
Original PaperS2

 Tretter F, Albus M.  “ Computational Neuropsychiatry ”  of Working    …    Pharmacopsychiatry 2007;   40 (Suppl.1): S2 – S16 

 Bibliography 
  DOI      10.1055/s-2007-993139   
  Pharmacopsychiatry 2007; 
 40 (Suppl.1): S2 – S16   
  ©  Georg Thieme Verlag KG 
Stuttgart  ·  New York  
 ISSN 0936-9528 

     Correspondence 
  Prof. Dr. Dr. Dr. F. Tretter   
   Department of Addiction 
 Isar-Amper-Hospital 
 Ringstr. 9 
 85529 Haar / Munich 
 Germany 
 Tel.: 00 49 / 89 / 4562 37 08   
 Fax: 00 49 / 89 / 4562 37 54   
  Felix.Tretter@IAK-KMO.de   

          “ Computational Neuropsychiatry ”  of Working 
Memory Disorders in Schizophrenia: The Network 
Connectivity in Prefrontal Cortex  –  Data and Models    

used to build models in order to understand the 
network properties of the brain. This new fi eld 
often is called  “ Computational Neuroscience ”  
 [5,   19] . Saying it briefl y, Computational Neuro-
science studies neuronal computation with the 
help of computer-assisted mathematical tools 
 [19,   33,   20] . To give an example: one of the most 
famous theoretical approach is the model of the 
electrical reactivity of the neuron as it was pro-
posed by Hodgkin and Huxley [35;comp.37]. 
Their model could describe the dynamics of the 
exchange of ions between the extracellular and 
the intracellular space thus generating the mem-
brane potential and spikes of a single neuron. 
This concept in neural modeling is represented 
mostly in integrate-fi re models as they were con-
structed by Fitzhugh and Nugamo [comp. 37]. 
This nonlinear model of the neuron is the basis of 
most other  “ naturalistic ”  spiking models that are 
constructed to describe and explore the behavior 
of more complex neural networks in the brain 
 [4,   5] . 
 Regarding this theoretical approach of computa-
tional neuroscience also pathological informa-
tion processing in the brain could be considered 
within a mathematical framework that could be 
called  “ Computational Neuropsychiatry ”   [70] . 
For instance, the known neurochemical circuits 
involved in generating schizophrenic symptoms 
can be studied by computer-assisted analyses 

  “ Computational (Systems) Neuro-
psychiatry ”   –  towards a theoretical 
systemic neuropsychiatry 
  &  
 Biological psychiatry has gathered an increasing 
amount of data that throws some light on the 
brain mechanisms of mental disorders like schiz-
ophrenia. Now, the problem arises to put together 
the various pieces of knowledge into a coherent 
picture of the functions and dysfunctions of the 
brain. One diffi culty at the attempt to understand 
normal and pathological brain functions is the 
complexity of data. Another problem is related to 
the conceptual integration of the variety of meth-
ods that are used to investigate the brain such as 
imaging techniques, animal experiments, histo-
logical preparations, electrophysiology, molecu-
lar biology, genetic tools and other techniques. 
All these methods generate a heterogeneous pic-
ture of the neurobiological correlate of various 
behavioral processes. Finally, the complexity of 
the brain itself as a hypercomplex network with 
estimated trillions of neuronal connections 
makes it impossible to understand it ’ s functions 
and dysfunctions and dynamics of processes by 
imagination alone. 
 In experimental neurobiology already methods 
from the theoretical sciences like mathematics, 
systems science, cybernetics, informatics, com-
putational sciences and theoretical physics are 
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  Abstract 
  &  
 The use of mathematical and computer-assisted 
modeling of brain mechanisms involved in men-
tal disorders can be called  “ Computational Neu-
ropsychiatry ” . It was already demonstrated by 
several initiatives that computational modeling 
is an important contribution to understand neu-
ronal circuits that could generate mental func-
tions and dysfunctions. However, this attempt 

needs close collaboration between experimental 
neurobiologists, clinical psychiatry and systems 
science. In order to do so, we have organized a 
series of workshops on computational neuropsy-
chiatry. Here we try to give basic information 
on data and modeling of the prefrontal cortical 
neurocircuitry that is involved in working mem-
ory and its disorders in schizophrenia. Special 
emphasis is devoted to the basic features of com-
putational modeling.        
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and simulations  [7,   68,   69] . Lately, in molecular biology and 
genetics a new systemic approach is emerging, called  “ Systems 
Biology ”  that is devoted to computerized reconstruction of the 
functions of the cells (e.g. growth, differentiation, apoptosis) on 
the basis of molecular signaling, metabolic and gene regulatory 
networks  [1,   40,   41,   52] . Not yet, systems biology is established in 
psychiatry  [69] . For this reason it might be reasonable to call 
systemic neuropsychiatry as  “ Computational Systems Neuropsy-
chiatry ”  because Computational Science and Systems Biology 
have to be brought together in order to proceed in the fi eld of 
theoretical neuropsychiatry. 
 With the aim to initiate this systemic way of thinking in bio-
logical psychiatry we have started with a series of workshops 
devoted to the integration of clinical psychiatry, experimental 
neurobiology and computational sciences. Our First Interna-
tional Workshop on Computational Neuropsychiatry was organ-
ized in fall 2005 with support by Arvid Carlsson. At that workshop 
we discussed theoretical models that were centered around the 
neurobiological circuitry concepts developed by Arvid Carlsson 
 [14,   58,   68,   70] . We also decided then to concentrate in our 2006 
workshop on the analysis and modeling of the prefrontal cortex 
(PFC) regarding working memory functions. We focussed on the 
dopamine signaling system in the PFC. 
 The following questions were addressed and discussed in this 
workshop and are represented in this volume: What is the neuro-
biological basis of working memory and its disturbances [s. Win-
terer (p. S45), Gallinat et al. (p. S40), Schl ö sser et al. (p. S85), 
Haenschel et al. (p. S54) in this issue]? How are working memory 
functions generated in neural networks [s. Loh et al. (p. S78), 
Haenschel et al. (p. S54), Schl ö sser et al. (p. S85) in this issue]? 
What does dopamine really  “ do ”  in the cortex [s. Leuner and 
M ü ller (p. S17), Winterer (p. S45), Meisenzahl (p. S62), DiPietro 
and Seamans (p. S27), Gallinat et al. (p. S40) in this issue]? What 

are the differential effects of anti psychotics [s. Leuner and M ü ller 
(p. S17), Koch (p. S34) in this issue]? What kind of models help us 
to understand these processes in local networks [Vogels and 
Abbott (p. S73), Loh et al. (p. S78) in this issue]? Here, in this paper 
we give an overview of our current theory-oriented discussion.   

 Basic issues of systemic modeling  –  integrated 
multi-level perspective 
  &  
 Systems science (or systems research)  –  based on mathematics, 
physics, electrical engineering, theoretical chemistry and similar 
disciplines  –  is the pool of interdisciplinary applications of sys-
tems thinking and systems modeling. This fi eld still only sparsely 
is established at universities and colleges. Systems science under-
stands the subject under study to be an entity being composed of 
several interdepending parts being organized on different levels 
such as cells and cellular networks [comp. 7]; (    �  �     Fig. 1  ). Several 
concepts as stability, non-equilibrium, dynamic equilibrium, 
modularity, feedback, deterministic chaos, non-linearity, robust-
ness etc. characterize this fi eld of theorizing  [7,   66,   68] . 
 Systems science has provided several methods that allow to for-
mulate models of the processes being studied. One main feature 
of this modeling methodology is the formulation of a wiring dia-
gram that represents the conceptualization of the interactions 
between the various components of the system. Additionally, 
systems research has provided a pool of mathematical methods 
such as differential equations, Petri nets, Markov chains etc. that 
allow to model the system. This formalization is the basis for the 
computerization of the model that is necessary in order to make 
virtual experiments (simulations of scenarios). Many compo-
nents of the tools of this methodology were derived from the 
 “ world models ”  developed by Jay Forrester and are now mainly 
represented in management science by what is known as the 
 “ System Dynamics ”  approach  [63] . Details concerning modeling 
and the systemic approach were published within the context of 
our 2005 workshop [7, 68;see also 82]. 
 Systemic modeling takes account of the fact that the subject to 
be modeled is a complex network composed of a large number 
of units (nodes) that show a large number of connections 
(edges). These are crucial properties of the brain and this is the 
reason to relate to systems science as a theoretical science. Mod-
ern physics and chemistry has shown that elementary particles, 
atoms and molecules but even simple systems like pendula can 
exert nonlinear behaviour that can hardly be predicted. This 
phenomenon is known as chaotic behaviour (chaos theory; 53]. 
Also extreme large systems make it hard to understand proc-
esses, a fact that is known as the complexity problem (complex-
ity theory; 8, 45]. Therefore, the study of non-linear dynamics 
and complexity can be related to the fi eld of systems science. 
 Some authors cover the same area of studies but call it  “ Compu-
tational Science ”  or  “ Informatics ” . When applied to (neuro) bio-
logical research various prefi xes are used like  “ Computational 
Neuroscience ” ,  “ Bioinformatics ”  or  “ Neuroinformatics ”  [5].   

 Structure of models  –   “ atomic ”  modules of 
networks 
  &  
 The main problem in modeling is the decision to select the sig-
nifi cant features of the real system and to represent only an 
appropriate subset of components and relations of the real sys-
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  Fig. 1           The 
reductionistic 
approach  –  top-down 
process of empirical 
and experimental 
neuroscience und the 
problem to reconstruct 
the whole and to 
explain bottom-up 
macro-phenomena 
by micro-phenomena 
[modif. from 7].  
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tem in the model in order to generate the targeted function of 
the network that should be explored. Most systems researchers 
use the  “ artifi cial neural networks ”  approach. This approach 
involves mapping the real system consisting of millions of com-
ponents in a matrix of hundreds or even thousands of intercon-
nected units, where the connections activate or inhibit the target 
units in the network and where the fl ow of signals runs forwards 
and backwards etc. [for details, see 4,5]. Also these networks 
consist of a basic pattern of connectivity that can be reduced to 
basically structured functional modules. In principle, a group of 
 “ atomic ”  elementary functional two-component modules can 
be identifi ed that either consist of (I) two activators (ACT-ACT) 
or (II) of one activator (ACT) and one inhibitor (INH) or (III) of 
two inhibitors (INH-INH;     �  �     Fig. 2  ). Depending on the kinetic 
coupling properties, they tend to exhibit escalatory (I), oscilla-
tory (II) or polarizing behavior (III). 
 Usually the global balance of activation and inhibition is impor-
tant for the function of the network [s. Vogels  &  Abbott, this vol-
ume]. 

 Many systems researchers, like Jay Forrester, argue that  “ atoms ”  
and  “ molecules ”  that represent the functional modules that 
comprise complex systems should be sought (    �  �     Fig. 3  ). Also in 
biochemical systems theory (Systems Biology) some authors try 
to fi nd canonical circuits in molecular networks that they call 
 “ motifs ”   [1] . The concept of  “ canonical modules ”  seems to be 
important for our discussion, as several concepts of modular 
units are proposed by several authors with regard to the cortex 
 –  the  “ columns ”  being one example (s. below). 
 Such basic  “ atomic ”  modules can be found as components in 
more complex networks (    �  �     Fig. 3  ). They show the following 
principles of connectivity:   
  §    (local) self-activation / -inhibition 
  §    lateral activation / inhibition of parallel pathways (or mod-

ules) 
  §    multi-stage feedback activation / inhibition 
  §    multi-stage feedforward activation / inhibition 
  §    multi-input module (convergence) 
  §    multi-output module (divergence)   
 For instance, in the CNS such modules can be identifi ed in the 
multi-layer neuronal network of the retina (reciprocal lateral 
inhibition) and in the spinal cord (antagonistic / synergistic inhi-
bition). The (oscillatory) central pattern generator, as an activa-
tor-inhibitor module  [34] , also exhibits a functional structure 
that can be derived from such elementary modules. These basic 
modules can be seen in every brain circuit, whereby each ele-
ment of these modules can represent a population of even thou-
sands of neurons. The same is true for intracellular biochemical 
networks  [40] . For a qualitative (or: semiquantitative) under-
standing of these circuits, the actions can be analyzed in relation 
to one another by mathematical methods or by exploratory 
numerical simulations [58]. 
 It should be kept in mind: Selection from the complexity of 
 “ reality ”  is the basis of modeling, but selection implies the risk 
of neglecting essentials - doing the right thing could be the art of 
modeling.   
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  Fig. 2           Elementary two-component modules consisting of activators and 
inhibitors with different activity patterns and phase portraits [modif. from 
67].  
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    Fig. 3           ( A )  “ Atomic ”  two-component module, 
with mutually interacting activator (    +    ) and inhibitor 
(    −    ) and with self-activation and self-inhibition. 
( B )  “ Molecular ”  module, consisting of two atomic 
modules, with mutual ( “ lateral ” ) activation 
and mutual ( “ lateral ” ) inhibition. This module 
corresponds to the  “ canonical circuit ”  of Shepherd 
 [59] , which will be described below. The behavior 
of the atomic module was described before, 
the activity of the molecular module can not be 
understood by imagination alone, only computer 
simulations can help. ( C ): Multi-layer network 
with 9 nodes and 3 inputs and 3 outputs and 22 
unidirectional connections. The behavior of the 
network and its ’  components has to be explored by 
a computer-based model.  
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 Modeling the activity of networks and their 
components  –  levels of data resolution 
  &  
 When trying to model processes in the nervous system, one of 
the fi rst questions is related to the decision what kind of signals 
should be used for modeling in order to represent the behavio-
rally signifi cant activity of the brain. In computational neuro-
science, most authors use biophysically based models that 
refl ect ion currents in the models of single neurons and in net-
works  [19] . This modeling strategy represents membrane poten-
tials and action potentials ( “ spiking models ” ,     �  �     Fig. 4  ). Such 
cellular models allow to study the discharge activity of each 
neuron even in the context of a complex network model under 
various conditions. The respective networks, accordingly, con-
sist of several hundred neurons that exert excitation and inhibi-
tion. However, for exploratory modeling purposes of networks 
spiking frequencies of a train of spikes can be transformed by a 
sliding time window into a continuous curve  [19] . 

 One further problem that arises is connected with the conceptu-
alization of the variability in these actions  –  are the discharges 
random patterns or chaotic patterns, what is the functional sig-
nifi cance of bursts etc.? It is well known that experimentally 
recorded discharge activity of sensory systems (e.g. cold fi ber 
action potentials) can exert regular low-frequency discharges, 
brief bursting discharge patterns or high-frequency discharges 
 [9] , (    �  �     Fig. 4  ). For understanding this neural code, a measure 
must be found, that represents the variety of the discharge pat-
terns of (a) a single nerve cell and (b) of a population of neurons. 
Simple frequency measures, for instance in the form of Hertz as 
action potentials per second, is not suffi cient since it does not 
represent the variation of patterns. Therefore, interspike inter-
vals are often calculated and represented as histograms. Hans 
Braun  [9]  represented a method that is based on mathematics of 
nolinear processes (simply saying:  “ Chaos theory ” ). A visual rep-
resentation of this computation is possible by bifurcation dia-
grams that represent the characteristics of the discharge patterns 
very clearly. This can be seen, for example, by several frequency 
bands of discharges of some nerve fi bre that are observable for 
one specifi c temperature (    �  �     Fig.   4A  ). 
 A further problem now also exists when trying to include the 
generators of the spikes in a formal approach, as spikes originate 
during  “ upwards fl uctuations” of the membrane potential (up-
state). It is assumed that these fl uctuations essentially are caused 
by the local signals arriving onto the cell, mainly caused by exci-
tatory postsynaptic potentials (EPSP ’ s) of glutamate or acetyl-
choline transmission and / or inhibitory postsynaptic potentials 
(IPSP ’ s) induced by GABA inputs. Therefore, the phenomenon of 
switching from membrane fl uctuations into the all-or-nothing - 
signals of the spikes formally is represented in Integrate-and-
Fire-Neuron models. The irregular pattern of these postsynaptic 
potentials (PSP ’ s) can then be represented in a formal model by 
random signals with small amplitudes that express excitatory 
and inhibitory signals. Because of the thousands of synapses and 
the (not only there) available receptors that generate the PSP ’ s 
modeling becomes too vast and is also formally too unhandy. 
Therefore, a sinusoidal oscillation and / or a sine-wave can be 
used formally in order to represent processes that exert an on-
off pattern with maxima and minima. This function can also be 
transformed generally into a differential equation of undamped 
oscillation: the second derivative of position as a function of 
time (acceleration) represents this curve very well. If in a next 
step a delta function is introduced that depends on a threshold 
(e.gf.  –  20   mV) then the model shows various discharge patterns 
that correspond to physiological spike patterns. Furthermore, 
the fl uctuations of the baseline can be superimposed by random 
variations (noise). This formalization allows to simulate a dis-
charge pattern that appears very  “ naturalistic ”  (    �  �     Fig.   4B  ). 
 Finally, the activity of a population of cells has to be described in 
a proper way. When modeling a population of neurons the dis-
charges can be represented with the same strategies as described 
before. Another possible way is to refer to the electrical local 
fi eld potential (LFP) that refl ects the activity of several neurons 
in the vicinity of the recording micropipette. Intense deviations 
of LFP correspond to synchrony of fi ring of neurons that is an 
important parameter for cognitive processes as Singer and his 
group were showing [61, 62;see also Haenschel et al. in this vol-
ume]. Therefore measures of coherence are important variables 
for modeling of proper functioning of neural networks: Oscilla-
tions of neuronal networks with a frequency of about 30 – 70   Hz 
seem to be important for cognition. This experimentally proven 

    Fig. 4           Spike patterns, bifurcations and mean spike-frequencies of cold 
fi bers depending on temperature. The problem of choosing the appropriate 
measure of neuronal activity (upper trace in  A  and  B ): interval between 
discharges (ID) or frequencies of temperature dependent discharge 
patterns [ F ]. Bifurcation diagram when modelling with ( A ) deterministic 
approach and with ( B ) approach with noise. More valid simulation by using 
noise: irregular pattern at high temperature occurs as observed in nature 
(lower right). ordinate: discharge voltage (mV), interval of discharges (ID), 
frequency (Hz), abscissa: temperature; [repr. with perm. from 9].  
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phenomenon can also be reproduced in an artifi cial neural net-
work model of working memory functions  [76,   77] . 
 Regardless of these sophisticated and naturalistic techniques of 
modeling neuronal activities, for fi rst-step qualitative explora-
tory studies more simple measures can be used: For preliminary 
understanding of the qualitative dynamics of a network indica-
tors with arbitrary units and that are normalized to scales rang-
ing from 0 to 100 can be used. Also the time scale often is 
represented by arbitrary units. Such models allow to study the 
qualitative properties of the dynamics of the respective network. 
Only in a next step of modeling a more precise quantifi cation 
takes place. Regarding this fuzzy strategy to build models, it 
must be kept in mind that models never should represent the 
total reality  –  therefore, not every detail must be included in the 
model.   

 Systems modeling of neurobiology of 
schizophrenic symptoms 
  &  
 We must fi rst state clearly that, in spite of a number of simplifi -
cations that we will have to make later on, schizophrenia is seen 
as a disease with an extremely complex symptomatology. Fur-
thermore, from a diagnostic point of view, several forms of 
schizophrenia are distinguished within the framework of the 
ICD. In this paper, we will focus on the impairment of cognitive 
functions such as working memory  [81] . At present the most 
emphasized theory of schizophrenia is based on a neurodevel-
opmental concept that assumes that dysfunctions of genetic 
 factors determine a dysfunctional connectivity mainly of the 
dopaminergic system [46; s. also Winterer (p. S45) in this issue]. 
Still such qualitative models are not yet transformed into com-
putational models that allow to demonstrate the functional con-
sequences of the assumed morphological disturbances. However, 
several attempts already were made to build computational 
models that simulate symptoms of schizophrenia [e.g. 15, 36].  

 The basic model by Carlsson 
 Here we try to demonstrate the test of a qualitative systemic 
model of neuronal circuitry of schizophrenia that is related to 
the basic heuristic model designed by Carlsson in 1988  [11] . In 
this model, Carlsson emphasized the relevance of dopamine in 
macroanatomical circuits within the context of glutamate and 
GABA, where he explained the hypothetical occurrence of infor-
mation overfl ow in the cortex by hyperactive dopamine trans-
mission in the striatal complexes (    �  �     Fig.   5  ). The global 
neurochemical circuitry of this model has to be translated into a 
wiring diagram to make the functional structure of the network 
explicit. A set of differential / difference equations has to be con-
structed and  “ exploratory ”  computer simulations may be per-
formed in addition  [68] . From a systemic point of view, the 
principle of this circuit is based on the effects of a serial double 
inhibition (disinhibition) that origins in substantia nigra and 
that results in a hyperactivation of the target structure (here: the 
thalamus). As circuits imply  “ circular causality ”  also low gluta-
mate input into the striatal complexes and / or low GABA output 
of these nuclei could evoke a hyperactivation of primary sensory 
cortices that receive thalamic input. This is in line with various 
other neurochemical hypotheses of the development of produc-
tive symptoms in schizophrenia  [12,   13] . Only the role of serot-
onin is ignored in this basic model but is was integrated in the 
last complex model by Carlsson  [14] . From a systemic multi-
level perspective, this model can also be extended as the cir-
cuitry of the  “ striatal complexes ”  including the substantia nigra 
has many subsystems. This was also shown by Carlsson in his 
lecture in our workshop in 2005  [14] , where he also emphasized 
the fact that circular causality and the convergence of activation 
and inhibition must be taken into very careful consideration. For 
exploratory reasons it is possible and useful to reduce the com-
plexity of the model and therefore it serves only as a demonstra-
tion of basic modeling procedures.   

 The computerized exploratory model 
 A typical modeling procedure starts with the qualitative ana-
tomically and neurochemically defi ned model that represents 
the mode of connectivity in a qualitative way by indicating acti-
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      Fig. 5           Steps of mathematical modeling  –  from 
anatomy to simulation.  A : Anatomically defi ned 
neuronal circuits [after 11].  B : Schematic of circuit. 
 C : Differential equations and estimated parameters. 
 D : Regular oscillatory behavior in simulated normal 
case (dotted line) and damped oscillation with 
a higher cortical level of activation (solid line) at 
simulated schizophrenia by overactivation of the 
dopamine signal transmission system (abscissa: 
arbitrary units of time, ordinate: arbitrary units 
of activity level). Comments: COR    =    cortex, 
THAL    =    Thalamus, SUNI    =    Substantia nigra, 
STRI    =    Striatum.  
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vating and inhibiting connections (    �  �     Fig.   5A  ). This neurobiologi-
cal model is transformed into a wiring diagram (    �  �     Fig.   5B  ) that 
represents the functional structure and that in a next step allows 
to formulate difference equations or differential equations 
(    �  �     Fig.   5C  ). These equations represent virtual level variables 
indicating the average discharge activity of the neuronal popula-
tion in the respective brain structure. The change of the intensity 
of these variables is also based on assumptions that are not yet 
tested experimentally. It must kept in mind, that at present, for 
theoretical neuropsychiatry we do not have the appropriate 
measurements of these variables and their kinetics. In spite of 
this, the widely applied methodology of systemic modeling uses 
 “ dummy variables and data ”  in order to study the characteristics 
of the dynamics of the system. The values of these dummy vari-
ables are estimated by numerical computer simulations. By sev-
eral tests the behavior of the system under normal conditions 
and under pathological conditions (    �  �     Fig.   5D  ) is described and 
discussed. The normal condition shows cortical oscillations, the 
pathological situation shows a higher level of activation and a 
damped oscillation, indicating a tendency to persist in a high 
level of mental activity. As a next step the structure of the model 
and the selection of the signifi cant variables must be improved. 
The properties of this model can also be discussed by formal 
analysis  [58] .    

 Working memory - the prefrontal cortex function 
  &  
 As the dopamine-based transmission system is the neurochemi-
cal  “ common denominator ”  of all antipsychotic drugs, the effects 
of dopamine on cognitive functions are of interest, as dopamine 
is theoretically assumed to have state-dependent tuning effects 
(fi lter functions,  “ gating functions ” ) on the prefrontal cortical 
network  [25] . Additionally, it is a well based fi nding that patients 
with schizophrenia have a dysfunction of the dopamine system 
and an impairment in working memory functions. Experiments 
give evidence that subjects with hypofunction in working mem-
ory performance have an impairment of dopamine transmission 
in the prefrontal cortex  [81] . They can improve by amphetamine 
application  [54] . However, amphetamine can reduce working 
memory function in subjects that have a normal dopamine func-
tion (    �  �     Fig. 6  ). Experiments show that high dopamine input into 

the PFC diminishes cognitive functions in the same way as a 
reduction in dopamine  [29,   30,   31] . The pharmacological deter-
mination of dopamine agonists shows that the activation of D1 
receptors (D1R) seems to be crucial: Regarding this fi nding, sev-
eral authors have focused on the ratio of D1 receptors versus D2 
receptors (D2R,    �  �      Table 1  );  [25,   54,   55,   72] : if the network is 
dominated by D1R a strong working memory function can be 
performed. If D2R dominate, a weak working memory function is 
performed, however the patient shows a high ability to associate. 
Therefore, with regard to the D1R-mediated signaling system, it 
is assumed that optimal dopamine input is a  “ medium level ”  
of concentration of this transmitter (    �  �     Fig. 6  ;    �  �      Table 1  ) [24, 54, 
55, 77, 75; see alsoWinterer in this volume]. In consequence, low 
dopamine concentrations might result in focussed and persist-
ent dopamine D1R – dominated activation of the PFC network 
with only a few nodes of activation (gate closed, state 2). In con-
trast, high dopamine concentrations probably lead to an activa-
tion pattern of the network characterized by a dopamine 
D2R-dominated defocused state with multiple activated nodes 
(gate open, state 1). This state may be related to working mem-
ory defi cits (perseveration and instability because of  “ hyper-
fl exibility ”  in thinking) in schizophrenia  [77] . 
 A high ratio of cortically present (and / or activated ) D1R vs. D2R 
and an  “ optimal ”  level of dopamine release are supposed to be 
crucial for suffi cient signal-to-noise ratio to provide undisturbed 
information processing (state 2). In this state of the network, a 
few representations are present, and in extreme cases this could 
correspond to obsessive thoughts or action. Consequently, in 
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Dopamine concentration / D1 receptor activation 

Optimum

Working
memory
performance

D1-Agonist
improves
performance

e.g. Amphetamine
Psychosis

e.g. Morbus
Parkinson

  Fig. 6           Empirical 
inverted u-function 
representing the 
relationship between 
dopamine level and 
working memory 
performance. 
Both, excessive and 
insuffi cient D1 receptor 
stimulation reduce 
performance [modif. 
from 54].  

    Table 1       State of the prefrontal neural network depending on the functional dominance of the respective dopamine receptor subtype  –  State 1 is D2R-domi-
nated, state 2 is D1R-dominated [modif. from 80] 

 Dominant receptor  D2R  D1R 

 State of network  State 1  State 2 
 Receptor action  Firing  �  

 GABA-AR  �  
 NMDAR  �  

 Firing  �    
 GABA-AR �    
 NMDAR  � , AMPAR  �  

 Input state of network   “ Gate ”  open   “ Gate ”  closed 
 Effects  Easy access to working memory buffers. Multiple net-

work representations 
 Initiation and stabilization of a few goal-related representa-
tions 

 Dysfunctions  Any internally or externally derived representation can 
guide action.  
 Result: random, tangential or intrusive thoughts or 
actions 

 Only the strongest representations affect action, but they do 
so completely. 
Result: narrowing of stimuli selected for action leading to 
stereotyped or obsessive thoughts or actions. 

 Implications for schizophrenia  Positive symptoms are already treated by D2R receptors 
antagonists but D1 / D5R agonists might have added 
benefi t by biasing the system towards State 2 

 Targeted blockade of D1R receptors in PFC might alliviate 
negative symptoms related to narrowing of thoughts and 
attention 

     Comment: GABA-AR    =    Gamma-amino-buteric-acid receptors, NMDAR    =    N-methyl-D- aspartate receptors, AMPAR    =     � -amino-3-hydroxy-5-methyl-4-isoxacolepropionic acid 

receptors   



Original PaperS8

 Tretter F, Albus M.  “ Computational Neuropsychiatry ”  of Working    …    Pharmacopsychiatry 2007;   40 (Suppl.1): S2 – S16 

state 2 pharmacotherapeutical D1R blockade could help to rees-
tablish a functional equilibrium again. 
 On contrary, a D2R-dominated state of the network (state 1) 
might allow a low threshold access to memory buffers, so that 
any representation in the network can guide the action. This 
results on the clinical level in the incoherence of thought and 
action (    �  �     Fig. 7  ). Therapeutically, additional activation of the 
D1R channel could help. According to this view, fl uctuating lev-
els of dopamine activity in the PFC could lead to dysfunctional 
switching between high and low tuning states [s. also 14, 24, 78]. 
Additionally, the dominance of the D2R- vs. the D1R-based 
dopamine signaling channels in PFC must be seen in context of a 
diminished glutamate and GABA transmission (   �  �      Table 1  ). 
 It should be also considered that during working memory per-
formances additional areas are involved. This is also relevant as 
in patients with schizophrenic symptoms a signifi cant differ-
ence of topographical cerebral activation pattern compared to 
healthy subjects is observed  [56] . This aspect indicates that this 
PFC network model probably represents only a to simple per-
spective.   

 Structure of the (prefrontal) cortical neuronal 
networks 
  &  
 Looking to a histological slice of the cortex one sees a tremen-
dous complexity of cells and connections with about 50,000 
cells in each mm 3  and about 6,000 synapses on each neuron, 
which means that this small network has about 3  * 10 8  connec-
tions [59, p.7]. The structure of cortical areas is similar all over 
the cerebral cortex. Furthermore, the microscopically visible 
vertical connections support the concept that cortical columns, 
on general, are relevant elementary modules for cortical process-
ing (    �  �     Fig. 8  ). This was postulated by the studies of Janos Szen-
tagothai  [64]  and, in the visual cortex, in particular, by David 
Hubel and Torsten Wiesel  [38]  and in the motor cortex by Ver-
non Mountcastle  [47] . 
 As far as frequency and size are concerned, the pyramidal cells 
are the dominant cell type within neuronal circuits of the cere-
bral cortex ( “ canonical neurons ” ),  [59] . These cells have verti-
cally and horizontally distributing outputs via glutamatergic 
fi ber connections to themselves, to other pyramidal cells, to sev-
eral inhibitory interneurons and to other intra- and extracortical 
structures. In spite of this complexity, some researchers think 
that the most elementary module of a cortical network consists 
of an excitatory pyramidal cell and an inhibitory cell with extra-
cortical inputs for each cell  [59] . Although this circuit is simple 
(    �  �     Fig. 3  ) the behavior may be very complex: A model for such a 

Network state 1 (gate open):  
Multifocal D2-receptor- 
dominated state of the network  

Network state 2 (gate closed):  
Unifocal  D1-receptor-
dominated state of the network

 Fig. 7           Theoretical prefrontal neuronal network 
states with regard to processing mnemonic 
information: D2 receptor-dominated state with 
multiple, but weak transient centers of activation 
and D1 receptor-dominated state with singular 
but strong and sustaining center of activation 
[25,   54,   77, s. also Winterer in this volume]; (graph 
generated with Mathematica ® ).  

e.g. Thalamus

P3 +P4

P5+P6

GABA
 cells

2

6

3

1 6

5

5

4

7

A B

e.g. Thalamus

7

8

  Fig. 8           Diagram of a  “ canonical circuit ”   [59]  in 
cerebral cortex ( A ), and hypothetical diagram of 
circuitry with two coupled canonical circuits ( B ). 
1,2,3    =    subcortical inputs (here: also dopaminergic 
inputs), 4    =    reciprocal activation, 5    =    recurrent 
activation, 6    =    activation, 7    =    inhibition, 
8    =    recurrent inhibition.  
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circuit was presented by an der Heiden in our 2005 workshop, 
based on former work with Glass and Mackey  [2] : The simula-
tion shows under various mathematical and biophysical assump-
tions that the recurrent inhibition (self-inhibition) of pyramidal 
cells can generate a rather irregular pattern, depending on the 
number of GABA receptors. This pattern is similar to that gener-
ated by simulations by Braun (s. above). Therefore it can be spec-
ulated, that variation of strength of inhibitory feedback is crucial 
for shaping the neuronal signaling on the level of ion channels as 
well as in neural networks. 
 In this context, it is assumed that subcortical projections into 
the cortex  –  at least in sensory areas – converge on stellate cells 
or small pyramidal cells, which converge with their axons on 
layer 3 and layer 4 pyramidal cells. Thus, in the primary visual 
area, stellate cells or small pyramidal cells, as “simple cells”, are 
assumed to be the fi rst input stage, showing simple receptive 
fi elds (light-on / -off sensitive areas separated), whereas pyrami-
dal cells in a later input stage (e.g layer V) have the receptive 
fi eld properties of  “ complex cells ”  (light-on / -off sensitive areas 
mixed). Cell assemblies coding the same fi eld in the visual space 
and the same orientation of elongated visual stimuli are assumed 
to represent a cortical column. The output of pyramidal cells 
projects convergently on hierarchically  “ higher ”  cortical areas 
(e.g. temporal cortex), theoretically ending up with  “ master 
neurons ”  that should be able to recognize one ’ s grandmother 
(also:  “ cardinal neurons ” , acc. to Horace Barlow  [6] ). Some 
authors assume that this organization principle is represented 
in all cortical regions. The intracortical connectivity with regard 
to self-recurrent excitatory connections between pyramidal 
cells was already detected by Lorente de No  [44]  and has been 
used in the concepts of artifi cial neural networks. This circuitry 
could be responsible for retaining information and it could be 
modulated by inhibitory neurons  

 The signifi cance of inhibitory cortical neural networks 
 It must be mentioned here that the differential role of inhibitory 
neurons has only been taken into consideration recently. Much 
information is now available on the structure and functions of 
inhibitory neurons in the (prefrontal) cortex. The most important 

inhibitory neurons mainly release GABA. Several types of neu-
rons can be identifi ed, however, this typology depends on the 
methodology by which the cells were determined: electrophysi-
ologically, anatomically or histochemically etc.  [17,   18,   21,   39,   
72,   73] ; (    �  �     Fig. 9  ;    �  �      Table 2  ).   
  §    Widespread inhibition is mediated by perisoma-targeting 

cells (PTC), which are parvalbumin-containing (PV) and fast-
spiking (FS) neurons. They project to pyramidal cells. Mor-
phologically they are large Basket-cells type and Chandelier 
cells. 

  §    Within a cortical column, calbindin-containing (CB) interneu-
rons with narrow dendritic and axonal arbors target the den-
drites of pyramidal cells (DTC). CB cells show spike-frequency 
adaptation. 

  §    Locally connecting calretinin-containing (CR) interneurons, 
also with narrow dendritic and axonal arbors, preferentially 
project to CB cells (    =     interneuron targeting cells, ITC) and 
thus functionally speaking mediate disinhibition. Electro-
physiologically CR neurons cells are characterized by irregu-
lar spiking patterns (often: bursting pattern),  [21] .   

 Douglas et al.  [23]  are of the opinion that the structure-function 
relationships of inhibitory cortical neurons are not yet clear. As 
will be shown later, the circuitry of inhibitory neurons may play 
a crucial role in networks performing working memory func-
tions  [72,   74,   75] . This is interesting as defi ciencies of inhibitory 
neurons are also relevant for schizophrenia  [43] .    

 The (prefrontal) local cortical network and 
dopamine 
  &  
 The basic neuronal structure of PFC networks has been investi-
gated by the experimental neurobiologist Patricia Goldman-
Rakic [e. g. 30]. The fi ndings of her working group and also the 
observations of Charles Yang have been used for computerized 
network models by Wang  [77] , Durstewitz  [24]  and Deco  [22] . 
 Neocortical pyramidal cells receive direct glutamatergic tha-
lamic projections as well as dopaminergic, serotonergic, nore-
pinephrenergic and cholinergic projections from the brain stem 
and also from other subcortical structures  [60] . Additionally, 
taking into account that two classes of pyramidal cells (PC) and 
one class of inhibitory neurons (IN) characterize the basic struc-
ture of the cortical neural network, the role of dopamine can be 
considered then  [41,   50,   51]  (    �  �     Fig. 10  ): Pyramidal cells (PC) 
have glutamatergic outputs and also receive input by synapses 
based on N-methyl-D- aspartate (NMDA) receptors and  � -amino-
3-hydroxy-5-methyl-4-isoxacolepropionic acid (AMPA) recep-

P
C

P
CNeuroglioform

cell

FS cell

Double
bouquet cell

Chandelier cell
Martinotti
cell

RS /BSNP cell
LS cell

Basket cell

  Fig. 9           Scheme of several types of inhibitory neurons in the cortex: 
Chandelier cell, Basket cell, Double Bouquet cell, Martinotti cell [simplifi ed 
from 39]. LS    =    late-spiking neurons, FS    =    fast-spiking n., BS    =    burst-spiking 
n., RS    =    regular-spiking n, BSNP cells    =    non-pyramidal cell (NP) with burst-
spiking (BS) activity.  

   Table 2       Terminology for inhibitory cortical neurons according to axon 
targets, immunohistological properties, electrophysiological properties and 
morphological features [39] 

 perisoma-targeting 

cells (PTC) 

 dendrite targeting 

cells (DTC) 

 interneuron targeting 

cells (ITC) 

 parvalbumin-contain-
ing c. (PV) 

 calbindin-containing 
c. (CB) 

 calretinin-containing 
c. (CR) 

 fast-spiking (FS) cells  spike-frequency 
adaptation 

 irregular spiking pat-
terns (often: bursting 
pattern), 

 large Basket cell type 
and Chandelier cells. 

 cells with narrow 
dendritic and axonal 
arbors 

 narrow dendritic and 
axonal arbors 
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tors. NMDA receptors are weak and slow in exciting the respective 
cell, whereas AMPA receptors are very effective in evoking post-
synaptic currents, thus evoking responses with a brief latency. 
NMDA receptors seem to be predominant at recurrent synapses. 
Inhibitory neurons (IN) mainly use GABA as a transmitter sub-
stance. Dopamine input is received by receptors of the D1R fam-
ily and of the D2R family on PC and IN. It is still not determined 
if PC are controlled more by D1R- or by D2R-based transmission. 
This is also unclear with IN  [50] . In this model, based on fi ndings 
of the working group of Goldman-Rakic  [30]  D2R are supposed 
to be expressed by inhibitory neurons, whereas the working 
group of Yang suggests that D1R are predominantly present in 
inhibitory neurons  [55,   74] . Also electrophysiology is not conclu-
sive as Gao and collaborators  [28]  by activation of D1R found a 
reduction of inhibitory effects of fast spiking inhibitory interneu-
rons that target soma of pyramidal cells, whereas Seamans and 
his group [e.g. 54] found this effect to be mediated by D2R. One 
explanation is the dependence of D1R on the level of the mem-
brane potential  [24] . This issue remains unresolved mainly as 
electrophysiological recording of inhibitory neurons is not easy 
 [50] . 
 Regarding such connectivity, Yang and collaborators  [72 – 74]  
proposed a cortical cellular input-output model for schizophre-
nia that will be briefl y described here (    �  �     Fig. 10  ). The basic 
module is composed of a pyramidal cell (PC) receiving inhibitory 
input by a GABA-ergic FS inhibitory neuron (IN). Both cells 
receive dopamine input from ventral tegmental area (VTA), the 
PC via D1R and the IN via D1R and D4R. The PC projects to VTA 
and to Nucleus accumbens (NAc). Several conditions can be dis-
tinguished with regard to working memory (    �  �     Fig.   10  ):   
  §    Normal dopamine input in PFC activates D1R on pyramidal 

cells and D1R and D4R on inhibitory neurons. The result 
would be a medium level of activation of pyramidal cells. 

  §    Hypoactivity of dopamine would result in weaker D1R-based 
activation of FS interneurons that would lead to weaker inhi-
bition of apical dendrites and could thus lead to bursts and 
other abnormal discharge patterns. 

  §    Hyperactivity of dopamine would result in strong activation 
of D1R. This might lead to an increase in the self-activation 

and co-activation of local pyramidal neurons (not depicted 
here).   

 This model should be extended because the intracortical canon-
ical circuits should be integrated detailed in this view. Also the 
subcortical connectivity should be regarded in order to repre-
sent the relevant systems that are connected with PFC networks. 
This model already shows that computational modelling might 
be diffi cult at this stage as many connections are not yet deter-
mined suffi ciently (    �  �     Fig. 11  ). 
 In this view the dopamine system acts as a modulator that 
shapes cortical activity patterns. In schizophrenia dopamine 
seems to play a central role not only with regard to the occur-
rence of productive symptoms by overactivity of mesolimbic 
transmission but also based on a hypofunction of dopaminergic 
transmission in prefronatal cortex being correlated to impaired 
working memory function [s. Leuner and M ü ller (p. S17)  in this 
issue]. However, dopamine also is important for reward and 
addiction. It is supposed that midbrain dopamine centers are 
involved in signaling of  “ reward prediction error ”   [57] . The func-
tional role of dopamine in the brain must therefore be re-exam-
ined in more detail  [54,   57] . The monkey experiments of Wolfram 
Schultz in recent years led to a completely new differentiated 
viewpoint of the function of the dopamine system  [57] . Out of 
the four subsystems of the brain ’ s dopamine system, the system 
that projects from the midbrain to nucleus accumbens is identi-
fi ed as the reward system. This system exhibits phasic and tonic 
activity: phasic activity is coding rewards, whereas tonic activity 
represents the baseline, absence of an expected reward evokes 
phasic inhibition of activity. The discovery that the dopamine 
system signals the “reward-prediction-error” means the follow-
ing  [57] :   
  §    During unexpected rewards, on the basis of spontaneous 

activity a strong but short (phasic) activation of the neurons 
occurs. 

  §    If an expected reward occurs no modifi cation of the discharge 
is observed. 

  §    If an expected reward does not occur, a reduction of activity 
of that neuron takes place.   

 In this view, the global behavioral function of the dopamine sys-
tem appears to act as an  “ optimizer ”  of the current brain state 
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    Fig. 10           Summary of a dopamine-based micro-
circuit theory of functional disorders in PFC in 
schizophrenia [modifi ed from 54].  A : Normal 
activation of pyramidal cells (PC) when dopamine 
input is normal.  B : Weak dopamine input enhances 
activation of PC if D1R dominate inhibitory neurons. 
Thus high reactivity of the PC occurs with regard 
to inputs onto apical dendrite in layer I and II. 
This corresponds to high distractibility by other 
intracortical inputs.        =    inhibition,        =    excitation, 
       =    modulation, depending on concentration.  
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that  –  regarding environmental events – regulates down a “too 
much” as well as regulates up a “too few” of activity of the net-
work. However, it is not clear what dopamine is  “ really ”  signal-
ing in the brain. 
 Keeping in mind these unresolved issues, we would like to con-
sider some models of working memory of PFC.   

 Models of the PFC network  –  some types of 
 “ canonical ”  circuits and their modules 
  &  
 Models of prefrontal cortical networks have to start with the for-
mal conceptualization of the neurons, then it has to be decided 
about the functional structure of synapses and then the number 
of inhibitory and excitatory model neurons has to be deter-
mined. Building artifi cial network models with hundreds or 
thousands of neurons needs very much time and much compu-
ter power [comp. Vogels and Abbott (p. S73) in this issue]. Vogels 
and Abbott show that a relatively small population of excitatory 
and inhibitory connected neurons can generate complex behav-
iors. Only 20    %  inhibitory interneurons are usually used in net-
work models. It is very crucial to design a multioptional structure 
of the modules.  

 Modeling the neuron 
 Every neuron in the network model must be designed in detail. 
For instance, the working group of Xio-Jing Wang  [74]  used 
Hodgkin-Huxley-type conductance-based models for single 
pyramidal cells and interneurons in order to maximize bio-
physical validity. The model neurons are calibrated by in vitro 
physiological measurements. Pyramidal neurons are modeled 
with three compartments, representing a soma / initial axonal 
segment and a proximal and a distal dendrite (    �  �     Fig. 12  ). The 
functional characteristics were determined by specifi c proper-
ties of the kinetics of calcium, sodium and potassium channels 
and conductances with regard to their locations on the dendrites 
or on the soma of the cells. As can be clearly seen, even this 
sophisticated model ignores basal dendrites, although it does 
consider the topology of apical dendrites. But models can never 
map  “ reality ”  1:1 - the appropriate selection of parts of reality as 
 “ signifi cant ”  components can only be determined by the aim of 
modeling.   

 Network models 
 One of the successful network models with regard to implemen-
tation into theory of schizophrenia was constructed by Daniel 
Durstewitz and collaborators  [25] . This model is based on the 
physiological fi nding that a low ratio of D1R to D2R might be a 
signifi cant property of a  “ schizophrenic ”  prefrontal neuronal 
network. The modular structure of the network is based on an 
excitatory and an inhibitory neuron that are both reciprocally 
connected and exert lateral excitation and inhibition to other 
modules of the network (    �  �     Fig. 13  ). 
 Also by Gustavo Deco and his group a network model was con-
structed that is specially adapted for the current PCF issue [Loh 
et al. (p. S78) in this issue, comp.22]. 
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  Fig. 12          Compartment model of the pyramidal cell  [78] . P: pyramidal 
cell, FS: fast spiking (inhibitory) cell, I Ca : calcium current, I Can : calcium 
dependent cation current, I A : transient A-type potassium current, 
I Nap : sodium current I KS : slow potassium current, I K : potassium current, 
I KCa  : calcium dependent potassium current?  
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  Fig. 11           Neurobiologically based diagram of the modular  “ canonical ”  
prefrontal cortical micro-circuit and connections with the dopamine 
system (modifi ed from 30, 59, 72]. The differential function of D1 
receptors on pyramidal cells (1) and of D1 receptors versus D2 (D3 / D4) 
receptors on inhibitory neurons (2) may generate  “ cognitive ”  functions 
(e.g. working memory) in the subcircuit between pyramidal cells that 
is based on reciprocal excitatory interactions (4). The self-inhibition 
of pyramidal cells (3) via GABA releasing inhibitory neurons (IN) and 
connections to dopamine cell centers (DA) in the mid brain (4, ventral 
tegmental area) and in Nucleus accumbens must also be taken into 
consideration for functional understanding, although there are still open 
questions.  
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 Another model was constructed by Xio Jing Wang and his col-
laborators [cf. 18, 72,74, 75]. This model helps to understand dis-
orders of visuospatial working memory on the basis of local 
prefrontal cortical circuitry and will now be described in detail. 
It ’ s modular structure is more complex then other PFC network 
models and it can simulate a lot of properties of real PFC net-
works. The signifi cant feature of this model is that three popula-
tions of inhibitory neurons are integrated in the concept 
 [10,   65,   72] . This network model is based on several hundreds of 
activating neurons (512 pyramidal neurons) and more then one 
hundert inhibiting neurons (64 CR neurons, 32 CB neurons, and 
32 PV neurons). The neurons are spatially distributed in a ring 
according to the preferred visual stimulus cues (0 – 360    ° ). The 
strength of the recurrent connections between neurons in the 
network depends on the difference between their preferred 
cues. The recurrent excitatory input to pyramidal cells is pro-
vided by slow signaling NMDA receptors. All neurons receive 
unspecifi ed external excitatory inputs mediated by fast signal-
ing AMPA receptors. 
 The activity of selectively activated pyramidal (P) cells (here:  “ P 
cells ” ) recruits CR neurons (ITC) with similar preferred cues. 
These neurons target CB neurons (DTC), so that activation of CR 
neurons then increases inhibition transmitted to dendrite-tar-
geting CB neurons likewise tuned to similar preferred cues and 

thereby reducing CB inhibition on P cells during the delay period. 
On the other hand, on the fl anks of the bump, the enhanced 
activity of perisoma targeting PV interneurons (STL) suppresses 
CR cells and CB neurons consequently receive reduced inhibition 
from CR cells (possibly also increased excitation from P neu-
rons): They therefore fi re at higher rates during the delay period 
during an experimental working memory task (s. below). The 
end result is that CB interneurons send enhanced inhibition to 
those neighboring P cells that are selective to other stimuli. This 
corresponds to the principle of lateral inhibition  .      

 Simulation of working memory functions  –  the 
role of dopamine 
  &  
 Computational modeling should reproduce experimental data 
under various conditions. This can be demonstrated with the 
model of Wang and his coworkers. The basis of this model are 
data form a paradigmatic experimental animal model of work-
ing memory function as it was established by Patricia Goldman-
Rakic and her collaborators [eg. [s. 26, 27, 28, 29, 30, 72, 73]: In 
monkeys, at spatial working memory tasks a persistence of 
stimulus-induced neuronal activity can be recorded in the dor-
solateral PFC. In these experiments, the monkey is looking to a 
fi xation point and laterally a cue is presented briefl y. Then the 
monkey has to fi xate for several seconds. Afterwards he should 
look to the spot where the cue was presented and he will obtain 
juice for reward (    �  �     Fig.   15A  ). Electrophysiological recordings 
show that PFC neurons have a raised level of activation persist-
ing during the delay period. This persistence of neural activity of 
pyramidal neurons might correspond to the working memory 
function. 
 Wang and his group could reproduce the procedural structure of 
this experimental situation and the discharge pattern of the 
neurons by their computerized model (    �  �     Fig.   15B  );  [74] . They 
simulated dopamine D1R-mediated infl uences on the network 
of various strengths. This was performed by assuming that 
dopamine modulates the NMDA transmission, as has been 
shown by experimental data  [48] . They found the inverted u 
shape of function of working memory, depending on D1R modu-
lation of NMDA receptors in pyramidal cells and interneurons 
(    �  �     Fig. 16  ). Interestingly enough, recent work suggests that D1R 
activation in fact increases the ratio of dendritic / somatic inhibi-
tion onto P cells in the prefrontal cortex  [28] . Dopamine was 
found to reduce the effi cacy of inhibitory synapses onto the 
perisomatic domains of a P cell. This is mediated by fast-spiking 
interneurons (FS, PFC, PV). On the other hand, dopamine 
enhances inhibition at synapses from accommodating or low-
threshold spiking interneurons (CB, DTC) that target the den-
dritic domains of a P cell  [28] . In Wang ’ s model, according to the 
disinhibition mechanism, dendritic inhibition is reduced locally 
in activated P cells and increased in those P cells not engaged in 
encoding the shown stimulus. The simulations suggest that this 
mechanism is mediated by CB interneurons and might serve to 
fi lter out distracting stimuli, thereby rendering memory storage 
robust. Wang et al. showed that this mechanism is enhanced by 
a higher dendritic / somatic inhibition ratio, which could be hard-
wired or dynamically controlled by neuromodulation  [74] . The 
model predicts a specifi c function for such a dual dopamine 
action: it might boost the ability of a working memory network 
to fi lter out behaviorally irrelevant distracting stimuli. Obvi-
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  Fig. 13           Basic 
structure of the module 
of the artifi cial neural 
network model used 
by Durstewitz et al 
 [25] : Structurally, the 
self-inhibition and 
lateral inhibition and 
lateral activation might 
be signifi cant for the 
functional network 
properties [modif. from 
25].  
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   Fig. 14           Module 
of articifi cal neural 
network model of 
Wang and coworkers 
 [74] . The self-inhibition 
and lateral inhibition 
and activation might 
be signifi cant for the 
network properties 
with three types of 
inhibitory neurons. 
IN: inhibitory neuron, 
P: pyramidal cell, 
STC    =     perisoma-
targeting PV cell, 
ITC     =     interneuron-
targeting CR cell, 
DTC     =     dendrite-
targeting CB cell 
(comp.    �  �      Table 2  ).  
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ously, a strongly recurrent microcircuit is stable if the reverbera-
tion is mediated by slow NMDA-based excitation  [16,   65] . 
 This model also suggests one possible scenario for the way in 
which impaired dopamine modulation of PFC might lead to 
working memory defi cits and abnormal distractibility in schizo-
phrenia. These fi ndings correspond to the results of simulations 
with the model of Durstewitz and coworkers [25; s. also 24]. It 
should be mentioned here, that additionally gamma-oscillations 
were generated in simulated cognition experiments performed 
with this network model. 
 Summarizing his computer-based  “ in-silico ”  experiments, Wang 
states that the interplay between slow reverberating excitation 
and competitive synaptic inhibition enables a cortical area, such 
as the prefrontal cortex, to subserve various cognitive func-
tions.   

 Next steps  –  synopsis of complexity of 
(dopaminergic) synaptic neurotransmission 
  &  
 For more detailed computer-based studies of receptor effects, in 
an integrative approach some further aspects have to be deter-
mined by experimental research. Up to now, we have no appro-
priate model of the dynamics of the (dopamine) synapse. Still 
the dynamics of the various interconnected mechanisms such as 
release, activation of reuptake, effects of autoreceptor activation 
(    �  �     Fig. 17  ), etc. is not yet fully described and of course, not 
understood  [54] . Data on synaptic transmission show that the 
switch from electrical signaling to chemical signaling and back 
to electrical signaling is not yet fully analyzed  [3,   71] . Synapses 
may function not only as simple transducers, as in many cases 
there is no 1:1 transmission  [3] . Synapses even might work as 
little processors, as they can exert fi lter operations, as Larry 
Abbott and his group have demonstrated  [3] : Postsynaptic cells 
may respond to slow frequencies better than to high frequencies 
(low pass fi lter) or vice versa (high pass fi lters), or they may 
respond maximally to a certain frequency (band pass fi lters). D1 

receptor-based synapses might thus operate like low pass fi lters 
and D2 receptors might be high pass fi lters. 
 Some questions, that should be answered in a neuronal network 
perspective are:   
  §    When do D1 vs. D2 receptors activate or inhibit the respective 

cell? At present, from an electrophysiological point of view, a 
consistent dichotomy of activating and inhibiting effects of 
dopamine receptors can not be drawn any more as it is known 
that the effects depend on the membrane potential, on the 
location of the receptors on the cell etc. [24,   55; DiPietro and 
Seamans (p. S27) in this issue]. 

  §    Which neurons  –  excitatory or inhibitory - show a functional 
dominance of D1 receptors? For instance, inhibitory neurons 
express both types of receptors but maybe in fast spiking 
neurons mainly the D1 receptors are functionally relevant 
 [72, 73] . 

  §    What is the normal or default state of the neuron in electro-
physiological terms (up- / down-state, spontaneous activity, 
discharge rate / pattern)? 

  §    Where are the functionally dominating receptors located on 
the cell and in and around the synapse? Receptors on apical 
dendrites exert other electrophysiological properties then 
those that are located on the soma of the neuron  [76,   77] . Also 
intrasynaptic, presynaptic and postynaptic receptors show dif-
ferent behavior. For instance, extrasynaptic receptors and also 
extrasynaptic release sites are now increasingly regarded as 
important sites of transmission  [14] . Also the location of the 
receptors on the cell are of importance as dendritic D1R dif-
ferentially reduce somatic inhibition and enhance dendritic 
inhibition onto pyramidal neurons  [28]  (comp.     �  �     Fig. 14  ). 

  §    What are the kinetics of the concentrations of dopamine? 
This is interesting as extrasynaptic concentrations show very 
slow kinetics compared to intrasynaptic dynamics  [14] . The 
time course of transmitter concentration seems to be very 
smooth  –  it take seconds after an arriving burst of action 
potentials that the dopamine concentration is normalized 
again  [54] . 
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   Fig. 15           Scheme of experimental setting for 
neurophysiological testing of visual working 
memory function. The monkey must fi xate 
although a cue is presented briefl y. The animal 
has to memorize the location of the cue and after 
a brief delay period the monkey has to look to the 
location of the cue and will receive a reward ( A ). 
Simultaneous recordings of neuronal activity show 
a raise of discharge frequency during the delay 
period ( B ). This pattern can be reproduced by 
experimentation by computational PFC network 
models [modif. from 77].  
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  §    What is the dynamics of the reactivity of the various recep-
tors depending on the duration of stimulation (up- / down-
regulation, sensitization, desensitization)? 

  §    Finally, the differential functional evaluation of (cortical) 
phasic active projections from the ventral tegmental area 
(VTA) as bursts, being composed of about 5 spikes with 15   Hz 
(about 70 ms inter-spike interval), and of (subcortical) tonic 
activity from substantia nigra (SN) to the striatum (STR) with 
a low sustained-frequency pattern (4   Hz, about 250   ms inter-
spike interval) should be considered, as observed and ana-
lyzed by Grace, O ’ Donnell and others  [32,   49 – 51] .   

 These questions are related to the aim of  “ naturalistic ”  modeling 
of neuronal networks. 
 Additionally, in order to understand the effects of antipsychotic 
medication on the entire cellular level, a model must be built 
that integrates current insights into molecular intracellular sig-
naling pathways and their functional interconnections.The focus 
would be the adaptation of receptors after chronic administra-
tion of drugs. For schizophrenia, for example, the intracellular 
dopamine signal transduction is already too complex to be 
understood entirely without computer simulations. Also adap-
tation of D2R function after chronic application of antipsychotic 
drugs is not yet fully understood. Also the interconnections with 
the molecular pathways of other transmitter systems like GABA 
and glutamate should be studied in a systems perspective. 
 A systemic approach already is established in microbiology and 
now is starting in the molecular and biochemical study of mam-

malian cells. This approach is named  “ Systems Biology ”   [40] . It 
will open a new understanding of pharmaceutical actions by 
reconstructing the cell on the computer. This will allow for  “ in-
silico ”  experiments on the computer. If Systems biology, that is 
concerned with chemical signaling, meets Computational neu-
roscience that is concerned with electrical signaling a fruitfull 
multi-level-understanding of the nervous system, the disorders 
and the mechanisms of pharmacotherapy seems to be possible. 
With this aim we organized a workshop in spring 2007 and we 
would like to mention already here, that in the next publication 
on Computational Systems Neuropsychiatry we will report on 
the Systems Biology perspective that is devoted to mechanisms 
in intracellular dopamine signaling networks in Schizophrenia 
and related issues.   

 Conclusions 
  &  
 Proper understanding of the brain processes involved in schizo-
phrenia (and other mental disorders) should be related to sign-
aling networks at several levels of cerebral information 
processing. In this systemic view of a Computational Systems 
Neuropsychiatry, the pharmacological perspective must also 
take into account the synaptic organization of the neural cir-
cuitry with regard to the distribution of receptors like D2 recep-
tors. However, modeling of cerebral circuits on the molecular 
level implies a selection of available data and knowledge in 
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             D1 modulation of NMDA receptors

  Fig. 16          Simulation of working memory task 
under various conditions. Scheme of validated 
simulation of neuronal computation of weak, stable 
and instable working memory function depending 
on the D1 modulation of NMDA receptors [modif. 
from 10, 75, 76, 77]. ( A ) Low persistent neuronal 
activity at low D1R modulation, ( B ) high persistent 
activity at medium D1R modulation and ( C ) low 
persistent activity at high D1R modulation resulting 
in a Inverted u-function on the phase portrait of 
the attractor ( D ). The bifurcation diagram shows 
that persistent activity is highest in an intermediate 
range of D1 receptor activation.  

                                                              reuptake 
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                       -> D2 receptor occupation 

     autoreceptor 

     

  Fig. 17           Synaptic transmission and structure 
of processes with feedback loops with inhibition 
on transmission (arrows with transoms    =    inhibition).  
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order to construct not too complex models. The conceptual 
selection of substructures of a certain cerebral network must be 
made more explicit so that communication between theoreti-
cians and empirical researchers is close enough. Modeling neu-
ral circuits requires an explicit methodology that allows for 
interdisciplinary communication. For understanding complex 
neurobiological  “ wiring diagrams ” , computer-based modeling 
and computer simulations must be used. Although computa-
tional neurobiology already has provided several convincing 
models they must be adjusted to neuropsychiatric issues. Conse-
quently, a fi eld of theoretical neuropsychiatry (Computational 
Neuropsychiatry) should be established in order to develop the-
ories of mental disorders in a systematic way. This fi eld should 
be developed by integrating the knowledge of systems science. 
Several stimulating models of disorders of working memory or 
perception are already published. These approaches should be 
improved by interaction with clinical researchers and practi-
tioners. The need for systemic modeling becomes evident if the 
diffi culties are regarded that arise when the functional role of 
D1 and D2 receptors has to be determined on a theoretical level. 
Especially, the superimposition of several inhibitory circuits in 
the cortex have to be studied analytically. Therefore, theoretical 
modeling that is integrating classical computational neuro-
science with molecular systems biology will be a challenging 
task for neuropsychiatry for the next years.                          
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