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BY
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Abstract. We prove that the Krull–Gabriel dimension of the category of modules
over any 1-domestic non-degenerate string algebra is 3.

1. Introduction. The Ziegler spectrum of a ring R, RZg, was defined
by Martin Ziegler in his seminal paper [33]. It is a (quasi-compact) topolog-
ical space whose points are indecomposable pure injective (= algebraically
compact) modules, and basic open sets are determined by morphisms be-
tween finitely presented modules. A standard topic in the model theory of
modules is to describe this space, both the points and topology. One possi-
bility to measure the complexity of RZg is to calculate its Cantor–Bendixson
rank. In all known examples this rank equals another important character-
istic of the category of modules over R, its Krull–Gabriel dimension; and
CB(ZgR) ≤ KG(R) is always true. Furthermore, the KG-dimension of a ring
coincides with the m-dimension of the lattice of finitely generated subfunc-
tors of Hom(R,−).

By now there exist plenty of sources where this program has been suc-
cessfully carried through for particular classes of rings. For instance, Eklof
and Herzog [5] and Puninski [18] described the Ziegler spectra of serial rings,
and Trlifaj [32] investigated this space for von Neumann regular rings.

The class of finite-dimensional algebras over a field is of particular impor-
tance. As was noted by Prest [17], if A is a finite-dimensional algebra, then
the isolated points in AZg are exactly the indecomposable finite-dimensional
modules. For instance, A is of finite representation type iff the CB-rank
of A (or the KG-dimension of A) is zero. To describe the points of AZg we
have to classify at least indecomposable finite-dimensional representations,
therefore A should be tame. Another reason why wild algebras should be
excluded from consideration is that the KG-dimension of any wild algebra
is undefined.
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A classical example of tame (domestic) finite-dimensional algebras is the
class of tame hereditary algebras. In this case the Ziegler spectrum was
described by Prest [16] and Ringel [25]. It turned out that the CB-rank
(and the KG-dimension) equals 2, and there is a standard (like over integers)
partition of points into finite-dimensional, Prüfer, adics (parameterized by
simple regular representations) and the (unique if A is connected) generic.
In the case when the ground field is algebraically closed, this value of KG-
dimension has been known since Geigle [7]. According to Krause [14] the
KG-dimension never equals 1 for finite-dimensional algebras, and whether
the CB-rank of the Ziegler spectrum could take 1 as a value is still an open
problem.

The next step was made by Burke and Prest [1] and Schröer [28]: they
found, for each n ≥ 2, a finite-dimensional algebra whose KG-dimension
(and therefore CB-rank) equals n. All algebras in these examples are string
algebras, a celebrated class of finite-dimensional algebras whose finite-di-
mensional representations have been known since Gelfand–Ponomarev [8]
and Butler–Ringel [2]. Whether there exists a finite-dimensional algebra of
infinite KG-dimension is an open problem.

The progress on classification of indecomposable pure injective mod-
ules over string algebras is quite limited. If A is a domestic string algebra,
the classification of points of AZg was conjectured by Ringel [26]: apart of
indecomposable finite-dimensional modules and infinite-dimensional band
modules (that is, Prüfer, adic, and generic modules corresponding to non-
degenerate tubes) they are direct product, direct sum or mixed modules cor-
responding to 1-sided almost periodic or 2-sided biperiodic strings over A.
Only recently Puninski [22] has verified Ringel’s conjecture for 1-domestic
string algebras (every domestic string algebra is n-domestic for some n).
Besides this there are a few examples (see [1] and [21]) of domestic string
algebras where points of AZg are classified, and no such example of a non-
domestic string algebra is known.

If A is a non-domestic string algebra, then (see [28]) the KG-dimension
of A is undefined, and the same is undoubtedly true for its CB-rank. For
domestic string algebras there is a conjecture, due to Schröer [28], that the
KG-dimension of A equals n+2, where n is the maximal length of a path in
its bridge quiver. This conjecture was checked up for some particular classes
of (domestic) string algebras (see for instance [1], [28]), but has remained
open even in the simplest case of 1-domestic string algebras (see [21] for
partial results). Note that the bridge quiver of any 1-domestic string al-
gebra is either trivial (there are no bridges at all), or consists of bridges of
length 1. In this paper we will show that the KG-dimension of A equals 2 or 3
respectively, verifying Schröer’s conjecture for 1-domestic string algebras.



KRULL–GABRIEL DIMENSION 187

Of course, this result depends on the classification of indecomposable
pure injective modules over 1-domestic string algebras (see Proposition 4.1),
which is to be published yet.

Note that the KG-dimension of an algebra A is a purely combinato-
rial invariant whose definition involves only finite-dimensional modules and
morphisms between them. However it seems to be hard to calculate this in-
variant straight from the definition. In our proof we will use a more advanced
approach which is quite indirect.

Firstly, similar to [22] we will cover large open sets in AZg by a net of
intervals freely generated by two chains (in particular, these intervals are
distributive). The advantage of using such intervals is an easy receipt for
calculating the CB-ranks of their points. Being calculated in open subsets
of AZg, those ranks are global, but this is not the case for points in com-
plementary closed subsets: although we know their relative CB-ranks, when
coming back to the whole space, the points will usually ‘jump’, that is, in-
crease their CB-ranks. We will show that this jump is not too high, for
instance every Prüfer and every adic point has CB-rank at most 2; there-
fore the unique generic point is of CB-rank 3. However the precise value of
CB-ranks of Prüfer and adic points is elusive, and this is the only drawback
of our considerations.

Having calculated the CB-rank of A, we will use a standard trick to
show that it equals the KG-dimension. Namely we will check the so-called
isolation property (see [17]): any isolated point in a closed subset of AZg is
isolated by a minimal pair.

Straightforward consequences are on the way: if A is a 1-domestic string
algebra, then AZg is a T0-space, and there is no superdecomposable pure
injective module over A. Note that Harland [10] constructed topologically
indistinguishable points in the Ziegler spectrum of a particular non-domestic
string algebra, and the existence of superdecomposable pure injective mod-
ules over string algebras is a delicate problem (see [19] and [12] for recent
progress).

In this paper we will assume that the ground field, F , is algebraically
closed. Although we believe that all results are true for an arbitrary field,
some proofs depend on this assumption, for instance we will use the de-
scription of morphisms between string and band modules, which seems to
be available for algebraically closed fields only.

2. Preliminaries. This is a follow-up paper to [22] and the reader is
referred to it for most definitions. We will recall some of them, but rather
give some examples. Recall that a string algebra A is the (finite-dimensional)
path algebra of a particular (finite) quiver with monomial relations (see [2]
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or [28]). For instance, the Kronecker algebra Ã1 is the string algebra (with
no relations)

Ã1 ◦
α

''

β

77◦

Also the path algebra R1 of the following quiver with relations α2 = β2 =
αβ = 0 is a string algebra:

R1 ◦α << βbb

Suppose that s is a vertex of the quiver Q of a string algebra A. There is
a standard (usually non-unique) way of separating arrows going in and out
of s into two classes: H1(s) and H−1(s). Informally we introduce a borderline
such that getting ‘through s’ one has to cross this line. For instance, for R1

one could choose β, β−1 ∈ H1(s) and α, α−1 ∈ H−1(s).

•
α
��

•β
��•s

β
��α��• •

Usually (as in this diagram) we will consider strings fromH1(s) to be pointed
on the right, and strings from H−1(s) to be pointed on the left.

Then H1(s) is a chain under a standard ordering (a direct arrow is larger
than an inverse arrow). For instance, β−1 < 1s,1 < βα−1 in H1(s). Similarly
H−1(s) is a chain and α−1β < 1s,−1 < α. Over R1 (or in general, see [29])
it is not difficult to describe these chains completely.

Namely, in view of the relation αβ = 0, there is just one way to extend
β−1 to the right: β−1αβ−1α . . . . Furthermore, the strings whose first letter
is β−1 form the chain

β−1 < β−1αβ−1 < (β−1α)2β−1 < · · · · · · < (β−1α)3 < (β−1α)2 < β−1α

isomorphic to ω + ω∗, where ω∗ denotes the ordering opposite to ω.

The strings with first letter β form a more complicated linear ordering.
Namely, the strings (βα−1)k and (βα−1)kβ are ordered into the following
chain of type ω + ω∗:

1s,1 < βα−1 < (βα−1)2 < (βα−1)3 < · · · · · · < (βα−1)2β < βα−1β < β.

Now the interval [βα−1, (βα−1)2] is refined to the chain

βα−1 < (βα−1)2β−1 < (βα−1)2β−1αβ−1 < · · · < (βα−1)2β−1α < (βα−1)2

of type ω + ω∗, and we have a similar refinement for any interval [(βα−1)n,
(βα−1)n+1].
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According to [2] there are two kinds of indecomposable finite-dimensional
modules over a string algebra A: string and band modules. String modules
are related to strings, that is, generalized walks in the quiver of A. Here is
a typical example of a string module over Ã1 or R1:

◦
α

��
β

��

z1
◦
α

��

z3

◦
z0

◦
z2

We denote this module by M(αβ−1α) (note that we draw direct arrows from
the upper right to the lower left). It follows from [2] that string modules
M(u) and M(v) are isomorphic iff u = v or u = v−1.

Band modules are related to bands, that is, primitive unoriented cycles in
the quiver of A. Here is an example of a (2-layer) band module M(C, 2, λ),

0 6= λ ∈ F , over Ã1 constructed from the band C = αβ−1:

◦
z21 ◦

α
ff

β

||

β=λ

xx z22

◦
z11

◦
α

ff
β=λxx

z12

for instance β(z22) = λz21 + z11 (recall that we assume F to be algebraically
closed).

We will require that a band C start with a direct arrow and end with
an inverse arrow, that is, be of the form αDβ−1. 1-layer band modules
M(C, 1, λ), 0 6= λ ∈ F , will be referred to as simple band modules. Again,
by [2, Sect. 3], band modules with different data are non-isomorphic, and
no band module is isomorphic to a string module.

For a general definition of a domestic algebra see [30, Sect. 14.4]. By [24,
Prop. 2] a string algebra is domestic iff, for every α, there exists at most one
band of A with first letter α. If the number of bands of A (up to a cyclic
permutation and inversion) is n, then A is said to be n-domestic (again, this
agrees with a general definition). Thus a string algebra A is 1-domestic if it

has a unique band C = αDβ−1. For instance, αβ−1 is a unique band of Ã1

and R1, therefore these algebras are 1-domestic.
Here is a more twisted example of a 1-domestic string algebra:

R2 •β
"" ◦αoo γbb

with relations β2 = γ2 = βαγ = 0, whose unique band is αγα−1β−1.
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Note that this algebra is a wind wheel algebra in the terminology of
Ringel [27] (in particular it is minimal representation infinite), and the
reader could find more illuminating examples of 1-domestic string algebras
in that paper. For instance, the path algebra of the quiver

1

2

5

6

4

3

�� ''ww

OO

�� ��

�� ��

with ‘long’ relations 6 → 2 → 1 → 5 and 2 → 4 → 3 → 1 is 1-domestic
(even minimal representation infinite).

1-sided infinite strings and 2-sided strings over a string algebra A are
defined similarly to finite strings. For instance, (αβ−1)∞ is a 1-sided string

over Ã1 which is periodic, and β(αβ−1)∞ is an almost periodic (non-periodic)
string over R1. Similarly ∞(βα−1)β(αβ−1)∞ is a biperiodic string over R1

which is not periodic. By [24, Prop. 2], over a domestic string algebra A
every 1-sided string is either periodic or almost periodic, and every 2-sided
string is either periodic or biperiodic.

We say that a 1-domestic string algebra is degenerate if it has no 2-sided
non-periodic strings, and non-degenerate otherwise. If A is non-degenerate,
then (see [26] and [22, L. 5.3]) one can choose a representative C = αDβ−1 of
a unique band of A such that every 2-sided string is of the form −∞CUC∞,
where the length of U is uniformly bounded (in particular there are just
finitely many such strings). Furthermore, A has no 2-sided strings of the
form ∞CV C−∞.

Let s be a vertex of a string algebra A. Then one can ‘complete’ the
chains H±1(s) by taking into consideration 1-sided infinite strings. Namely,

if u = c1c2 . . . is an infinite string, then put u in Ĥ1(s) if c1 ∈ H1(s), and
similarly for H−1(s).

There is a natural extension of the linear ordering < from H1(s) to

Ĥ1(s), and from H−1(s) to Ĥ−1(s). Then every N-string in Ĥ1(s) defines
a cut on the set of finite strings: the lower part of this cut consists of all
strings C ∈ H1(s) such that C < u, and its upper part consists of all strings

D ∈ H1(s) such that u < D. For instance, let H1(s) for A = Ã1 be chosen
beginning with α (or equal to 1s,1) and let u = (αβ−1)∞ be an N-string.
Then the lower part of the cut defined by u consists of the strings (αβ−1)m,
and its upper part is formed by the strings (αβ−1)nα.



KRULL–GABRIEL DIMENSION 191

3. Krull–Gabriel dimension. For the definition of a pp-formula ϕ(x)
(in one free variable) see [17, Ch. 1]. A pp-formula may also be thought of
as a pointed module (M,m). For instance, the pointed (at z0) string module
M(βαβ−1) over R1

M(D)

◦
α
��

β

��

z2

◦
β

��
z1

◦
z3

•z0

corresponds to the pp-formula ϕ(x)
.
= ∃z1, z2, z3 (αx = 0 ∧ x = βz1 ∧ z1 =

αz2 ∧ βz2 = z3 ∧ αz3 = 0), which claims just that z0 ∈ βαM , that is,
ϕ(x) is equivalent to the divisibility formula βα |x. The module M as above
is often called a free realization of ϕ (note that every pp-formula has a free
realization).

The set of pp-formulae (or rather their equivalence classes with respect
to logical equivalence) forms a modular lattice L(A), where the meet is given
by conjunction of formulae and the join ϕ+ ψ is defined to be the formula
∃y (ϕ(y)∧ ψ(x− y)). For instance, if the string module M(C) = M(βα−1),
pointed at the right end, corresponds to a pp-formula ψ(x), and M(D) is as
above, then the conjunction ϕ ∧ ψ has the following pushout M(C.D) as a
free realization:

◦
α
��

β

��◦
β

��
α
��

◦
β��

◦

◦ •
We will denote the corresponding pp-formula by (C.D). Note that if D,D′

∈ H1(s) for some vertex s, then (.D′) implies (.D) iff there is a pointed
morphism from M(D) to M(D′) iff D ≤ D′ in H1(s). According to the way
the ordering on L(A) is defined, the map (.D) 7→ D from L(A) to H1(s)
reverses the ordering. Of course, similar considerations apply to H−1(s).

Having defined the lattice L(A), we are ready to pick up a tool to measure
its complexity.

Let L be an arbitrary modular lattice with 0 (the smallest element)
and 1 (the largest element). Following Prest [17, Ch. 7], by induction on
ordinals, we define an ascending chain ∼η of congruences on L, and the
corresponding sequence of factor lattices Lη = L/∼η. Let ∼0 be a trivial
congruence, hence L0 = L/∼0 = L. If ∼η and Lη have already been defined,
let ∼ be the smallest congruence on Lη that identifies intervals of finite
length, and let ∼η+1 be the preimage of this congruence in L (with respect
to the natural projection L → Lη). Set Lη+1 = L/∼η+1. For instance, ∼1

identifies elements in any interval of finite length in L.
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If η is a limit ordinal, then define ∼η =
⋃
µ<η ∼η and set Lη = L/∼η.

Since L has 0 and 1, it is easily seen that either 0 �η 1 for all ordinals η,
or there exists η such that 0 �η 1 but 0 ∼η+1 1. In the former case we say
that the m-dimension of L is undefined (or equals ∞); in the latter case
we say that the m-dimension of L equals η. For instance, mdim(L) = 0 iff
L is a finite non-trivial lattice (it is customary to set mdim(L) = −1 iff
0 = 1 in L); and mdim(L) =∞ iff L contains a subchain isomorphic to the
ordering of the rationals (Q,≤).

Furthermore, the m-dimension of the chain ω + ω∗ is 1. Indeed, ∼1

identifies all elements in ω, and all elements in ω∗, but nothing else. Thus
L1 = L/∼1 is a two-element lattice, therefore L2 is a trivial lattice.

Definition 3.1. The Krull–Gabriel dimension of A, KG(A), is defined
to be the m-dimension of the lattice of all pp-formulae over A.

For a different (but equivalent) definition of the Krull–Gabriel dimension
using Serre subcategories see Krause [15].

The pp-formulae as introduced above are usually called left pp-formulae,
and a similar definition may be given for right pp-formulae. Fortunately
(see [17, Prop. 13.1]) the lattices of left and right pp-formulae are anti-
isomorphic, hence the definition of KG-dimension is left-right symmetric.

It is well known (see [17, Prop. 7.2.8]) that, for an arbitrary ring A,
its Krull–Gabriel dimension equals 0 iff A is of finite representation type.
On the other hand, if A is a non-domestic string algebra, then (see [28,
Prop. 2]) KG(A) is undefined. Thus for string algebras we are left with the
domestic case. It is also known (see [7]) that, if A is a hereditary tame
finite-dimensional algebra which is not of finite representation type, then
its Krull–Gabriel dimension equals 2. For instance, this applies to string
algebras of type Ãn.

To give some idea of how the orderings Ht(s) can be used when calcu-
lating the KG-dimension of string algebras, let us look at the Kronecker
algebra Ã1. Suppose that α ∈ H1(s) and consider the following subchain
of H1(s):

1s,1 < αβ−1 < (αβ−1)2 < (αβ−1)3 < · · · < (αβ−1)2α < αβ−1α < α.

Now consider this chain as a set of pointed string modules M(C), where we
point the leftmost basis element (that is, z0) of the canonical basis. For this,

M(αβ−1)
◦

α
��

β
��• ◦

is an example. Clearly, if C < D in H1(s), then there exists a pointed
morphism fc,d : M(C) → M(D), which is a graph map in the terminology
of [3]. For instance, the morphism from M(αβ−1) to M(αβ−1α) is obtained
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by just ‘inserting’ αβ−1 at the beginning of αβ−1α.

◦
α
��

β

��

&&◦
α
��

β

��

◦
α��◦ 88◦ 88◦ ◦

Since the above modules M(C) and M(D) are indecomposable, finite-di-
mensional and not isomorphic, there is no pointed morphism from M(D)
to M(C). Thus the pointed modules (M(C), z0), C ∈ H1(s), form a chain
in L(A) isomorphic to ω + ω∗. This chain has m-dimension 1, hence

KG(Ã1) ≥ 1.

Similarly if A = R1, then (see page 188) the subchain of H1(s) of strings
starting with β has m-dimension 2, hence KG(R1) ≥ 2. Both results are still

short of the target (2 for Ã1 and 3 for R1). To achieve the desired value we
need some elaboration of this construction.

Recall that every ordinal η can be uniquely written in the Cantor form
η = ωη1 ·n1 + · · ·+ωηk ·nk, where η1 > · · · > ηk are ordinals and n1, . . . , nk
are natural numbers. If µ = ωη1 · m1 + · · · + ωηk · mk is another ordinal
(we allow some ni or mi to be zero), then the Cantor sum of η and µ,
η ⊕ µ, is the ordinal ωη1 · (n1 + m1) + · · · + ωηk · (nk + mk). For instance
1⊕ ω = ω ⊕ 1 = ω + 1.

Let Li, i = ±1, be chains such that the smallest element of Li is 0i,
and the largest element of Li is 1i. We will denote by L = L−1 ⊗ L1 the
modular lattice freely generated by L−1 and L1 subject to the relations
0−1 = 01 and 1−1 = 11. For example, if L1 is a two-element lattice, then
L−1 ⊗ L1

∼= L−1. The structure of L is well known (see [9, Thm. 13]), for
instance L is distributive.

Fact 3.2 (see [17, Prop. 7.1.9]). mdim(L−1 ⊗ L1) = mdim(L−1) ⊕
mdim(L1).

This kind of lattice occurs very naturally for string algebras. Namely,
let A be a string algebra with a vertex s. For every C ∈ H1(S) we have
already defined the formula (.C). Furthermore, the set of pp-formulae {(.C) |
C ∈ H1(s)} forms a chain anti-isomorphic to the chain H1(s). Some subsets
of this chain will usually be used as L1.

Similarly, the set of formulae {(D.) | D−1 ∈ H−1(s)} forms a chain anti-
isomorphic to H−1(s), and we will use some subsets of this chain as L−1.

If L is a sublattice of L(A), then we denote by L′ the lattice L ∪ {0, 1}
obtained from L by adding the largest and the smallest elements.

The following proposition has a standard proof (see [23, L. 5.4] for this
kind of argument).
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Proposition 3.3. Let A be a string algebra with a vertex s. Suppose
that L1 is a chain of formulae (.C), C ∈ H1(s), such that all C start with
the same direct arrow, and L−1 is a chain of formulae (D.), D−1 ∈ H−1(s),
where all D end with the same inverse arrow (therefore DC is a string).

Then the sublattice of L(A) generated by the lattices L′±1 is isomorphic to
L′−1 ⊗ L′1. In particular, the KG-dimension of A is not less than mdim(L′−1)
⊕mdim(L′1).

Now we complete the calculations in the previous examples. Indeed, let
A = Ã1 and let s denote the vertex where α ends. We may assume that
α ∈ H1(s) and β ∈ H−1(s). Let L1 consist of all formulae (.C) where C is
a string with first letter α, and L−1 consist of all formulae (D.) where the
last letter of D is β−1. Then both chains L±1 have m-dimension 1, therefore
KG(Ã1) ≥ 2 by Proposition 3.3.

For A = R1 recall (see page 188) that β ∈ H1(s) and α ∈ H−1(s). Let
L1 be a chain of all formulae (.C) where C is a string with first letter β;
and let L2 consist of all formulae (D.) where D has last letter α−1 (hence
D−1 will start with α). We know that mdim(L1) = 2 and it is easily seen
that mdim(L−1) = 1. By Proposition 3.3 we conclude that KG(R1) ≥ 3.

Note that for R1 both chains H±1(s) have m-dimension 2. However it is
impossible to combine them to get ‘independent dimensions’ as in Propo-
sition 3.3. A clear restriction on combining words on the left and right is
given by the structure of 2-sided strings over R1 (or rather by the relation
αβ = 0).

For the definition of the bridge quiver of a string domestic algebra A the
reader is referred to [29]. We just give a few examples.

For instance, let A = R1 (see page 188) and recall that C = αβ−1

is the unique band of A. Any nonperiodic string over A is a substring of
either ∞CαC−∞ or ∞Cα−1C−∞. Thus the bridge quiver of A consists of
two arrows C → C−1 labeled by α and α−1. For instance, the maximal path
in this bridge quiver is 1, and the same is true for any (non-degenerate) 1-
domestic string algebra. Degenerate 1-domestic string algebras have a trivial
bridge quiver.

Let us consider the following string algebra:

Λ2 ◦ ◦
δ
vv

ε
hh ◦γ

oo ◦
α
vv

β

hh

whose relations are shown by solid curves (that is, δγ = 0 and γβ = 0).
Then A = Λ2 has exactly two bands C = αβ−1 and D = εδ−1, therefore
it is 2-domestic. The only 2-sided string that connects the bands of A is

∞DεγC∞. Thus D
εγ−→ C and (its inverse) C−1

γ−1ε−1

−−−−→ D−1 are the only
bridges over A. Again, the maximal path in the bridge quiver of A is 1.
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The following conjecture is due to Schröer.

Conjecture 3.4 (see [29]). Suppose that A is a domestic string algebra
and let n be the length of a maximal path in the bridge quiver of A. Then
the Krull–Gabriel dimension of A equals n+ 2.

According to this conjecture the KG-dimension of any 1-domestic string
algebra A should be 3 if A is non-degenerate, and 2 if A is degenerate.

It follows from [29] that KG(A) ≥ n + 2, and this can also be proven
using Proposition 3.3. To show that this estimate is sharp for 1-domestic
algebras is the main goal of this paper.

Recall that Burke and Prest [1], for each n ≥ 2, constructed a string al-
gebra Λn whose KG-dimension equals n. A similar example was constructed
by Schröer [28]. Furthermore, Prest and Puninski [21] verified that KG = 3
for a special class of non-degenerate 1-domestic string algebras (whose bands
have no self-intercepts).

Note that the KG-dimension of a domestic string algebra is a purely
combinatorial invariant that is defined in terms of finite-dimensional mod-
ules and their morphisms. Thus it is quite plausible that one, especially
advanced in combinatorics, could verify this conjecture ‘with bare hands’.
However, because of a very combinatorial nature, this kind of proof would be
extremely difficult to write down and verify (maybe [28] is a good illustration
for that). Thus one intention of the bypass we have chosen (through Ziegler
spectrum and CB-ranks) is to give a ‘structure’ to this combinatorial proof.

4. Pure injective modules and the Ziegler spectrum. We will be
brief on defining pure injective modules (more information can be found in [17]
or [11]). A module M (over a finite-dimensional algebra A) is said to be pure
injective if M is a direct summand of a direct product of finite-dimensional
A-modules. If A is a string algebra, then those modules can be chosen to
be string or band modules. For instance, every finite-dimensional module is
pure injective. As was noticed by Ringel [24], if M is linearly compact as a
(right) module over its endomorphism ring, then M is pure injective.

We will recall the structure of indecomposable pure injective modules
over 1-domestic (non-degenerate) string algebras, as conjectured by Rin-
gel [26] and confirmed in [22]. For a description of indecomposable pure injec-

tive modules over a tame hereditary finite-dimensional algebra A of type Ãn
the reader is referred to [25]. For instance, for every simple band A-module S,
there exists a ray of irreducible monomorphisms S = S(1) → S(2) → · · ·
from a tube of A. The direct limit along this ray is an S-Prüfer module S∞,
which is pure injective and indecomposable.

Similarly the inverse limit along the coray of irreducible epimorphisms
· · · → S(2) → S(1) = S produces an S-adic module Ŝ, which is also pure
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injective and indecomposable. Finally, there exists an infinite-dimensional
indecomposable generic module G of finite endolength. For instance for Ã1

the generic G is given by attaching to each vertex a copy of the rational
field k(x), where α acts as the identity and β acts by multiplication by x:

G k(x)

α=1
**

β=x×−
44 k(x)

Suppose that A is a 1-domestic string algebra with a unique band C of
length n + 1 (that is, C has n + 1 vertices). ‘Recoiling C’ we will obtain

a tame hereditary algebra of type Ãn (some vertices and arrows which are
identified in C should be renamed). For instance, recoiling the band C =

αγα−1β−1 of R2 (see page 189) we get an algebra A′ of type Ã3 with the
band C ′ = αγα′−1β−1:

A′
• ◦αoo

◦
β

OO

◦α′oo

γ
OO

Then (see [6, p. 159]) there is a natural push-down functor F from the
category of A′-modules to the category of A-modules which preserves pure
injective indecomposable modules. Such modules in the image of this functor
will be called infinite-dimensional band modules. We have not included in
this list Prüfer and adic modules corresponding to simple regular A-modules
which are strings, because we will count them separately.

Let u = c1c2 . . . be a 1-sided string over A (or any domestic string
algebra). Then u is almost periodic, therefore it can be uniquely written
as u = c1 . . . ckD

∞, where D is a primitive cycle, and ckD
∞ is no longer

periodic (or ck is empty, hence u is periodic). If the last letter of D is a
direct arrow, then we say that u is contracting. Then ck is either empty,
or an inverse arrow. For instance, the string (β−1α)∞ over Ã1 or R1 is
contracting:

◦
β ��

◦
α
�� β ��

◦
α
�� β ��◦ ◦ ◦ . . .

As shown by Ringel [24], one could assign to this string the direct sum
module M(u) which is pure injective and indecomposable. As an F -vector
space, this module is a direct sum of countably many 1-dimensional spaces
corresponding to circles in the above diagram, and the action is defined as
for finite-dimensional string modules.

Similarly, we say that u is expanding if the last letter of D is an inverse
arrow, therefore either ck is empty, or ck is a direct arrow. For instance, the
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string u = β(αβ−1)∞ over R1 is expanding, with D = αβ−1:

◦
α
�� β ��

◦
α
��

β

��◦
β

��

◦ ◦ . . .

◦

We will assign to u a direct product (or adic) module M(u), whose un-
derlying vector space is the product

∏
i∈ω F of 1-dimensional vector spaces

spanned by the zi, therefore the zi do not form a basis for M(u), and the ac-
tion is defined similarly. Again, by Ringel [26, p. 50] (or rather Harland [10,
Sect. 6.1]) this module is pure injective and indecomposable.

Applying a similar construction to a 2-sided string u we will obtain,
depending on its shape, a direct sum, direct product or mixed pure injective
indecomposable A-module.

For instance, the string u = ∞(βα−1)β(αβ−1)∞

◦
α
�� β ��

◦
α
�� β ��◦

β

�� α ��

◦
β

�� α ��

◦
β

��

◦ ◦ . . .

. . . ◦ ◦ ◦

is contracting on the left and expanding on the right, therefore the corre-
sponding 2-sided indecomposable pure injective module is M+(u), which is
a direct product on the right and a direct sum on the left. The following
result (Ringel’s conjecture) was verified in [22].

Proposition 4.1. Let M be an infinite-dimensional indecomposable
pure injective module over a 1-domestic (non-degenerate) string algebra A.
Then M is either an infinite-dimensional band module, or a 1-sided or 2-
sided direct sum, direct product, or mixed module corresponding to a 1-sided
almost periodic or 2-sided biperiodic string.

If A is degenerate (but not of finite representation type), then 2-sided
(indecomposable pure injective) modules do not occur.

Let M be a module and m ∈ M . Let p+ consist of all pp-formulae ϕ
such that M |= ϕ(m); and let p− consist of all pp-formulae ψ such that
M |= ¬ψ(m). Then the collection p = p+ ∪ ¬ p− is called the pp-type of
m in M , ppM (m). Clearly p+ is upward closed, and closed with respect to
conjunctions, therefore it is a filter in the lattice of pp-formulae; and p− is
downward closed (but not always closed with respect to sums). Because p
is uniquely determined by p+, we will often identify p with its positive part,
therefore with a filter in L(A).

If M is indecomposable and pure injective, then (the isomorphism type
of) M is uniquely determined by the pp-type p of any non-zero element
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m ∈ M , in fact M is just the pure injective envelope, PE(p), of p. Recall
that a pp-type is said to be indecomposable if the (pure injective) module
PE(p) is indecomposable. There is a powerful syntactical criterion of Ziegler
(see [33, Thm. 4.4]) for a given pp-type to be indecomposable. Thus one
could classify indecomposable pure injective modules by describing the pp-
types of their elements. In fact indecomposable pure injective modules are
completely determined by their local behavior.

Namely, for pp-formulae ϕ and ψ, we will denote by [ϕ/ψ] the interval
[ϕ ∧ ψ,ϕ] in the lattice L(A). We say that a pp-type p opens this interval,
written p ∈ [ϕ/ψ], if ϕ ∈ p+ and ψ ∈ p−. In this case the restriction of p to
[ϕ/ψ] defines a (non-trivial) cut: if θ ∈ [ϕ/ψ], then we put θ in the upper
part of this cut when θ ∈ p+; otherwise put θ in the lower part of the cut:

◦
ψ

◦
ϕ

p
p+

p−

oo

It follows from another result of Ziegler’s (see [33, L. 7.10]) that the isomor-
phism type of an indecomposable pure injective module M is completely
determined by any non-trivial cut given by a pp-type of a non-zero element
of M .

Now we are ready for the main definition. The Ziegler spectrum of
A is a topological space whose points are indecomposable pure injective
modules, and a basis of open sets is given by (ϕ/ψ) = {M ∈ AZg |
ϕ(M)/(ϕ ∧ ψ)(M) 6= 0}, where ϕ and ψ are pp-formulae. The last con-
dition says that there is m ∈ M whose pp-type opens the interval [ϕ/ψ],
and we say that M opens [ϕ/ψ] in this case.

It is known (see [17, Cor. 5.1.23]) that AZg is a quasi-compact space,
whose basic open sets are also compact, but it is often the only nice topo-
logical property it enjoys. Though we defined the Ziegler spectrum using
formulae in one variable, the use of arbitrary pp-formulae will lead to the
same topology. Thus there is another useful definition of AZg.

Let f : M → N be a (non-split) morphism between finite-dimensional
modules and let a basic open set (f) consist of all K ∈ AZg such that there
exists a morphism g : M → K which cannot be factored through f , that is,
there is no morphism h : N → K with hf = g.

M
f //

g
��

N

¬∃h~~
K
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Now we will introduce a useful tool to measure the complexity of the
Ziegler spectrum—the Cantor–Bendixson analysis. It runs as follows. At
the first step remove from AZg all isolated points, that is, indecomposable
finite-dimensional modules. What remains is a closed (hence compact) sub-
set, Zg′A, the first derivative of AZg. Removing the isolated points again, we
obtain the second derivative, and so on. Now we proceed by induction on

ordinals, setting at limit stages Zg
(λ)
A =

⋂
µ<λ Zg

(µ)
A . If this process reaches

an empty set at some step µ then, by compactness, µ = λ + 1 for some λ;
and we define the Cantor–Bendixson rank of AZg, CB(AZg), to be λ. For
instance, CB(AZg) = 0 iff every point of A is isolated, therefore (by com-
pactness) A is of finite representation type. Abusing notation slightly we
will often write CB(A) for CB(AZg).

Otherwise we say that the CB-rank of AZg is undefined. If CB(A) is
defined then, for every point M , there exists the least µ such that M ∈
Zg

(µ)
A \Zg

(µ+1)
A . This ordinal µ is called the CB-rank of M , CB(M). Thus

the CB-rank of AZg is the supremum of the CB-ranks of its points.

If V is an open set in AZg, then the CB-rank of every point of V can
be calculated inside V (endowed with the relative topology). We define the
CB-rank of V , CB(V ), as the supremum of the CB-ranks of points of V (in
this paper we will be dealing only with finite ranks). If V is a closed subset
of AZg, then the CB-rank of a point calculated in the relative topology is
often strictly less than its global CB-rank.

The usefulness of this notion comes from the following observation. Re-
call that the isolation condition for a ring A means that every isolated
point in the closed subset of AZg is isolated by a minimal pair. For in-
stance, by [17, Prop. 5.3.17] the isolation condition holds true if KG(A)
is defined. It also follows from [17, Cor. 5.3.60] that CB(A) ≤ KG(A)
for any ring A, and these values coincide if KG(A) < ∞. For instance,
if A is left pure semisimple, then CB(A) = 0, and therefore the equality
CB(A) = KG(A) amounts to the famous pure semisimplicity conjecture
(which most believe not to be true—see Simson [31] for the current state of
affairs).

If A is a tame hereditary finite-dimensional connected algebra (of in-
finite representation type), we have already noticed that KG(A) = 2. It
follows that CB(A) = 2 with a standard division of points of AZg into
finite-dimensional (of CB-rank 0), Prüfer and adics (of CB-rank 1), and the
unique generic point of CB-rank 2.

5. PP-types and their cuts. If p is an indecomposable pp-type then
the CB-rank of p, CB(p), is the CB-rank of its pure injective envelope PE(p).
There is also a corresponding notion of m-dimension.
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Suppose that an indecomposable pp-type p opens an interval [ϕ/ψ] with
ψ < ϕ and M = PE(p). Then (see [33, Cor. 4.16]) a basis of open neighbor-
hoods for M can be chosen among open sets (ϕ′/ψ′), where ϕ′ ∈ p, ψ′ /∈ p,
and ψ ≤ ψ′ < ϕ′ ≤ ϕ. We define the m-dimension of p, mdim(p), as the
infimum of the m-dimensions of intervals [ϕ′/ψ′] as above.

◦

?�

ϕ
• ϕ′

p //

•ψ′
◦

� _

ψ

At least in some cases this definition is sound (does not depend on the
interval chosen).

Lemma 5.1. Suppose that p is an indecomposable pp-type opening an
interval [ϕ/ψ]. Then the m-dimension of the p measured in this interval is
not less than CB(p).

Furthermore, if [ϕ/ψ] is a distributive interval, then mdim(p) = CB(p),
therefore mdim(p) does not depend on the interval. Also mdim[ϕ/ψ] is equal
to the supremum of the CB-ranks of points opening this interval.

Proof. The Cantor–Bendixson analysis in [ϕ/ψ] runs at least as fast as
the m-dimension analysis, therefore the first part of the lemma holds true.

For the second part we notice that, because [ϕ/ψ] is distributive, by [17,
Cor. 5.3.28], the isolation condition holds true for points of AZg opening
this interval. It follows that the CB-analysis in this interval coincides with
the m-dimension analysis. Now the result is easily proved by induction.

Here is a typical situation when this happens. Let A be a string algebra
with a vertex s; D−1 ∈ H−1(s) is a non-maximal string ending at s with a
direct arrow and C ∈ H1(s) is a string ending at s with a direct arrow. For
instance, DC is a string, and M(DC) is a free realization of the pp-formula
(D.C) = (D.) ∧ (.C). Recall that the string +D is obtained from D by
adding an inverse arrow on the left (we assume for simplicity that such an
arrow exists), and then as many direct arrows as possible: +D = . . . γβ−1D.
Clearly (+D.C) < (D.C) in the lattice of pp-formulae.

Fact 5.2 (see [29] and [20]). The interval [(D.C)/(+D.C)] is a chain
and each formula in this interval, except (+D.C), is equivalent to the formula
(+D.C) + (D.E), where C ≤ E ∈ H1(s).

Furthermore, every indecomposable pure injective module M = N(p) in

this interval is uniquely determined by a 1-sided string u ∈ Ĥ1(s), C ≤ u.
A basis of open sets for M is given by the pairs (D.E)/(+D.C) + (D.F ),
where E,F ∈ H1(s) are such that C ≤ E ≤ u < F . Therefore CB(p) is
equal to the m-dimension of the cut defined by p on the chain H1(s).
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For instance, let A = R1 and consider the following cut p (between the
dots) on H1(s):

1s,−1 < βα−1 < (βα−1)2 < · · · · · · < βα−1β < β.

By what we have said, this cut defines an indecomposable pp-type (also
denoted by p). Because (see page 188) every interval in the lower and upper
part of this cut can be refined to a chain of type ω + ω∗, it follows that its
m-dimension is 2, hence the CB-rank of M = PE(p) equals 2. Note that M
can be easily identified with the direct product (adic) module M(βα−1)∞

from Ringel’s list, because this module defines the same cut on H1(s):

◦
β

�� α ��

◦
β

��
α

��• ◦ ◦ . . .

Similarly let us consider the following cut in H1(s) over R1:

βα−1β < βα−1βαβ−1 < · · · · · · < βα−1βαβ−1α < βα−1βα.

Since every interval in the lower and upper parts of this cut is simple, its
m-dimension is 1. If an indecomposable pp-type q corresponds to this cut
and M = PE(q), then CB(M) = 1. Clearly M is the direct product module
M(βα−1β(αβ−1)∞):

◦
α

�� β ��

◦
α

��
β

��◦
β

�� α ��

◦
β

��

◦ ◦ . . .

• ◦

The explanation why the CB-rank of M(βα−1)∞ is 2 is the following: one
could ‘see ahead’ one more bridge leading from this band to the band αβ−1

on the right, and this is not the case for (αβ−1)∞. For a general receipt how
to calculate the CB-ranks of such (1-sided) modules over domestic string
algebras see [20].

If a module M opens a certain interval [(D.C)/(+D.C)], then M is called
1-sided (see [20]); otherwise M is said to be 2-sided. For instance, every
finite-dimensional string module is 1-sided, but each band module is 2-sided.
Furthermore, an infinite-dimensional string module from Ringel’s list is 1-
sided iff its defining string is 1-sided (see [10] for a proof). Using Fact 5.2
and calculations of Schröer [29], it is not difficult to find the CB-rank of any
point in the interval [(D.C)/(+D.C)]. Therefore, by Lemma 5.1, we know
the m-dimension of this interval.

For instance, in this way it was shown in [20] that over a domestic string
algebra A, the CB-rank of the (open set) of 1-sided points of AZg is n+ 1,
where n is the maximal length of a path in the bridge quiver of A. From
this it was derived that CB(A) ≥ n+ 2.
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Suppose that [ϕ/ψ] is an interval in L(A) generated by two chains L±1.
To conform with the above definitions, let L′i be obtained from Li by adding
ϕ as a largest element (if ϕ is not already there), and adding ψ (or rather
ϕ∧ψ) as a smallest element. Then there exists a natural surjection of lattices
L′−1 ⊗ L′1 → [ϕ/ψ]. If this surjection is an isomorphism, we say that [ϕ/ψ]
is freely generated by L±1. Let pi denote the cut on Li defined by a pp-type
p ∈ [ϕ/ψ], that is, we put θ ∈ Li in the upper part of the cut if θ ∈ p, and
in the lower part otherwise.

Fact 5.3 (see [22, Fact 8.4]). Suppose that an interval [ϕ/ψ] is freely
generated by chains L±1 and let p ∈ [ϕ/ψ] be an indecomposable pp-type.
Then p is uniquely determined by its cuts p±1. Furthermore, mdim(p) =
mdim(p−1)⊕mdim(p1) and mdim(p) = CB(p).

Thus our main interest will be to ‘catch’ indecomposable pure injective
modules in distributive intervals, making it easy to calculate their CB-ranks.
But constructing such (distributive) intervals is hard. We will give a few
examples.

Recall that every pp-formula ϕ(x) defines a finitely generated subfunc-
tor Fϕ of the forgetful functor Hom(A,−), from the category of finite-
dimensional left A-modules to the category of F -vector spaces, by the rule
M 7→ ϕ(M); and the converse is also true. In what follows we will often
identify pp-formulae and such functors.

Example 5.4 (see [22, Prop. 8.5]). Let S = M(β) be the following
(simple regular) string module over R1, pointed at the left end:

S
◦

β

��

z1

•z0

and consider the functor Hom(S,−). Since (S, z0) is a free realization of the
pp-formula ϕ(x)

.
= ∃y (βy = x ∧ αy = 0), this functor is isomorphic to ϕ.

Then the lattice of finitely generated subfunctors of Hom(S,−) (therefore
the interval [ϕ/(x = 0)] in L(A)) is freely generated by two chains corre-
sponding to extensions of β to the right and to the left in the following
2-sided string ∞(βα−1)β(αβ−1)∞:

◦
α

�� β ��

◦
α

��
α

��◦
β

�� α ��

•
β

��

◦ ◦ . . .

◦. . . •

Namely, looking at the extension of β to the right we see a chain L1 in
H1(s) consisting of strings (or rather pointed string modules) with βα as
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first letters, and β itself. Similarly, extending β to the left we see a chain
L−1 in H−1(s) consisting of strings that start with α (that is, strings . . . α−1

in the orientation of the above diagram); and these two chains generate our
interval freely.

It follows that every indecomposable pure injective R1-module M such
that Hom(S,M) 6= 0 is uniquely determined by a 1-sided or 2-sided string
as above with β embedded in the middle. For instance, there exists a unique
indecomposable pure injective module over R1 that corresponds to the 2-
sided string u = ∞(βα−1)β(αβ−1)∞ (see the diagram). Since u is contracting
on the left and expanding on the right, this module is a mixed moduleM+(u)
from Ringel’s list. We could calculate its CB-rank. Indeed, the (right hand)
cut p1 defined by p on H1(s) is of the form

β < βαβ−1 < · · · · · · < βαβ−1α < βα,

hence of m-dimension 1. Furthermore, the cut p−1 defined by p on H−1(s),

αβ−1 < (αβ−1)2 < · · · · · · < αβ−1α < α,

is also of m-dimension 1. By Fact 5.3 it follows that mdim(p) = 1 + 1 = 2,
therefore CB(p) = 2 by the same fact.

By similar arguments one can show that, if S is any of the remaining
simple regular R1-modules (meaning simple regular as Ã1-modules), then
the lattice of finitely generated subfunctors of Hom(S,−) is a chain of m-
dimension 2. These chains may be considered as ‘deformations’ of the above
free product of two chains.

However, there is a 1-domestic string algebra with a simple regular mod-
ule T such that the lattice of finitely generated subfunctors of Hom(T,−) is
not distributive.

Example 5.5. Let S2 be the following (non-degenerate) 1-domestic
string algebra:

S2

◦

◦

βii

◦
γ

oo τ
||

◦

µ

::

α

LL

with relations βγ = 0, τ2 = 0, and (the unique) band βαµ−1. Let T be the
following (simple regular) string S2-module:

T

◦
α
��

µ

��◦ •
z

Then the lattice of finitely generated subfunctors of Hom(T,−) is not dis-
tributive.
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Proof. Consider the graph maps that embed T in the following string
module N such that z goes first to x, and then to y:

N

◦
α ��

◦
α
��◦

β ��

◦
µ

�� α ��

◦
γ

��
τ
��

◦
α
�� µ ��

◦
β

��•
x

◦ ◦
γ ��

◦
α
�� µ ��

◦
β

��

◦

◦ •
y

Clearly the pp-types of x and y in N are incomparable (equivalently, no
endomorphism of N takes x to y or y to x). Indeed, we may assume that
β ∈ H1(s) and µ ∈ H−1(s). Then x has a word βα ∈ H1(s) larger than
the word βαµ−1 . . . ∈ H1(s) of y, but y has a word µα−1γτ . . . ∈ H−1(s)
larger than the word µα−1γτ−1 . . . ∈ H−1(s) of x. But this contradicts [21,
Prop. 4.4].

However we do not know any example of a simple band module S (which
is not a string module) over a 1-domestic algebra such that the functor
Hom(S,−) is not distributive.

6. Main results. In this section we will prove the main result of the
paper.

Theorem 6.1. Suppose that A is a non-degenerate 1-domestic string
algebra. Then the Krull–Gabriel dimension and the Cantor–Bendixson rank
of A are equal to 3.

The proof of this result will occupy a few pages. First we will calculate
the CB-rank of A. Recall that every non-periodic 2-sided string over A is of
the form ∞CUC−∞, where the length of U is uniformly bounded, and there
is no string of the form −∞CV C∞.

As we have already mentioned, the points in AZg of CB-rank 0 are
exactly indecomposable finite-dimensional modules, therefore each infinite-
dimensional point has CB-rank ≥ 1. Furthermore (see [20]), the ranks of
1-sided points of AZg are also known. Namely, the Prüfer and adic mod-
ules corresponding to strings WC∞ will have CB-rank 2; and the remaining
1-sided (infinite-dimensional) points are of CB-rank 1.

Similar considerations holds for 2-sided string modules.

Lemma 6.2. Let M be a 2-sided direct sum, direct product, or mixed
module from Ringel’s list. Then CB(M) = 2.

Proof. It follows from [22, proof of L. 9.2] that M opens an interval freely
generated by two chains.



KRULL–GABRIEL DIMENSION 205

More precisely, there are strings C ∈ H1(s), D
−1 ∈ H−1(s) starting with

direct arrows such that M opens the interval [(D.C)/
∑k

i=1(Di.Ci)], where
(Di.Ci) are all ‘proper factors’ of C.D. Furthermore, this interval is freely
generated by the chains L±1, where L1 corresponds to the extensions of C
to the right, and L−1 corresponds to the extensions of D to the left.

For an example, let u = βα−1β.αβ−1 over R1:

◦
α

��
β

��◦
β

�� α ��

•
β

��
zi

◦

◦ ◦

Then the complete list of proper factors of this string (not annihilating
the pointed element) is α−1β.αβ−1 or .αβ−1 (factoring u on the left end),
and βα−1β.α (factoring u on the right end). Thus L1 corresponds to the
extensions of αβ−1 to the right (that is, either equals αβ−1 or starts with
αβ−1α), and L−1 corresponds to the extensions of βα−1β to the left. For
instance, the mixed module M+(∞(βα−1)β.(αβ−1)∞) opens this interval.

It is easily seen that the cut defined by the chain L1 on H1(s) has m-
dimension 1, and the same is true for the cut defined by L−1 on H−1(s). It
follows from Fact 5.3 that mdim(M) = CB(M) = 2.

It remains to calculate the ranks of Prüfer and adic points corresponding
to simple band modules S, and the rank of the generic point G. Let a simple
band module S correspond to the band C = αEβ−1, and point this module
at a standard basis element zi between β−1 and α (therefore, zi is in the
socle of S). In fact, by combinatorics of domestic string algebras there is
just one position for zi in the socle of S. Then (S, zi) is a free realization of
a pp-formula ϕs whose corresponding functor is isomorphic to Hom(S,−).

Proposition 6.3. CB(S∞) ≤ 2.

Proof. We will check that Hom(S,−) provides a sufficient separation.

Clearly Hom(S, S∞) 6= 0, therefore M opens the interval [ϕs/x = 0].

Furthermore Hom(S, Ŝ) = Hom(S,G) = 0 and Hom(S, T∞) = Hom(S, T̂ )
= 0 for any simple band module T which is not isomorphic to S, because
this is true for the corresponding tame hereditary algebra. Thus we have
separated S from these points (we need not care what their CB-ranks are).

By Proposition 4.1 it remains to show that this functor separates S∞
from infinite-dimensional string points of CB-rank 2, that is, any morphism
f from S to such a point will annihilate zi.

Recall that there are just two kinds of (string) points of CB-rank 2:
2-sided points Mu corresponding to strings u = ∞CUC−∞, and 1-sided
points corresponding to strings WC∞ (and each of them is Prüfer, adic or
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mixed, depending on the shape of the string). We will give the proof only
for 2-sided points; arguments for 1-sided points of CB-rank 2 are similar.

Thus let f ∈ Hom(S,M) target a 2-sided module M = Mu. Consider
first the case when u is contracting, that is, M is a direct sum module (on
both ends). It follows that the image of hj lies in a submodule M ′ = M(v)
of M defined by a finite substring v = CV C−1 (when V is chosen long
enough).

We will use a description of morphisms between band and string modules
(possibly infinite-dimensional). For finite-dimensional modules this result is
due to Krause [13], but even in this case its interpretation given by Har-
land [10, Sect. 6.3.2] is more handy. Thus f first factors through a standard
morphism g from S to the periodic direct product module M(∞C∞), say
f = gh:

S
g //

f

66M(∞C∞)
h //M ′

where g is a standard embedding, and h is a (finite) linear combination∑
j λjhj of graph maps.

To see what this morphism g is, suppose that A = Ã1, C = αβ−1, and
let S be the simple band module determined by 0 6= λ ∈ F :

S ◦z1
α=1

''

β=λ×
77•z0

Let M(∞C∞) be the direct product module

◦
z′−1

α

��
β

��

◦
z′1

α��
β

��

◦
z′3

α��
β

��
. . . •

z′−2
•
z′0

•
z′2

•
z′4

. . .

Then g(z0) =
∑

i λ
iz′2i and g(z1) =

∑
i λ

iz′2i+1.
Now each hj is obtained by first factoring the string w = ∞C∞ on both

ends, and then inserting the resulting finite string (or rather the resulting
string module) into M ′ (and hence in M). For instance in the above ex-
ample, one possibility for hj would be to factor M(∞C∞) on the left of z′−2
(inclusive) and on the right of z′4 (inclusive) to get the following string
module:

◦
��

z′−1 ◦
�� ��

z′1 ◦
��

z′3

•
z′0

•
z′2
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Clearly we can disregard the hj which annihilate zi. Now consider a
certain hj which does not annihilate zi. The corresponding factor of w =
∞C∞ can be written as 6γUCm.CnV��δ−1, where γU is the right end of C2

and V δ−1 is the left end of C2. Here γ is a direct arrow such that the
standard basis element on the left of γ is the rightmost element annihilated
by hj ; and δ−1 is an inverse arrow such that the standard basis element on
the right of it is the leftmost element annihilated by hj .

◦
γ

��

. . . ◦
δ
��× ×

For instance, in the above example, γ is α connecting z′−2 and z′−1, and δ−1

is β−1, connecting z′3 and z′4.
Clearly U ends with β−1 (on the right), hence is non-empty, and V starts

with α (on the left), hence is also non-empty. However the case m = 0 or
n = 0 is quite possible.

By symmetry we may assume that UCmCnV is embedded in u with the
‘same orientation’ as . . . ε−1UCm+nV π . . . . Without loss of generality we
may assume that m,n ≥ 1: otherwise we can insert copies of C (in w and
in u) in between U and V , without violating the following arguments.

The left end of u is ∞C . . . , therefore the part of u between ∞C and Cm

is C l for some l. It follows that ε−1U will be on the right end of C l. But the
same is true for γU , therefore ε−1 = γ, a contradiction.

Now suppose that u is mixed, so u = wγD∞, where D is a cyclic per-
mutation of C or C−1. Then N = Mw is a submodule of M = Mu such that
M/N is a direct product module M(D∞). Since M/N is an adic module
corresponding to the simple regular string module M(D), it follows that
Hom(S,M/N) = 0, therefore the image of f : S → M lies in the string
submodule N = M(w) (here Mw = M(w), because the other end of u is
contracting). Now, as in the previous case, we conclude that f = 0.

The case when u is expanding (that is, M is a direct product module) is
considered similarly.

We will derive a similar result for adic points.

Corollary 6.4. CB(Ŝ) ≤ 2.

Proof. Here is the only place where we will use the right Ziegler spec-
trum, ZgA, of A, whose definition is essentially the same, but one has to use
right A-modules.

Recall (see [17, Sect. 1.3.1]) that there is an anti-isomorphism D be-
tween lattices of left and right pp-formulae over A (for instance, the left
divisibility formula a |x, a ∈ A, will go to the right annihilator pp-formula
xa = 0). It was shown by Herzog (see [17, Cor. 5.12]) that D induces an
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anti-isomorphism between lattices of open (and closed) subsets of Ziegler
spectra. Under this anti-isomorphism, the basic open set (ϕ/ψ) will go to
the basic open set (Dψ/Dϕ).

In general it is not clear how to define this map pointwise, but it can
be arranged for certain points (called reflexive) in Ziegler spectra (see [17,

p. 272] or [15, Sect. 4.3] for the definition). For instance, the adic point Ŝ will
be sent (consistent with topology) to the Prüfer point (DS)∞, where DS =
HomF (S, F ) is a simple band right A-module, the dual of S. From what
we have proved (or rather applying the same arguments on the right side)

it follows that (DS)∞ has CB-rank not more than 2; therefore CB(Ŝ) ≤ 2
considering topology.

Now we are in a position to calculate the CB-rank of A. Namely (as we
already mentioned), at level 2 of the CB-analysis we have removed all 1-
sided and 2-sided points, and also (by Proposition 6.3 and Corollary 6.4) all
Prüfer and adic points. By the classification of points (see Proposition 4.1)
only the generic point G remains. It will certainly get isolated at level 3,
therefore CB(AZg) ≤ 3. On the other hand, from the description of the

Ziegler spectrum of the corresponding algebra Ãn, it is known that G cannot
be separated from the adic point M = M(C∞) (because G is a direct
summand of a direct limit of copies of M), therefore the same is true over A.
Since CB(M) = 2, it follows that CB(G) = 3.

To complete the proof of Theorem 6.1, by [17, Sect. 5.3], it suffices to
check that A satisfies the isolation condition.

Lemma 6.5. The isolation condition holds true for the (left) Ziegler spec-
trum of a (non-degenerate) 1-domestic string algebra.

Proof. By [17, Prop. 5.3.16] it suffices to check the isolation condition
locally: each point isolated in some closed subset of AZg is isolated by a
minimal pair in its closure. Furthermore, by [17, Prop. 7.3.16] it is enough
to show that every point of AZg opens a distributive interval. By Fact 5.2
this is the case for 1-sided points, and [22, proof of L. 9.2] (see the proof of
Lemma 6.2) shows that the same is true for points corresponding to 2-sided
strings.

Thus we may assume that M ∈ AZg is either an S-Prüfer or an S-adic
module corresponding to a simple band module S, or M is the generic
module G. By [16, Cor. 2.10], M has a definable structure of a (pure in-
jective indecomposable) module over a noetherian serial ring AΣ (which is
a universal localization of A—see [4] for this theory). If es is a basic idem-
potent of A and es denotes its image in AΣ , then the projective module
Aes is a direct sum of isomorphic copies of an indecomposable (projective)
AΣ-module. It follows from [18, L. 11.4] that the interval [esx = 0/x = 0] in
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L(AΣ) is a chain, hence distributive. Then the same is true for the interval
[esx = 0/x = 0] in L(A), when evaluated at M .

The case when A is degenerate is much easier.

Proposition 6.6. Suppose that A is a degenerate 1-domestic string al-
gebra. Then the Krull–Gabriel dimension and the Cantor–Bendixson rank
of A equal 2.

Proof. Since A is degenerate, every non-periodic string over A is 1-sided.
It follows that every infinite-dimensional string point of AZg is 1-sided and
has CB-rank 1. An analysis similar to Proposition 6.3 and Corollary 6.4
shows that the CB-rank of any S-Prüfer and any S-adic point for a simple
band module S equals 1. Again, the remaining point G is generic of CB-
rank 2.

Now the equality CB(A) = KG(A) is checked as above.

The following corollary is a straightforward consequence of the existence
of KG-dimension.

Corollary 6.7. Suppose that A is a 1-domestic string algebra. Then

AZg is a T0-space, that is, it has no topologically indistinguishable points.
Furthermore, A has no superdecomposable pure injective module.

However we are still a bit short of completely describing the topology
of AZg. Here is the main question.

Question 6.8. Suppose that A is a non-degenerate 1-domestic string
algebra and S is a simple band module. Is it true that CB(S∞) = CB(Ŝ) = 2?

It is not difficult to see that this question has an affirmative answer for
A = R1.
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[27] C. M. Ringel, The minimal representation-infinite algebras which are special biserial ,
in: Tsukuba conference proceedings, to appear.
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