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ABSTRACT 

Building demand flexibility (DF) has attracted significant attention in recent years among 

researchers, technology developers and control companies, aggregators, utilities, and many 

others.  There are numerous challenges with today’s electricity systems such as managing peak 

demand capacity and integrating variable renewables into the grid. Flexible building loads can 

provide various grid services to help reduce electricity costs, smooth out renewables 

intermittency and balance supply and demand. Recognizing this, the US DOE is leading the 

Grid-interactive Efficient Buildings (GEB) initiative which includes research to evaluate the 

potential, availability and timing of flexible loads.  

In this paper we present load shed metrics for three building types – medium office, large 

office and retail store – and compare prototype simulation results with measured data from 12 

actual buildings that participated in hot summertime utility demand response (DR) events. The 

DR strategies included varying zone temperature and reducing light levels. The magnitude of a 

key DF metric, “demand decrease intensity” (or “shed intensity”) (W/ft2), between the simulation 

results and field data are similar (14-32% differences) for both mean and median values, though 

the field data show much larger variation among DR events. The coefficient p-values from linear 

regression model tests showed that outside air temperature is a significant variable for the whole 

building shed intensity when the resetting zone temperature strategy is deployed. These findings 

support the concept of using prototype building simulation to estimate building DF and 

expanding future simulation research to additional building types and climate zones. 

Introduction  

Building Demand Flexibility 

The idea of using building “demand flexibility” (DF), also known as “load flexibility” or 

“energy flexibility” to respond to grid needs, is gaining traction among researchers, technology 

developers and control companies, aggregators, utilities, and many others. Perhaps the most 

important driver behind this trend is the growing challenge of maintaining the supply and 

demand balance on the electrical grid with deeper penetration of variable renewable generations 

such as wind and solar technologies (Mai et al, 2012). Given the operational constraints in 

traditional generation sources (e.g. thermal, nuclear, etc.), it is costly to modulate these sources 

to offset the intermittency of renewables generation and it is important to explore the capabilities 

of demand side resources to maintain the grid balance (MITEI, 2011). While DF can be provided 

by many types of buildings, commercial buildings are the focus of this paper. To better study the 

role of building flexibility, the U.S. Department of Energy (DOE) is leading a major research 



 

 

initiative on this topic named “Grid-interactive Efficient Buildings” (GEB) with a growing 

portfolio of projects. GEB defines DF as “the capability of DERs to adjust a building’s load 

profile across different timescales” (DOE EERE, 2019). This paper describes early results from a 

project to develop a framework to standardize and measure building DF using defined metrics. 

Building Demand Flexibility Metrics 

The GEB initiative distinguishes five demand side management (DSM) strategies under 

the GEB framework: “Efficiency”, “Load Shed”, “Load Shift”, “Modulate”, and “Generate” 

(DOE EERE, 2019). Lawrence Berkeley National Laboratory’s (LBNL) Flexible Loads project 

primarily focuses on defining metrics for Shed1 and Shift2 (as shown in Figure 1 and Figure 2). 

The Shed metrics cover the following aspects of a load shedding event: average depth of demand 

decrease (“D1-D3”), variability of demand decrease (“D4-D6”), ramping capability (“D7-D9”), 

and net energy consumption impact (“D10”). The Shift metrics contains a load increase portion 

in addition to the load decrease (i.e. demand “shed”). The metrics for load increase are similarly 

structured as those for “shed” in Figure 2. Load increase is considered negative because we use 

conventions from traditional demand response (DR) programs where load decrease is positive.   

 This paper focuses on Load Shed because it has been used in the field in utility DR 

programs and field data are available to compare with simulation data.  In this paper, we focus 

on the D2 “demand decrease intensity [W/ft2]” (or “shed intensity”) metric, which is defined as 

the average kW demand reduction during a shed event (or defined shedding period) normalized 

by the building floor area. The area normalization allows comparison of shed metrics across 

buildings of different sizes or types.   

 

Figure 1. Proposed demand flexibility metrics for Load Shed with an example from an actual building DR event. 

 
1 Load Shed: the ability to reduce electricity use for a short time period and typically on short notice. 

Shedding is typically dispatched during peak demand periods and during emergencies (DOE EERE, 2019). 
2 Load Shift: the ability to change the timing of electricity use. In some situations, a shift may lead to 

changing the amount of electricity that is consumed. 



 

 

 

Figure 2. Proposed demand flexibility metrics for Load Shift with an example from an actual building DR event. 

There are several approaches to evaluate the shed intensity in commercial buildings. 

Measured data from utility DR events can be collected to evaluate shed intensity, but these data 

are often scarce. We can use prototype simulations to evaluate shed intensity from various 

building types, but we need to understand how well these prototypes represent the actual 

building stock. We can also use building scale testbeds such as FLEXLAB®3 to conduct 

controlled experiments to evaluate the variability of shed intensity with changes in building 

systems and conditions. 

Demand Response and Demand Flexibility 

DR is often mentioned when the industry discusses DF. So what is the relationship 

between the two? A group of GEB researchers articulates that “like DR, DF is characterized by 

active load management on timescales consistent with utility system and grid needs. Unlike 

energy efficiency (EE) and DR, DF is not a resource in the traditional sense, but a potential that 

the utility or system operator can utilize to provide reliable electricity service. From the system 

operator’s perspective, EE and DR are what you have in your portfolio and DF is what you can 

do with the resources you have” (Gerke et al, 2020). 

The meaning of DR has also evolved. In the traditional definition, DR refers to shedding 

loads when the customer receives a price or dispatch signal from their utilities or the grid (FERC, 

2007). In this paper, we use the term “DR” to refer to such traditional DR programs because we 

extract data from such programs for the analysis presented. However, it is worth noting that more 

recent definitions of DR recognized by the utility industry are much broader than the traditional 

definition. For example, LBNL’s 2025 California DR Potential Study (Alstone et al, 2017) 

defined four DR service types – “Shape”, “Shift”, “Shed”, and “Shimmy” to include reshaping 

load profile through long-run price response (e.g. time of use rates), shifting load from one time 

 
3 FLEXLAB® located at LBNL’s Berkeley site is the first testbed in the world that can evaluate the energy 

efficiency of major building systems, as an integrated system, under real-world conditions. 



 

 

to another (often of the same day), and dynamically adjusting load. The Smart Electric Power 

Alliance (SEPA) defines today’s DR development (i.e. DR 3.0), under which DR would function 

as a component of distributed energy resources (DERs) in providing various grid services 

(SEPA, 2017). These two recent DR definitions by LBNL and SEPA are not mutually-exclusive.   

Objectives 

An important goal of our research is to answer the question – which and how much 

building load can shed or shift at any given time of the day or year? In this paper, we provide a 

framework to begin to answer this question by quantifying and interpreting a Shed metric using 

two data sources: (1) energy simulations and (2) field DR performance data. Our main 

hypothesis is that the shed intensity (W/ft2) calculated using an energy simulation prototype with 

EnergyPlus4 can represent typical buildings of the same type on the average magnitude although 

we expect the range and variability of field data to be larger. We are also evaluating whether 

the shed intensity from implementing global zone temperature adjustment (GTA) strategy5, a 

common HVAC control strategy used in today’s DR programs, is correlated to outside air 

temperature (OAT). This trend has been observed in previous studies (Piette et al., 2006; Yin et 

al., 2008; Coughlin et al., 2009; Mathieu et al., 2011). In this paper we present initial data from 

office and retail buildings to compare shed intensity data between field data and prototype 

simulations.   

Methodology  

We created prototype simulation models for three building types (medium office, large 

office and retail) using the “Commercial Reference Buildings”6 and “Commercial Prototype 

Building Models”7 for buildings built before and after 2004, respectively. The prototype model 

inputs were kept unchanged in our simulation; only DR strategy was added to the models.  

We used kW demand shed results in a previous study (Yin et al., 2008) to calculate the 

shed intensity for the medium office buildings. In addition, we also collected 15-minute whole 

building electricity usage data from one large office building and two retail sites that participated 

in DR programs to calculate shed intensity for these sites. The medium office sites and retail sites 

are located in California cities that belong to the ASHRAE Warm-Dry (3B) climate zone8; the 

large office site belongs to the Warm-Marine (3C) climate zone. To calculate shed intensity for 

the retail sites, we used a “10/10” baseline9 with morning adjustment factor and no upper limit 

 
4 EnergyPlus™ is a whole-building energy modeling software. 

https://www.energy.gov/eere/buildings/downloads/energyplus-0. Prototype models are developed by national labs to 

represent typical buildings and are often used to evaluate energy-saving strategies. 
5 Raising zone temperature setpoints “globally” across a number of zones in the building during a Shed event. It is 

common for buildings to couple it with “pre-cooling” by lowering the zone temperature setpoint for some time 

before the Shed in order to achieve deeper demand shed and provide better comfort during the event.   
6 https://www.energy.gov/eere/buildings/commercial-reference-buildings 
7 https://www.energycodes.gov/development/commercial/prototype_models 
8 See ANSI/ASHRAE Standard 169-2013, Climatic Data for Building Design Standards 
9 10/10 baseline: the average demand during the same DR event hours over the previous 10 eligible baseline days 

(excluding weekends, holidays, DR event days, and none-operation days).  

https://www.energy.gov/eere/buildings/downloads/energyplus-0
https://www.energy.gov/eere/buildings/commercial-reference-buildings
https://www.energycodes.gov/development/commercial/prototype_models


 

 

(Piette et al., 2006; Goldberg et al., 2013), which is also consistent with the baseline method used 

for the office buildings in the earlier study. 

To examine the correlation between shed intensity and outside air temperature, we 

performed F-tests using both daily peak OAT and the average OAT during events as the single 

independent variable in linear models. The correlation is tested significant at 95% level when p-

values are smaller than 0.05. We also compared the regression line slopes between the field and 

simulation data for the same predictors and reported R2 values.  

Medium Office   

We used a group of 9 medium-size office buildings to compare shed intensity calculated 

from field data with prototype simulation results. Table 1 summarizes the general building 

information of the selected buildings. 

Table 1. A Group of Nine Medium Offices Participated in Actual DR Events and the Prototype 

Simulation Model for Comparison 

Site ID Building Use Floor Area (ft2) Year Built Construction HVAC System DR Strategy 

A Office 68,955 1990 Concrete RTU + VAV Pre-cooling+GTA 

B Office 62,800 1988 Concrete RTU + VAV GTA 

C Office 38,808 1988 Concrete RTU + VAV Pre-cooling+GTA 

D Office 73,730 1988 Concrete RTU + VAV GTA 

E Office 70,069 1993 Steel RTU + VAV GTA 

F Office+Classroom 80,750 2001 Steel RTU + VAV Pre-cooling+GTA 

G Office+Data Center 104,501 2005 Steel RTU + VAV Pre-cooling+GTA 

H Office+Classroom 119,035 2002 Steel RTU + VAV Pre-cooling+GTA 

I Office+Auditorium 81,079 1994 Concrete RTU + VAV GTA 

Model Office 53,628 Post-1980 Concrete RTU + VAV GTA  

 

These office buildings share the same HVAC system type as in the prototype model – 

Packaged rooftop units (RTU) with variable air volume (VAV) system. Each office building 

deployed global temperature adjustment during DR events raising the thermostat setpoint above 

the normal setpoint (77ºF) by 2ºF from 12:00PM to 3:00PM and 3ºF from 3:00PM to 6:00PM. 

Several sites deployed a moderate precooling strategy (lower setpoint by 2ºF) in the morning. 

For these sites, the average kW demand shed during each 3-hour DR event was available in a 

previous study (Yin et al., 2008). 

Large Office   

One large office site in California (see Table 2) was used for similar comparisons 

conducted for medium offices. This site is an 323,000-square-foot typical large office building in 

San Francisco, California. It uses two 420-ton water-cooled chiller as the cooling plant and 

single-duct VAV air handling units (AHUs) for the air conditioning. The prototype large office 

building model uses two water-cooled chillers as the default cooling source, which matches the 

site’s system type.   



 

 

Table 2. Large Office Participated in Actual DR Events and the Prototype Simulation Model for 

Comparison  

Site Floor Area (ft2) Year Built Construction HVAC Type DR Strategy 

Field site 323,000 1987 Concrete Water-cooled Chiller + VAV GTA 

Reference Model 498,588 Post-1980 Concrete Water-cooled Chiller + VAV GTA 

 

This site was normally operated at a constant setpoint of 74°F during the startup and 

occupied hours. GTA strategy was implemented by raising the thermostat setpoint to 78°F 

during the 4-hour DR events (2:00-6:00PM). Additionally, this site implemented the precooling 

strategy by reducing the thermostat setpoint to 72°F from 10:00AM to 2:00PM.  

Retail 

Two retail stores were also included in the analysis. We collected whole building electric 

data for 19 DR events in 2017 and 2018. 10 of the 19 DR events started at 3:00PM and ended at 

7:00PM. For the remaining 9 events, one-third of the events started at 4:00PM, 5:00PM, and 

6:00PM respectively, and they all ended at 7:00PM. As shown in Table 3, these two sites have 

similar concrete construction and packaged RTUs with VAV fans. 

Table 3. Two Retail Stores Participated in Actual DR Events and the Prototype Simulation 

Model for Comparison  

Site Building Use Floor Area (ft2) Year Built Construction HVAC Type DR Strategy 

#1  Retail 108,900 2004 Concrete Packaged RTUs GTA & Lighting 

#2  Retail 130,179 n/a Concrete Packaged RTUs GTA & Lighting 

Reference Model Retail 5,500 90.1-2004 Concrete Packaged RTUs GTA & Lighting 

 

Two types of DR strategies were implemented at both sites: (1) GTA: the sites raised 

thermostat setpoint for a large portion of the RTUs from 74ºF to 80-81ºF (i.e. by ~6 ºF); (2) 

Switch off every other light (i.e. 50% of the lights) for a large portion of the sales area.  

It is important to mention that we have not done a more thorough comparison between 

the characteristics of the actual and simulated buildings and differences such as envelope 

characteristics, occupant density, lighting power density, or other factors that could influence 

DF. We had limited access to the building characteristics from the utility DR program data. We 

simulated the implemented DR strategies using prototype models with typical meteorological 

year (TMY3) weather data.  

Comparing Shed Intensity between Simulation and Field Data  

Medium Office   

Figure 3 shows the shed intensity comparison between the field events and simulated 

results. The blue and orange bars represent the mean values across the sites and the mean of 

simulated 15-min values, respectively; the black lines represent standard deviation ranges. The 



 

 

left-side of the figure is organized by individual shed events, ranked by daily peak outside air 

temperatures and the right-side combines all events. The same figure style is also used for the 

other two building types below. 

We found that the mean shed intensities for the 9 sites are similar to the simulated 

intensities, but the simulated shed intensity about one-third less than the field data. However, the 

field data shows a much larger variability evidenced by both a much wider range in each event 

and a much larger overall standard deviation in comparison with the simulation. Larger 

variability in field data is always expected because many other factors can influence DF to 

various extents whereas simulation assumes the building parameters unchanged across all events.  

 

 

Figure 3: Mean and Standard Deviation of Demand Shed Intensity [W/ft2] Calculated from Field Event Data and 

Prototype Simulation for 9 Medium Offices  

Note that the daily peak OAT on those eight event days fell in a narrow range between 

95-98ºF, which made it difficult to observe correlation with shed intensity in the field results 

beyond the noise from other unknown factors’ influence. 

Large Office   

For the example large office, there were 12 shed events across wide weather conditions 

from cool to warm. As shown in Figure 4, the shed intensity reached the highest value on the 

day when the outside air temperature reached 90ºF, and it was lower on a cooler event day of 

65ºF.  The figure also reveals that the mean for all events combined are similar (< 10% 

difference) between field and simulated results and within the range of the standard deviation.  



 

 

 

Figure 4: Mean and Standard Deviation of Demand Shed Intensity [W/ft2] Calculated from Field Event Data and 

Prototype Simulation for a Large Office  

 

Figure 5: Relationship between Demand Shed Intensity [W/ft2] and Daily Peak OAT (left) and Average OAT 

During Events (right) in a Large Office, Calculated from Field DR Event Data and Prototype Simulation  

To test correlation with OAT, we calculated coefficient p-values of regression variable 

daily peak OAT and average OAT during events, respectively, using the field data – they were 

0.006 and 0.004 (< 0.05). This result indicates that the correlation between shed intensity and 

both OAT related independent variables are statistically significant at the 95% confidence level. 

Figure 5 shows linear regression model fits between shed intensity and the two OAT related 

independent variables, respectively. As shown, the regression line slopes are similar between the 

field and simulation data, and the field data exhibit more scatter as expected. It should be noted 

that the number of sites is very limited for this building type. 



 

 

Retail 

Similar to the analysis for office buildings, a pair of boxplot and bar-plot was made for 

each of the two retail sites.  

Retail Site #1  

The results in Figure 6 indicate that the mean are very close (< 5% difference) between 

the field and simulation results for retail site #1. The field data shows a larger variability (the 

standard deviation is about 15% larger) in comparison with the simulation.  

The mean shed intensity from field data and simulation in Figure 6 were similar for the 

majority of the individual events. The correlation between shed intensity and the outside 

temperature is moderate. 

 

Figure 6: Barplot of the Mean and Standard Deviation of Demand Shed Intensity [W/ft2] Calculated from Field 

Event Data and Prototype Simulation for Retail Site #1 (Left: Event by Event; Right: All Events Combined) 

Retail Site#2  

The results in Figure 7 show that the mean shed intensity values are similar (< 10% 

difference) although the standard deviations are different between the field and simulation results 

for retail site #2. Again, the field data shows a much larger variability in comparison with the 

simulation. The mean shed intensity from field data and simulation show larger differences on 

the individual event level as compared to the retail site#1. The correlation between shed intensity 

and outside temperature is less obvious. Note that the site showed a low shed intensity during 

event #15, #16, and #17; the performance during event #6 and #8 substantially exceeds the levels 

of the neighboring events in the similar daily peak OAT range.     



 

 

 

Figure 7: Mean and Standard Deviation of Demand Shed Intensity [W/ft2] Calculated from Field Event Data and 

Prototype Simulation for Retail Site #2 (Left: Event by Event; Right: All Events Combined) 

Again, to test correlation with OAT, the p-values of regression variable daily peak OAT 

and average OAT during events are 0.047 and 0.013, respectively, using field data. Considering 

that the p-values are smaller than 0.05, both OAT related independent variables are statistically 

significant for shed intensity. Figure 8 shows linear regression model fits using these two OAT 

related independent variables, respectively. We observe that the regression line slopes are similar 

between field and simulation data in both plots, and the field data exhibit more scatter (low R2). 

To improve understanding of what other factors contributed to the variability, we will need better 

knowledge of the strategy used during each event and building characteristics.  

 

Figure 8: Relationship between Demand Shed Intensity [W/ft2] and Daily Peak OAT (left) and Average OAT 

During Events (right) in Retail Stores, Calculated from Field DR Event Data and Prototype Simulation  



 

 

Key Findings  

We compare shed intensity calculated from a total of 122 DR events at 12 sites (including 

offices and retails) and compared it with EnergyPlus prototype simulation results. The results are 

summarized in Table 4, which show the comparison of shed intensity’s variations for three 

building types – medium office, large office and retail. Based on these results, we found that: 

Table 4. Key Findings in Prototype Simulation and Field DR Event Data Comparison - Demand 

Shed Intensity [W/ft2] 

Building 

Type 

# of 

Sites 

# of 

Events 
Comparison Mean Std. Dev. Min 

25th 

Percentile 
Median 

75th 

Percentile 
Max 

Large 

Office 
1 12 

Measured 0.29 0.15 0.10 0.17 0.24 0.40 0.67 

Simulated 0.27 0.12 0.14 0.17 0.23 0.43 0.50 

Difference (%) -7% -20% 40% 0% -4% 7% -25% 

Medium 

Office 
9 72 

Measured 0.66 0.39 0.22 0.36 0.60 0.79 1.80 

Simulated 0.45 0.06 0.31 0.40 0.45 0.49 0.57 

Difference (%) -32% -84% 41% 12% -24% -38% -69% 

Retail 2 38 

Measured 0.86 0.40 0.20 0.58 0.81 1.02 2.25 

Simulated 0.74 0.17 0.53 0.64 0.67 0.78 1.33 

Difference (%) -14% -57% 164% 11% -16% -24% -41% 

 

The shed intensity metric in the prototype simulations and DR field results are similar 

(14-32% differences) based on the mean and median values for each of the three building types. 

The standard deviation is larger in field data which could be attributed to variations in operating 

conditions such as occupancy and other factors for which we lack knowledge. Note that the 25th 

and 75th percentiles in Table 4 are aggregated statistics across multiple sites of the same building 

type, which is differentiated from metric “D4” and “D5” in Figure 1.  

When global temperature reset is used as one of the key DF strategies, shed intensity is 

correlated to the outside air temperature as shown for large office and retail stores, using either 

“daily peak temperature” or “average temperature during event” as the independent variable (or 

predictor). We used p-values to determine that such correlations are significant at the 95% 

confidence level. We also tested fitting the data with linear regression lines and observed that the 

slopes are similar between simulation and field data using both predictors. However, given the 

limitations of the existing dataset, such conclusions cannot be extended to beyond the dataset. 

Expanding the dataset and gaining more site- and event- specific information will be desirable in 

the future. From the building physics standpoint, this can be explained by buildings’ shed 

capability generally increases with outdoor temperature because the potentially curtailable 

baseline cooling loads are greater on warmer days, until the HVAC capacity is saturated beyond 

its designed capacity on extreme hot days.  

These preliminary findings provided initial support to validating our two hypotheses 

stated upfront and therefore supports our project DF simulation framework. We recognize that 

this is a limited dataset and we have little site-specific details on factors that could impact 



 

 

accuracy or further explain the variations in the results. Therefore, definitive conclusions would 

not be possible without more field data with granular time series data and site specific details.   

Discussion 

In this paper we conducted a preliminary comparison of shed intensity between a limited 

set of field measured data and prototype simulation results on three building types. The results 

suggest that prototype simulation using EnergyPlus can give a reasonable estimate of the mean 

and median. The field data showed a larger variability across the three building types and we 

have limited information to explain the variability. However, there are several known factors that 

could have led to the greater variability in the field measured results, which include but not 

limited to: 

(a) Selection of baseline method and its accuracy. In simulation, the baseline is 

determined by running the model with DR strategies disabled. However, with actual buildings, 

baselines are more complex because the building’s operation without shedding load on the exact 

same event day cannot be recreated in reality is estimated using baseline models that have known 

limitations.  

(b) Limited site specific information. The prototype simulation results are outputs 

varying only a small number of inputs related to building vintage (which is a proxy for a number 

of characteristics), climate location, and DF strategy details. However, there are a great deal of 

variations in an actual building’s geometry, construction, window-to-wall ratio, thermal mass, 

internal load, occupancy, HVAC system configuration and operation, efficiency and control 

settings, and many other building characteristics. These discrepancies between the prototype 

simulation model and a specific actual building can also lead to significant differences in the 

results. 

(c) Uncertainties in the DR control sequences. There is known and unknown variation 

in the DF strategies implemented at the sites in this dataset. For example, some medium offices 

implemented GTA while others coupled it with moderate pre-cooling. In addition, it was 

observed that for a given site the same DF strategy performed well on some event days but worse 

on other days. Since we do not have trend logs of the actual site’s control sequences and 

parameters on each event day, it is difficult to diagnose any operational behavior in the DF 

performance. For example, did the building operator actually change the temperature setpoint 

equally in all the zones during all events? or some VAV terminals didn’t respond to the 

temperature setpoint reset due to the stuck dampers. 

 

Summary and Next Steps 
 

This paper has presented initial field data and simulation results which demonstrate that 

simulation output for DF can be similar to what has been observed in field data. Future work will 

explore both a broad set of simulation output and a broader set of field data to explore the 

questions: which and how much building load can shed or shifted at any given time of day or 

year? We are trying to better understand how various factors and attributes influence a building’s 

DF such as building characteristics, outdoor environmental conditions, set points for the DF 

control strategies, timing of the DF strategy deployment, and so on. We will use simulation to 



 

 

test DF sensitivity to these building attributes and event characteristics. We will also compare 

additional field data with simulation data to improve our understanding of the capabilities and 

limitations of EnergyPlus in evaluating DF. Finally, our work will also include comparing these 

data sets with controlled laboratory testing in in FLEXLAB®. In such a lab testing environment, 

the impacts from single parameters can be evaluated more accurately by minimizing or removing 

the uncertainties from other factors.  
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