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Abstract

It is shown that a neural-network based learning
system, which obtains visual signals as inputs directly
from visual sensors, can modify its outputs by
reinforcement learning.   Even if each visual cell covered
only a local receptive field, the learning system could
integrate these visual signals and obtain a smooth
evaluation function.   It also represented the spatial
information smoothly in the hidden layer through the
learning, and the area of the state which seemed important
for the system was magnified in the hidden neurons’ space.  
The learning is so adaptive that when different motion
characteristic was employed in the system, the
representation became different from the previous one, even
if the environment is the same.

1. Introduction

Reinforcement learning has been focused for these
days.   Some learning methods are proposed to evaluate
each state from delayed reinforcement signals and system’s
experience[1][2][3].   Visual sensory signals, from which
we can get various pieces of information, has been tried to
be used in the learning[4].   However, visual signals were
pre-processed and the present state was made
correspondence to one of the pre-prepared states in state
space.   Then the mapping from the state to motions was
trained by reinforcement learning.   Accordingly, it is
difficult for the system to make a continuous mapping
from sensory signals to motions, and also difficult to
change the configuration of the state space adaptively.

Here it is tried to be examined if a system can
obtain appropriate motions directly from visual signals
through reinforcement learning.   Here Temporal
Smoothing Learning Based Reinforcement Learning[3] is
employed.   That is because Temporal Smoothing
Learning has been confirmed to have an ability to integrate
local sensory signals into an analog spatial signal[5][6].

2. Temporal Smoothing Learning Based
Reinforcement Learning

Temporal Smoothing Learning is a simple learning
algorithm to make the output curve smooth along time as
shown in Fig. 1.   In this learning, the absolute value of
the second time derivative of the output is trained to be
reduced, and the output curve becomes close to a straight
line.   Then the output has one-to-one corresponding to the
time.   This means that the output represents temporal
information.   This learning algorithm cannot be used only
for estimating necessary time to get a reward in
reinforcement learning, but also can be used for integrating
the signals from many sensory cells, each of which has a
only local receptive field like retina[5][6].   For example,
when an object simply oscillates in the visual field and the
signals from the local visual cells which are arranged in a
row, are given as input of the neural network, the output
becomes to represent the object location through this
learning.

A learning system as shown in Fig. 2, is supposed
here to process reinforcement learning.   That is composed
of motion generator and state evaluator.   Since the sensory
signals are inputs for both parts, these two components are
made as one layered neural network actually.   This means
that the neural network has two kinds of outputs, that are
motion outputs and an evaluation output, and each output
neuron connects to all hidden neurons without any
discriminations.
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Fig. 1  Temporal Smoothing Learning



Here since one target state (reward) is assumed to be
chosen at each time, reinforcement learning can be thought
as a learning to minimize the necessary time until a
system arrives at the target state.   The state evaluator is
trained to predict the necessary time to get the reward.   For
this learning, Constant Evaluation Slope Learning, which
is an extension of Temporal Smoothing Learning, is
employed here.   In this learning, the ideal change of the
evaluation value for a time unit, is calculated from the
maximum necessary time Nmax as

ideal = amp / Nmax (1)

where amp : ideal amplitude of evaluation value.   Here
the value range of a neuron output is from -0.5 to 0.5,

amp is set to be 0.4-(-0.4)=0.8.   For adaptability Nmax
is calculated as

Nmax[i] = (1-1/ )Nmax[i-1] if Nmax[i-1]>N[i]
= N[i] otherwise (2)

where N[i] : necessary time at the i-th trial,  : large time
constant. Then by comparing the change of the actual
evaluation value to this ideal one, the evaluation value at
previous time (t-1) is trained by the training signal as

s(t-1) = (t-1)  -  ( ideal - (t)) (3)

where s : training signal for evaluation value, (t) =
(t)- (t-1), and  : a training constant.   By this learning,

evaluation curve along time becomes smooth and the slope
of the curve becomes constant.   When the system arrives
at the target state, the evaluation value is trained to be 0.4.  
This learning can be thought as the special case of TD type
reinforcement learning[1] in which the discount factor  for
calculating a weighted sum of reinforcement signals is 1.0
and the system has always a small penalty.   It also can be
thought as the TD type reinforcement learning using
straight line on behalf of exponential curve for representing
the necessary time until a given target state.

The system makes motions according to the sum of
the outputs of motion generator m , and random numbers
rnd as trial and error factors.   Motion signals m  are

trained by the training signals as

ms = m +  rnd (4)

where  : a training constant.   By this learning, motion is
trained for the system to get more change of evaluation
value.   This learning is processed in parallel with the
evaluation learning.   The neural network is trained by
Back Propagation learning[7] according to the training
signals as Eq. (3) and (4) at each time step.

3. Simulation

Here the problem that a locomotive robot with two
wheels and two visual sensors gets object, was adopted as
shown in Fig. 3.   Each visual sensor had 24 visual cells,
that were arranged in a row, and had a total of 180 degree of
visual field.   Each visual cell had only a local receptive
field without overlapping, and outputed the area ratio
occupied by the projected object in the receptive field.  
This robot coould get a reward only when the robot got the
object, in other words, when the center of the object went
through the robot.   The diameter of the target was 1.0 and
length of the robot was 2.0.   Figure 4 shows the signal
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flow of this simulation.   Before learning, the input-hidden
connection weights were set to be small random numbers,
and the all hidden-output connection weights were set to be
0.0.   Then all the output values of the neural network
were 0.0 before learning.   In this case, number of outputs
for motion signals were two, and the robot rotateed its
wheels according to the outputs.   In the early phase, since
the robot could move only by random numbers, the object
was located within the range that was close to the robot.  
According to the progress of learning, the range of the
initial object location becomed wider gradually.   After the
robot got the object or missed the object, that means the
robot could not catch the object image without getting the
object, the object located at another place chosen randomly.  
If the robot missed the object, the evaluation output was
trained to be -0.4.   The sequence from the initial state to
the object state is defined one trial.

Figure 5 shows the evaluation surface as a function
of the object location and the robot locus on the robot-
fixed coordinates after 700 trials and Fig. 6 shows those
after 30000 trials.   Because of robot-fixed coordinates, the
object moves relatively in behalf of the robot.   In these
figures, X’ and Y’ shows how far the target exists in the
lateral and forward direction for the robot respectively.   In
Fig. 5, the ridge of evaluation surface has tendency to
spread radially.   That is because, the local receptive field
of each visual cell spreads radially.   However, in Fig. 6,
the contour line becomes smooth and the necessary time
for the robot to get the target becomes shorter.

When we use the TD-type reinforcement learning,
we can obtain similar result.   However, the density of the
contour line for the evaluation surface is higher when the
object exists close to the robot, and the density is low
when the object is far from the robot.   In the following
section, only the results when Temporal Smoothing type
reinforcement learning is applied are mentioned.

4. Examination of spatial information
coding in hidden neurons

The coding of spatial information in hidden neurons
tries to be examined.   The neural network as shown in
Fig. 7 is prepared and reinforcement learning is performed
using the first three output neurons.   After the learning,
the last output neuron, which is shown as hatched circle in
Fig. 7, is trained by supervised learning.   The last output
neuron connects to the all hidden neurons with 0
connection weight initially.   Visual signals for 6 object
locations that are shown as white and black circles in Fig.
8, are put into the neural network in order, and the network
is trained by the training signal respectively as shown in
Fig. 8 using Back-Propagation learning[7].   The training
signal depends only on the object location in X’ direction.

Figure 8 (a) shows the output distribution for the
object location by color after the learning, and Fig. 8 (b)
shows that when the reinforcement learning was not
processed.   We can see in Fig. 8 (a) that the output

0

2

4

6

8

-5 0 5

0.2

0.0 -0.2

-0.3

robot

target

locus

X'

Y'

Fig. 5  Evaluation surface (contour line)
and robot locus after 700 trials in t h e
robot-fixed coordinates

robot

target

locus

0

2

4

6

8

-5 0 5

Y'

X'

0.1

0.0

-0.2

Fig. 6  Evaluation surface (contour line)
and robot locus after 30000 trials in t h e
robot-fixed coordinates

output for 
reinforcement 

learning
output
for test

Viual Inputs

Fig. 7 Neural network to check t h e
learning of hidden neurons



represents the spatial information smoothly and it looks
that the robot can code in hidden neurons if the object is
located in the left or in the right.   On the other hand, the
contour of the output in Fig. 8(b) spread radially.   This
means that the hidden neurons can code the spatial
information smoothly through the reinforcement learning.

Next, the neural network, one of whose hidden layer
has only two neurons as shown in Fig. 9, is prepared, and
the coding of the two hidden neurons through
reinforcement learning are examined.   Figure 10 shows the

change of the coding of spatial information in hidden
neurons.   Each axis shows the value of each hidden
neuron.   The state of the hidden neurons are plotted when
the object exists on each lattice in Fig. 3.   In Fig. 10 (d),
the states of the hidden neurons for the 5 typical object
location are shown as numbered circles.   We can see that
the area that the hidden neurons used becomes gradually
larger, and finally almost all space of hidden neurons was
used.   We can also see that the area of state around Y’=0.0
(2-3-4) is larger than that around Y’=7.0 (1-5).  
Especially, the area of the state around (X’, Y’)=(-1.0, 0.0)
or (X’, Y’)=(1.0, 0.0) is magnified.   That is because such
area is very important for the robot because there is a
boundary which decides the robot can get the object or not.

6 Change of Spatial Information Coding
depending on Motion Characteristics

Here asymmetrical motion characteristics of the
robot is employed.   As shown in Fig. 11, the robot
rotates right wheel according to the product of the
corresponding output and 3.0.   In this case, the learning
using the same neural network, is not so stable.   Then,
the evaluation surface and the locus are shown in Fig. 12
when the robot can get the object comparably faster.   Here
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the ridge of the evaluation surface extends slightly to the
left, and when the object is located at the right side of the
robot initially, it rotates clockwise until it can see the
object in the left forward and then goes forward.   This
motion is good for the robot because it can move right
wheel three times more than the left wheel and it goes to
left forward direction faster, but the robot goes to the right
forward direction slowly.   When the object comes close to
the robot, it gets the object in the right hand side.   That is
also because it can rotate right wheel more and get object
faster in the right side.

Figure 13 shows the state of hidden neurons.   We
can see that the range of the state around the ridge of the
evaluation surface is magnified.   That is the important
area for the robot because there is the boundary where the
robot have to change the motion signals.   We can say that
the hidden neurons can code the object location smoothly
and effectively for the robot.   If many hidden neurons are
used, the learning becomes stable.   It can be thought that
spatial information cannot be represented well in the
rectangle space, whose two axes show the values of two
hidden neurons, when the robot has an asymmetrical
motion characteristic.

5. Conclusion

It is shown that visual signals can be used directly
in the reinforcement learning by using Constant
Evaluation Slope Learning and a layered neural network.  
Hidden neurons of the neural network can code the spatial
information by integrating visual input signals.   It is also
shown that the area that is important for the system is
magnified in the hidden neurons’ space.
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