Hindawi

Mathematical Problems in Engineering
Volume 2020, Article ID 4839876, 14 pages
https://doi.org/10.1155/2020/4839876

Research Article

Hindawi

Efficient Processing of Image Processing

Applications on CPU/GPU

Najia Naz,! Abdul Haseeb Malik,' Abu Bakar Khurshid,' Furqan Aziz,” Bader Alouffi,’
M. Irfan Uddin ®,* and Ahmed AlGhamdi®

'Department of Computer Science, University of Peshawar, Peshawar, Pakistan

’Department of Computer Science, Institute of Management Sciences, Peshawar, Pakistan

’Department of Computer Science, College of Computers and Information Technology, Taif University, Taif 21944, Saudi Arabia
*Institute of Computing, Kohat University of Science and Technology, Kohat, Pakistan

Department of Computer Engineering, College of Computers and Information Technology, Taif University, Taif 21944,
Saudi Arabia

Correspondence should be addressed to M. Irfan Uddin; irfanuddin@kust.edu.pk
Received 16 July 2020; Accepted 27 September 2020; Published 10 October 2020
Academic Editor: Jia-Bao Liu

Copyright © 2020 Najia Naz et al. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Heterogeneous systems have gained popularity due to the rapid growth in data and the need for processing this big data to
extract useful information. In recent years, many healthcare applications have been developed which use machine learning
algorithms to perform tasks such as image classification, object detection, image segmentation, and instance segmentation.
The increasing amount of big visual data requires images to be processed efficiently. It is common that we use heterogeneous
systems for such type of applications, as processing a huge number of images on a single PC may take months of com-
putation. In heterogeneous systems, data are distributed on different nodes in the system. However, heterogeneous systems
do not distribute images based on the computing capabilities of different types of processors in the node; therefore, a slow
processor may take much longer to process an image compared to a faster processor. This imbalanced workload distribution
observed in heterogeneous systems for image processing applications is the main cause of inefficient execution. In this paper,
an efficient workload distribution mechanism for image processing applications is introduced. The proposed approach
consists of two phases. In the first phase, image data are divided into an ideal split size and distributed amongst nodes, and in
the second phase, image data are further distributed between CPU and GPU according to their computation speeds. Java
bindings for OpenCL are used to configure both the CPU and GPU to execute the program. The results have demonstrated
that the proposed workload distribution policy efficiently distributes the images in a heterogeneous system for image
processing applications and achieves 50% improvements compared to the current state-of-the-art
programming frameworks.

1. Introduction

GPUs (graphical processing units) are becoming popular to
exploit data-level parallelism [1] in embarrassingly parallel
applications [2] because of the SIMD (single instruction
multiple data) [3, 4] architecture. However, task-level par-
allelism [5-7] is better exploited in general-purpose pro-
cessors, because of MIMD (multiple instruction multiple
data) [8] architecture. More recently, general-purpose
processors are combined with GPUs and provide general-

purpose computation accelerated with GPU (commonly
referred as GPGPU) [9]. A heterogeneous cluster has many
CPUs and GPUs and can exploit both task-level and data-
level parallelism in applications.

The amount of data generated in the form of images and
videos is enormous because of the fact that many surveil-
lance cameras, smart phones, and many other devices that
capture images/videos are installed/used everywhere. These
devices are constantly recording scenes and can be processed
for different types of computer vision, image processing,

mailto:irfanuddin@kust.edu.pk
https://orcid.org/0000-0002-1355-3881
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2020/4839876

machine learning, and data science tasks. Images inherently
have data-level parallelism [1, 10] (i.e., individual images can
be processed in embarrassingly parallel fashion), because all
pixels can be processed independently and therefore GPUs
are commonly used for image processing applications. A
heterogeneous cluster (i.e., a cluster containing CPUs and
GPUs) can exploit both task-level (across multiple images)
and data-level parallelism in images. GPUs enable hetero-
geneous clusters to accelerate the processing intensive op-
erations of images in big data and machine learning
applications.

Data processing applications are commonly processed in
a cloud environment using the MapReduce [11] parallel
processing model for efficient execution. The scheduler of
the MapReduce influences the performance in different
applications when utilized in a heterogeneous cluster. The
dynamic nature of the cluster and the computing workload
affect the execution time of the application. Data locality is
an essential part to reduce the total application execution
time and hence improve the overall throughput.

In current technology, it is very challenging to provide a
mechanism that can efficiently utilize the computing re-
sources in a heterogeneous cluster [12]. Traditionally, ap-
plications that use both CPUs and GPUs are created using
low level programming languages. Limited support is
available to programmers to efficiently exploit parallelism in
these clusters. A heterogeneous cluster normally has nodes
of different computational capabilities [13]. For instance, a
node may have 4 CPUs and 1 GPU, and another node may
have 16 CPUs and 8 GPUs. Therefore, static distribution of
workload amongst these nodes without taking into account
their processing capabilities is not justified [14] as one node
will be overloaded, and the other node will remain idle for
most of the time [15]. Load balancing can be done dy-
namically, but it requires extra overheads at runtime [16].

In this paper, we present a new technique for the efficient
distribution of images in a heterogeneous cluster. The goal is
to maximize the utilization of the processing resources
[17-19] (i.e., both CPUs and GPUs) and throughput. We
provide a programming framework that ensures efficient
workload distribution amongst the nodes by dividing the
data into equal size splits and then distribute the split data
between CPU and GPU cores based on their computational
capabilities [20]. The aim is to achieve maximum resource
utilization, gain high performance by dividing the data into
equal size splits, allocate the data locally to the computing
units, and minimize data migration to GPUs [21].

The rest of the paper is organized as follows. Related
studies are given in Section 2. In Section 3, we provide a
background to existing work that use CPU and GPU in-
tegration to efficiently solve different problems. We also
provide a brief overview of the Hadoop programming
framework, as this framework is used to test the ideas
presented in this paper. We highlight limitations in existing
state-of-the-art frameworks and explain the problems due to
which efficient utilization of computing resources is not
possible. The details of the proposed framework are given in
Section 4, and demonstration of experiments is given in
Section 5. We conclude the paper in Section 6.

Mathematical Problems in Engineering

2. Related Work

In [22], image processing for face detection and tracking is
performed using CPU and GPU integration in Hadoop
framework and has improved the performance by 25%. In
another research [23], GPU-based Hadoop framework is used
for evaluation of Canny Edge Detection algorithm using the
default scheduler of Hadoop for workload distribution and
has demonstrated two times performance improvement than
HIPI-based image processing [24]. In [25, 26], face detection
in video frames is performed by using CUDA-based Hadoop
framework. It is observed that actual data processing takes
55% of the processor time, and the remaining 45% is wasted
as idle or busy in performing other management activities.

Another framework named SEIP (system for efficient
image processing) [27] ensured high performance for image
processing application by applying in-node pipeline
framework. However, during the processing, it is observed
that the number of load/store to the GPU is equal to the
number of images, which results into overhead and per-
formance loss in case of processing a large number of small
images, and also there is no policy of workload distribution
between CPU and GPU. In [28], an integrated framework
based on Hadoop and GPU has been developed for pro-
cessing massive amount of satellite images. In order to
achieve application performance, image data are split into
parts and then each part is allocated to processing units, but
there is no support for efficient workload distribution be-
tween CPU and GPU.

An energy efficient runtime mapping and thread par-
titioning approach has been developed for distribution of
concurrent OpenCL application between CPU and GPU
cores and has demonstrated a 32% increase in the system
performance [29]. The feature extraction algorithm SIFT
[30] has been developed in OpenCL that distributes
workload on CPU and GPU. It is demonstrated that features
were extracted with more than 30 FPS (frames per second)
on full HD images, and an average speed up of 2.69 was
achieved. Another OpenCL-based framework single node
vertically scaled system is developed in [31] where multiple
GPUs are combined together and treated as a single com-
puting device. It automatically distributes OpenCL kernel
written for a single GPU into multiple CUDA kernels at
runtime that is executed on multiple (eight) GPUs. The
experiment was performed by combining 8 GPUs in a single
node environment, and the performance speedup of 7.1x was
achieved as compared to the performance of single GPU. An
average overhead of 0.48% is reported.

In [32], an algorithm is proposed that improves the
efficiency of Hadoop clusters. The experiments demon-
strated that if a process is defined that can handle different
use-case scenarios, the overall cost of computing can be
reduced and get benefits from distributed system for fast
executions. A reinforcement learning-based MapReduce
scheduler is proposed in [33] for heterogeneous environ-
ment. The system observes the state of task execution and
suggests speculative execution of slow tasks to other free
nodes in the cluster for faster execution. The proposed
approach does not need any prior knowledge of the

Mathematical Problems in Engineering

environment and adapts itself to the heterogeneous envi-
ronment. The experiments demonstrate that over a few runs,
the system can better map the tasks to the available resources
in a heterogeneous cluster and hence improve the overall
performance of the system. The workload partition and task
granularity for a given application based on machine
learning techniques are given in [34]. The machine learning
model can train a predictive model off-line, and then the
trained model can predict the data partition and task
granularity for any program at runtime. The experiments
demonstrate a 1.6x average speedup using a single MIC.
Other studies that involve the improvement in parallel
computation are given in [35-38].

In all techniques presented in this section, the objective is
to improve the performance of execution in a heterogeneous
environment. The current state-of-the-art techniques
demonstrate that imbalanced distribution of tasks without
considering the underlying computational capabilities re-
sults into inefficient execution of the applications. The
proposed technique in this paper considers the underlying
computational capability of the processor and then assigns
tasks. This results into performance improvement as dem-
onstrated in Section 5. To the best of our knowledge, no
previous studies have addressed the problem in the same
perspective as undertaken by this research.

3. Background

In this section, existing frameworks are explained along with
the limitations.

3.1. Programming Frameworks. Different programming
frameworks such as Hadoop [39], FastFlow [40], OpenMP
[41], pthreads [42], OpenCL [43], DirectCompute [44],
OpenGL [45], MapReduce [46], and Spark [47] have been
developed for the efficient data processing in a heteroge-
neous environment. Hadoop is becoming very popular
because it can efficiently process structured [48], semi-
structured [49], and unstructured [50] data. Different image
processing applications such as face and motion detection
[51], face tracking [52], extracting text from video frames in
an online lecture video [53], video processing for surveil-
lance [54], and content-based image retrieval (CBIR) [55]
have demonstrated that Hadoop can be efficiently used for
image-based applications.

CUDA (compute unified device architecture) [56] is the
most commonly used programming language for GPUs
developed by Nvidia. CUDA integrated with Hadoop en-
hances the application throughput by using the distributed
computing capability of Hadoop and parallel processing
capability of GPU [57]. Mars framework [58], which has
been used for processing of web documents (searches and
logs), was the first framework which combined GPU with
Hadoop. Some other popular frameworks that integrate
GPUs with Hadoop are MAPCG [59], StreamMR [60], and
GPMR [61]. However, these frameworks are developed for
some specific projects and do not improve the performance

of image processing applications in Hadoop. Hadoop Image
processing interface (HIPI) has been developed that can
efficiently process a massive amount of small sized images
but has no support of GPU [24].

A heterogeneous Hadooop cluster with nodes equipped
with GPUs is shown in Figure 1. Hadoop is one of the
famous and easy to use platforms which is a loosely coupled
architecture and provides a distributed environment.
Hadoop consists of the Hadoop distributed file system
(HDES) [62] and MapReduce [46] programming model.
HDEFS is an open-source implementation of the Google File
System (GFS). It stores the data on different data nodes in a
cluster. HDFS depends on the mechanism of the master-
slave architecture. The access permission and data service to
the slave nodes are provided by master node also known as
name node, while the slaves, known as data nodes, are used
as storage for the HDFS. Large files are handled efficiently by
dividing them into chunks and then distributed amongst
multiple data nodes. On each node, to process their local
copies, a map processing job is located. The function of name
node is only to keep record of the metadata and log in-
formation, while Hadoop API is used for the transfer of data
to and from HDFS. MapReduce is an enhanced approach
which provides an abstraction for data synchronization, load
balancing, and dynamically allocation of tasks to different
computing units in a reliable manner.

3.2. Limitations in Existing Systems. Some issues that lead to
imbalanced workload distribution in a heterogeneous en-
vironment are discussed below.

3.2.1. Data Locality. Data locality means that the mapper
and data are located on the same node. If data and mapper
are on the same node, than it is easy for a mapper to effi-
ciently map the data for computation, but if the data are on a
different node than the mapper, then the mapper have to
load data from different node over the network to be dis-
tributed. Suppose there are 50 mappers which try to copy
data from other data nodes simultaneously. This situation
leads to high network congestion which is not desirable
because the overall performance of the application is af-
fected. The situation where mapper and data are on the same
node is shown in Figure 2(a), and the situation where
mapper and data are on different nodes is shown in
Figure 2(b). For efficient processing of applications, a
programming framework should be able to ensure data
locality. When the data stored in HDFS (Hadoop distributed
file system) is distributed amongst the nodes, data locality
needs to be handled very carefully. The data are divided into
splits, and each split is provided to the data node in the
cluster for processing. The MapReduce job is executed to
map splits to individual mapper that will process the
assigned split. That means that moving the computation
closer to the data is better than moving the data closer to the
computation. Hence, good data locality means good ap-
plication performance.

Master 1 (active) Master 2 (stand by)

GPU CPU GPU CPU
Node 1 Node 2
¢ Data node e Data node
e Node e Node
manager manager

Daemons running on slave Daemons running on slave

node 1 node 2
GPU CPU GPU CPU
Node 3 Node 4
e Data node e Data node

o Node e Node

manager manager

Daemons running on slave
node 3
¢ Data node
e Node
P
manager GPU CPU
NODE 5

FiGure 1: Heterogeneous Hadoop cluster with nodes equipped
with GPUs.

3.2.2. Split Size. For eflicient execution of programs in
heterogeneous cluster, the programming framework should
be able to distribute the data evenly into splits and then
distribute amongst the available nodes. One of the main
characteristics of MapReduce is to divide the whole data into
chunks/input splits according to the block size of HDFS. As
by default, Hadoop block size is 64 MB, and the issue of data
locality arises when the input split size is larger than the
block size. For better performance, input split size should be
equal to or less than the block size of HDFS.

Block size and split size are not the same terms, as the
block size is the physical chunk of data stored in disk,
whereas input split size is the logical chunk of data with
pointers for start and end locations in a block. When the split
size is more or very small then the default block size, then
uneven distribution of data happens, which leads to issues in
data locality and memory wastage.

In Figure 3, the scenario of uneven split size is high-
lighted. Suppose the block size is 64 MB and each split size is
50 MB. The first split will easily fit in block 1, but the second
split starts after the first split ending point and will not fully
fit in the block 1, so the remaining part of the second split
will be partially stored in block 1 and partially stored in block
2. When the mapper is assigned to block 1, it reads the first
split, it will not read the second split data as it is not fully
fitted in block 1 and cannot generate any final result of the
second split data. According to [39, 63, 64], as quoted from
the book “The logical records that FileInputFormats define
do not usually fit neatly into HDFS blocks. For example, a

Mathematical Problems in Engineering

TextInputFormat’s logical records are lines, which will cross
HDEFS boundaries more often than not. This has no bearing
on the functioning of your program—lines are not missed
or broken, for example—but it’s worth knowing about, as
it does mean that data-local maps (that is, maps that are
running on the same host as their input data) will perform
some remote reads. The slight overhead this causes is not
normally significant.” If a record/file span across the
HDEFS boundaries of two nodes, then one of the nodes will
perform some remote reads to fetch the missing piece.
And it will read the data and generate final results but with
the overhead of communication between the two nodes.
Hence, the communication overhead arises because the
data are not evenly distributed according to the block size,
and most of the time, mapper waits for other mappers to
generate the result and then to synchronize with each
other for final result. This problem can be solved by
arranging the whole data into ideal input split size. By
dividing the data into equal and suitable split size that is
less than or equal to the default block size, the mapper of
each block will read its data easily and will not wait for
other mapper to send data of the split that is partially
stored in different blocks.

3.2.3. Data Migration and Inefficient Resource Utilization.
Data migration is the process of transferring data from one
node or processor to another node or processor as shown in
Figure 4. Data migration between systems is usually per-
formed programmatically to achieve better performance, but
in heterogeneous systems, where a node contains CPU and
GPU, the GPU being the faster computing processor will
complete its task quickly and will fetch the data from CPU, a
slow computing processor. Due to this data migration, the
scheduler will always be busy in managing the tasks
scheduling, the GPU will be idle, and hence performance in
applications is affected.

Above are some of the problems that need to be tackled
while using heterogeneous systems, so that application
performance can be increased. In this paper, we will inte-
grate CUDA with Hadoop to increase the performance in
processing images in heterogeneous clusters. We will inte-
grate the Hadoop platform that is used for distributed
processing on clusters with libraries that allow code to be
executed on GPUs.

4. Efficient Workload Distribution Based on
Processor Speed

The issues of data locality, input split size, data migration,
and ineflicient resource utilization discussed in Section 3.2
lead to imbalanced workload distribution in heterogeneous
environment, which results into inefficient execution of
applications. The proposed framework will distribute the
data in a balanced form amongst the nodes according to
their computing capabilities, as shown in Figure 5. The
distribution of data in the framework consists of two phases.
In Phase I, the data are distributed amongst the nodes and in
Phase II the workload is equally distributed between CPU

Mathematical Problems in Engineering 5
Node 1 Node 1
Map and data Map <
Node 3 Node 3
Node 4
Node N
Data <
Node N

(a)

()

FIGURE 2: (a) Data and Mapper on the same node; (b) Data and Mapper on different nodes.

e
50MB | 50 MB 50MB 50MB 50MB
split size split size split size split size split size
64 MB block size 64 MB block size 64 MB block size 64 MB block size

FIGURE 3: Mismatch between split size and block size.

and GPU based on their computing capability. Both phases
are explained below in detail.

4.1. Phase I: Data Distribution amongst Nodes. In Hadoop,
workload is organized in splits which are then distributed
amongst nodes in the cluster to be processed. However, this
workload is not evenly distributed and hence processors
with lower processing capabilities are overwhelmed. In the
proposed framework, the input is in the form of images and

is distributed evenly amongst cluster nodes in order to utilize
computation and memory resources efficiently. We have
developed a novel distribution policy for the even distri-
bution of same size images in splits, where a split contains
one or more images. We are focusing on same sized images
only, in order to avoid communication overhead when
images of different sizes are loaded. With images of different
sizes, the ratio calculations explained in Section 4.2 are
useless. This idea is mainly inspired from arrays, where
continuous blocks of the same size are gathered together,

Mathematical Problems in Engineering

Number of images allocated to GPU

Number of images
allocated to CPU

A

[[
Images Images Images ||

Images

\ 4

CPU

Images ||

GPU
Image
accessing
by
GPU
from CPU
4+

Data migration

FIGURE 4: Data migration between CPU and GPU.

providing simplicity and performance. The distribution
policy does not allow a single image to be distributed to
multiple splits, because of data locality issue. The ideal split
size is set according to the size of the images, so that an image
does not exceed the boundary of that split. Multiple images
evenly grouped together in a split and ready to be distributed
amongst nodes is shown in Figure 6, and the ideal split size is
calculated as per the default block size (ie., 64MB in
Hadoop) as shown in Figure 7.

To avoid the problem of uneven splits, i.e., when an
image is distributed in multiple splits, the split size is set very
carefully based on the image size. We first measure the size of
one image and then select an input split size where multiple
images of that size will be placed. Let I be the ideal input split
size which need to be computed, d be the default split size in
Hadoop, s be the size of one of the input images, n, be the
number of images that can be fully accommodated by the
default input split, T; be the total number of images in a
dataset, and S, be the total number of splits in which the data
are divided equally. n, is calculated by dividing d on s, ig-
noring the fractional part by taking the floor. I is computed
by multiplying the image size s with n,, and S, is computed
by dividing T; on #,, as shown in equation (1). This equation
calculates an ideal input split size, and no image can occur
across two input splits. For instance, we have an input image
of size 4.2 MB (s), and 64 MB is the default input size (d), and

then the ideal input split size I = 15x4.2 = 63MB(n, =
|64/4.2] = 15). To calculate the number of splits, the data
should be arranged in S, =90/15=6, where 90 is the total
number of input images. So, we will have a total of 6 input
splits each of size 63 MB to store 90 input images.

()

I=nyxs, (1)

4.2. Phase II: Distribution of Workload on CPU and GPU
within a Node. In a heterogeneous cluster, every node is
equipped with a GPU, which is much faster than the CPU.
Therefore, for efficient execution of applications, it is im-
portant that tasks are distributed based on the computing
capabilities of processors. The proposed workload distri-
bution scheme for heterogeneous Hadoop cluster is shown
in Figure 8. A split is a container of a group of images of the
same sizes. For every split, the map function is invoked,
which takes the input<key, value>pair, where the key
contains log file of images in a split and the value contains

Mathematical Problems in Engineering

Image storage

Image input data

.
>

HDEFS

‘ Data division into equal size splits

Data distribution among the
nodes

Ideal ||
spli

it size

Ratio calculation

Data distribution with-in the
node

Images

Images

CPU

Images

GPU
e

Images

Number of images
allocated to CPU

Number of images
allocated to GPU

FIGURE 5: Proposed framework for workload distribution.

contents of images (bytes). The map function processes the
split and reads each image in the split. In the proposed
algorithm, the map function takes the split and checks the
ratio for all the available images in that split so that images
can be assigned to CPU and GPU according to their
computing capability. Before assigning images to the CPU
and GPU, a sample image is executed on both the CPU and
GPU to find out the execution time of both the processors on
a specified algorithm. From this execution time, the pro-
cessing power of each processor is identified, and a ratio is
calculated, demonstrating the number of images assigned to
CPU and GPU.

In order to compute the computing capability of pro-
cessors in a node, we initially assign a raw image to both
CPU and GPU to find the execution time of both processors.
Let ¢ be the execution time in CPU and g be the execution
time in GPU to execute an image processing algorithm on a
raw input image. We take the ratio of max(g, ¢) and min(g,
c). The device with larger execution time (i.e., slower

processor) is assigned a value 1, and the device with smaller
execution time (i.e. faster processor) is assigned an integer
value of the execution time of slow processor divided by
execution time of fast processor. When the processor fetches
images, we assign nP, number of images to the slower
processor and nP, images to the faster processor, as shown in

y
the following equation:

x=1,
_ (max(g,
y_(mln(g,c)>
. 2)
()
xX+y
y
<x+y>xn°

Mathematical Problems in Engineering

Input data

|
7

]
&

splitt | | splitz2 | |

splits | |

Split 4 ‘ ‘ Split 5

FIGURe 6: Grouping of input data to be partitioned in splits.

64 MB block size

64 MB block size

64 MB block size

64 MB block size 64 MB block size

FIGURE 7: Image data partitioning into ideal split size.

Suppose 1, is 15 (as explained above), GPU execution
time (g) for a raw image is 25 ms, and CPU execution (c) is
160ms. In this example, x=1 and y=160/25=6, which
means that CPU and GPU are assigned images in the ratio of
1:6. Therefore, nP,=(1/(1+6))x15=2 and nP,=(6/
(6+1)) x 15=13, i.e., in a single fetch, 2 images are assigned
to CPU and 13 images are assigned to GPU. This novel
distribution of workload ensures that images are distributed
based on the computing capability of the processor, which
can speedup the execution of images in heterogeneous
nodes. The flow chart of the proposed framework is shown in
Figure 9.

5. Evaluation

In Section 4, the proposed framework is introduced, to
efficiently handle the imbalanced workload distribution in a
heterogeneous Hadoop cluster for image processing appli-
cations, and the implementation of such policy is evaluated
by using the commodity computer systems accelerated with
GPU. As the heterogeneous systems increase the

performance of applications by processing a massive amount
of data in parallel, in the future, these heterogeneous systems
will be commonly used and provide efficient execution of
programs, by adopting policies for efficient workload dis-
tribution. In this section, the evaluation of the proposed
programming framework is discussed. The detail of the
dataset used for the evaluation is given in Table 1. The test
environment includes a master node having a corei5 pro-
cessor with speed 2.5 GHz, 8 GB RAM, and 4 processing
cores. Two worker nodes are used each having a CPU,
corei3, 1.8 GHz, 4 GB RAM, and 4 cores and a GPU NVIDIA
802 M, 64 cores, and 2 GB RAM.

5.1. Processing Images of Different Sizes. The Figure 10(a)
shows the average execution time calculated in milliseconds
for edge detection algorithm on four images of different sizes
on a CPU and GPU, respectively. This experiment dem-
onstrates that, on CPU, execution time of the application
increases when the size of the image is increased. However,
on GPU, the increase in execution time when processing an

Mathematical Problems in Engineering

9 images in a split

>

\ 4 v
<4— CPU GPU »
3 images to 6 images to
CPU GPU

F1GURE 8: Distribution of workload within a node between CPU and GPU according to their computing capabilities.

Data distribution
between CPU
and GPU

M

HDES
for data storage

Decision-making

Operation

performed

Data division into

splits

Output

Ratio calculation

Output written back to HDFS

FIGURE 9: Basic flowchart of the proposed framework.

application on a very large image is not significant. This
analysis demonstrates that GPU is a better choice for pro-
cessing larger images.

5.2. Processing Different Number of Images. In Figure 10(b),
the performance of the application in processing different
number of images on a GPU is shown. Y-axis shows exe-
cution time in millisecond and x-axis shows the number of
images of different sizes. Four images with different reso-
lution sizes are grouped together as 1 image, 2 images, 3
images, and 4 images. For instance, when the application
processes a single image of size 1024 x 768, the execution
time on GPU is 42 milliseconds. But, in processing four
images of the same size, the GPU takes 51 milliseconds.
Similarly, a single image of size 2560 x 1440 takes 69 ms, but
processing four images of the same size takes 87 ms. This
increase in execution time is mainly because of the com-
munication overhead, as each image is migrated from CPU
memory to GPU memory and then the result is written back
to the CPU memory.

5.3. Performance Comparison. We compare the perfor-
mance of our approach, i.e., modified split sizes and opti-
mized workload distribution based on the computation
capabilities of processors in a node of heterogeneous system
with existing state-of-the-art techniques such as HIPI, HIPI
executed on GPU, and Hadoop executed on GPU, as shown
in Figure 10(c). The proposed framework is processing

10 Mathematical Problems in Engineering

TaBLE 1: Information of images in the dataset.

S. no. Image resolution Total size (MB) Total images Individual image size (MB)
1 1024 x 768 216 90 24
2 1600 x 900 387 90 4.3
3 1920 x 1080 558 90 6.2
4 2560 x 1440 999 90 11.1
100
90 | g
450 80 = 7.
) 71
400 382 £ 70 69 . % :
— 5 63
2 61
g 350 £ sl .. o .58 60
£ = 54
g 300 S 50 49 51
3 g 50| s - :
§ 250 o 42
8 200 &
: 150 g 30
EP) 20
o
1
% 00
50 10
0 0
CPU GPU 1 image 2 images 3 images 4 images
Platforms Number of images
= 1024 x 768 = 1920 x 1080 m 1024 x 768 w1920 x 1080
® 1600 x 900 = 2560 x 1449 = 1600 x 900 = 2560 x 1440
(a) (b)
800
700 | 686
g 600
Qo
£ 500 S 489
s 442
S
5 400} - - C 371 e
3 342
]
g 3001960 R S 269
it 221 225
1 19
Z 200 184 S 192 7
149 133
100 | - , : 7

HIPI HIPI + GPU Hadoop + GPU Proposed

approach
(hadoop + GPU)
Platforms
m 1024 x 768 = 1920 x 1080
= 1600 x 900 = 2560 x 1440

(c)

F1GURE 10: The execution time of CPU and GPU, different number of images, and average performance comparison with existing platforms.
(a) Average execution time in CPU and GPU with different number of images for edge detection algorithm. (b) Average execution time of
application in processing different number of images on a GPU. (c) Average execution time (milliseconds) for proposed framework
(Hadoop + GPU) vs existing platforms.

Mathematical Problems in Engineering

12000
= 10000 2984
£
£ 8000 , : S
= 6840 6776
)
‘é 6000
% 4690
o 4000
g
4
< 2000
0
HIPI HIPI + GPU Hadoop + GPU Proposed
approach
(hadoop + GPU)
Platforms
(@
25000 33419
. 20270
g 20000 : :
= 17354
E
‘é 15000
= 12036
3
g 10000
L
50
&
1
Z 5000
0
HIPI HIPI + GPU Hadoop + GPU Proposed
approach
(hadoop + GPU)

Platforms

()

11
120
110
_ 100
£
£ 80 6
=
2
S 60
g
v 41
& 40
&
2
< 20
0
HIPI HIPI + GPU Hadoop + GPU Proposed
approach
(hadoop + GPU)
Platforms
(®)
16000
14000 13435 - 13430
£ 12000 S
E 10578
= 10000 :
o
2
‘é 8000 7346 -
Q
S 6000
L
5n
5 4000
2
<
2000
0
HIPI HIPI + GPU Hadoop + GPU Proposed
approach
(hadoop + GPU)

Platforms

(d)

FIGURE 11: (a) Execution time of a split on a node. (b) Execution time calculated for each split. (c) Execution time of image dataset processed
by edge detection application. (d) Execution time of a single image from split to processor.

images faster than the other state-of-the-art frameworks. For
instance, processing 90 images of resolutions 2560 x 1440
each of size 11.1 MB takes 686 ms in HIPI, but only 191 ms in
the proposed framework, i.e., a speedup of 3.5, is achieved.
This speedup is possible mainly because of the efficient
workload distribution and the efficient arrangement of
images in input splits which results into the efficient utili-
zation of resources.

5.4. Effect of Assigning Different Loads to CPU and GPU.
In the proposed approach, we have developed a novel
technique to compute the ratio of images to be assigned to
CPU and GPU in a heterogeneous node. The performance of
this calculation is shown in Figure 11(a) along with com-
parison with other state-of-the-art techniques. It is observed
that application processing the dataset of different images of
different sizes executes efficiently on the proposed frame-
work. For instance, the speedup in the proposed approach is

2.12x compared to HIPL. Hence, it is proved that, by efficient
load balancing techniques in heterogeneous systems, we can
increase the performance by two times.

5.5. Execution Time of Each Split. Input data are divided in
different input splits and distributed amongst nodes, and
from each split, images are accessed and processed. The
average execution time taken by images of sizes (1024 x 768,
1600 x 900, 1920 x 1080, and 2560 x 1440) in an input split is
shown in Figure 11(b) for all the four platforms while
processing edge detection application. It is demonstrated
that the proposed framework processes the images more
than two and half times faster than HIPL

5.6. Execution Time in Processing the Whole Dataset. In
Figure 11(c), an average of total execution time for the whole
dataset shown in Table 1 is calculated for image processing

12

application performing edge detection operation. The total
execution time includes partitioning of image data into
splits, distribution amongst the nodes, and on each node,
turther distribution between CPU and GPU, and after
processing, the result is written back to the HDFS. From the
figure, it is clearly shown that, by adopting the proposed
approach (Hadoop + GPU) where data is divided into ideal
split size and then distributed to the processors according to
their computing capabilities, the total execution time cal-
culated in milliseconds is two times less than the other
existing platforms.

5.7. Minimization of the Communication Overhead by Ideal
Split Size Selection. The communication overhead of images
during processing is shown in Figure 11(d). The access time
of an image in this figure includes the time from split to the
assigned processor. The execution time taken by a single
image in recorded. From the experiment, it is observed that,
by arranging the data local to the computing processor, the
images can be easily accessed and processed. As HIPI has an
overhead of data compression and decompression; there-
fore, the results of both HIPI and HIPI + GPU are relatively
same and high. By using Hadoop + GPU, the image access
time is less compared to the HIPI and HIPI + GPU, but by
overcoming the data locality issue in the proposed frame-
work (Hadoop + GPU), the image access time is almost two
times reduced.

6. Conclusion and Future Work

Distributed systems provide parallel frameworks where
massive amount of data can be efficiently processed. Hadoop
is one of those frameworks that provides large amount of
data storage and effective computational capability to handle
massive amount of data in a parallel and distributed manner
by using the cluster of commodity computer systems. These
clusters also contain GPUs, as they are specialized to handle
SIMD efficiently. For image processing applications or ap-
plications involving the process of big data in different
domains such as healthcare, heterogeneous systems are
commonly used and have shown improvement over single
processor and distributed systems. However, imbalanced
workload distribution between the processor causes data
locality and ineflicient workload distribution between slow
and fast processors can affect the performance of applica-
tions. To deal with this imbalanced workload distribution in
a heterogeneous cluster, this paper has proposed a novel
technique of dividing data into ideal input splits so that an
image is included in one split and does not exceed the
boundary of that split. This paper also introduces a tech-
nique of distributing data as per the computing power of the
processors in the node. This distribution maximizes the
utilization of available resources and tackles the issue of data
migration between the fast and slow computing processors.
The results have demonstrated that the proposed framework
achieves almost two times improvement compared to the
current state-of-the-art programming frameworks. The
proposed framework provides an efficient mechanism to

Mathematical Problems in Engineering

compute an ideal split size that is suitable for fixed size
images but does not provide support for partitioning var-
iable size images into splits. In the future, we will investigate
techniques that can compute ideal split size for variable sized
images. In the future, we will investigate techniques that can
compute ideal split size for variable sized images which will
enable us to process images from sources. The proposed
model can be extended for big data applications which have
inherent data-level parallelism in the form of arrays, ma-
trices, images, or tables.

Data Availability

The data used to support the findings of this study are
available from the corresponding author upon request.

Conflicts of Interest

The authors declare that there are no conflicts of interest
regarding the publication of this paper.

References

[1] L. Baumstark and L. Wills, “Exposing data-level parallelism in
sequential image processing algorithms,” in Proceedings of the
Ninth Working Conference on Reverse Engineering, pp. 245-
254, New York, NY, USA, 2002.

[2] B. Vinter, “Embarrassingly parallel applications on a java

cluster,” in Proceedings of the 8th International Conference on

High-Performance Computing and Networking, HPCN Europe

2000, Springer-Verlag, London, UK, pp. 614-617, 2000.

B. Furht, SIMD (Single Instruction Multiple Data Processing),

Springer US, Boston, MA, USA, 2008.

[4] 1. Uddin, “Multiple levels of abstractions in the simulation of
microthreaded many-core architectures,” Open Journal of
Modelling and Simulation, vol. 3, 2015.

[5] M. Girkar and C. D. Polychronopoulos, “Extracting task-level
parallelism,” ACM Transactions on Programming Languages
and Systems, vol. 17, pp. 600-634, 1995.

[6] 1. Uddin, “High-level simulation of concurrency operations in
microthreaded many-core architectures,” GSTF Journal on
Computing (JoC), vol. 4, p. 21, 2015.

[7] 1. Uddin, “One-IPC high-level simulation of microthreaded
many-core architectures,” International Journal of High
Performance Computing Applications, vol. 4, 2015.

[8] R. Riesen and A. B. Maccabe, MIMD (Multiple Instruction,
Multiple Data) Machines, Springer US, Boston, MA, USA,
2011.

[9] L. Hu, X. Che, and S.-Q. Zheng, “A closer look at GPGPU,”
ACM Computing Surveys, vol. 48, 2016.

[10] M. Fatima, “Reliable and energy efficient mac mechanism for
patient monitoring in hospitals,” International Journal of
Advanced Computer Science and Applications, vol. 9, no. 10,
2018.

[11] J. V. Bibal Benifa, “Performance improvement of Mapreduce
for heterogeneous clusters based on efficient locality and
replica aware scheduling (ELRAS) strategy,” Wireless Personal
Communications, vol. 95, no. 3, pp. 2709-2733, 2017.

[12] N. Elgendy and A. Elragal, “Big data analytics: a literature
review paper,” in Advances in Data Mining, Applications and
Theoretical Aspects, P. Perner, Ed., pp. 214-227, Springer
International Publishing, Berlin, Germany, 2014.

[3

Mathematical Problems in Engineering

[13] A. Khan, M. A. Gul, M. I. Uddin et al., “Summarizing online
movie reviews: a machine learning approach to big data
analytics,” Scientific Programming, vol. 2020, pp. 1-14, 2020.

[14] F. Aziz, H. Gul, I. Muhammad, and I. Uddin, “Link prediction
using node information on local paths,” Physica A: Statistical
Mechanics and its Applications, vol. 2020, Article ID 124980,
2020.

[15] J. Zhu, H. Jiang, J. Li, E. Hardesty, K.-C. Li, and Z. Li,
“Embedding GPU computations in hadoop,” International
Journal of Networked and Distributed Computing, vol. 2,
pp. 211-220, 2017.

[16] W. Chen, S. Xu, H. Jiang et al., “GPU computations on
hadoop clusters for massive data processing,” in Proceedings
of the 3rd International Conference on Intelligent Technologies
and Engineering Systems (ICITES2014),]. Juang, Ed., Springer
International Publishing, Berlin, Germany, pp. 515-521, 2016.

[17] S. Amin, M. I. Uddin, S. Hassan et al., “Recurrent neural
networks with TF-IDF embedding technique for detection
and classification in tweets of dengue disease,” IEEE Access,
vol. 8, pp. 131522-131533, 2020.

[18] M.I.Uddin, S. A. A. Shah, and M. A. Al-Khasawneh, “A novel
deep convolutional neural network model to monitor people
following guidelines to avoid COVID-19,” Journal of Sensors,
vol. 2020, pp. 1-15, 2020.

[19] Z. Ullah, A. Zeb, 1. Ullah et al., “Certificateless proxy reen-
cryption scheme (CPRES) based on hyperelliptic curve for
access control in content-centric network (CCN),” Mobile
Information Systems, vol. 2020, pp. 1-13, 2020.

[20] A. Khan, I. Ibrahim, M. I. Uddin et al., “Machine learning
approach for answer detection in discussion forums: an ap-
plication of big data analytics,” Scientific Programming,
vol. 2020, 2020.

[21] F. Aziz, T. Ahmad, A. H. Malik, M. 1. Uddin, S. Ahmad, and
M. Sharaf, “Reversible data hiding techniques with high
message embedding capacity in images,” PLoS One, vol. 15,
no. 1-24, 2020.

[22] B.Sharma, R. Thota, N. Vydyanathan, and A. Kale, “Towards a
robust, real-time face processing system using CUDA-enabled
GPUS,” in Proceedings of the 2009 International Conference on
High Performance Computing (HiPC), pp. 368-377, New
York, NY, USA, 2009.

[23] H. Patel and K. Panchal, “Incorporating CUDS in hadoop
image processing interface for distributed image processing,” in
Proceedings of the International Journal of Advance Research
and Innovative Ideas, pp. 93-98, New York, NY, USA, 2016.

[24] C. Sweeney, L. Liu, S. Arietta, and J. Lawrence, “Hipi: a
hadoop image processing interface for image-based mapre-
duce tasks,” 2011.

[25] R. Malakar and N. Vydyanathan, “A cuda-enabled hadoop
cluster for fast distributed image processing,” in Proceedings of
the 2013 National Conference on Parallel Computing Technol-
ogies (PARCOMPTECH), pp. 1-5, New York, NY, USA, 2013.

[26] M. I. Uddin, N. Zada, F. Aziz et al., “Prediction of future
terrorist activities using deep neural networks,” Complexity,
vol. 2020, pp. 1-16, 2020.

[27] T. Liu, Y. Liu, Q. Li et al., “Seip: system for efficient image
processing on distributed platform,” Journal of Computer
Science and Technology, vol. 30, pp. 1215-1232, 2015.

[28] M. S. Gowda and V. G. Hulyal, “Parallel image processing
from cloud using cuda and hadoop architecture: a novel
approach,” 2015.

[29] A. K. Singh, A. Prakash, K. R. Basireddy, G. V. Merrett, and
B. M. Al-Hashimi, “Energy-efficient run-time mapping and
thread partitioning of concurrent OPENCL applications on

13

CPU-GPU MPSOCS,” ACM Transactions on Embedded
Computing Systems, vol. 16, 2017.

[30] W. Burger, M. J. Burge, and M. J. Burge, Scale-Invariant
Feature Transform (SIFT), Springer, London, UK, 2016.

[31] J. Kim, H. Kim, J. H. Lee, and J. Lee, “Achieving a single
compute device image in OPENCL for multiple GPUS,”
SIGPLAN Not, vol. 46, pp. 277-288, 2011.

[32] P. Dadheech, D. Goyal, S. Srivastava, and A. Kumar, “Per-
formance improvement of heterogeneous hadoop clusters
using query optimization,” SSRN Electronic Journal, vol. 46,
2018.

[33] N. S. Naik, A. Negi, and V. Sastry, “Performance improve-
ment of MapReduce framework in heterogeneous context
using reinforcement learning,” Procedia Computer Science,
vol. 50, pp. 169-175, 2015.

[34] C.Lai, Y. Chen, X. Shi, M. Huang, and G. Chen, “Performance
improvement on heterogeneous platforms: a machine
learning based approach,” in Proceedings of the 2018 Inter-
national Conference on Computational Science and Compu-
tational Intelligence (CSCI), IEEE, Berlin, Germany, 2018.

[35] P. Czarnul, J. Proficz, and K. Drypczewski, “Survey of
methodologies, approaches, and challenges in parallel pro-
gramming using high-performance computing systems,”
Scientific Programming, vol. 2020, pp. 1-19, 2020.

[36] A. Rubio-Largo, J. C. Preciado, and L. Iribarne, “Data-driven
computational intelligence for scientific programming,” Sci-
entiﬁc Programming, vol. 2019, pp. 1-4, 2019.

[37] A. Kanan, F. Gebali, A. Ibrahim, and K. F. Li, “Low-com-
plexity scalable architectures for parallel computation of
similarity measures,” Scientific Programming, vol. 2019, 2019.

[38] W. Ma, W. Yuan, and X. Hu, “Implementation and opti-
mization of a CFD solver using overlapped meshes on
multiple MIC coprocessors,” Scientific ~Programming,
vol. 2019, pp. 1-12, 2019.

[39] T. White, Hadoop: The Definitive Guide, O’Reilly Media, Inc.,
New York, NY, USA, 1st edition, 2009.

[40] M. Aldinucci, M. Danelutto, P. Kilpatrick, and M. Torquati,
“Fastflow: high-level and efficient streaming on multi-core,”
Programming Multi-core and Many-core Computing Systems,
ser. Parallel and Distributed Computing, vol. 13, 2012.

[41] L. Dagum and R. Menon, “OPENMP: an industry-standard
api for shared-memory programming,” Computing in Science
& Engineering, vol. 5, pp. 46-55, 1998.

[42] B.Nichols, D. Buttlar, and J. P. Farrell, Pthreads Programming,
O’Reilly & Associates, Inc., Sebastopol, CA, USA, 1996.

[43] A. Munshi, B. Gaster, T. G. Mattson, J. Fung, and
D. Ginsburg, OpenCL Programming Guide, Addison-Wesley
Professional, Boston, MA, USA, 1st edition, 2011.

[44] J. S. Harbour, D. Calkins, and R. Meuth, Multi-Core Pro-
gramming with CUDA and OpenCL, Course Technology
Press, Boston, MA, USA, 1st edition, 2011.

[45] D. Shreiner and T. K. O. A. W. Group, OpenGL Programming
Guide: The Official Guide to Learning OpenGL, Versions 3.0
and 3.1, Addison-Wesley Professional, New York, NY, USA,
7th edition, 2009.

[46] J. Dean and S. Ghemawat, “Mapreduce: simplified data
processing on large clusters,” Communications of the ACM,
vol. 51, pp. 107-113, 2008.

[47] M. Zaharia, R. S. Xin, P. Wendell et al., “Apache spark: a
unified engine for big data processing,” Communications of
the ACM, vol. 59, pp. 56-65, 2016.

[48] R. V. Guha, D. Brickley, and S. MacBeth, “Schema.org:
evolution of structured data on the web,” Queue, vol. 13, p. 10,
2015.

14

[49] D. Suciu, Information Organization and Databases, Kluwer
Academic Publishers, Norwell, MA, USA, 2000.

[50] J. P. Isson, Unstructured Data Analytics: How to Improve
Customer Acquisition, Customer Retention, and Fraud De-
tection and Prevention, Wiley Publishing, New York, NY,
USA, 1st edition, 2018.

[51] H. Tan and L. Chen, “An approach for fast and parallel video
processing on Apache hadoop clusters,” in Proceedings of the
IEEE International Conference on Multimedia and Expo,
pp- 1-6, New York, NY, USA, 2014.

[52] C.Ryu, D. Lee, M. Jang, C. Kim, and E. Seo, “Extensible video
processing framework in Apache hadoop,” in Proceedings of
the 2013 IEEE 5th International Conference on Cloud Com-
puting Technology and Science, pp. 305-310, New York, NY,
USA, 2013.

[53] M. Husain, A. K. Sabarad, H. Hebballi, S. M. Nagaralli, and
S. Shetty, “Counting occurrences of textual words in lecture
video frames using Apache hadoop framework,” in Pro-
ceedings of the 2015 IEEE International Advance Computing
Conference (IACC), pp. 1144-1147, London, UK, 2015.

[54] H. Tan and L. Chen, “An approach for fast and parallel video
processing on Apache hadoop clusters,” in Proceedings of the
2014 IEEE International Conference on Multimedia and Expo
(ICME), pp. 1-6, London, UK, 2014.

[55] U.S. N. Raju, S. George, V. S. Praneeth, R. Deo, and P. Jain,
“Content based image retrieval on hadoop framework,” in
Proceedings of the 2015 IEEE International Congress on Big
Data, pp. 661-664, New Jearsey, NJ, USA, 2015.

[56] S. Cook, CUDA Programming: A Developer’s Guide to Parallel
Computing with GPUs, Morgan Kaufmann Publishers Inc.,
San Francisco, CA, USA, 1st edition, 2013.

[57] Z. Wang, P. Lv, and C. Zheng, “Cuda on hadoop: a mixed
computing framework for massive data processing,” in
Foundations and Practical Applications of Cognitive Systems
and Information Processing, F. Sun, D. Hu, and H. Liu, Eds.,
pp- 253-260, Springer Berlin Heidelberg, Berlin, Heidelberg,
2014.

[58] B. He, W. Fang, Q. Luo, N. K. Govindaraju, and T. Wang,
“Mars: a mapreduce framework on graphics processors,” in
Proceedings of the 17th International Conference on Parallel
Architectures and Compilation Techniques, PACT "08, ACM,
New York, NY, USA, pp. 260-269, 2008.

[59] C.Hong, D. Chen, W. Chen, W. Zheng, and H. Lin, “MAPCG:
Writing Parallel Program Portable between CPU and GPU,”
in Proceedings of the 2010 19th International Conference on
Parallel Architectures and Compilation Techniques (PACT),
pp. 217-226, New York, NY, USA, 2010.

[60] M. Elteir, H. Lin, W. Feng, and T. Scogland, “Streammr: an
optimized mapreduce framework for amd GPUS,” in Pro-
ceedings of the 2011 IEEE 17th International Conference on
Parallel and Distributed Systems, pp. 364-371, New York, NY,
USA, 2011.

[61] J. A. Stuart and J. D. Owens, “Multi-GPU mapreduce on GPU
clusters,” in Proceedings of the 2011 IEEE International Par-
allel Distributed Processing Symposium, pp. 1068-1079, Berlin,
Germany, 2011.

[62] K. Shvachko, H. Kuang, S. Radia, and R. Chansler, “The
hadoop distributed file system,” in Proceedings of the 2010
IEEE 26th Symposium on Mass Storage Systems and Tech-
nologies (MSST), MSST 10, IEEE Computer Society, Wash-
ington, DC, USA, pp. 1-10, 2010.

[63] 1. Uddin, A. Baig, and A. A. Minhas, “A controlled envi-
ronment model for dealing with smart phone addiction,”

Mathematical Problems in Engineering

International Journal of Advanced Computer Science and
Applications, vol. 9, no. 9, 2018.

[64] S. A. A. Shah, I. Uddin, F. Aziz, S. Ahmad, M. A. Al-Kha-
sawneh, and M. Sharaf, “An enhanced deep neural network
for predicting workplace absenteeism,” Complexity, vol. 2020,
pp. 1-12, 2020.

