and distinguishing payloads by the tuple

of their sender and the Payload ID.

• 24-bit Starting pointer, for informing the receiver about where to insert the contents of a

fragment into its payload file.

A DatagramReq is the data structure used for sending messages between agents in UnetStack.

This PDU is generated when the DtnLink receives a DatagramReq containing the the message

from another agent. Before sending to the destination node, the message’s TTL is updated.

Therefore the DtnLink PDU helps in tracking the message’s TTL, identifying duplicate messages,

and managing the sending of large messages (payloads).

The following examples illustrate the different cases handled by the DtnLink agent.

2.1.2 Single-Hop Message Delivery

In these examples, we can see how the DtnLink sends messages to the destination by encoding

the information in its PDU format, described in Section 2.1.1.

In the below figures, a UnetAgent application (App/1) on Node 1 wants to send a message

via its DtnLink agent (DTNL/1). DtnLink encodes the message in its PDU and then it uses

an underlying ReliableLink (RL/1). The blue part of the figure indicates the message being

transmitted physically underwater. After reception of the message at the modem of Node 2, the

ReliableLink (RL/2) will pass the message upto the node’s DtnLink (DTNL/2). Here, the message

will be decoded, the message information will be extracted and passed onto the application of

Node 2 (App/2).

In Figure 2.2 we can see how the DtnLink sends messages when the destination is the next hop

in the network. In this case, DtnLink waits until the destination node is online by receiving its

Beacon message and then sends the datagram. On successful delivery acknowledgement from
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FIGURE 2.2: Single-Hop Delivery

FIGURE 2.3: Single-Hop Failure

the underlying link, the ACK, called a DatagramDeliveryNtf in UnetStack terminology, is passed

up to the application.

Figure 2.3 illustrates an example of failure of sending a datagram. In case if the sender does

not receive a DatagramDeliveryNtf (ACK) before its timeout period, the underlying link on the

sender will send a DatagramFailureNtf which is received by the DtnLink. As failing to send a

message at a particular point of time is not necessarily failure in DTNs, the DtnLink will attempt

to send the message at a later point of time when the destination node is online.

TTL expiry as shown in Figure 2.4 can occur when the destination node is not online during the

lifetime of the message. In these cases, the message is deleted from the sender and it can no

longer be sent in any circumstances. The DtnLink informs the requesting application about this

failure with a DatagramFailureNtf.
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FIGURE 2.4: Single-Hop TTL Expiry

FIGURE 2.5: Single-Hop ACK Failure

In the final case, Figure 2.5 shows a problematic scenario in which the DatagramDeliveryNtf

(ACK) message is lost due to a lossy channel medium. When this happens, the link on the

sender’s side will timeout and will generate a DatagramFailureNtf for DtnLink. This will make

the DtnLink resend the message, resulting in the receiver receiving duplicate messages. Clearly,

this problem must be avoided by having DtnLink check for duplicate messages.

2.1.3 Duplicate Message Detection

As shown in Figure 2.5, a dropped ACK can cause a message to be sent repeatedly until a LINK

level ACK is received. This can cause duplicate messages at the receiver.
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DtnLink solves this by encoding a random, 8-bit Unique ID in the PDU (Section 2.1.1) for each

message. When a receiver receives a message, it computes the hashCode of the entire message

after excluding the TTL field of the PDU. This value is stored in a Set in the receiver’s instance

of DtnLink. If the generated hashCode does not exist in this Set, the message is sent to the

application, else the message is discarded.

2.1.4 Short Circuit Message Sending

FIGURE 2.6: Short Circuiting Messages

In some cases, we might choose to send the message directly without encoding the DtnLink

PDU headers to reduce message size. In this case, we can short circuit the message, as briefly

mentioned in Section 1.3.2. Figure 2.6 shows how a message is transmitted straight to the

desired agent without encoding it in the DtnLink PDU format.

However, the trade-off of short circuiting is that it can only work for single-hop messages and it

eschews the duplication message detection mechanism which was explained in Section 2.1.3.

2.2 Power Failure Recovery

Disruption tolerant networks can also be affected by disruptions in the network infrastructure.

For instance, it’s possible that a battery powered node runs out of charge in the middle of a

mission or a solar powered buoy loses power on a cloudy day. Ideally, we would want our

protocol to be able to gracefully recover from such disruptions and keep the pending messages

intact for sending in the future.

DtnLink is capable of recovering from the situation in which a node is unexpectedly shutdown

and the DtnLink agent is terminated. This is implemented by saving the next hop of a message
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and its expiry time along with its PDU on the node’s non-volatile storage. On startup DtnLink

scans its directory for pending messages which have not yet expired. The next hop and expiry

time of a message is used in rebuilding the metadataMap which is used by DtnStorage for

tracking pending messages. Once this is done, DtnLink can send the messages via the strategies

discussed in Section 2.1.2.

2.3 Components

DtnLink has been designed with modularity in mind. The following classes were created to

implement DtnLink.

• DtnLink: DtnLink extends UnetAgent and handles the sending and receiving of messages.

As explained in Section 1.3.1 and Section 2.1.3 it also sends Beacon messages and checks for

duplicate messages. It also responds to DatagramDeliveryNtf and DatagramFailureNtf

messages and sends messages according to the priority set by the user.

DtnLink is configured to only send datagrams on LINK agents which support the RELIABILITY

capability. Supporting RELIABILITY does not mean that the LINK will always be able to

successfully send the message. Instead, it means that the LINK agent is able to generate

acknowledgements for every message sent.

When the DtnLink finds a new node (either through a probe or a snooped message), it will

query this data structure for the PDUs destined for the node. Once this is done, the TTLs

are checked for expiry and sent by a LINK agent.

As we are exclusively using LINK agents with RELIABILITY we are guaranteed to get a

acknowledgement about the result of the delivery. If DtnLink is notified of a successful

transmission, the entry is deleted from the tracking Hashmap in DtnStorage and the

corresponding PDU file is deleted along with it. If the DtnLink receives a notification about

delivery failure, it attempts to send the message at a later time when the node is within the

transmission range.

• DtnStorage: This will handle the storage mechanism. It will track outbound PDUs, frag-

ment and reassemble payload messages, and will delete expired PDUs. Expired messages

are deleted periodically at an interval which can be set by the user. It also encodes and

decodes into a format which can be used by DtnLink. It can also restore the state of

DtnLink after restarting from power failure.

• DtnLinkManager: DtnLink is expected to handle a variety of LINK agents. A node can have

a number of communication media, such as an underwater acoustic modem, optical link,

and Ethernet tether. Some nodes may only support one of these communication media.

The DtnLinkManager class maintains data structures which store information about the
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properties of each LINK agent that a node supports. It also maintains lists of the links

supported by the node’s neighbouring nodes. These data structures are updated on every

message received by the node. Furthermore, a user can also set the priority of links used

for communicating between two nodes which share more than one common LINK.

• DtnPduMetadata: This class allows DtnStorage to track the messages which it has sent to

other nodes. Each message ID has a corresponding DtnPduMetadata object which records

the next hop destination of the message, its expiry time, and the number of bytes of the

message successfully transmitted for payloads.

2.4 Capabilities

This agent will support the LINK and DATAGRAM service. Other agents can forward messages with

a valid TTL value to the DtnLink for disruption tolerant delivery. Messages without a valid TTL

will be refused outright.

In its current iteration, DtnLink only support single-copy and single-hop routing. If required,

ROUTING agents can be used in conjunction with DtnLink for multi-hop purposes.

2.5 Configurable Options

DtnLink is highly configurable and the following Parameters can be adjusted depending to the

use-case:

• Short circuit: As explained in Section 2.1.4, short circuiting messages can reduce message

size. However, this parameter is turned off by default as short circuiting messages makes it

impossible to check for duplicate receptions of a particular message.

• Periodic Functions: The beaconTimeout (maximum time of the link being idle before

sending a Beacon message), GCPeriod (time period of deleting expired and delivered

datagrams from non-volatile storage), datagramResetPeriod (time period of sending

datagrams), and linkExpiryTime (time for which a link can remain idle without removing

it from the active links list) parameters can be set at runtime.

• Datagram Priority: Messages can be sent according to their order of ARRIVAL, ascend-

ing order of EXPIRY times, and in a RANDOM manner. These options are exposed in the

datagramPriority parameter.

• Link Priority: The order in which underlying links are used by DtnLink can be changed

by sending a list of the AgentIDs to linkPriority. If these AgentIDs are null or not

registered by the DtnLink, the request will be ignored.



Chapter 2. Design 14

2.5.1 Automated Regression Testing

DtnLink can be tested reproducibly. As new features are added to the agent, it is imperative

that a basic subset of its functionality remains intact. These tests check that the key features of

DtnLink are working correctly.

As the DtnLink will work in conjunction with several other agents, it is more useful to see the

output of the agent on certain inputs rather than diving into the implementation of how each

function performs. This is formally called “Black-box” testing.

FIGURE 2.7: Black-box testing

The above figure is a simple example of the key concept of the black-box. The internals can be

totally abstracted for the tests as we only wish to see the outputs of the black-box on certain inputs.

In these tests, the DtnLink is the black-box and the specially developed TestApp and TestLink

agents test the behaviour of the DtnLink. More specifically, the TestApp prepares DatagramReqs

for sending to the DtnLink and the TestLink checks the receipt of these datagrams, and send

the corresponding Ntfs to the DtnLink.

FIGURE 2.8: The DtnLink Test Harness

Figure 2.8 shows what the test harness of DtnLink looks like. In this, we have created a new

TestLink and TestApp class which sends DatagramReq messages (input) to DtnLink. We can

then check if DtnLink produces the correct messages (output) at the App and Link parts of the

test.
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By these means, we can “trick” the DtnLink into behaving as it would in a multi node simulation.

The following tests are conducted with this test suite, using JUnit1:

• TRIVIAL MESSAGE: This test sends an empty DatagramReq to DtnLink to check if the agent

correctly accepts messages with TTLs encoded.

• SUCCESSFUL DELIVERY: This test sends a DatagramReq with the USER protocol number to

check if the message sent to the underlying link is sent without the DtnLink headers and

can be short circuited. It also checks whether the DatagramReq is formatted correctly and

has the original Protocol number.

• ROUTER MESSAGE: This test sends a DatagramReq with the ROUTING protocol number to

check if the message sent to the underlying link is encoded correctly with the DtnLink PDU

scheme and has its TTL adjusted accordingly.

• BAD MESSAGE: This test checks if the DtnLink responds with a Performative.REFUSE when

it receives a DatagramReq without a set TTL value.

• EXPIRY PRIORITY: This test checks if the messages sent to DtnLink in EXPIRY PRIORITY

mode from TestApp are forwarded to the TestLink in order ascending order of their TTL

values.

• ARRIVAL PRIORITY: This test checks if the messages sent to DtnLink in ARRIVAL PRIORITY

mode from TestApp are forwarded to the TestLink in order ascending order of their

arrival times.

• RANDOM PRIORITY: This test checks if the messages sent to DtnLink in RANDOM PRIORITY

mode from TestApp are forwarded to the TestLink in random order without regards to

the TTL values or arrival time.

• LINK TIMEOUT: This test checks if DtnLink correctly disables sending messages on links

which have not sent a message for a certain period of time.

• MULTI LINK: This test checks if DtnLink correctly uses the priority of Links set through a

ParameterReq to change the priority of the links used to communicate with other nodes.

• PAYLOAD MESSAGE: This test checks if the DtnLink is capable of correctly fragmenting a

large message into smaller fragments to fit in the underlying link’s MTU. These fragments

are sent to another instance of DtnLink to check if they fragments can be successfully

reassembled to form the original datagram.

• REBOOT: This test simulates the behaviour of DtnLink in event of a power failure. It runs

two instances of DtnLink, one after the other. In the first instance, the test sends messages

to DtnLink for storage and fails all its attempts to transmit the message successfully. The
1https://junit.org

https://junit.org/junit5/
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result of this is that the DtnLink’s directory will be populated with unsent messages. After

this, another instance of DtnLink is created. This test checks that DtnLink successfully

rebuilds its metadataMap and transmits the messages residing in its internal storage.



Chapter 3

Simulations & Results

The DtnLink agent aims to improve the reliability of sending messages for real-world applications

of UnetStack. To better understand how well underwater network protocols work, UnetStack

includes a simulator in which underwater nodes running Unet protocols can be simulated. As the

communication media is often lossy, UnetStack supports multiple underwater communication

models such as the Protocol Channel Model, Basic Acoustic Model, Mission 2013a Model [5],

and Urick Acoustic Model [10].

In the Protocol Channel Model, we can adjust the values of pDetection which allows us to

simulate varying levels of disruption. pDetection is the probability a node will be able to

detect a signal which is within the node’s detection range. Lossy channels have a low value of

pDetection.

By simulating various scenarios with DtnLink, we can better understand how messages can be

sent in a disruption tolerant manner.

17



Chapter 3. Simulations & Results 18

3.1 Scenarios

3.1.1 DTN Multihop

FIGURE 3.1: Multihop scenario

In this scenario (illustrated in Figure 3.1), we have a set of three nodes which are placed in

such a way that the sender and receiver are out each other’s communication range (shaded in

red). Hence, in this scenario, we require an intermediate node which relay messages. In this

simulation, we can compare the performance of DtnLink to the typically used ReliableLink to

see how effective it is in lossy networks. The details of the parameters used in this simulation are

given in Table 3.1 and Table 3.2.

Parameter Value
Simulation Time 10 800 s
Communication Range 1500m
Message Size 40 bytes
Message Frequency 10 s
Message TTL 10 800 s
Total Messages sent from Source 200

TABLE 3.1: Multihop simulation parameters

Node X Y Z
Source 0m 0m −50m

Routing Node 1500m 0m −50m
Destination 3000m 0m −50m

TABLE 3.2: Node co-ordinates for the multihop scenario

The entire simulation is run for different values of pDetection for both DtnLink and ReliableLink.
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FIGURE 3.2: Effect of pDetection on message delivery versus time

In Figure 3.2, we can see that the number of messages delivered increases significantly as the

simulation time increases. At lower levels of pDetection (0.1–0.4), the number of messages

transferred is much lower as the reception of several messages fail due to the lossy channel

medium. However, given that the simulation runs for enough time and the message’s TTL does

not expire, DtnLink will be able to eventually transfer all the messages sent by the sender.

When pDetection varies from 0.5–0.9, we can see that all 200 messages sent by the sender

reach the destination node within the time frame of this simulation. Here, we can see that the

time taken to transfer all the messages is affected by pDetection. This is because a message

needs to be retried more times when pDetection is low.
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For seeing if DtnLink is beneficial when we are using lossy networks with a low value of

pDetection, it is useful if we can compare it to the performance of a commonly used LINK agent

which does not have explicit support for disruption tolerance. In the following figures, we can

see how DtnLink compares1 with using the popular ReliableLink agent for sending messages.

FIGURE 3.3: Comparison of ReliableLink and DtnLink for different values of pDetection

In Figure 3.3, we can see that for a set of 100 messages, DtnLink outperforms ReliableLink

over a simulation time of 7200 s. This is due to DtnLink’s capability of being able to retry the

message until it is successfully delivered. ReliableLink’s probability of successfully delivering

the message is directly a function of pDetection as it will only retry a failed message until its

maxRetries (default = 3) limit is exceeded.

However, at pDetection from 0.1–0.2, we can see that DtnLink does not offer much advantage

over ReliableLink. The reason behind this is DtnLink’s Stop-And-Wait protocol of sending

messages which limits the number of messages it can send in a given amount of time. If the

channel is very lossy, DtnLink will spend a long amount of time waiting for the result of a

message being delivered. However, as shown in Figure 3.2, the message will be transferred given

more time. This effect is more apparent in Figure 3.4.

1DtnLink uses ReliableLink as the underlying link for actually transmitting messages over the channel medium.
Hence, it can be expected that at the very least, that DtnLink should not perform worse than ReliableLink.
Nevertheless, these simulations are illustrative of in which scenarios using ReliableLink as the underlying agent of
DtnLink can be beneficial compared to using it without DtnLink
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FIGURE 3.4: Comparison of ReliableLink and DtnLink for fixed value of pDetection

In Figure 3.4, we can see that the messages delivered by DtnLink only exceeds that of ReliableLink

after a certain amount of time. This shows that the Stop-And-Wait sending method of DtnLink

can negatively impact delivery times. Hence, DtnLink is more useful when used in an application

which can tolerate long delays.

3.1.2 AUV Data Muling

FIGURE 3.5: AUV Data Muling scenario

In Figure 3.5 we can see an example of an AUV carrying messages between two nodes - that is

the sensor and the research vessel. This use case, described in Section 1.2 is a variant of the

multihop demonstration shown above. In this case, the sensor and the vessel may be too far apart

to transmit data to each other. An AUV with the DtnLink agent can help in relaying messages
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between these two vessels. The parameters for the same are given below in Table 3.3 and Table

3.4.

Parameter Value
Simulation Time 8800 s
Communication Range 600m
Message Size 50 bytes
Message Frequency 10 s
Message TTL 8800 s
Total Messages sent from Source 200

TABLE 3.3: Data Muling simulation parameters

Node X Y Z
Sensor (Source) 0m 0m −50m
AUV (Data Mule) 900m 0m −50m
Ship (Destination) 1800m 0m −50m

TABLE 3.4: Initial node co-ordinates for the Data Muling scenario

In this particular simulation, the AUV starts near the sensor and makes it way to the research

vessel. It makes two rounds in the trajectory shown in Figure 3.5, with each round having a

period of 4400 s. In this particular simulation, the research vessel and the sensor are kept apart at

a distance of 1800m. The detection range of the nodes is set to 600m. The source node generates

100 messages with a TTL of 8800 s containing 50 bytes of randomly generated data which is

sent out every 10 s for 2000 s. The entire simulation is run for 8800 s each for different values of

pDetection.

FIGURE 3.6: One Sender and one Receiver in the Data Muling scenario
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Figure 3.6 illustrates this situation. At all values of pDetection we can see distinct trends in

how messages are transferred. In the curve of messages delivered successfully at the destination,

we can see that there are no messages transferred till t = 1700 s, a spike in message delivery till

t = 2500 s, a period of dormancy till t = 6000 s, and a final spike of message delivery which lasts

till t = 7200 s.

This can be explained by observing the periods of time in which the AUV comes in communication

range of a node. At the beginning, the AUV collects data from the sensor while it is far away from

the ship. This occurs till roughly t = 900 s, after which the AUV moves away from the sensor,

with its internal storage populated with messages to be transferred to the ship.

At around t = 1700 s, the AUV passes by the ship and transfers its pending messages to it. This

continues till the AUV has either moved out of the range of the ship or has finished sending

whatever messages it picked up when it was in the range of the sensor earlier.

After this the AUV comes out of the communication range of the ship at around t = 2500 s. It

makes another flyby of the sensor and receives more messages that were pending on the sensor’s

internal storage. These are carried over and transferred to the ship at around t = 6000 s to

transfer whatever new messages it received from the sensor between t = 2500 s and t = 6000 s.

The AUV then comes out of range of the ship at around t = 7200 s and returns to its starting

point next to the sensor.

These trends in message delivery can be observed consistently at all values of pDetection.

Using a LINK which does not support disruption tolerance would have caused all the messages

meant for the ship in this scenario to fail instantly as the sensor and the ship are never in the

communication range of the AUV at the same time. Therefore, we can see that DtnLnk can

open up new options for network topologies which were not previously possible with other LINK

agents.
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Conclusions

Underwater communication is a rapidly developing field which is supplemented with acoustic

communications, optical links, and AUVs. Due to various reasons such as interference due to the

noise from ships, sounds from animals, and packet collisions in the channel medium, there are

several challenges in successfully delivering a data underwater. UnetStack, the software stack of

the Unet project allows one to deploy network protocols in software which can later be deployed

on real hardware.

As shown in the scenario discussed in Section 3.1.1, DtnLink can significantly improve the

success rate of message delivery without sending unnecessary transmissions, owing to the use

of Beacon datagrams, timeouts for each link, and TTLs for each message. Furthermore, the

data muling scenarios in Section 3.1.2 illustrate that DtnLink can open up new possibilities in

network topologies which were not earlier possible with non-disruption tolerant LINK agents.

However, it is important to note that DtnLink may not be ideal in all use cases as demonstrated

in Figure 3.4 where it can be seen that ReliableLink is better than DtnLink in time-constrained

applications. Hence, it is upto the discretion of the user to configure and use DtnLink with

parameters (Section 2.5) which best fit the environment where the protocol is to be deployed.

DtnLink uses an extensive JUnit test suite for each build for regression testing. Future work

for the DtnLink includes expanding the concept to cover multi-hop acknowledgements with

specialised underwater routing algorithms. It would also be useful to make DtnLink a smart

protocol, which would be able to adapt to its environment according to its measurements of the

channel’s performance.

24
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Appendix

[1] Source code for DtnLink

[2] RFC For Disruption Tolerant Protocols in UnetStack

[3] Final thesis presentation
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https://github.com/shortstheory/underwater-dtn/
https://www.dropbox.com/s/wudkpl2wkpygkpx/rfc.pdf?dl=0
https://www.dropbox.com/s/g0t11y2k8fltjkb/dtn-presentation.pdf?dl=0
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