Introduction 0000000	Use Cases 000000	The DtnLink Agent	Simulation & Results		Conclusion 000

Adding Disruption Tolerant Networking to UnetStack

Arnav Dhamija

Acoustic Research Laboratory, National University of Singapore

arnav.dhamija@gmail.com

April 25, 2019

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Introduction ••••••	Use Cases 000000	The DtnLink Agent	Simulation & Results	Unit Testing 00000	Future Work 00	Conclusion 000
Agenda	à					

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

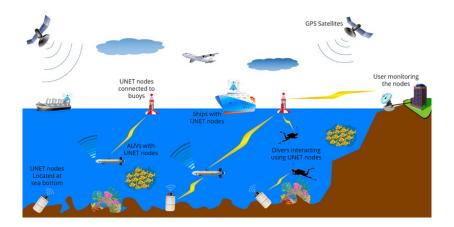
- Challenges in Underwater Networks
- Disruption Tolerant Networks
- UnetStack
- 2 Use Cases
 - Data Muling
 - Time Varying Links
- 3 The DtnLink Agent
 - Features
 - PDU
 - State Diagrams
- ④ Simulation & Results
- 5 Unit Testing
- 6 Future Work
 - Conclusion

Challen	ges in	Underwater	Networks		
Introduction 000000			Simulation & Results	Future Work 00	Conclusion 000

Underwater networks typically use

acoustic waves

Challenges in Underwater Networks


- Underwater networks typically use acoustic waves
- Challenges:
 - Noise from ships, shrimp, bubbles
 - Surface characteristics
 - Interference from other transmissions
 - Link availability
 - High energy consumption
- Disruptions can be high and reliability can be low, hence an ideal place for using *DTN* protocols

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Introduction	Use Cases 000000	Simulation & Results	Future Work 00	Conclusion 000	
Fxamp	e				

ľ

Disruption Tolerant Networks

- Used where the communication network is likely to be disrupted due to:
 - Network Topology (Deep Space Networks / VANETs)
 - Environmental Conditions (Underwater Networks)

(日) (四) (日) (日) (日)

Disruption Tolerant Networks

- Used where the communication network is likely to be disrupted due to:
 - Network Topology (Deep Space Networks / VANETs)
 - Environmental Conditions (Underwater Networks)
- Prioritises successful message delivery over network throughput

(日) (四) (日) (日) (日)

Disruption Tolerant Networks

- Used where the communication network is likely to be disrupted due to:
 - Network Topology (Deep Space Networks / VANETs)
 - Environmental Conditions (Underwater Networks)
- Prioritises successful message delivery over network throughput
- Very different from typical Internet protocols!

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Introduction	Use Cases 000000	The DtnLink Agent	Simulation & Results	Unit Testing 00000	Future Work	Conclusion 000
Key Fe	atures					

• For making a network tolerant to delays and disruptions, DTNs typically have:

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

• Store and Forward

Introduction	Use Cases 000000	The DtnLink Agent	Simulation & Results	Unit Testing 00000	Future Work	Conclusion 000
Key Fe	atures					

• For making a network tolerant to delays and disruptions, DTNs typically have:

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

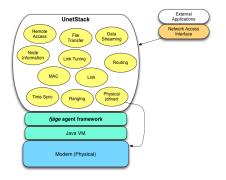
- Store and Forward
- TTLs for messages

Introduction	Use Cases 000000	The DtnLink Agent	Simulation & Results	Unit Testing 00000	Future Work 00	Conclusion 000
Key Fe	atures					

- For making a network tolerant to delays and disruptions, DTNs typically have:
 - Store and Forward
 - TTLs for messages
 - Dedicated routing algorithms (SNW, PRoPHET, MaxProp, etc)

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Introduction	Use Cases 000000	The DtnLink Agent	Simulation & Results	Unit Testing 00000	Future Work 00	Conclusion 000
Key Fe	atures					


- For making a network tolerant to delays and disruptions, DTNs typically have:
 - Store and Forward
 - TTLs for messages
 - Dedicated routing algorithms (SNW, PRoPHET, MaxProp, etc)

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

- We are not going to focus on Routing and multi-copy
- Emphasis on efficiency!

Introduction ○○○○●○	Use Cases 000000	The DtnLink Agent	Simulation & Results	Unit Testing 00000	Future Work	Conclusion
UnetSt	ack					

- Underwater Network Simulator built on top of fjåge, written in Java and Groovy
- Agent based design
- Cross-layer optimisation, unlike layered network stack
- Any layer can talk to other layers!

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Introduction	Use Cases 000000	The DtnLink Agent	Simulation & Results	Unit Testing 00000	Future Work 00	Conclusion 000
DtnLin	k					

Putting it all together...

- DTNs can be useful in underwater networks
- We need a new UnetAgent to implement all this functionality

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

• A LINK agent, leveraging capabilities of existing agents

Introduction	Use Cases 000000	The DtnLink Agent	Simulation & Results	Unit Testing 00000	Future Work 00	Conclusion 000
DtnLin	k					

Putting it all together...

- DTNs can be useful in underwater networks
- We need a new UnetAgent to implement all this functionality

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

- A LINK agent, leveraging capabilities of existing agents
- Let's call it DtnLink

Introduction 0000000	Use Cases ●00000	The DtnLink Agent	Simulation & Results	Future Work 00	Conclusion 000
Agenda	Э				

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

- Introduction
 - Challenges in Underwater Networks
 - Disruption Tolerant Networks
 - UnetStack
- 2 Use Cases
 - Data Muling
 - Time Varying Links
- 3 The DtnLink Agent
 - Features
 - PDU
 - State Diagrams
- ④ Simulation & Results
- 5 Unit Testing
- 6 Future Work
 - Conclusion

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

What can DtnLink be used for?

- Useful where the channel medium is lossy, delivery times are not a priority
- Some ideas:

The DtnLink Agent

Simulation & Results

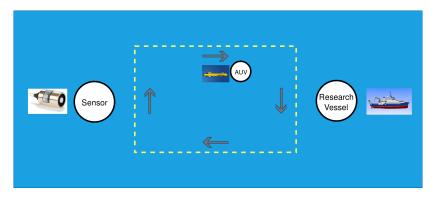
Unit Testing 00000 Future Work

Conclusion 000

What can DtnLink be used for?

- Useful where the channel medium is lossy, delivery times are not a priority
- Some ideas:

Use Cases


00000

• Data Muling

Introduction 0000000	Use Cases	The DtnLink Agent	Simulation & Results	Unit Testing 00000	Future Work 00	Conclusion 000
Data N	/luling					

Using mobile nodes (e.g. AUVs) for relaying messages

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

The DtnLink Agent

Simulation & Results

Unit Testing 00000 Future Work 00 Conclusion 000

What can DtnLink be used for?

- Useful where the channel medium is lossy, delivery times are not a priority
- Some ideas:

Use Cases

000000

- Data Muling
- Time Varying Links

Introduction 0000000	Use Cases ○○○○●○	The DtnLink Agent	Simulation & Results	Unit Testing 00000	Future Work 00	
Time \	/arying	Links				

• In underwater networks, not all links may be available at all time

- Acoustic links
- Optical links
- WiFi/LTE links
- How do we choose the link to use?

Introduction 0000000	Use Cases ○○○○●○	The DtnLink Agent	Simulation & Results	Unit Testing 00000	Future Work	Conclusion 000
Time \	/arying	Links				

- In underwater networks, not all links may be available at all time
 - Acoustic links
 - Optical links
 - WiFi/LTE links
- How do we choose the link to use?
- DtnLink can choose the link based on which it SNOOPs a message
- Each node periodically sends Beacons for advertisement

The DtnLink Agent

Simulation & Results

Unit Testing 00000 Future Work 00 Conclusion 000

What can DtnLink be used for?

- Useful where the channel medium is lossy, delivery times are not a priority
- Some ideas:

Use Cases

00000

- Data Muling
- Time Varying Links
- NUSwan

The DtnLink Agent

Simulation & Results

Unit Testing 00000 Future Work 00 Conclusion 000

What can DtnLink be used for?

- Useful where the channel medium is lossy, delivery times are not a priority
- Some ideas:

Use Cases

00000

- Data Muling
- Time Varying Links
- NUSwan

The DtnLink Agent

Simulation & Results

Unit Testing 00000 Future Work

Conclusion 000

What can DtnLink be used for?

- Useful where the channel medium is lossy, delivery times are not a priority
- Some ideas:

Use Cases

00000

- Data Muling
- Time Varying Links
- NUSwan
- …and many more

0000000	000000	•0000000000	000000000000000000000000000000000000000	00000	00	000
Agenda	a					

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

- Introduction
 - Challenges in Underwater Networks
 - Disruption Tolerant Networks
 - UnetStack
- 2 Use Cases
 - Data Muling
 - Time Varying Links
- 3 The DtnLink Agent
 - Features
 - PDU
 - State Diagrams
- ④ Simulation & Results
- 5 Unit Testing
- 6 Future Work
 - Conclusion

Introduction 0000000	Use Cases	The DtnLink Agent ○●○○○○○○○○○	Simulation & Results	Unit Testing 00000	Future Work 00	Conclusion 000
Feature	es					

• DtnLink is a new UnetAgent

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへぐ

Introduction 0000000	Use Cases 000000	The DtnLink Agent ○●○○○○○○○○○	Simulation & Results	Future Work 00	Conclusion 000
Feature	es				

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

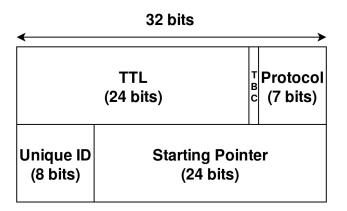
- DtnLink is a new UnetAgent
- Features
 - Fragmentation of large messages
 - Detection of duplicate messages
 - Stop-And-Wait sending
 - Support for multiple links

Introduction 0000000	Use Cases 000000	The DtnLink Agent ○●○○○○○○○○	Simulation & Results	Future Work 00	Conclusion
Feature	es				

- DtnLink is a new UnetAgent
- Features
 - Fragmentation of large messages
 - Detection of duplicate messages
 - Stop-And-Wait sending
 - Support for multiple links
- Configurable Options
 - Link Priorities
 - Order of sending messages (ARRIVAL, EXPIRY, RANDOM)
 - Short-circuiting (send messages to destination without DTN headers)

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

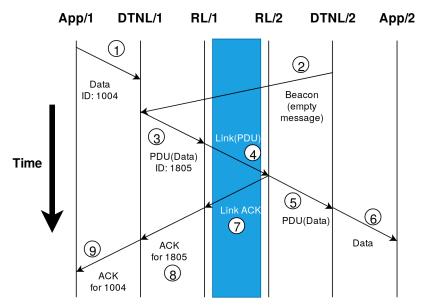
Introduction	Use Cases	The DtnLink Agent	Simulation & Results	Unit Testing	Future Work	Conclusion		
0000000	000000	○○●○○○○○○○		00000	00	000		
PDU S	PDU Structure							

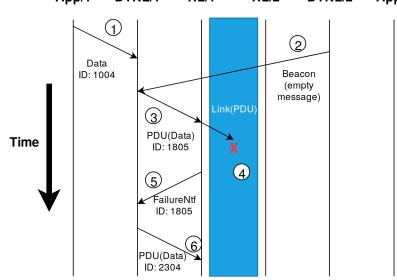

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

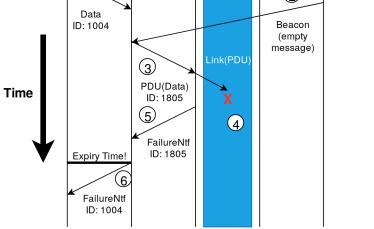
- Protocol Data Unit
- Consists of Headers + Data
- Added before the first byte of the data

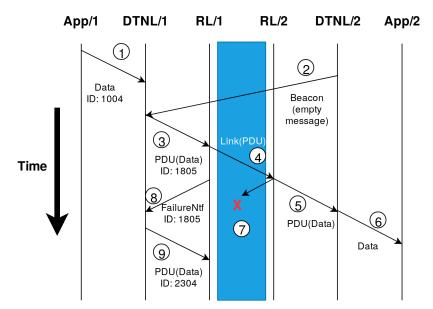
Introduction 0000000	Use Cases 000000	The DtnLink Agent ○○●○○○○○○○	Simulation & Results	Unit Testing 00000	Future Work 00	Conclusion		
PDU S	PDU Structure							

- Protocol Data Unit
- Consists of Headers + Data
- Added before the first byte of the data
- DtnLink uses a 64 bit header
- PDU size *must* be less than the MTU¹ of the Link used




▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ





Introduction 0000000	Use Cases 000000	The DtnLink Agent	Simulation & Results	Unit Testing 00000	Future Work 00	Conclusion 000
Duplica	ate Me	ssages				

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ □ のへぐ

- ACK Fails can lead to duplicate messages
- We need a way to identify duplicate messages

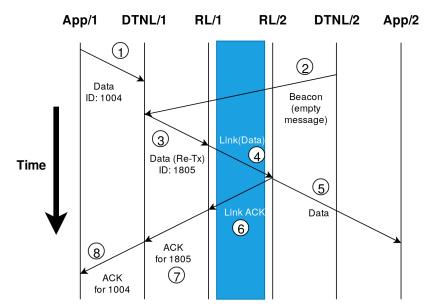
Duplica				00000		000	
Introduction	Use Cases	The DtnLink Agent	Simulation & Results	Unit Testing	Future Work	Conclusion	

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

- ACK Fails can lead to duplicate messages
- We need a way to identify duplicate messages
- Idea: use a nonce for each message

Sender

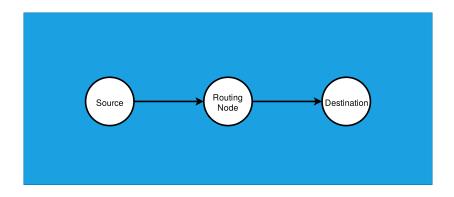
• Sender encodes a nonce in the PDU for each message


Receiver

- Receiver computes hashCode of message data and the nonce
- Stores this value in a Set
- If current message's hashCode exists in the Set, discard the message

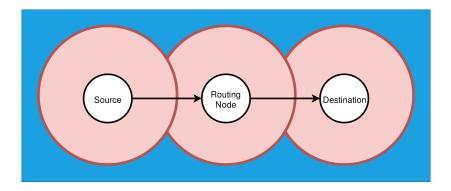
▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

• Otherwise, send it up to the application

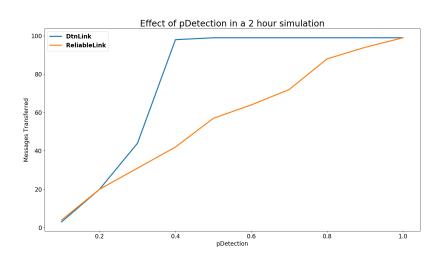


Introduction	Use Cases	The DtnLink Agent	Simulation & Results	Unit Testing	Future Work	Conclusion
0000000	000000		•000000000000000000000000000000000000	00000	00	000
Agenda	a					

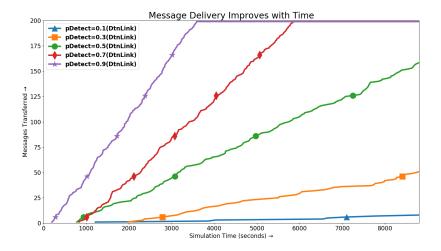
▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで


- Introduction
 - Challenges in Underwater Networks
 - Disruption Tolerant Networks
 - UnetStack
- 2 Use Cases
 - Data Muling
 - Time Varying Links
- 3 The DtnLink Agent
 - Features
 - PDU
 - State Diagrams
- ④ Simulation & Results
- 5 Unit Testing
- 6 Future Work
 - **Conclusion**

Multih	on sim	ulation				
Introduction 0000000	Use Cases 000000	The DtnLink Agent	Simulation & Results	Unit Testing 00000	Future Work 00	Conclusion

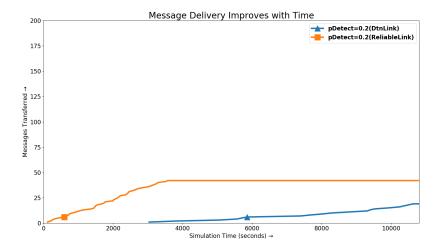

			Simulation & Results	OO	000
Multib	on sim	ulation			

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで



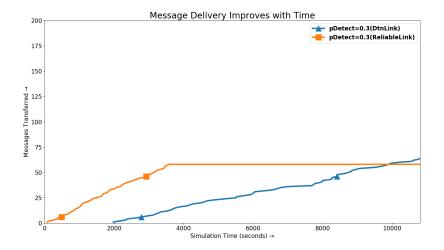
< ロ > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

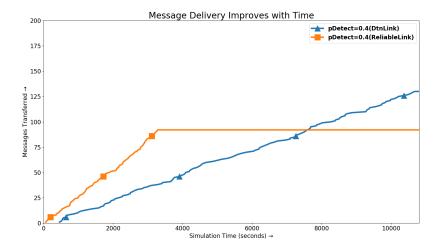
Message delivery keeps improving with time!


▲□▶ ▲□▶ ▲三▶ ▲三▶ - 三 - のへで

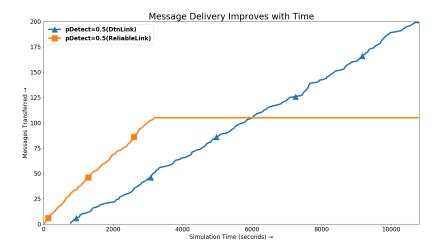
Introduction 0000000	Use Cases 000000	The DtnLink Agent	Simulation & Results	Unit Testing 00000	Future Work	Conclusion 000
Howeve	er					

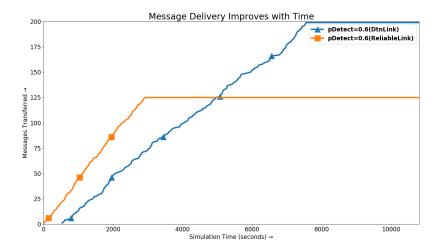
DtnLink is not a panacea!

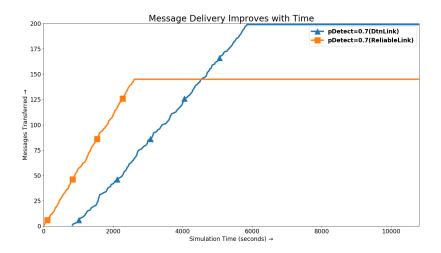




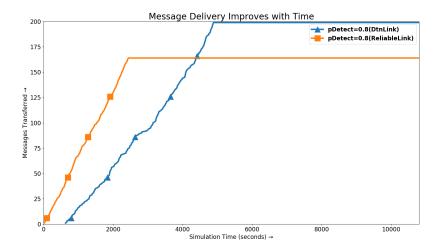
▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへの



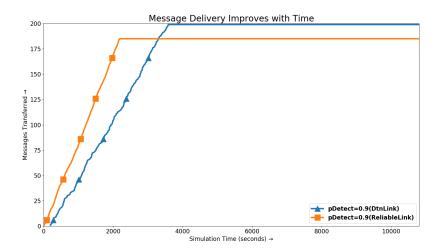

・ロト ・ 同ト ・ ヨト ・ ヨト ж



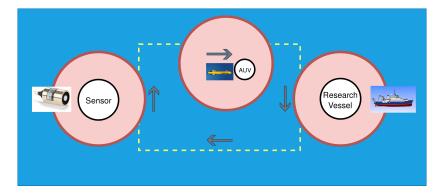
イロト 不得 トイヨト イヨト

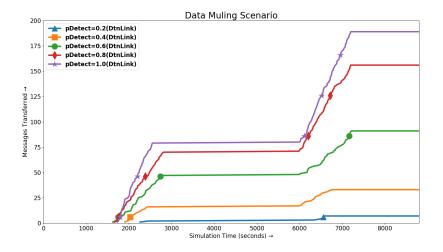


▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで


◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 = のへで

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ




▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

Data N	Juling	Simulation				
	Use Cases 000000	The DtnLink Agent	Simulation & Results	Unit Testing 00000	Future Work 00	Conclusion

◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 = のへで

Agenda							
Introduction 0000000	Use Cases 000000	The DtnLink Agent	Simulation & Results	Unit Testing ●0000	Future Work 00	Conclusion 000	

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

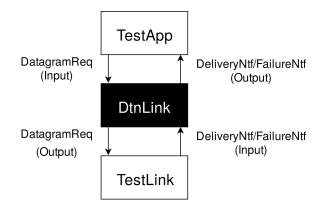
- Introduction
 - Challenges in Underwater Networks
 - Disruption Tolerant Networks
 - UnetStack
- 2 Use Cases
 - Data Muling
 - Time Varying Links
- 3 The DtnLink Agent
 - Features
 - PDU
 - State Diagrams
- ④ Simulation & Results
- 5 Unit Testing
 - 5 Future Work
 - **Conclusion**

Introduction 0000000	Use Cases 000000	The DtnLink Agent	Unit Testing 0●000	Future Work 00	Conclusion
Why U	nit Tes	sting?			

- Simulations are great for testing but...
 - they take a long time to run
 - make it hard to catch bugs
 - only test specific scenarios

Introduction 0000000	Use Cases 000000	The DtnLink Agent	Simulation & Results	Unit Testing 0●000	Future Work 00	Conclusion
Why U	nit Tes	sting?				

- Simulations are great for testing but...
 - they take a long time to run
 - make it hard to catch bugs
 - only test specific scenarios
- Unit testing can help us by *automatically* testing crucial functionality of DtnLink
- *Regression testing* is checking for if anything breaks between changes


▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Introduction 0000000	Use Cases 000000	The DtnLink Agent	Simulation & Results	Unit Testing 00●00	Future Work 00	Conclusion
Black I	Box Te	sting				

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

Introduction 0000000	Use Cases 000000		Unit Testing 0000●	Future Work 00	Conclusion
Tests (Conduc	ted			

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

- TRIVIAL_MESSAGE
- SUCCESSFUL_DELIVERY
- ROUTER_MESSAGE
- BAD_MESSAGE
- EXPIRY_PRIORITY
- ARRIVAL_PRIORITY
- RANDOM_PRIORITY
- LINK_TIMEOUT
- MULTI_LINK
- PAYLOAD_MESSAGE
- REBOOT

Agenda	3						
Introduction 0000000	Use Cases 000000	The DtnLink Agent	Simulation & Results	Unit Testing 00000	Future Work ●0	Conclusion 000	

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

- Introduction
 - Challenges in Underwater Networks
 - Disruption Tolerant Networks
 - UnetStack
- 2 Use Cases
 - Data Muling
 - Time Varying Links
- 3 The DtnLink Agent
 - Features
 - PDU
 - State Diagrams
- ④ Simulation & Results
- 5 Unit Testing
- 6 Future Work
 - Conclusion

Introduction 0000000	Use Cases 000000	The DtnLink Agent	Simulation & Results	Unit Testing 00000	Future Work ⊙●	Conclusion 000
Future	Work					

- DtnLink has some limitations which can be addressed in the future:
 - Stop-And-Wait is slow
 - TTL of messages doesn't include propagation delay
 - Multi-copy routing
 - End-to-end acknowledgements for multihop will need transport level control DtnTransport

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

0000000	000000	00000000000	000000000000000000000000000000000000000	00000	00	000
Agenda	a					

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

- Introduction
 - Challenges in Underwater Networks
 - Disruption Tolerant Networks
 - UnetStack
- 2 Use Cases
 - Data Muling
 - Time Varying Links
- 3 The DtnLink Agent
 - Features
 - PDU
 - State Diagrams
- ④ Simulation & Results
- 5 Unit Testing
- 6 Future Work
 - Conclusion

Introduction 0000000	Use Cases	The DtnLink Agent	Simulation & Results	Unit Testing 00000	Future Work	Conclusion ○●○
Conclu	sions					

• Underwater networks are more disrupted, need different protocols

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Introduction 0000000	Use Cases 000000	The DtnLink Agent	Simulation & Results	Unit Testing 00000	Future Work	Conclusion
Conclu	sions					

- Underwater networks are more disrupted, need different protocols
- DtnLink can be useful when the channel medium is lossy and successful delivery is prioritised
 - Useful in data muling and switching between different links

Introduction 0000000	Use Cases 000000	The DtnLink Agent	Simulation & Results	Unit Testing 00000	Future Work 00	Conclusion ○●○
Conclu	sions					

- Underwater networks are more disrupted, need different protocols
- DtnLink can be useful when the channel medium is lossy and successful delivery is prioritised
 - Useful in data muling and switching between different links
- Stop-And-Wait sending reduces collisions but this can make it slower than ReliableLink in some situations

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Introduction 0000000	Use Cases 000000	The DtnLink Agent	Simulation & Results	Future Work 00	Conclusion 0●0
Conclu	sions				

- Underwater networks are more disrupted, need different protocols
- DtnLink can be useful when the channel medium is lossy and successful delivery is prioritised
 - Useful in data muling and switching between different links
- Stop-And-Wait sending reduces collisions but this can make it slower than ReliableLink in some situations

• Simulations help us understand the use cases better

Introduction	Use Cases	The DtnLink Agent	Simulation & Results	Unit Testing	Future Work	Conclusion
						000

Thank you!

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ