
Embedded Computing Techniques for

Remote Mobile Video Surveillance

Systems

Nirmala Ramakrishnan

School of Computer Science and Engineering

A thesis submitted to Nanyang Technological University

in partial fulfilment of the requirements for the degree of

Doctor of Philosophy

2017

Acknowledgements

My journey this far in my research has been made possible by the wonderful people

around me. Here is my humble attempt to express my gratitude for all their time,

efforts and motivation.

First, I would like to express my deepest gratitude to my supervisor Prof. Tham-

bipillai Srikanthan for being a constant source of energy and inspiration through-

out this research work, with his relentless guidance and motivation. Despite his

numerous commitments, Prof. Sri ensured that he engaged with me in weekly dis-

cussions that kept up my momentum. I also appreciate him for always pushing

me beyond my comfort zones that allowed me to grow as a researcher.

I would like to thank Dr. Siew-Kei Lam for all the discussions to strengthen my

work and his patient guidance throughout all my research publications. I am grate-

ful to Dr. Meiqing Wu for all the brainstorming sessions and for inspiring me with

the rigour she brings into her research. I would like to thank Dr. Alok Prakash for

helping me during the critical phase of thesis writing. Thank you Supriya Sathya-

narayana, Kratika Garg, Dr. Suchitra Sathyanarayana and Dr. Ravi Satzoda for

the numerous brainstorming sessions and for making computer vision research fun.

For all the technical and logistic support, I wish to thank Mr. Jeremiah Chua and

Ms. Nah Kiat Joo.

I am forever grateful to be blessed with the most supportive family and lov-

ing friends without whom this journey would have been impossible. Thank you

Bhaskar, my pillar of strength. Thank you Amma, Appa and Sowmya, and Paatti

for being there always. My friends Kavitha, Karthik, Kavitha and Deepthi, thank

you.

iii

Dedicated to Shreyas, my family, friends and teachers who have always inspired

me to pursue excellence relentlessly

v

Abstract

Unmanned aerial vehicles (UAVs) equipped with cameras are increasingly being

deployed for performing vision-based wide area surveillance with minimal human

intervention. Existing techniques employing global motion estimation (GME) for

automatic surveillance are typically complex and compute-intensive. In this the-

sis, low-complexity techniques for the key functional blocks of the GME, namely,

corner detection, feature tracking and robust estimation have been proposed. The

proposed techniques are capable of adapting to varying image content, camera mo-

tions and moving targets, thereby making them suitable for real-time processing

of aerial videos on resource-limited UAVs.

A novel compute-efficient pruning technique (called PP-ER) for corner detection is

proposed using simple approximations of the Shi-Tomasi and Harris corner mea-

sures for rapid and efficient extraction of high-quality corner candidates. This

allows for restricting the complex corner measure computations to only a small

pool of corner candidates. Evaluations on a Nios-II platform, without floating

point unit (FPU) show a speedup in execution time of 48-82% in Shi-Tomasi and

45-81% in Harris corner detection when detecting 300 corners, at the same time

achieving comparable accuracy as the conventional Shi-Tomasi/Harris detectors,

when applied to the Oxford repeatability dataset.

In order to eliminate the need for manual setting of optimal threshold, to guarantee

the required number of corners for a wide range of image content, an automated

thresholding method based on iterative thresholding is proposed, in this thesis.

This has led to notable reduction in the number of trials needed to release the

required corner candidates. In order to further enhance compute efficiency, a

mask-based non-maximal suppression scheme is employed to turn off neighbours

of already selected corners. Evaluations show that with automated thresholding,

an average of only 1.8% and 4.3% of the corner candidates are released, when

compared with fixed threshold based detection of 1000 corners on Shi-Tomasi and

Harris detectors respectively.

The low complexity pruning and automated thresholding were integrated into the

corner detection process, to reduce the computational complexity and to eliminate

the need for manual intervention for threshold selection, respectively. Evaluations

on the Nios-II platform with a floating point unit, show an average speed-up in

execution time of 67% for Shi-Tomasi and 51% in Harris corner detectors without

compromising on the quality of the corners reported.

viii

Next, a low-complexity GME method (called sparse-GME) is proposed by employ-

ing a minimum number of well-distributed sparse corner features. A selective and

systematic re-population strategy has also been introduced to improve the accu-

racy prior to necessitating a uniform increase in the overall density of features.

Methods for rapid evaluation of GM estimations were introduced to facilitate this

iterative process. Evaluations on aerial video datasets show that for 95% of the

frames, GME with the first pass sparse estimation is performed, while achieving

a similar accuracy as the dense set of features for 97% of the cases. Results with

simulated data show that the proposed method is able to deterministically ramp

up the features when the number of moving objects is increased.

To cope with significant distortions, a novel adaptive windowing method was in-

troduced within the Kanade-Lucas-Tomasi (KLT) feature tracker. This has elimi-

nated unnecessary computations and enhanced the robustness of GME during fast

rotations and scale changes in the camera motion. Evaluations with a benchmark

tracking dataset show that the proposed adaptive windowing method outperforms

the conventional fixed-window KLT in terms of robustness. In addition, compared

to the well-known affine KLT, the proposed method achieves comparable robust-

ness at an average runtime speedup of 7x. On simulated frames with global motions

of in-plane rotations and scale changes, applying the robust adaptive windowing

for KLT leads to 70% reduction in the GME error for the proposed sparse-GME.

Finally, a unified computation framework is proposed to show how the proposed

techniques for the individual modules of GME, can be fully integrated to realize

an adaptive and low-complexity GME for deployment on low-resource platforms

in aerial video surveillance systems.

Contents

List of Figures xiii

List of Tables xvii

List of Listings xix

List of Abbreviations xxi

1 Introduction 1

1.1 Motivation . 1

1.2 Scope and Objectives . 2

1.3 Research Contributions . 3

1.3.1 Research Publications . 4

1.4 Organisation of the Thesis . 6

2 Literature Survey 9

2.1 Unmanned Aerial Vehicles for Surveillance 10

2.2 On-board Vision-based Tasks for Surveillance 13

2.2.1 Motion Detection . 14

2.2.2 Video Compression . 16

2.2.3 Vision-aided Navigation . 19

2.3 Local motion estimation . 20

2.3.1 Feature Detection . 21

2.3.2 Feature Tracking . 23

2.4 Global Motion Estimation . 26

2.4.1 Global Motion Models . 26

2.4.2 Parameter Estimation Approaches 28

2.4.3 State-of-the-art GME techniques 30

2.4.4 Feature-based GME with KLT Feature Tracker 34

2.5 Summary . 35

3 Low-Complexity Pruning for Corner Detection 39

3.1 Introduction . 39

3.2 Shi-Tomasi and Harris Corner Detectors 41

3.3 Pruning Technique for Corner Detection 42

3.3.1 Partial Pruning . 44

ix

x CONTENTS

3.3.2 Removing Edge Pixels . 45

3.4 Cost Analysis . 49

3.5 Performance Evaluations . 53

3.5.1 Evaluation Setup . 54

3.5.2 Accuracy Evaluation . 55

3.5.3 Efficiency Evaluation . 58

3.5.4 Global Motion Estimation on Aerial Videos 63

3.6 Summary . 66

4 Automating Threshold Selection for Corner Detection 69

4.1 Introduction . 69

4.2 Iterative Thresholding . 72

4.2.1 Non-linear Threshold Steps 74

4.2.2 Mask-based Non-Maximal Suppression 75

4.3 Performance Evaluations . 78

4.4 Summary . 83

5 Accelerating Automated Thresholding with Pruning 85

5.1 Iterative Thresholding with Pruning 86

5.1.1 Selection of Pruning Threshold Steps and Bin Boundaries . . 90

5.1.2 Detection of Saturating Bins 91

5.1.3 Efficient Non-Maximal Suppression 91

5.1.4 Deterministic and Compute-Efficient Convergence of Itera-
tions . 92

5.2 Performance Evaluations . 94

5.2.1 Evaluation Setup . 94

5.2.2 Accuracy Evaluation . 96

5.2.3 Efficiency Evaluation . 97

5.2.4 Automated Thresholding with Mask-based NMS 99

5.3 Summary . 102

6 Low-Complexity Global Motion Estimation with Sparse Features 105

6.1 Introduction . 105

6.2 Feature-based Global Motion Estimation 108

6.2.1 Robust Estimation . 108

6.2.2 Density of Feature Correspondences 111

6.3 GME with sparse features . 113

6.3.1 Evaluation of estimation . 113

6.3.1.1 Inlier Agreement 115

6.3.1.2 Spatial Distribution Constraint 116

6.3.2 Repopulation . 117

6.4 Cost Analysis . 119

6.5 Performance Evaluations . 121

6.5.1 Evaluation Setup . 121

6.5.2 Performance Results . 126

CONTENTS xi

6.6 Summary . 129

7 Adaptive Windowing for Robust and High-Speed KLT Tracker 131

7.1 Introduction . 131

7.2 KLT Feature Tracker . 134

7.2.1 Effect of Search Window Size for Rotation/Scaling 135

7.2.2 Implications of Fixed Search Window Size with Pyramidal
KLT . 137

7.3 Adapting KLT Window Size . 141

7.3.1 Types of Tracking Errors . 141

7.3.2 Detecting Tracking Failure 143

7.3.2.1 Forward-Backward Error 143

7.3.2.2 Convergence within Maximum KLT Iterations . . . 145

7.3.2.3 Handling Erroneous Early Convergences 145

7.3.3 Integrating with Pyramidal KLT 146

7.4 Performance Evaluations . 147

7.4.1 Evaluation Setup . 147

7.4.2 Performance Results . 151

7.4.3 Adaptive KLT for Sparse-GME 154

7.5 Summary . 156

8 Framework for Adaptive Low-Complexity GME 159

8.1 Corner Detection . 162

8.2 Feature Tracking . 164

8.3 GME Controller . 166

8.4 Summary . 167

9 Conclusions and Future Work 169

9.1 Conclusions . 169

9.2 Future Work . 173

Appendices 177

A Description of the Kanade-Lucas-Tomasi (KLT) feature tracker 179

A.1 1-dimensional Case . 180

A.2 2-dimensional Case: Feature Tracking 181

B Experimental Setup with Nios-II 185

References 189

List of Figures

Figure 2.1: UAV flight planning example 13

Figure 2.2: UAV video processing chain 15

Figure 2.3: Block diagram for mosaic-based compression 18

Figure 2.4: Pyramidal approach for KLT 25

Figure 2.5: Illustration of global motion estimation 27

Figure 2.6: Feature-based GME with KLT feature tracker 34

Figure 3.1: Conventional Shi-Tomasi and Harris corner detectors 42

Figure 3.2: Pruning technique for Shi-Tomasi and Harris corner detectors 43

Figure 3.3: Selection of corner candidates 44

Figure 3.4: Corner candidates after partial pruning (PP) 45

Figure 3.5: Edge removal (ER) in pruning 46

Figure 3.6: Examples of Ix-Iy plots for 3x3 neighbourhood of a pixel in
various intensity patterns 47

Figure 3.7: Corner candidate sizes with PP-ER algorithm 51

Figure 3.8: Image data used for evaluation of proposed PP-ER pruning
technique . 52

Figure 3.9: Efficiency evaluation for PPST and PP-ERST: Nios-II (FPU
disabled) . 60

Figure 3.10: Efficiency evaluation for PPH and PP-ERH: Nios-II (FPU
disabled) . 60

Figure 3.11: Efficiency evaluation for the proposed PP-ER method: Nios-
II (FPU enabled) . 61

Figure 3.12: Efficiency evaluation of PP-ER with/without cache 62

Figure 3.13: No. of corners vs. threshold Tc in Shi-Tomasi/Harris 62

Figure 3.14: Impact of varying pruning threshold Tp 64

Figure 3.15: Video data for evaluation of GME with PP-ER based corner
detection . 65

Figure 3.16: Efficiency evaluation of GME with PP-ER based corner
detection . 67

Figure 4.1: Example of inappropriate thresholds for corner detection . . 71

Figure 4.2: Automated thresholding for corner detection 73

Figure 4.3: Threshold step selection . 75

Figure 4.4: Non-maximal suppression masks 78

xiii

xiv LIST OF FIGURES

Figure 4.5: Image data used for evaluation of automated thresholding
method . 79

Figure 5.1: Histogram of pixels based on pruning and corner measures . 86

Figure 5.2: Proposed automated thresholding with pruning technique . 87

Figure 5.3: Automated thresholding with pruning illustration 89

Figure 5.4: Image data used for evaluation of automated thresholding
with pruning technique . 96

Figure 5.5: Efficiency evaluation for automated thresholding with prun-
ing technique . 98

Figure 5.6: Efficiency evaluation for mask-based NMS 101

Figure 6.1: Illustration of Random Sample Consensus (RanSaC) algo-
rithm . 110

Figure 6.2: RanSaC failure cases with sparse features 114

Figure 6.3: RanSaC with two reprojection thresholds (2-RanSaC) . . . 116

Figure 6.4: Block diagram for proposed sparse-GME method 118

Figure 6.5: Aerial data used for evaluation of proposed sparse-GME
method . 122

Figure 6.6: Images for simulated data for evaluation of sparse-GME
method . 123

Figure 6.7: Simulated frames for evaluation of sparse-GME method . . 124

Figure 6.8: Evaluation results of sparse-GME with simulated moving
objects . 128

Figure 6.9: Evaluation results of sparse-GME with simulated camera
motion (in-plane rotation) 128

Figure 6.10: Evaluation results of sparse-GME with simulated camera
motion (scale change) . 129

Figure 7.1: KLT search window size and feature patch displacement . . 136

Figure 7.2: Local displacement with various global motions 137

Figure 7.3: Distribution of local displacements with various global mo-
tions . 139

Figure 7.4: Accuracy of KLT tracks with varying window sizes 142

Figure 7.5: KLT iterations to converge vs. window size 146

Figure 7.6: Adaptive windowing for KLT feature tracker 148

Figure 7.7: Image data used for evaluation of adaptive windowing for
KLT . 148

Figure 7.8: Sample frames from annotated tracking dataset for evalua-
tions of adaptive windowing for KLT 150

Figure 7.9: Accuracy evaluation of adaptive windowing for KLT 152

Figure 7.10: Robustness evaluation of adaptive windowing with KLT on
tracking dataset . 153

Figure 7.11: Efficiency evaluation of adaptive windowing with KLT on
tracking dataset . 155

LIST OF FIGURES xv

Figure 7.12: Accuracy evaluation of sparse-GME with adaptive window-
ing for KLT . 156

Figure 8.1: Unified framework for low-complexity and adaptive GME . 162

Figure 8.2: Adaptive low-complexity corner detection for GME 163

Figure 8.3: Flow for adaptive feature tracking 165

Figure 8.4: Flow of GME controller . 167

Figure A.1: KLT for 1D case . 180

Figure B.1: Cyclone-III FPGA board 186

Figure B.2: Nios-II/f (fast) core configuration 187

List of Tables

Table 3.1: Operations per pixel of corner detection 50

Table 3.2: Comparison of computations for each pixel for PP-ERST . . 52

Table 3.3: Comparison of computations for each pixel for PP-ERH . . . 52

Table 3.4: Comparison of memory load/store for each pixel for PP-
ERST/H . 53

Table 3.5: Accuracy results for proposed pruning technique (PP and
PP-ER) . 57

Table 3.6: Error margin in GME accuracy with pruning based corner
detection . 66

Table 4.1: Threshold steps for automated thresholding technique 79

Table 4.2: Reduction in total no. of corner candidates with automated
thresholding for 300 corners 81

Table 4.3: Reduction in total no. of corner candidates with automated
thresholding for 1000 corners 82

Table 4.4: Comparison of iterative thresholding methods for 300 corners 83

Table 4.5: Comparison of iterative thresholding methods for 1000 corners 83

Table 4.6: Relative reduction (%) in corner candidates with mask-based
NMS . 84

Table 5.1: Criteria for saturation of corner measure bins 92

Table 5.2: Corner measure bin boundaries 95

Table 5.3: Accuracy evaluation for automated thresholding with prun-
ing technique . 97

Table 5.4: Additional reduction in the corner candidates when mask-
based NMS replaces conventional NMS for automated thresh-
olding . 100

Table 6.1: Performance of feature-based GME on aerial video data . . . 107

Table 6.2: Accuracy evaluation of sparse-GME 127

Table 6.3: Efficiency evluation of sparse-GME 127

Table 7.1: Forward-backward error with W = 31 144

Table 7.2: Forward-backward error with W = 5 145

xvii

List of Listings

Listing 1 Pruning based corner detection (PP-ERST/H) 49

Listing 2 Conventional non-maximal suppression 76

Listing 3 Iterative thresholding with mask-based non-maximal sup-

pression . 77

Listing 4 Iterative thresholding with pruning for corner detection . . . 90

xix

List of Abbreviations

ASIC Application Specific Integrated Circuit

AVC Advanced Video Coding

CCP Cascaded Candidate Pruning

CCTV Closed Circuit TeleVision

CIT Coarse Iterative Thresholding

CPU Central Processing Unit

EIT Exhaustive Iterative Thresholding

ER Edge Removal

FAST Features from Accelerated Segment Test

FPGA Field Programmable Gate Array

FPU Floating Point Unit

GME Global Motion Estimation

GPS Global Positioning System

GPU Graphics Processing Unit

HB Harris with Box filter

HD High Definition

HG Harris with Gaussian filter

IMU Inertial Measurement Unit

IT Iterative Thresholding

KLT Kanade-Lucas-Tomasi feature tracker

MBC Mosaic-Based Compression

MPEG Moving Picture Experts Group

MSE Mean-Square Error

NMS Non-Maximal Suppression

PP Partial Pruning

PROSAC Progressive Sample Consensus

PSNR Peak Signal-to-Noise Ratio

RanSaC Random Sample Consensus

xxi

xxii LIST OF ABBREVIATIONS

ROI Region-Of-Interest

SIFT Scale-Invariant Feature Transform

SIMD Single Instruction, Multiple Data

STB Shi-Tomasi with Box filter

STG Shi-Tomasi with Gaussian filter

SURF Speeded-Up Robust Features

SUSAN Smallest Univalue Segment Assimilating Nucleus

UAV Unmanned Aerial Vehicle

1
Introduction

Motivation

Wide area surveillance and monitoring is critical for disaster recovery and response,

conservation efforts and large infrastructure management. Commercial unmanned

aerial vehicles (UAVs) are being increasingly deployed to collect high resolution

data of the area under surveillance, as they are affordable, provide a unique aerial

perspective and can be sent to remote and inaccessible areas, requiring minimal

human intervention. On-board cameras are a primary form of data collection,

resulting in huge volumes of high resolution still/video imagery. Information such

as the presence of moving objects needs to be extracted from these videos, as they

represent “interesting” events in surveillance. It is critical that these events are

relayed back to the ground station, for speedy and meaningful response. However,

1

2 1 Introduction

the battery-powered UAVs operate on very stringent on-board power budgets that

determine the duration of their flight. Therefore on-board power consumption for

communication needs to be kept minimal. In addition, the communication band-

width itself may not allow high resolution videos to be transmitted. Therefore,

on-board processing of videos is essential to extract relevant information and com-

municate only this information, in real-time. Several computer vision techniques

for motion detection have been proposed that separate moving objects from the

scene. This has also enabled efficient compression techniques such as mosaic-based

compression (MBC) of aerial videos, by compressing the moving objects separately

from the background scene. However, these algorithms are highly complex in terms

of computations, and on-board processing has been demonstrated only for short

duration flights. A major contributor to the complexity is the global motion es-

timation (GME) step, which removes the artificial motion induced in the video

frames due to moving camera. This is the first step in most aerial video process-

ing algorithm chains. As GME needs to handle wide range of image content and

diverse scene complexity in terms of camera motion and moving targets, the com-

putational complexity of existing methods is prohibitively high. Compute-efficient

techniques for GME need to be developed that can be deployed on resource-limited

surveillance UAVs. These challenges motivate the proposed research in this thesis.

Scope and Objectives

The aim of this research is to develop embedded computing techniques for re-

mote mobile video surveillance systems such as the surveillance UAVs, specifically

for global motion estimation (GME). The literature will be surveyed for existing

algorithms for on-board vision processing for UAVs, specifically for performing

GME, as this is the primary step for processing videos from moving cameras. The

existing techniques will be analysed to identify causes of high complexity. The

application specific constraints for aerial video processing shall be mapped to the

algorithms to explore opportunities to reduce computations. Architecture-aware

1.3 Research Contributions 3

algorithm innovations will be proposed for the key functional blocks in global mo-

tion estimation, namely corner detection, feature tracking and robust estimation,

leading to low-complexity GME suitable for low-resource platforms on surveillance

UAVs. Extensive evaluations shall be undertaken to ensure that low-complexity

is achieved without compromising the accuracy of the algorithms.

Research Contributions

The main research contributions of this thesis are summarised below:

1. A low-complexity pruning technique is proposed, in order to accelerate corner

detection with the widely used Shi-Tomasi and Harris algorithms. Novel

computationally simple approximations of the complex corner measure are

employed to prune away non-corner regions efficiently. The proposed pruning

technique leads to rapid extraction of corner candidates, at the same time

achieving comparable accuracy as the baseline detectors.

2. An automated thresholding method is proposed for Shi-Tomasi and Harris

corner detection algorithms that eliminates the need for user-specified thresh-

olds for quality of corners. A novel iterative threshold sampling scheme sup-

ported by a mask-based non-maximal suppression step is employed to release

minimum number of corner candidates for corner detection. The proposed

method guarantees the extraction of the required number of corners on a

wide range of image content, as is common on aerial surveillance videos.

3. The proposed automated thresholding and pruning techniques are combined,

leading to adaptive yet low-complexity corner detection with Shi-Tomasi and

Harris algorithms, by processing minimum number of corner candidates. A

novel bin-based approach is proposed to collect and process corner candi-

dates in a controlled manner, achieving comparable accuracy as the baseline

detectors while substantially reducing the complexity of corner detection.

4 1 Introduction

4. A novel strategy for low-complexity global motion estimation is proposed

that employs minimum number of corner features for estimation. Sparse

feature sets that are spatially well-distributed are employed for the estima-

tion. A fast evaluation strategy is proposed to detect failure in estimation

with the sparse set, which triggers progressive repopulation of features only

when estimation fails.

5. A novel adaptive windowing method for the widely used Kanade-Lucas-

Tomasi (KLT) feature tracking algorithm is proposed, to reduce the overall

complexity and substantially improve the robustness of the tracker to dras-

tic rotations and scale changes caused by fast camera motions. A window

size sampling scheme is employed that selects the optimal window size with

minimal computation overhead. This leads to fast yet accurate feature cor-

respondences, which in turn substantially improve the accuracy of the GME.

6. A unified framework for low-complexity and adaptive GME is proposed that

combines all the individual functional blocks - corner detection, feature track-

ing and robust estimation. The GME with sparse features is employed as a

controller, and its interactions with the corner detection and tracking blocks

are detailed that leads to the overall computations being adapted to the

scene content and complexity of the camera motion.

Research Publications

Journal

� Nirmala Ramakrishnan, Meiqing Wu, Siew-Kei Lam, and Thambipillai Srikan-

than, “Enhanced low-complexity pruning for corner detection”, Jour-

nal of Real-Time Image Processing, Vol. 2, No. 1, pp. 197-213, 2016. [1]

1.3 Research Contributions 5

Conference

� Meiqing Wu, Nirmala Ramakrishnan, Siew-Kei Lam, and Thambipillai Srikan-

than, “Low-complexity pruning for accelerating corner detection”.

IEEE Int. Symp. on Circuits and Systems (ISCAS), pp 1684-1687, 2012.

[2]

� Nirmala Ramakrishnan, Meiqing Wu, Siew-Kei Lam, and Thambipillai Srikan-

than, “Automated thresholding for low-complexity corner detec-

tion”, IEEE NASA/ESA Conf. on Adaptive Hardware and Systems (AHS),

pp 97-102, 2014. [3]

� Nirmala Ramakrishnan, Meiqing Wu, Siew-Kei Lam and Thambipillai Srikan-

than, “Mask-based non-maximal suppression with iterative pruning

for low complexity corner detection”, IEEE Intl. Symp. on Integrated

Circuits (ISIC), pp 368-371, 2014. [4]

� Nirmala Ramakrishnan, Thambipillai Srikanthan, Siew-Kei Lam, and Gauri

Ravindra Tulsulkar, “Adaptive window strategy for high-speed and

robust KLT feature tracker”, Image and Video Technology: 7th Pacific

Rim Symp. (PSIVT), pp 355-367, 2015. [5]

In Preparation

� Nirmala Ramakrishnan, Thambipillai Srikanthan and Gauri Ravindra Tul-

sulkar, “Low-complexity global motion estimation for aerial videos

with sparse features”.

6 1 Introduction

Organisation of the Thesis

The thesis is organized as described below:

� Chapter 2: A detailed literature survey is presented. The literature on

computer vision tasks for UAV surveillance applications is reviewed. The

common functional blocks that enable these surveillance tasks are identified.

Existing methods for global motion estimation are investigated to under-

stand open challenges in deploying them on low-resource platforms that are

typical in surveillance UAVs.

� Chapter 3: A low-complexity pruning technique for rapid extraction of

corner candidates is proposed, in order to address the high computational

complexity of Shi-Tomasi and Harris corner detectors. A cost analysis of

the proposed pruning technique in comparison to the conventional corner

measures is presented. A thorough accuracy evaluation is conducted with

the well-known Oxford repeatability dataset to demonstrate the accuracy

of the pruning-based corner detection. The Nios-II embedded platform is

used to demonstrate the computational benefits of the proposed method by

turning on/off the floating point unit and the on-board cache. The pruning

based corner detection is applied for global motion estimation in an aerial

surveillance video dataset and the accuracy of GME is evaluated.

� Chapter 4: In this chapter, an automated thresholding method is proposed,

that eliminates human intervention to set the threshold for quality in corner

detection. An iterative threshold sampling scheme is proposed to extract the

required number of corners by processing the minimum corner candidates in

least number of sampling trials. In addition, a mask-based non-maximal

suppression scheme is also proposed to complement the iterative threshold-

ing, in order to further reduce the number of candidates. Evaluations in

comparison with existing methods for automating thresholds is presented

in terms of the reduction in the number of corner candidates processed for

corner detection.

1.4 Organisation of the Thesis 7

� Chapter 5: The low-complexity pruning technique presented in Chapter

3 is combined with the automated thresholding method proposed in Chap-

ter 4, into an adaptive and low-complexity alternative for Shi-Tomasi and

Harris corner detectors that requires no manual intervention. A bin-based

mechanism for the collection of corner candidates is proposed that enables

this combination to work. Criteria for managing the release of candidates

in low-quality ranges of threshold is also proposed enabling deterministic

convergence of the method. The accuracy is evaluated by measuring the

number of corner matches between the proposed method and the baseline

Shi-Tomasi and Harris corner detectors. Evaluations on the Nios-II platform

are conducted to demonstrate the computational efficiency of the proposed

method.

� Chapter 6: The number of features used for global motion estimation has

a direct impact on the computational complexity. In this chapter, the as-

sumption of a dense feature set for estimation is challenged and the condi-

tions when a sparse feature set can be used are identified. A novel sparse

GME method is proposed to substantially reduce the computations needed

for GME. The proposed method employs very sparse but well-distributed

features. A simple evaluation strategy for determining failure in estima-

tion with the sparse set is proposed. A progressive re-population strategy

that prioritizes spatial distribution, is employed to deal with failures in es-

timation. The proposed method is evaluated on aerial datasets captured

by UAVs at various flying altitudes. A simulated dataset is also generated

for evaluations, in which the scene conditions in terms of number of moving

objects and the camera motion (i.e. rotation and scale changes) are varied.

Evaluations are performed to demonstrate how the proposed method adapts

the number of features to the complexity of the scene conditions.

� Chapter 7: The robustness of the feature tracker determines the quality of

the feature correspondences used for estimation. In this chapter, it is shown

that the window size used by the KLT feature tracker needs to be optimal

for each feature and across pyramid levels to improve the robustness of the

8 1 Introduction

tracker in the face of fast rotations and scale changes. A computationally

lean window sampling method for KLT is proposed that relies on monitor-

ing the performance of KLT to detect failure in tracking, and arrives at a

near optimal window size. The proposed method is evaluated on a well-

known annotated tracking dataset and compared with the widely used affine

formulation of KLT. A simulated dataset is also used to demonstrate the

accuracy of the proposed method when the complexity in global motion is

varied. The accuracy of the GME is also evaluated when the proposed robust

feature tracker is employed.

� Chapter 8: The functional blocks in GME, addressed in all the chapters

thus far, are combined into a unified framework for an adaptive and low-

complexity GME pipeline for aerial video processing in this chapter. The

interactions between the individual blocks is presented, highlighting how the

inherent parallelism can be exploited and describing how the entire pipeline

adapts to the varying image content, camera and object motion for achieving

global motion estimation with minimal computation cost.

� Chapter 9: The critical conclusions drawn from this research work are con-

solidated and presented in this chapter. The future directions for research,

based on this thesis, are also identified.

2
Literature Survey

Modern video surveillance systems are ubiquitous in urban as well as military ar-

eas. Conventional surveillance systems constitute fixed video camera installations

such as the closed-circuit television (CCTV) setups, which relay the surveillance

videos captured from the scene to a central server for live monitoring as well as

archival. However, remote and mobile video platforms are seen as the next genera-

tion surveillance systems due to their ease of deployment and widespread coverage

[6]. Unmanned aerial vehicles (UAVs), commonly known as drones, are being in-

creasingly deployed for surveillance due to their flexibility in deployment as well as

their ability to reach areas that are inaccessible for humans. In this chapter, the

literature is reviewed for compute-efficient techniques that enable the development

of such remote mobile video surveillance systems.

9

10 2 Literature Survey

Unmanned Aerial Vehicles for Surveillance

Computers have become pervasive in our lives today, but in their early stage

they were used only by the military and needed specialized training to operate.

UAVs are now making a similar shift from being used only in the military sector to

becoming easily available in the commercial markets [7]. Teal Group’s 2015 market

study estimates that worldwide UAV production will soar from current $4 billion

annually to $14 billion, totalling $93 billion in the next ten years. Military UAV

research spending would add another $30 billion over the decade [8]. Independent

open-hardware projects such as the Pixhawk [9] have enabled faster setup and use

of small drones at low cost, leading to their wide spread use.

UAVs are equipped with a variety of sensors such as, visual, multi-spectral, thermal

and hyper-spectral sensors [10] to capture imagery of the target scene in multiple

modes. Such UAVs are being deployed in a wide range of applications, as follows:

1. Filmography : Media and film productions employ aerial cinematography

using commercial UAVs (such as the popular DJI Phantom series [11] and

the tethered UAV Fotokite [12]) for movie productions and event coverage,

providing a unique aerial perspective.

2. Delivery of goods : UAVs have been tested for autonomous transportation

and delivery of goods (such as the Matternet drone [13] and Amazon Prime

Air [14] service).

3. Remote sensing : UAVs have been seen as lower-cost and easy-to-use alter-

natives to manned flights or satellite imagery for routine remote sensing

[15, 16].

4. Post-disaster and emergency response: UAVs are employed to assess the

damage by collecting still and video imagery, after a natural disaster en-

abling the efficient distribution of rescue efforts, as such areas are often too

dangerous or inaccessible for humans [17].

2.1 Unmanned Aerial Vehicles for Surveillance 11

5. Infrastructure inspection and monitoring : Infrastructures such as oil pipelines,

power transmission grids, solar panel arrays and bridges need to be moni-

tored and inspected routinely for assessing their health and identifying any

structural issues. UAVs have been used extensively to collect data for such

inspections [18].

6. Traffic monitoring : A survey of methods applying UAVs for traffic mon-

itoring can be found in [19] and demonstrates the applicability of aerial

surveillance in monitoring traffic flow.

7. Wide-area surveillance: In [20], UAVs are considered for homeland/border

security applications which need 24x7 surveillance to detect intrusions and

illegal activities. Conservation teams use UAVs to monitor large forest areas

to detect illegal poaching and to keep track of animals (such as the Conser-

vation Drones project [21]).

In the applications that require monitoring of distant scenes (whether routine

or in response to an emergency), collection of high-resolution still/video imagery

using the on-board cameras on the UAVs is a primary task. Unlike the UAVs

used in filmography, that are operated within line of sight by a human operator,

the UAVs employed for surveillance cover wide areas in a routine manner. These

areas are often inaccessible to humans. UAVs provide a safe, easily deployable

and cost effective solution that requires less human intervention for wide-area

surveillance/monitoring applications. Such UAVs belong to the class of remote

and mobile video surveillance systems.

The UAVs come in a wide range of weights and capabilities: from micro UAVs

weighing <0.9 kg, to medium and high altitude long endurance UAVs that weigh

100’s of kg. However, the greatest uptake for commercial applications is predicted

for the lighter end of the scale: for platforms with a weight of <15 kg, because

this is where the cost benefits are likely to be most significant and the risk with a

blunt force impact is reduced [22]. The airframes (mechanical structures) of such

smaller UAVs can be classified into: rotorcrafts and fixed-wing planes. Rotorcrafts

12 2 Literature Survey

use rotors (vertical propellers) for creating lift. Quadcopters (i.e. rotorcrafts that

use four rotors) as in [23] and other rotorcrafts have seen a lot of research in recent

years owing to their small sizes, ability to hover and hold precise positions for an

on-board camera, which make them suitable for exploring indoor and cluttered

urban scenes. However, for longer duration flights such as those necessary for

the routine wide-area surveillance applications, fixed wing airframes have been

preferred as they can carry greater payloads for longer durations with less power

[21]. Also in terms of safety, when there is a failure, the fixed wing UAVs safely

glide down without power, as opposed to how the rotorcrafts fall.

Military drones used for surveillance need to be operated by, (often a team of)

human operators from a ground control station. In contrast, the navigation of the

smaller UAVs, used for civilian outdoor wide-area surveillance applications, are

typically autonomous, managed by an on-board auto-pilot software. In Fig. 2.1,

an example of UAV flight planning [22] is shown. As shown in Fig. 2.1 (a), the

flight path is predetermined by specifying waypoints on a satellite image or a map.

In Fig. 2.1 (b) the overlapping images captured along the flight path during the

flight is shown. Such a flight path, similar to a lawn mower’s trajectory is typical

for surveillance applications to get maximum coverage. The global positioning

system (GPS) receivers provide the position information and an inertial measure-

ment unit (IMU) provides the flight attitude information at any given time. The

autopilot uses the position and attitude information to make the necessary course

adjustments to keep the UAV on course. The autopilot can be overridden by a

ground operator at any time. For indoor and GPS-denied environments, UAVs

use on-board cameras [24] or range sensors for obstacle avoidance and dynamic

path planning.

Evidently, UAVs deployed in modern surveillance systems are moving towards

small sizes and the flight time of these battery powered UAVs is highly dependent

on the system power consumption. This constrains the payloads and on-board

computations of the UAV. At the same time, in order to operate with minimal

human intervention, higher levels of autonomy in control and navigation is en-

visaged [25]. It is recognized that choosing an appropriate embedded platform

2.2 On-board Vision-based Tasks for Surveillance 13

Figure 2.1: Flight planning example (a) showing image waypoints and
flight lines and (b) image footprints with overlap. [22]

to perform the required on-board processing, to achieve higher autonomy, on the

resource-constrained UAV platforms is a challenging problem [26].

In the next section, the vision-based algorithms that are required for surveillance

by camera-equipped UAVs, are reviewed.

On-board Vision-based Tasks for Surveillance

Traditional video surveillance systems involve human operators who monitor the

surveillance videos to detect anomalies. However, human monitoring suffers from

fatigue and is highly ineffective in dealing with the huge volumes of video data

being gathered continuously, leading to missed events [27]. Therefore in the past

decade, intelligent and automated video surveillance systems, powered by com-

puter vision algorithms for video analytics [28, 29] have been growing in impor-

tance. The human operator is replaced by a virtual operator that stays focused

24x7, detecting “interesting” events as they happen and then alerting human op-

erators. This transforms the video surveillance system into a real-time, proactive

and event driven process leading to swift response to events [27].

In the context of aerial video imagery from UAVs, video analytics is used to convert

the large volumes of raw data captured, into useful information. For instance, crop

statistics such as plant height and counts are generated for agricultural applications

14 2 Literature Survey

in [30]. However these techniques are applied offline, on the ground, at the end of

the flight, by processing the entire video data at one go. In contrast, wide-area

surveillance scenarios need to respond to the events captured by the UAV in a

time-critical manner. This requires the video analytics techniques to be performed

in real-time and hence, on-board the UAV [25, 26]. In this section, vision-based

algorithms that enable video analytics for surveillance are reviewed.

Motion Detection

Detecting and tracking moving objects [31, 32, 33] is a very common surveillance

task for all surveillance systems. Motion cues represent an “interesting” event in

the surveillance videos - for instance, moving animals or poachers in the forest area

being monitored [21], vehicles on the highway under surveillance [19] and intruders

in border patrol applications [20]. For a surveillance UAV, on-board detection of

moving objects, can provide real-time alerts that can trigger necessary actions in

a timely manner, without the need to wait for the UAV to return to the ground

station.

Traditional motion detection algorithms are designed for stationary cameras and

rely on a fixed background. They focus on accurately modelling the background

and then applying background subtraction to segment the moving objects, also re-

ferred to as foreground [34]. However, the video streams captured by surveillance

UAVs are challenging as they have moving backgrounds due to the motion of the

camera. Therefore, the camera motion needs to be separated from the object mo-

tion, in order to detect moving targets. This is illustrated in Fig. 2.2 that shows the

video processing chain for moving object detection, segmentation and tracking for

UAV videos [32]. The independent motion detection separates the object motion

from the camera induced motion and provides these as inputs to the subsequent

object segmentation and multi-object tracking modules. This is achieved by the

estimating the parameters for a model for global motion across successive frames

(in this case, homography), caused due to the camera motion. This parametric

2.2 On-board Vision-based Tasks for Surveillance 15

estimation is also referred to as global motion estimation (described in more detail

in Sec. 2.4).

Figure 2.2: UAV video processing chain [32]: Outputs of the independent
motion detection (dotted boxes) are necessary for object segmentation and
tracking

The detected camera motion can be used in a motion compensation step to create

a stable background [35]. Background modelling is then employed and the mov-

ing objects are segmented by a background subtraction. Several works skip the

background modelling and subtraction by operating directly on the local optical

flow vectors (vectors denoting the frame-to-frame motion of a local patch in the

image). In [32, 33], the local optical flow vectors for features are determined, and

then a motion compensation step removes the motion induced by the camera. The

vectors that do not follow the camera motion are then analysed to segment the

moving object from the frame. In [36] a motion detection algorithm has been

implemented on FPGA showing real time performance, however it relies on sim-

ple block matching for camera motion estimation, that is less accurate than using

optical flow vectors. The methods [31, 32, 33] that use optical flow vectors have

not been demonstrated for embedded platforms.

16 2 Literature Survey

Video Compression

For remote surveillance systems, fixed or mobile, the communication network is

usually critical for efficient transmission of surveillance data [37]. The commercial

drones that operate for short distances and durations have reliable communication

channels: for instance, the Fotokite [12] sends uncompressed videos using a video

down-link and the DJI Phantom series [11] transmit high-resolution video data

by using broader channels like Wi-fi. However they have a very limited range of

operation. UAVs used in wide area surveillance have a longer range of operation.

Therefore, the coding technique used by the on-board vision system for encoding

the captured videos becomes critical as the UAVs have the following constraints:

1. Limited power/energy budget : The transmission of video data from a remote

camera to the ground stations is often the most power consuming activity and

can affect the operational lifetime of the battery powered remote surveillance

systems. Hence, on-board compression resulting in high coding gains, is

critical to reduce the power consumption due to video data transmission

[38].

2. Communication data rate: The video inputs are increasing in resolution

from NTSC/PAL standard definition sensors (∼20MBps raw data) to high

definition (HD) sensors (∼125 MBps). For instance, in the Conservation

Drones project [21], Go Pro cameras are used with a resolution of 1080p60 -

i.e. screen resolution of 1920x1080 pixels for frame rates of 25, 30, 50 and 60

frames per second. In [39], HD video is compressed for transmission from a

surveillance UAV. However the communication bandwidth has not increased

accordingly, and is at times more limited because of low data rate satellite

links that are shared by multiple vehicles [37].

3. Encoded video quality : High degree of compression of the surveillance videos,

for optimized use of communication bandwidth, may result in poor quality

of decoded videos on the ground station. This leads to the high level video

analytics, such as object classification and tracking [27, 28, 29], being misled

2.2 On-board Vision-based Tasks for Surveillance 17

by the compression distortions. For instance, in [40], it is shown that con-

ventional coding techniques may result in poor quality of the decoded video,

especially in the context of surveillance videos, where the size of the most

important moving targets are very small compared to the entire scene. In

[41], it is shown that compression needs to be aware of the end application,

for instance, object detection or tracking requires the compression engine to

ensure the quality of the moving targets.

The conventional block based motion compensation technique, used in MPEG or

ITU-T video compression standards, exploits the spatial and temporal redundan-

cies present in all videos. However, the next generation of coding techniques that

achieve high coding gains, go beyond the statistical properties of the frame con-

tent and extract the semantics, such as objects and their motion. Mosaic-based

compression (MBC) technique [40, 42] falls in this category. This method was pro-

posed for the compression of aerial videos because the predominant change across

frames is the background motion induced by the moving camera. By efficiently

modelling the stable background across frames in the form of a background mosaic,

the moving objects are extracted as residuals for each frame.

Figure. 2.3 illustrates the mosaic-based compression pipeline. The algorithm first

aligns successive frames by performing global motion estimation (as discussed in

Section 2.2.1) and compensation. The residuals represent any new areas uncovered

due to camera motion and/or moving objects in the scene, and are extracted by

subtracting the frame with the background mosaic. For each frame, only the

global motion parameters (that align the current frame with the previous frame)

and the residuals need to be transmitted. The background mosaic is updated

at both the encoder and decoder, and is used to reconstruct the frame from the

motion parameters and residuals at the decoder. More recently, region of interest

(ROI) coding [39] has been proposed for aerial videos. ROI coding also relies on a

segmentation of background and moving objects for efficient compression of aerial

videos.

18 2 Literature Survey

Figure 2.3: Block diagram for mosaic-based compression (MBC) [43]

These coding techniques are highly suited for the compression of aerial videos for

the following reasons:

1. Efficient coding : The background that is required to be transmitted for

each frame is represented by only a few parameters in the camera motion

model. In addition, only the foreground and any misalignment errors are

transmitted. As the foreground consists of very small moving targets, the

MBC achieves very high coding gains in the context of aerial surveillance

videos.

2. Good subjective quality : As the foreground is represented separately from

the background, almost visually lossless coding of the foreground can be

achieved resulting in high subjective quality of the decoded videos.

3. Enhanced visualization: The representation of the background as a mosaic

also lends well with the visualization of the scene being monitored for the pi-

lots/operators on the ground control station in the form of a dynamically up-

dated panoramic background mosaic. Such a representation can also greatly

enhance the decision making by human operators on the ground.

2.2 On-board Vision-based Tasks for Surveillance 19

In [38, 44] the global motion estimation is incorporated into the H.264 encoder.

In [45], the on-board IMU measurements are used to reduce the complexity of

GME-based encoding.

Vision-aided Navigation

Vision-based control and navigation of the UAV [46] is an important task for

GPS-denied cluttered/indoor environments such as the mini-UAVs in [23]. For

the surveillance UAVs, in the absence of GPS inputs, on-board geo-registration

has been proposed in [47]. This involves registering the current frame with a

geo-registered image to derive the position estimates for the vehicle. Detecting a

moving object and tracking it online can also help with autonomous navigation

of the vehicle by target following - i.e. the moving object is kept in the centre

of the frame [48]. In both these case, the motion due to the camera needs to be

compensated for further processing of the aerial video frames.

In this section, it was seen that motion detection, video compression and vision-

aided navigation are critical tasks that need to be performed in real-time and on-

board the surveillance UAV. As the motion of the UAV induces artificial motion

in all the frames in the video captured by the on-board camera, global motion

estimation algorithm becomes the critical first step in any vision-based processing

for aerial videos. In [39], it is seen that the global motion estimation step is

still computationally intensive executing at ∼10 frames/second for HD video on a

typical modern desktop PC 1. Estimating the global motion requires the extraction

of local motion, i.e. motion of the individual pixels or small patches as shown in

the independent motion estimation pipeline in Fig. 2.2. Therefore, the next section

surveys methods for local motion estimation which is followed by a detailed survey

of global motion estimation.

1Intel Core i7-3770K CPU at a clock rate of 3.5 GHz

20 2 Literature Survey

Local motion estimation

A local feature represents image patterns which differ from their immediate neigh-

bourhood. They provide individually identifiable anchor points in an image, whose

location can be determined accurately in a stable manner across time [49]. In

literature, the terms local feature, point feature, interest points and corners are

interchangeably used. In this thesis, the local features will be referred to as corners

or features.

The feature correspondence between successive video frames provides the local

motion of the pixels representing the features, i.e. for a feature at location (x, y)

in the current frame, it’s local motion is the displacement d = (dx, dy) such that

the new location (x′, y′) of the feature in the next frame is obtained by x′ = x+dx

and y′ = y + dy. In literature, this is also referred to as optical flow. Feature

correspondences are then processed for the entire frame in higher level algorithms

such as global motion estimation, in order to derive the motion induced due to

the camera.

Feature correspondences can be obtained in two ways:

1. Feature detection and tracking : Point feature (or corner) detectors such as

Shi-Tomasi [50], Harris [51], FAST2 [52] and SUSAN3[53] detect patches in

the image that have high degree of intensity variations, allowing them to be

uniquely found in the successive frame. These features are represented by

their locations. A feature tracker such as the Kanade-Lucas-Tomasi (KLT)

[54] is used to locally search for the feature patches in the successive frame,

around the current location, to determine the correspondence.

2. Feature detection/descriptor and matching : When frames undergo a large

degree of change in viewpoint (due to rotation or scale change), a more

sophisticated descriptor is employed to represent the feature in a scale and

2Features from Accelerated Segment Test
3Smallest Univalue Segment Assimilating Nucleus

2.3 Local motion estimation 21

rotation invariant manner. SIFT4 [55] and SURF5 [56] are examples of widely

used feature descriptors. The feature descriptors are computed for both

frames and then matched using a similarity measure to obtain the feature

correspondence.

A feature detector and tracking algorithm has been extensively used for video

sequences [35, 39, 57] as it can provide accurate correspondences for the small

local motion experienced between frames. However, when the viewpoint variation

is significant between two images, the feature descriptor and matching algorithm is

needed to compute the feature correspondences. It has to be noted that computing

feature descriptor is computationally intensive, and therefore, a feature detector

and tracking algorithm is used for fast feature correspondence computations in

video sequences.

Feature Detection

Excellent surveys on corner detectors proposed in the last 30 years can be found

in [49] and [58]. In this section, the focus is on related work in corner detec-

tion from the standpoint of efficiency. Earlier work on corner detection involved

looking for high curvature points along the contours in the image which typically

correspond to true corners in 3D. In [59], such a method is proposed that looks

for maxima of curvature where the gradient is large. Recent work in corner de-

tection selects points that are robust, stable and distinctive, that need not always

correspond to true corners [49]. As distinct patches exhibit a large variation in

the pixel intensity compared to the neighbouring pixels, detectors that compute

the second-derivatives of intensity into a Hessian matrix, have been proposed [49].

However, they have been shown to be relatively less reliable. Shi-Tomasi [50] and

Harris [51] corner detectors compute an auto-correlation matrix using the first-

order derivatives of the intensity values and this matrix represents the degree of

intensity variations in various directions around a pixel. SUSAN detector [53]

4Scale Invariant Feature Transform
5Speeded Up Robust Features

22 2 Literature Survey

operates directly on the image intensity (without the use of derivatives), by com-

puting the fraction of pixels within a neighbourhood that have similar intensity

as the centre pixel. FAST [52] extends this idea to consider only pixels on a circle

around the centre pixel and uses an efficient decision tree to classify the centre

pixel as a corner.

It is well recognized that corner detection is a compute-intensive step. There are

typically two approaches that have been reported in the literature for increasing

the computation efficiency of corner detection:

1. Hardware acceleration: Hardware acceleration techniques have been pro-

posed to exploit the inherent parallelism in the corner detectors. Efficient

field programmable gate array (FPGA) implementation for SUSAN has been

presented in [60]. Although FAST is computationally simpler to Harris and

Shi-Tomasi detectors, recent evaluations [61] have shown that FAST can be

unreliable in many scenes, and hence, the Harris detector is preferred. The

evaluations in [58] also show that Harris and Shi-Tomasi achieve among the

best results in low-level corner detection. Numerous approaches to accelerate

these detectors have, therefore, been reported. Various fast implementations

of Harris have been proposed in the literature. The target accelerator plat-

forms include application specific integrated circuit (ASIC) [62], FPGA [63],

Cell Processor [64] and single instruction multiple data (SIMD) architec-

ture [65]. In [66], a simpler floating-point format is used by customizing

instructions on the Nios-II processor. In [67], a hardware implementation

that performs Harris corner detection on a rank transform image instead of

the original image is presented. FPGA implementation for Shi-Tomasi in

[68] employs an alternative corner measure that uses only integer arithmetic

consisting of additions and multiplications and avoids the transcendental op-

erations. In [69] and [70] the corner detection step for Shi-Tomasi is imple-

mented on graphics processing unit (GPU) and the final step of non-maximal

suppression (NMS) is parallelized.

2.3 Local motion estimation 23

2. Algorithm innovations : Low-complexity in corner detection is also achieved

by modifying the algorithms, independent of the underlying hardware archi-

tecture. In [71], the time for corner response computation is kept constant,

without depending on the window size, by the use of the integral image

representation. In [72], a pruning technique is proposed that selects pix-

els with high gradient magnitude as corner candidates for Shi-Tomasi and

Harris algorithms.

As the scene content in aerial videos changes drastically, scene-adaptive corner

detection techniques are of interest. In [73], an adaptive sampling technique is

proposed for FAST corner detector, which locally adapts the computation steps

for corner detection based on the image content, which results in lower compu-

tations in homogeneous regions that are not likely to contain corners. Optimal

parameter selection for corner detection is another way to be adaptive to scene

content. The problem of automatic optimal parameter selection has been ad-

dressed in the context of edge detection in [74] and later generalized to all types

of features in [75]. It involves statistical analysis of detections, by using a range of

parameter sets, and identifying the set that results in maximum number of useful

features and minimum amount of noise. However, it is not practical to use this

technique in a real-time resource-constrained system, as the detector is executed

as many times as the evaluated parameter sets. The OpenCV implementation

(dynamicadaptedfeaturedetector) that selects the optimal parameters for detecting

corners in [76] also requires multiple executions of the detector and hence, it is not

a low-complexity solution.

Feature Tracking

The Kanade-Lucas-Tomasi (KLT) feature tracker [54] is widely used to compute

the feature correspondence that represents the local motion of a feature. The

goal of KLT feature tracker is to find the displacement d = (dx, dy) by which

the feature patch at (x, y) in the current frame has moved to a new location

24 2 Literature Survey

(x + dx, y + dy) in the next frame. By relying on the patterns of image intensity

gradient surrounding the feature, KLT examines far fewer potential matches to

find the corresponding location in the next frame. Two basic assumptions are

made: (1) Intensity changes smoothly with position (2) Intensity pattern of the

feature itself does not change over time. These assumptions enable the formulation

of a least-square estimation problem that iteratively determines the displacement

d through a Newton-Raphson method, such that the residual error between the

feature patch and the potential match is minimized. A detailed derivation of the

mathematical formulation for KLT is provided in Appendix A.

Although KLT can be applied to any image patch with sufficient intensity varia-

tions in its neighbourhood, it is often combined with the Shi-Tomasi [50] corner

detector. This is because the corner measure computed by Shi-Tomasi is derived

from the KLT algorithm itself - essentially, the patches that track well with KLT

are detected by the Shi-Tomasi as good features.

The KLT tracker employs linear approximation in its core step (refer to Eq. A.5

in Appendix A) and this works only if the displacement d is very small. In order

to overcome this limitation, a multi-resolution pyramidal approach was proposed

in [77] to deal with larger inter-frame displacements as shown in Fig. 2.4. The

intuition is that a large motion can be reduced to a small displacement if it is

considered for the sub-sampled image. Therefore, the image I is sub-sampled Lm

times resulting in a pyramidal representation of the form {I0, I1, ..., ILm} where I0

is the original image and I1 is obtained by sub-sampling I0 by 2, and so on. A large

displacement of d can then be captured at a higher level of the image pyramid

I2 as the disparity at this level d2 is small enough for the linearity assumption in

KLT to work.

As it is computationally simple, KLT is preferred on low-resource platforms on-

board UAVs to compute feature correspondences [78]. However, the classical KLT

(as described in Appendix A) assumes that the patch around the feature undergoes

only translation motion. Therefore, in the presence of rotation and scaling, KLT is

2.3 Local motion estimation 25

Figure 2.4: Pyramidal approach for KLT illustrated with a 2-level pyramid
(Lm = 2)

known to suffer from high inaccuracies [78]. This is a severe limitation of KLT espe-

cially for surveillance UAVs as drastic frame-to-frame rotation is common in aerial

videos when UAVs perform bank turns [78] as shown in Fig. 2.1. In [79], an affine

formulation is proposed that replaces the translation model with an affine model

in the KLT computations, allowing the feature patch to undergo rotation, scaling

and skew, in addition to translation. However, this is highly compute-intensive

and real-time performance is achieved only with GPU implementations [80]. In

[78, 81], the measurements from on-board inertial measurement units (IMUs) are

used to provide initial estimates for KLT, eliminating the rotation component of

the motion. In [82], a fixed window size is replaced with an exhaustive sampling

of window sizes is employed, to select an optimal window size, in order to improve

the accuracy of KLT. In [83], it is shown that by increasing the window size of the

KLT feature tracking step in the original high resolution frame (I0), the benefits of

a pyramidal approach can be obtained without the need for the computationally

costly image pyramid generation. Therefore, window size selection is an important

consideration for the accuracy of KLT feature tracker.

As the accuracy of the tracking algorithm is critical for the subsequent algorithms

that use the feature correspondences as input, several works focus on evaluating

the tracks obtained from KLT. Error estimates are proposed in [84, 85], that

26 2 Literature Survey

are used to evaluate the feature correspondences reported by KLT allowing the

end-user application to qualify the correspondences. In [86], theoretical error

estimates for KLT tracks is presented, however it is reported that the error estimate

computations are so high that they cannot be used in real-world applications in an

online manner. When a feature patch is tracked over many frames, its appearance

starts to change causing a drift error in KLT. To deal with errors during long-

term tracking, a more sophisticated appearance model is incorporated in [87, 88].

A rejection rule that allows the tracker to automatically reject bad tracks was

proposed in [89].

Global Motion Estimation

Videos captured by moving cameras contain global motion across frames due to the

motion of the camera. This global motion can be modelled using a 2D parametric

transformation model that defines the displacement of each pixel in the frame

due to the global motion [90]. Global motion estimation (GME) is the process of

estimating the parameters of this global motion model. The GME is illustrated

in Fig 2.5 where the difference between successive frames in a video sequence is

shown before and after global motion estimation has been employed. As is clearly

seen, after the global motion due to the moving camera has been compensated,

using the global motion model, the residuals are only the moving objects (e.g.

the white car in Fig 2.5) and the new regions uncovered due to camera motion.

Once the camera motion has been eliminated, further processing for mosaic-based

compression or motion detection as described in Section 2.2 can be performed.

Global Motion Models

The global motion model uses a 2D parametric transformation model T to define

the motion of each pixel from (x, y) in the current frame to (u, v) in the next

2.4 Global Motion Estimation 27

Figure 2.5: Illustration of global motion estimation on aerial video

frame, caused by global motion, as shown:

(u, v) = T [(x, y)] (2.1)

The simplest motion model is a 2-parameter translation model:

u(x, y) = x+ t1

v(x, y) = y + t2 (2.2)

A more frequently used model [90, 91, 92] is the affine motion model with 6

parameters:

u(x, y) = a1x+ a2y + a3

v(x, y) = a4y + a5y + a6 (2.3)

28 2 Literature Survey

The model represents the motion of a planar surface under orthographic projection,

and therefore it assumes that the depth map of the scene is small compared to

the distance of the camera from the scene. Hence, it is a very good approximation

for the global motion of the image when the camera is viewing distant scenes e.g.

aerial videos captured by on-board cameras on surveillance UAVs.

The 2D projective model with 8 parameters, also called a homography, [93, 94]

relaxes the constraint of the affine model and allows for the representation of the

motion of a planar surface under perspective projection:

u(x, y) =
h11x+ h12y + h13
h31x+ h32y + 1

v(x, y) =
h21x+ h22y + h23
h31x+ h32y + 1

(2.4)

A more complex motion model with 12 parameters that allows more freedom to

the deformation of the observed 2D scene is a non-linear parabolic model [91].

The choice of the motion model depends on the type of the depth structure of

the scene with respect to the location of the camera and the type of camera

motion expected. For inter-frame estimation of distant scenes, a homography

sufficiently describes the global motion. But over a longer period, i.e. if global

motion needs to be estimated and compensated for a large number of frames, then

more sophisticated models are necessary.

Parameter Estimation Approaches

The parameter estimation method used in the GME can be broadly classified into:

1. Pixel-based or direct methods [90]

2. Feature-based methods [95]

The main difference between the two approaches is that in direct methods, all the

pixels in the image are used to derive the global motion parameters, whereas in

2.4 Global Motion Estimation 29

feature-based methods, only feature correspondences are used in the parameter

estimation.

In pixel-based GME, the parameters are estimated by the minimization of the pre-

diction error between the two frames, using the iterative gradient descent method.

The advantage of a pixel based GME is that it provides highly accurate motion

estimation parameters with sub-pixel accuracy. Accurate GME is essential for:

� High coding gains : When the GME is accurate, the residuals coded for each

frame relative to the mosaic due to misalignment are minimized. Hence, the

overall amount of data sent with each frame is lesser.

� Accurate foreground extraction: For foreground extraction, the residuals due

to misalignment are noise and keeping them to a minimum with an accurate

GME can improve the accuracy of the moving objects extracted.

The main limitations of the pixel-based GME are [95]:

� High computational complexity : The complexity of the pixel based GME

is very high as it relies on iterative energy minimization algorithms that

operate on the entire image.

� Small pixel motion assumption: Pixel based GME formulation involves a

linearization step that assumes the pixel motion to be small between the

two frames. Hence, in the absence of a good initial estimate, the direct

methods can be stuck in local minima and/or never converge.

� Bias of estimation due to outliers : Outliers are created by local object mo-

tion, i.e. pixels belonging to moving objects, and they can bias the estimate

of global motion parameters.

The feature-based GME methods [95] are developed on the fundamental basis that

for reliable estimation of the parameters of the global motion model, only those

regions in the image that can produce good correspondences should be used; point

features or interest points [50] are examples of such regions.

30 2 Literature Survey

The feature based GME [57] applies a robust model-fitting algorithm such as the

Random Sample Consensus (RanSaC) [96] on the feature correspondences between

two successive frames, classifying them into inliers and outliers and computing the

global motion model that fits the inliers.

The advantages of the feature-based GME over the direct methods are [95]:

1. Invariance: The features have photometric and geometric invariance. That

is, between frames, when there is change of illumination or viewpoint, the

same 3D point is still detected as a feature in the images. This allows for

obtaining reliable feature correspondences.

2. Optimal estimation: The feature-based approach lends itself well to GME

over a long sequence, as this provides a means to compute a maximum

likelihood estimate of the estimated quantities, i.e. the affine or perspective

model parameters. For direct methods, it is not straightforward to write

down a practical likelihood function for all pixels.

3. Computational efficiency and convergence: Features accelerate the process

of estimating the global motion but with good accuracy. Use of all the

pixels, as in direct methods, potentially introduces many outliers that not

only increase the complexity of the estimation process but can also result in

incorrect convergence of the minimization.

Hence, use of features leads to a solution of the GME with good (less noisy) data.

The lower computational complexity of the feature-based GME compared to direct

methods makes it attractive for use in low-resource platforms.

State-of-the-art GME techniques

The limitations of direct methods have been extensively addressed in recent re-

search in GME [92, 97, 98]. The high complexity of direct GME methods, owing

to the use of pixels from the entire image, has been addressed by selecting appro-

priate pixel subsets, and then performing the iterative error minimization. In [92],

2.4 Global Motion Estimation 31

it was shown that the pixels from the entire image need not be used for the predic-

tion error. In this approach, only those pixels with the largest gradient magnitude

are chosen for the application of the direct method GME. In order to ensure that

the entire frame is well represented the image is divided into 100 sub regions and

the top 10% of the pixels are chosen. In [97], a similar pixel sub-sampling is used.

However, it is based on regularized patterns of pixel locations and hence is less

complex than [92]. It was shown in a later work [98] that the regularized patterns

as in [97] can have poor registration accuracy compared to gradient-based pixel

subset selection as in [92].

Direct methods also assume very small displacement between frames due to global

or camera motion. For large translations, direct methods can get stuck in local

minima. In [93], a modified n-step search is used at the lowest resolution of a Gaus-

sian image pyramid to get the initial estimate for the translation components. In

[91], a feature-based GME is applied to get the initial estimates of the translational

components. Once the translation components are found, more complex models

are applied for direct error minimization, after generating the predicted image by

applying the translation parameters.

There are attempts to reduce the complexity of the gradient descent step in direct

methods. In [92], an interpolation free formulation of the gradient descent method

is proposed that avoids intensity interpolation computations for non-integral pixel

locations in the gradient descent iterations. In a recent work [98], the full precision

images are replaced with 1-bit width images in the gradient descent. Hence, all the

full precision arithmetic operations are replaced with logical operations reducing

the complexity significantly.

Direct methods for GME are also easily biased by outliers due to local motion. In

[93], a robust M-estimator is used with a truncated quadratic error function. The

modification applies a threshold to the absolute error such that only those pixels

with the error below the threshold are used in the iterative parameter estimation.

The idea behind this is that the absolute error of a residual pixel that belongs to

32 2 Literature Survey

a moving object will be much higher compared to the absolute error of a resid-

ual pixel due to misalignment. In [91], an M-estimator is used with the feature

matching step to prevent the bias due to outliers.

With the widespread use of encoded MPEG video streams, global motion estima-

tion using data in the compressed domain has seen a lot of research contributions.

The motion vectors contain information about the motion of the various parts of

the scene and are computed by the compression engine. Hence, they can be reused

for the parameter estimation process. Also the GME can happen without the need

to decode the MPEG video. In [99], a background mosaic is built by analysing the

MPEG motion vectors directly. Recent work [100, 101] has focused on increas-

ing the robustness of the parameter estimation using the MPEG motion vectors

based on imaginary line tracking and Helmholtz principle. In [102] however, the

motion-vector based GME was compared with direct methods, and it was shown

that a simplified GME on down-sampled image pairs achieved better accuracy

than the motion-vector based techniques. The drawback of motion vectors is that

the motion vector represents the block with the least residual energy that can be

used to predict the current block, which need not represent the true motion of the

block [41].

Feature based methods have been adopted in GME due to their lower complexity as

the features are sparse yet reliable representations of the scene [95, 103]. Compared

to direct methods, they can better handle large motions and outliers. In [94], the

Harris corners are used as features and the frame to frame alignment is obtained.

In [57], an evaluation of a feature-based GME system is provided. A motion

prediction step is introduced that exploits the fact that the motion between two

frames will be mostly smooth which reduces the search range to find the feature

correspondence and hence reduces complexity. In [104], point crossings of edges are

used as features and parameters for the affine camera motion model is estimated

using the feature correspondences.

The feature-based methods do not give sub-pixel accuracy compared to the direct

methods [90]. In order to improve the accuracy, the feature matching step has

2.4 Global Motion Estimation 33

been replaced by a feature tracking step (as described in Section 2.3.2) using an

optical flow based feature tracker such as the Kanade-Lucas-Tomasi(KLT) feature

tracker [54]. The tracker is applied on each point feature detected by the feature

selection step to find its correspondence in the reference frame, and it gives sub-

pixel accurate local motion vectors for the point features. The use of the KLT

feature tracker in combination with the Shi Tomasi feature selection has been

explained in [105]. Harris corners and the KLT feature tracker is used in [39] for

the global motion estimation. In a recent evaluation [106], it has been shown that

the KLT feature-based image mosaicing gives superior results. In [107], such a

KLT tracker is used to estimate the global motion parameters and this is shown to

be more accurate than the method using the MPEG block-based motion vectors.

Tackling large displacements between frames is an important consideration for

all GME algorithms. Almost all GME techniques use some form of hierarchical

estimation. This involves the use of several levels of lower resolution (sub-sampled)

versions of the frames called an image pyramid. The estimation starts at the lowest

resolution and the results are propagated as initial estimates to the higher levels.

The need for hierarchical estimation is to be able to handle large displacements

due to fast motion [108]. In [93], a coarse-to-fine strategy is proposed for the direct

GME method where the GME is performed at the lowest resolution of a Gaussian

image pyramid and the results are propagated to higher resolution levels as initial

estimates.

The intuitive argument for the use of image pyramids is computational efficiency. If

large displacements can be retrieved from low resolution image information, then

high degree of savings in computations can be achieved. The higher resolution

images can then be used to refine the results obtained from the lower resolution

images and improve the accuracy. However, another important consideration is

that it is not just efficient but is necessary to remove the high resolution details in

order to correctly retrieve the large displacements, in the absence of which there

is a high likelihood of the estimation process getting stuck in local minima.

34 2 Literature Survey

Inertial measurement units (IMUs) are an integral part of the on-board navigation

systems in UAVs. In [109, 110], meta data is collected from external sensors on the

moving vehicle that is fused with global motion estimation techniques. In [109],

the aerial videos are of low resolution and hence a conventional image pyramid

approach will fail to give good results since at lower resolutions, there will be very

less features to detect and track. Meta data that contains additional information

about the camera position is extracted using on-board sensors and is used as

initial estimate for the GME. In [110], a sensor-assisted video encoding scheme is

presented that uses low-power and low-cost sensors such as digital compass and

accelerometer to provide camera motion inputs for the GME. The scheme has been

integrated with the H.264/AVC encoder and implemented on mobile phones.

Feature-based GME with KLT Feature Tracker

A good compromise between sub-pixel accuracy and low complexity is the feature-

based GME method that employs a KLT feature tracker for feature correspon-

dences. Figure. 2.6 illustrates this scheme. As described in Sec. 2.3, a feature

detection followed by feature tracking algorithm provides the local motion esti-

mation. These feature correspondences are then fed into the robust estimation

algorithm, random sample consensus (RanSaC) to generate the GME parameter

values.

Figure 2.6: Feature-based GME pipeline with KLT feature tracker [39]

As GME needs to be performed on each frame of the video, it is critical that the

underlying algorithms are low-complexity and real-time. In [39] it was recognized

2.5 Summary 35

that the number of features used for GME contribute to its complexity and sparse

feature sets could reduce the GME complexity. It has also been recognized that

the coverage of the frame by the feature set is a critical component to the accuracy

of the GME [111].

As RanSaC [96] is a widely used robust estimation algorithm, several improve-

ments have been proposed to reduce its complexity. RanSaC uses a hypothesize-

and-verify framework in an iterative manner to arrive at the largest inlier set -

set of feature correspondences that agree to a global motion model. In [112], a

pre-evaluation stage is used to quickly discard bad hypotheses. While traditional

RanSaC treats all feature correspondences equally, PROSAC (PRogressive SAm-

ple Consensus) [113] orders the sampling process based on the quality of the feature

correspondences, considering the highest quality correspondences first. In [114],

many hypotheses are scored simultaneously, in a breadth-first manner as opposed

to the depth first approach of the traditional RanSaC, thereby giving a fixed com-

putation time which is considered suitable for real-time implementations. In all

these works, it is still assumed that a large number of feature correspondences are

available for robust estimation.

Summary

In this chapter, it is seen that modern surveillance systems are increasingly re-

mote and mobile such as UAVs. Therefore they require on-board processing of

several vision tasks, such as motion detection, mosaic-based compression and con-

trol/navigation for efficient and autonomous operation. However, these battery-

powered systems are also highly resource constrained with strict payload limits

and therefore the vision-based methods need to be compute-efficient to be de-

ployed on-board. Global motion estimation was identified as the first step for the

vision-based surveillance tasks.

The aerial videos captured on surveillance UAVs exhibit diverse scene content

and illumination conditions. The typical trajectories of the UAVs suggest that

36 2 Literature Survey

the camera motion also varies significantly. For the on-board vision tasks to be

executed seamlessly without human intervention, the algorithms are traditionally

setup to deal with the worst case scenarios. For example, even though the motion

of the UAV is smooth - in order to cater to an occasional fast rotation, a fea-

ture descriptor and matching pipeline is used instead of a feature detector with a

tracker. Such design decisions in favour of autonomy result in high computational

complexity. There are several concerns with respect to the feature-based GME in

the context of the low-resource platforms on the surveillance UAVs:

1. Complexity of feature detection: Feature detection is an essential first step

for all the vision tasks on-board. However, it involves complex computations

on every pixel of the image. Efforts to speed up the feature detector have

involved hardware accelerations using GPU [69, 70]. However, they do not

address the opportunity to reduce the feature detection computations based

on the varying image content, which is a characteristic for surveillance UAVs.

2. Prefixed threshold for feature detection: The threshold used for determining

“good” corner regions is typically set empirically. However, the illumination

and scene content changes are drastic for aerial videos. In order to deal

with this wide variation, the thresholds are set conservatively resulting in

unnecessary computations when the scene contrast is favourable with a large

number of patches with “good” candidates. Being adaptive to the scene

content can not only make the detector work in a wide range of scenarios but

also adapt the computations accordingly, resulting in low-complexity feature

detection. However, existing work [74, 75, 76] on the selection of optimal

thresholds involve exhaustive evaluations of the various parameters and are

not suited for low-complexity platforms such as the surveillance UAVs.

3. Robustness of KLT : KLT is a preferred tracker because of its low computa-

tional complexity. However, it is not robust to the rotation/scaling motions

that the UAVs incur during their flight. This has been tackled in literature

using sensor fusion [78, 81] increasing the computational complexity. Using

2.5 Summary 37

the affine formulation [79] also brings in robustness at a high cost. Improv-

ing the robustness of KLT to rotations with a low computational complexity

is critical in order to make it viable for aerial videos which undergo fast

rotations/scale changes infrequently.

4. Number of features : Although the number of features used for GME has

a direct impact on the computation complexity, in literature it has always

been assumed that a dense feature set is needed for GME. However, as in

all estimation problems, the feature-based GME is also an over-constrained

system - i.e., a large number of feature correspondences are used to cope with

inaccuracies and outliers (foreground objects). From a computational effi-

ciency standpoint, this leads to wasted computations for surveillance videos,

as the camera motion is predominantly simple and the number of outliers

due to foreground is less. Therefore the ability to adapt the number of fea-

tures to the scene, can result in large savings in computational complexity

in aerial videos. In literature, there is no systematic method to determine

the optimal feature set for GME for a given camera motion and number of

moving objects.

In the following chapters of this thesis, these concerns are addressed one by one,

developing low-complexity techniques for global motion estimation in aerial video

processing.

3
Low-Complexity Pruning for Corner

Detection

Introduction

Corners, also known as features or interest points, represent identifiable anchor

points in the image. Corners are used for matching (e.g. image registration),

tracking (e.g. object tracking) and as robust image representation when combined

with feature descriptors for object recognition.

Several corner detectors have been proposed in the literature [49, 58] and com-

parative evaluations have shown that the Shi-Tomasi [50] and Harris [51] corner

detectors achieve some of the best results [58, 61]. Also, wide range of recent real

39

40 3 Low-Complexity Pruning for Corner Detection

time applications [25, 115, 116, 117, 118] have used Shi-Tomasi or Harris corner

detectors.

However, both the algorithms require a complex corner measure computation for

every pixel in the image. This step is highly compute intensive requiring floating

point arithmetic and becomes a bottleneck for real time vision tasks. Reducing

the computational complexity of these corner detection algorithms is essential in

low cost and low power embedded systems, especially those that do not support

an on-board floating point unit (FPU).

As mentioned in Section 2.3.1, architecture-dependent approaches [68, 69, 70] have

been proposed for reducing the corner detection complexity and/or making it

real-time. Algorithmic innovations to reduce complexity such as [71, 72] are in-

dependent of the underlying architecture. The proposed method belongs to this

category and can potentially result in higher computation savings when used with

the architecture specific solutions discussed earlier.

In this chapter, a low-complexity pruning technique for Shi-Tomasi and Harris cor-

ner detectors is presented, to efficiently discard non-corners, significantly reducing

the selection and evaluation effort for the presence of corners to only corner-like

regions. The approach proposed in [72] has a similar motivation as the work in this

chapter. However, it uses the gradient magnitude of a pixel alone as an indicator of

the corner and does not consider the intensity pattern of the pixel neighbourhood.

This can potentially miss many good corners. Also, the use of integral image in

[71] shows substantial savings only for large window sizes. Small window sizes, i.e.

3x3, have been shown to be sufficient for Shi-Tomasi/Harris detectors [77, 117]. In

addition, while the work in [69] and [70] achieves speedup by exploiting parallelism

on GPU, they are not well suited for low cost/power embedded systems. Moreover,

compared to [68, 69, 70, 71], the proposed technique computes the corner response

only on a small set of corner candidates instead of the entire image. As shown

in the experimental results, the proposed method leads to significant computation

savings without compromising the accuracy of corner detection.

3.2 Shi-Tomasi and Harris Corner Detectors 41

The rest of the chapter is organized as follows. In the next section, the Shi-

Tomasi and Harris corner detection algorithms are introduced. In Section 3.3, the

proposed pruning technique for the Shi-Tomasi and Harris algorithms is described.

Section 3.4 provides computational complexity analysis of the proposed method in

comparison with other related work. Section 3.5 presents actual implementation

results on the Nios-II processor to evaluate the accuracy and performance of the

proposed technique with a set of image benchmarks. The chapter concludes in

Section 3.6.

Shi-Tomasi and Harris Corner Detectors

Figure 3.1 shows the steps in the Shi-Tomasi and Harris corner detection algo-

rithms. Both the corner detectors compute a corner measure C on all the pixels

in the image, based on the local auto-correlation function that is approximated by

matrix M over a small window W for each pixel p(x,y):

M =

 ∑W w(x)I2x
∑

W w(x)IxIy∑
W w(x)IxIy

∑
W w(x)I2y

 =

a b

b c

 (3.1)

Ix and Iy are horizontal and vertical gradients respectively, and w(x) is an averaging

filter that can be a box or a Gaussian filter. The eigenvalues λ1 and λ2 of M (where

λ1 ≥ λ2) indicate the type of intensity change in the window W around p(x,y):

� If both λ1 and λ2 are small, p(x,y) is a point in a flat region.

� If λ1 is large and λ2 is small, p(x,y) is an edge point.

� If both λ1 and λ2 are large, p(x,y) represents a corner point.

Shi-Tomasi directly computes the smaller eigenvalue λ2 as its corner measure C

as shown in Eq. 3.2:

C = λ2 =
1

2

(
(a+ c)−

√
(a− c)2 + 4b2

)
(3.2)

42 3 Low-Complexity Pruning for Corner Detection

Harris combines the eigenvalues into a single corner measure R as shown in Eq. 3.3,

which avoids the explicit computation of eigenvalues. In Eq. 3.3, k is an empirical

constant (k = 0.04 to 0.06).

C = R = λ1λ2−k (λ1 + λ2)
2 = det(M)−k.trace(M)2 = (ac−b2)−k(a+c)2 (3.3)

Figure 3.1: Block diagram for conventional Shi-Tomasi and Harris corner
detectors

As shown in Fig. 3.1, once the corner measure C for every pixel is computed,

a threshold Tc is applied on the corner measures to discard the obvious non-

corners. The remaining pixels are the corner candidates, which are then ranked

in the descending order of the corner measure C. Candidates with the highest

corner measure are selected as final corners such that they are separated from

other selected corners by a user specified distance d. This is referred to as non-

maximal suppression (NMS). In this process, if a candidate is within the vicinity

of an already selected corner, it is discarded. The maximum number of corners

(N) that need to be extracted, the threshold Tc and the minimum distance of

separation between corners (d) is specified by the user.

Pruning Technique for Corner Detection

The following observations are made on the Shi-Tomasi and Harris detectors:

� In most images, the obvious non-corners (i.e. the flat and edge regions)

constitute a large majority of the image. Hence, the Shi-Tomasi and Harris

detectors incur a lot of redundant computations as they evaluate the entire

image for a high corner response.

3.3 Pruning Technique for Corner Detection 43

� For Shi-Tomasi, expanding Eq. 3.2 gives

λ2 =
1

2

(
(a+ c)−

√
(a− c)2 + 4b2

)
=

1

2

(
(a+ c)−

√
(a+ c)2 − 4(ac− b2)

)
(3.4)

λ2 is most influenced by the term (ac − b2) as the two (a + c) terms cancel

out. For a good corner, λ2 needs to be a large value. Hence maximizing

(ac − b2) which is also det(M) can select good Shi-Tomasi corners without

explicit eigenvalue computation.

� For the Harris corner measure as in Eq. 3.3, the trace(M) term is introduced

so that edges can also be detected. Ignoring the trace(M) term, the det(M)

term alone is sufficient to select corner regions.

Based on the above observations, det(M) is the key term in the corner measures

for both Shi-Tomasi and Harris, and pixels that maximize det(M) represent good

corner candidates. Therefore, a low-complexity pruning technique is proposed,

that employs simple approximations of the det(M), to quickly remove the non-

corners. The overall flow of the proposed technique is presented in Fig. 3.2. Note

that det(M) = ac−b2 consists of two terms and the proposed pruning technique is

divided into two steps that handle each term successively: PP that selects pixels

with a large value for ac, followed by ER that discards pixels with a large value

for b. In effect, PP and ER applied together select pixels that maximize det(M).

Each of the pruning steps is described in detail next.

Figure 3.2: Block diagram for the proposed pruning technique for Shi-
Tomasi and Harris corner detectors

44 3 Low-Complexity Pruning for Corner Detection

Partial Pruning

As shown in Fig. 3.2, partial pruning (PP) [2] is the first step of the proposed

pruning technique and it selects an initial set of corner candidate pixels C1 which

have a large value for ac. Applying an appropriate threshold can discard pixels

with low ac values.

Figure. 3.3 (b) shows the initial corner candidates selected by applying threshold =

0.05 ∗Max(ac), and it is clear that this covers the final Shi-Tomasi corner regions

in Fig. 3.3 (d) well. Instead of computing a and c for every pixel explicitly, the I2x

and I2y terms in the expression for ac are approximated with the absolute values

for Ix and Iy respectively and a pruning measure P is computed as follows:

P = a′c′ =
∑
|Ix| .

∑
|Iy| (3.5)

This eliminates the multiplication operations involved in the squared gradients.

Figure. 3.3 (c) shows that the a′c′ map covers the ac map in Fig. 3.3 (b) and the

final corner regions in Fig. 3.3 (d) well.

Figure 3.3: Selection of corner candidates (a) Original image (b) Corner
candidates selected using ac at threshold = 0.05 ∗Max(ac) (c) Corner
candidates selected using a′c′ at threshold = 0.05 ∗ Max(a′c′) (d) Shi-
Tomasi corner regions with λ2 at threshold = 0.05 ∗Max(λ2)

Figure. 3.4 shows that as the threshold for a′c′ map is reduced under uniform

illumination, corners and slanted edges are released first. This is followed by

vertical and horizontal lines, and finally faint textures and flat regions. This

shows that when the threshold is applied to a′c′ map of the image, non-corner

regions are likely to be removed, while retaining a significant amount of corners.

3.3 Pruning Technique for Corner Detection 45

Hence, a′c′ can be used as an effective corner indicator measure as it elevates the

corner regions above the non-corner regions. At the end of PP, an initial corner

candidate set denoted as C1 is generated and further processing takes place on

C1.

Figure 3.4: Corner candidates with partial pruning PP (denoted as C1)
by thresholding the a′c′ map at Tp = (a) 0.5 (b) 0.1 (c) 0.05 (d) 0.01

As seen in Fig. 3.4, C1 generated after PP contains many edge pixels, which are

obvious non-corner pixels. This is because PP only looks for pixels with high

values for ac and does not consider b2, which is the second term in det(M).

Removing Edge Pixels

As shown in Fig. 3.2, the next step is to remove the edge pixels (referred to as

ER). In order to maximize det(M), for all the candidates in C1, the second term b2

needs to be substantially smaller than the first term ac. In other words, the pixels

that have comparable values for ac and b2 need to be eliminated. The det(M)

computed over a small window W of a pixel is given by:

det(M) = ac− b2 =
W∑
i=1

I2xi
.

W∑
i=1

I2yi − (
W∑
i=1

Ixi
Iyi)

2 (3.6)

The gradient direction of the pixel is represented by ki = Ixi
/Iyi and det(M) can

be rewritten in terms of the gradient direction ki as:

det(M) = ac− b2 =
W∑
i=1

I2xi
.

W∑
i=1

(kiIxi
)2 − (

W∑
i=1

kiI
2
xi

)2 (3.7)

46 3 Low-Complexity Pruning for Corner Detection

When ki ≈ k for all the neighbours of a pixel in window W , the two terms, ac and

b2, converge and det(M) ≈ 0 as shown:

det(M) = ac− b2 ≈
W∑
i=1

I2xi
.

W∑
i=1

(kIxi
)2 − (

W∑
i=1

kI2xi
)2 = 0 (3.8)

This happens when the pixel and its neighbours fall on an edge with an edge

direction given by k. Hence the edge pixels in C1 need to be removed, as they

do not maximize det(M). A novel compute-efficient method to remove the edge

pixels, by analysing the gradients Ix and Iy of the 3x3 neighbours of the candidate

pixels, is presented. The proposed ER method avoids an explicit computation of

the b2 term.

The Ix-Iy space is divided into two sets of overlapping bins (bins 1-8) as shown in

Fig. 3.5. Edge pixels will have all their neighbours in the same bin whereas corner

pixels will show a spread and this allows quick detection of the edge pixels. Over-

lapping bins are necessary to capture edge pixels located along the bin boundaries

in the Ix-Iy space. For instance, bin 8 captures edge pixels falling on the boundary

of bins 2 and 3. Also, a 3x3 window is localized around the candidate pixel and

hence is considered the best option for the proposed method.

Figure 3.5: Edge removal (ER) in pruning: bin boundaries for Ix-Iy plots

Figure 3.6 illustrates the Ix-Iy plot of the 3x3 patches of various intensity patterns

for an example image:

3.3 Pruning Technique for Corner Detection 47

1. Pixels with a relatively flat 3x3 neighbourhood have all the points clustered

together close to the origin.

2. Edge point and its neighbours fall along the edge direction.

3. Corner point and its neighbours are spread wider.

Figure 3.6: Examples of Ix-Iy plots for 3x3 neighbourhood of a pixel in
various intensity patterns during the edge removal (ER) step (a) Pixel on
a flat region (b) Pixel on an edge (c) Pixel on a corner

In order to identify an edge point, for each candidate pixel in C1, the number of

neighbour pixels in each bin is counted, in the Ix-Iy space. Ideally, a candidate

pixel and all its 3x3 neighbours should fall in the same bin for it to be considered

an edge point. However, this is often not the case as, in practice, images are noisy

and the gradient computation is a numerical approximation. In order to overcome

this problem, a pixel is considered an edge point and is discarded when the number

of neighbouring pixels in a particular bin exceeds a predefined threshold (possibly

lower than 3x3=9).

During the bin allocation for a candidate pixel in the Ix-Iy space, if a neighbour

pixel has a low gradient magnitude, i.e. below the thresholds (Cx, Cy) as computed

in Eq. 3.9 and Eq. 3.10, it then contributes equally to all the bins:

Cx = mean(Ix) + k.stdev(Ix) (3.9)

48 3 Low-Complexity Pruning for Corner Detection

Cy = mean(Iy) + k.stdev(Iy) (3.10)

Here, Ix and Iy represent the gradient maps along the x and y directions of the

image respectively and k = 0.25 is set empirically.

The proposed method for removing edge pixels from the initial corner candidate set

C1 relies on the extremely compute-efficient bin allocation strategy that is enabled

by the use of bin boundaries, which are factors of 2 of the gradient magnitudes.

This enables the bin boundary computation and bin allocation to be achieved

using only comparisons and bit shifts. The corner candidate set generated at the

end of ER is referred to as C2 and the baseline algorithm (Shi-Tomasi or Harris)

is now applied only on C2.

As shown in Fig. 3.2, the corner measure computation, sorting and non-maximal

suppression steps are applied only on the corner candidates remaining after the

PP-ER pruning has been completed.

Nomenclature: The proposed pruning technique can be applied to both Shi-

Tomasi (ST) and Harris (H) corner detectors. As the proposed pruning technique

has two steps - PP that stands for partial pruning [2] followed by ER that stands

for edge removal [1], it is referred to as PP-ER. To refer to the corresponding

corner detectors with pruning, suffix of ST or H is added, leading to PP-ERST and

PP-ERH for the proposed pruning method for Shi-Tomasi and Harris respectively.

For the cost analyses and evaluations, pruning with only PP is also considered (in

order to demonstrate the impact of ER) and this is referred to as PPST and PPH

for partial pruning for Shi-Tomasi and Harris respectively. As shown in Eq. 3.1,

when the averaging filter w(x) is a box filter, the suffices for the corner detection

algorithms are STB and HB for Shi-Tomasi (Box) and Harris (Box) respectively.

When the averaging filter is a Gaussian filter, the corresponding suffices are STG

and HG.

3.4 Cost Analysis 49

Listing 1 Pruning based corner detection (PP-ERST/H)

1: for Each Pixel in Image I do . Partial Pruning: PP
2: Compute P = a′c′ =

∑
|Ix| .

∑
|Iy|

3: Apply threshold = Tp ∗Max(a′c′) to the a′c′ map to get C1
4: end for
5: for Each Pixel in C1 do . Edge Removal: ER
6: Compute bin boundaries: 0.25Ix, 0.5Ix, 2Ix, 4Ix
7: Allocate bins for each of the 3x3 neighbours in the Ix-Iy plot
8: for Each Bin do
9: if nBinMembers > binThreshold then

10: DiscardF lag = True
11: end if
12: end for
13: if DiscardF lag = false then
14: Add pixel to the candidate set C2
15: end if
16: end for
17: for Each pixel in C2N (C2 and its neighbours) do . Corner Response: B1a
18: Compute I2x, I2y , IxIy
19: end for
20: for Each Pixel in C2 do . Corner Response: B1b
21: Compute a =

∑
w(x)I2x, c =

∑
w(x)I2y , b =

∑
w(x)IxIy

22: end for
23: for Each Pixel in C2 do . Corner Response: B2
24: Compute corner response C = R or λ2
25: end for
26: Apply threshold = Tc ∗Max(C) on pixels in C2 . Corner Response: B3
27: Sort the corner candidates in C2 in descending order of C
28: Apply non-maximal suppression

Cost Analysis

Listing 1 describes the proposed low-complexity pruning technique applied to the

baseline corner detector. The proposed PP-ERST/H algorithm first applies partial

pruning (PP) to generate a corner candidate set C1. It then removes edge pixels

from C1 using ER to generate C2. The baseline algorithm is then applied only

to the corner candidate set C2. It is noteworthy that PP is applied to the entire

image, but subsequent steps of the pruning and baseline algorithm are only applied

to smaller candidate sets (i.e. C1 and C2).

50 3 Low-Complexity Pruning for Corner Detection

Steps Variants Multiplications Additions Square Root

PP 1 (16-bit) 2W (16-bit) + 2
ER 1 (32-bit) 39 (16-bit)

B1a: I2x, I2y , IxIy 3 (16-bit)

B1b: w(x) for M Box 3W (32-bit)
Gaussian 3W (FP) 3W (FP)

B2: C Shi-Tomasi (Box) 2 (32-bit) 4 (32-bit) 1
Shi-Tomasi (Gaussian) 2 (FP) 4 (FP) 1

Harris (Box) 3(32-bit) + 1 (FP) 2 (32-bit) + 1 (FP)
Harris (Gaussian) 4 (FP) 3 (FP)

Table 3.1: Operations per pixel for pruning and conventional Shi-Tomasi
and Harris corner detectors

The Shi-Tomasi and Harris algorithms have been used as the baseline algorithms.

They consist of the following key steps:

� B1: Compute auto-correlation matrix M for each pixel,

� B2: Compute corner measure (Shi-Tomasi or Harris) C for each pixel, and

� B3: Sort all the pixels based on the corner measure and apply non-maximal

suppression to generate the final corners.

Table 3.1 shows the computations incurred by the pruning and the baseline algo-

rithms per pixel. The pruning step PP only has 16-bit additions and multiplica-

tions and ER only has bit shifts and comparisons (which are reported as additions).

It is evident that the computations of PP and ER are less complex compared to

the steps B1 and B2 of the baseline algorithms, thereby potentially resulting in

substantial savings.

Figure 3.7 shows the number of pixels on which each step of the PP-ERST/H is

applied. The first step in pruning, PP results in a corner candidate set, C1. The

number of candidate pixels in this set is represented as |C1|, and the second step

in pruning, ER is applied only on |C1| pixels. This results in a smaller candidate

set C2. It should be noted that for the next step B1a, when the baseline algorithm

is used without pruning, for each pixel, 3 (16-bit) multiplications are incurred for

B1a (computing the I2x, I2y , IxIy). When pruning is applied, these values need to

be computed for the corner candidate as well as its neighbours in the window W .

3.4 Cost Analysis 51

Hence B1a needs to be applied to all pixels in C2 and their neighbours (represented

as C2N) for PP-ER. The steps B1b to compute auto-correlation matrix M and

B2 to compute the corner measure C are applied to the pixels in the candidate

set C2. In the case of PP, B1a is applied to all pixels in the candidate set C1 and

their neighbours (represented by C1N) and the subsequent steps B1b and B2 are

applied to all pixels in candidate set C1.

Figure 3.7: Corner candidate sizes with PP-ER algorithm

The computations of PP-ERST/H is compared with the baseline algorithms (i.e.

Shi-Tomasi and Harris), PPST/H, and recently reported work that aim to reduce

complexity of the baseline algorithms [68, 71] in Table 3.2 and 3.3. In these

comparisons, it was assumed that a box filter i.e. w(x) = 1 and a 3x3 window (i.e.

W = 9) is used for the auto-correlation matrix M . When a Gaussian window is

used for w(x), additional floating point (FP) multiplications are incurred on the

corner measure computation step B1b. When compared to the box filter, the use of

a Gaussian window will clearly lead to higher savings for PP-ERST/H as the overall

number of multiplications increases significantly in the baseline algorithms. Note

that, in both [68] and [71], the complexity of the baseline algorithm is reduced by

removing the square root in Shi-Tomasi and reducing the number of additions for

the window operations respectively. However, the computations are still applied to

all pixels in the image. In contrast, the proposed pruning approach can potentially

result in significant savings as the values for |C1|, |C2|, |C1N | and |C2N |, which

represent the size of the corner candidates at various stages in the algorithm (as

shown in Fig. 3.7), are typically substantially smaller than the image size. In

order to illustrate the savings in computations per pixel, the corner candidate

sizes for C1, C2, C1N and C2N have been normalized with the image size and

are represented as pC1, pC2, pC1N and pC2N in Tables 3.2 and 3.3.

52 3 Low-Complexity Pruning for Corner Detection

Method Multiplications Additions Square Roots
Shi Tomasi [50] 5 31 1

Perona [68] 5 30
SLC-KLT [71] 5 19 1

PPST [2] 1 + pC1N ∗ 3 + pC1 ∗ 2 20 + pC1 ∗ 31 pC1
PP-ERST [1] 1 + pC1 + pC2N ∗ 3 + pC2 ∗ 2 20 + pC1 ∗ 39 + pC2 ∗ 31 pC2

Table 3.2: Comparison of computations for each pixel for PP-ERST

Method Multiplications Additions
Harris [51] 6 30

SLC-Harris [71] 6 18
PPH [2] 1 + pC1N ∗ 3 + pC1 ∗ 4 20 + pC1 ∗ 30

PP-ERH [1] 1 + pC1 + pC2N ∗ 3 + pC2 ∗ 4 20 + pC1 ∗ 39 + pC2 ∗ 30

Table 3.3: Comparison of computations for each pixel for PP-ERH

Figure 3.8: Image dataset [119] used for the evaluation (a) graf (b) boat
(c) bark (d) leuven (e) ubc (f) wall

The experiments with the chosen image dataset in Fig. 3.8 show that the average

values for the normalized corner candidate sizes of 300 corners for Shi-Tomasi and

Harris are pC1 = 0.083, pC2 = 0.052, pC1N = 0.173 and pC2N = 0.134. The

number of operations per pixel can be estimated by substituting these values of

pC1, pC2, pC1N and pC2N in Tables 3.2 and 3.3. For example, the total number

of multiplications for PPST in Table 3.2 is 1 + pC1N ∗ 3 + pC1 ∗ 2 ≈ 1.6. This

can be compared to the corresponding baseline algorithm, Shi-Tomasi that needs

5 multiplications per pixel.

3.5 Performance Evaluations 53

Method Loads Stores
Baseline Shi-Tomasi and Harris 4W + 2 5

PP-ERST/H [1] 3W + pC1 ∗W + pC2N ∗ 2 + pC2 ∗ 3W 2 + pC1 + pC2N ∗ 3 + pC2

Table 3.4: Comparison of memory load/store for each pixel for PP-ERST/H

Table 3.4 shows the comparison of the total number of estimated memory accesses

per pixel. The number of memory accesses per pixel for pruning can be estimated

by substituting these values of pC1, pC2, pC1N and pC2N in Table 3.4 as follows:

total number of loads per pixel ≈ 3.24W + 0.26 and stores per pixel ≈ 2.54.

Therefore, compared to the baseline algorithms, there is a reduction in the number

of memory accesses per pixel.

Tables 3.1, 3.2 and 3.3 show that the per-pixel complexity of the operations in the

proposed algorithms is lower than the baseline algorithms. For example, the PP

and ER computations only require 16-bit operations whereas the baseline corner

measure computations require 32-bit and floating-point operations. The actual

realization of these operations depends on the target processor. For example,

if the target processor does not support a floating-point unit, multiple integer

operations will be used to emulate the floating-point operations in the conventional

corner measure computation. The floating point emulations will incur a high

computational complexity. Similarly, processors that support only 16-bit memory

transfers will result in a higher number of memory load/store operations for the

conventional corner measure computation.

Performance Evaluations

In this section, the performance of the proposed PP-ERST/H methods is evaluated

from the standpoint of accuracy and efficiency, when compared with the corre-

sponding baseline algorithms. As the pruning technique is tightly correlated with

the corner detection algorithms, it is expected that the accuracy of the pruning-

based corner detection will be comparable to using the conventional corner detec-

tors. At the same time, as the pruning measure is of much lower complexity than

54 3 Low-Complexity Pruning for Corner Detection

the corner measures in Eq. 3.2 and Eq. 3.3, the efficiency of the proposed pruning

based corner detectors is expected to be substantially improved.

Evaluation Setup

The proposed PP-ERST/H technique is compared with the following algorithms:

1. Conventional corner detectors without pruning, Shi-Tomasi (ST) and Harris

(H)

Two variants of each of the baseline algorithms have been used, which is

based on the weights w(x) of the filter for the autocorrelation matrix M in

Eq. 3.1:

� Simple averaging filter (also called Box) resulting in Shi-Tomasi-Box

(STB) and Harris-Box (HB), and

� Gaussian filter resulting in Shi-Tomasi-Gaussian (STG) and Harris-

Gaussian (HG).

The window size is set to W=3x3 and σ = 0.5 for the Gaussian filter, as in

[117]. A normalized 3x3 discrete Gaussian kernel is used as shown below:

w(x) =


0.0113 0.0838 0.0113

0.0838 0.6193 0.0838

0.0113 0.0838 0.0113

 (3.11)

The following 3x3 Sobel filters are used for computing the horizontal and

vertical gradient images Ix and Iy as shown below:

Gx =


1 0 −1

2 0 −2

1 0 −1

 , Gy =


1 2 1

0 0 0

−1 −2 −1

 (3.12)

The threshold for cornerness is set to Tc = 0.05 for Shi-Tomasi and Tc = 0.005

for Harris.

3.5 Performance Evaluations 55

2. Corner detection with partial pruning (PPST/H)

Partial pruning is used as a baseline to show the impact of edge response

removal (ER) step in the proposed PP-ERST/H technique. Threshold for the

pruning measure in Eq. 3.5 is set to Tp = 0.05.

3. Corner detection with cascaded candidate pruning (CCPST/H)

The cascaded candidate pruning (CCP) [72] selects corner candidates that

are local maxima in gradient magnitude. It does not consider the gradient

patterns in the pixel neighbourhood.

All the baseline algorithms mentioned above, and the proposed pruning techniques

PPST/H and PP-ERST/H, have been implemented in C, following the description of

the algorithms in Section 3.2 and 3.3, and the detailed pseudocode in Listing 1.

The image data in Fig. 3.8 is used to evaluate the accuracy of the corner detectors.

The dataset contains nS = 6 sequences (graf, boat, bark, leuven, ubc, wall) of images

with various image transformations such as changes in viewpoint, zoom, rotation

and illumination [119], with each sequence containing nI = 6 transformed images.

The image resolutions are as follows: graf -800x640, boat-850x680, bark -765x512,

leuven-900x600, ubc-800x640 and wall -880x680. A feature set of 300 corners was

generated for all the algorithms considered.

Accuracy Evaluation

The following evaluation criteria for accuracy are used for the evaluation of the

proposed methods (PPST/H and PP-ERST/H):

1. Feature matches : The feature sets of the pruning based methods, Spruning

and the baseline algorithms Sbaseline are compared. A feature Ci is considered

a match if mi = 1 as follows:

mi =

1 ci ∈ Spruning, ci ∈ Sbaseline

0 Otherwise
(3.13)

56 3 Low-Complexity Pruning for Corner Detection

In other words, if a corner found by the pruning based method is also found

by the baseline algorithm, then it is considered a feature match. The feature

matches for a given set of features, are counted and reported as a percentage

of the total number of features N , as µ:

µ =

∑N
i=1mi

N
(3.14)

For example, if 270 corners from the pruning based method matched with the

corresponding baseline algorithm, out of the total of 300 corners detected,

a match of µ = 90% is reported. For each image pair (i, j) in the image

sequence (ith sequence, jth transformed image), the feature match µi,j is

computed. The range of values of the feature matches across all the image

pairs is reported as µmin and µmax.

2. Repeatability rate: It is desirable for each corner to be repeatable, i.e. be

detected in two or more images of the same scene. Such features can be

reliably used for registering the images. Repeatability rate is defined as the

percentage of features that are simultaneously present in two images and has

been extensively used as a metric for corner detectors [58]. The two images

represent the same scene but with some variations such as a viewpoint change

as in [119].

For each image pair (i, j) in the sequence (ith sequence, jth transformed im-

age), the repeatability rate ρi,jbaseline, of the baseline Shi-Tomasi/Harris cor-

ner detectors is first computed. Then the repeatability rate ρi,jproposed, of the

pruning-based corner detectors is computed. It is expected that when prun-

ing is applied, there is no loss in accuracy of the corner detection. Therefore,

the difference in repeatability rate ∆ρi,j and its mean ∆ρ are computed as

follows:

∆ρi,j = ρi,jproposed − ρ
i,j
baseline

∆ρ =

∑nS

i=1

∑nI

j=1 (∆ρi,j)

nS.nI

(3.15)

3.5 Performance Evaluations 57

Proposed Methods Feature Matches µ Repeatability Rate
µmin (%) µmax(%) ∆ρmin ∆ρmax ∆ρ

CCPSTB 3.7 16.0 -28.91 1.04 -12.41
CCPSTG 2.7 20.3 -36.84 5.18 -9.66
CCPHB 4.7 20.7 -30.46 0.01 -13.40
CCPHG 10.7 38.0 -48.16 -0.51 -15.55
PPSTB 99.7 100.0 0.00 0.33 0.01
PPSTG 95.7 100.0 0.00 0.00 0.00
PPHB 100.0 100.0 -0.33 0.00 -0.01
PPHG 99.0 100.0 0.00 0.00 0.00

PP-ERSTB 98.0 100.0 -1.84 0.33 -0.13
PP-ERSTG 95.0 100.0 -3.07 0.51 -0.17
PP-ERHB 96.7 100.0 -0.67 0.74 0.02
PP-ERHG 98.0 100.0 -3.57 1.26 -0.10

Table 3.5: Accuracy results for PP and PP-ER in comparison to the base-
line algorithms

When ∆ρ is negative it implies that the repeatability of the proposed method

was lower than the baseline method indicating a loss in accuracy due to

pruning, and vice versa. The range (∆ρmin, ∆ρmax) along with its mean ∆ρ

is reported over all image sequences for each method.

In Table 3.5, the accuracy evaluation results are reported. In general, the cascaded

candidate pruning (CCP) method proposed in [72] performs poorly, showing a

substantial drop in repeatability rate of 29% and above, as well as substantially

low feature matches at less than 38%, compared to the baseline corner detectors.

This is attributed to how the candidate pixels are selected by CCP: pixels that are

local gradient magnitude maxima are chosen, without considering the intensity

or gradient patterns in the pixel neighbourhood. However, the Shi-Tomasi and

Harris corner detectors rely on the variability of the gradient magnitudes in the

pixel neighbourhood, which is quantified as the corner metric as defined in Eq. 3.2

and Eq. 3.3 respectively. Therefore, potential corner pixels may not necessarily

be local maxima in gradient values and CCP eliminates many of these potential

corners. In addition, CCP also selects noisy pixels as candidates, which also have

high gradient values, leading to a lower quality corner set and therefore poor rate

of repeatability.

58 3 Low-Complexity Pruning for Corner Detection

The proposed pruning techniques, PPST/H and PP-ERST/H, consider the pixel

neighbourhood in both the PP and ER stages of pruning, achieving repeatability

rates very close to their corresponding baselines (with the worst case drop being

only 4%) and feature matches of 95% and above. Therefore the proposed pruning

method is able to approximate the more complex Shi-Tomasi and Harris corner

measure with a high degree of accuracy.

Efficiency Evaluation

Embedded platform: The computational efficiency achieved by employing the

pruning techniques PPST/H and PP-ERST/H is demonstrated on the Nios-II embed-

ded platform [120]. The Nios-II soft core processor is chosen for the evaluations as

the on-chip configurations of cache and floating point unit (FPU) can be modified

for this processor. This allows the analysis of the impact of FPU and cache on

the performance of the proposed pruning based corner detection. Further details

of the experimental setup with Nios-II and the software development flows have

been provided in Appendix B. As FPU often leads to high cost and high energy

consumption in embedded processors, two configurations of the Nios-II soft core

are used: with FPU disabled and FPU enabled.

Evaluation criteria: The execution time is measured for PPST/H and PP-ERST/H

pruning based corner detection (referred to as tproposed), as well as their correspond-

ing baseline corner detectors without pruning (referred to as tbaseline). To show

the overall savings in computations, achieved by introducing pruning, the relative

speedup ψ (%) in execution time of the proposed pruning techniques with respect

to the corresponding baseline algorithms is reported, as given by:

ψ =
(tbaseline − tproposed)

tbaseline
(3.16)

The images in Fig. 3.8 have varying sizes and therefore execution time needs to

be normalized for comparison. This is achieved by the use of the speedup ψ in

3.5 Performance Evaluations 59

execution time as the evaluation metric. Note that, the first image in each image

sequence in Fig. 3.8 is used for the efficiency evaluations.

Figure 3.9 (a) shows the execution times (in seconds) as the bar charts and speedup

ψ (%) as triangles/circles charts for Shi-Tomasi on Nios-II when FPU is disabled.

The images have been arranged from left to right from smallest to the largest in

terms of their image size. The execution time of the baseline algorithms (tbaseline

darker blue/orange) i.e., STB and STG depends on both the image size and the

nature of the image content. Therefore, images of larger size have higher execution

times - for example, wall has a higher execution time than bark.

The overall execution time for STB is in the range of (3.3-6.5) seconds. The exe-

cution time for STG is in the range of (11.6-21.5) seconds due to the more complex

corner measure involving the Gaussian filter. The average speedup achieved by

PPSTB is 38% and 76% for PPSTG. It is to be noted that the execution time of

PPST for both the Box and Gaussian is almost the same. This shows how effective

the pruning has been in discarding most of the non-corner regions resulting in very

small corner candidate sets.

The nature of the image content determines the amount of savings that can be

achieved. For images that have a combination of textures and homogeneous regions

- such as boat - the savings are higher with pruning. In comparison, images with a

comparable image size but with very rich textures and less homogeneous regions

- such as wall - the benefits from PPST are lower. This can be attributed to the

chosen threshold for Tp and Tc - while this threshold is optimal for the image boat

releasing only the necessary candidates for selecting N = 300 corners, it is too low

for the richer image wall, releasing many more candidates than required.

Figure 3.9 (b) shows the additional speedup that is achieved with PP-ERST when

compared to PPST. It is evident that all the images benefit from the removal of

edge pixels resulting in much smaller corner candidate sets that need the complex

corner measure computation. graf has very distinct edges that PPST was unable

to prune and therefore PP-ERST shows clear benefits. Similarly, wall does not

benefit from PPST, but shows positive speedup with PP-ERST.

60 3 Low-Complexity Pruning for Corner Detection

Figure 3.9: (a) Speedup in execution time on Nios-II with FPU disabled
for Shi-Tomasi with PPST (b) Additional speedup achieved with PP-ERST

Figure 3.10 shows the corresponding timing results for Harris. The execution

times of HB are in the range of (3-6) seconds. In comparison to STB, the corner

measure of HB is less complex and hence, the execution times are lower. The

average speedup achieved by PPHB and PPHG is 35% and 76% respectively. PP-

ERH achieves higher average speedup of 46% and 82% for PP-ERHB and PP-ERHG

respectively.

Figure 3.10: (a) Speedup in execution time on Nios-II with FPU disabled
for Harris with PPH (b) Additional speedup achieved with PP-ERH

Figure 3.11 shows the timing results with FPU enabled on Nios-II soft core. When

the FPU is available the floating point operations are handled by the FPU and

hence the corner measure computation is executed much faster compared to the

software emulation of floating-point arithmetic in the absence of an FPU. However,

an average speedup with PPSTB of 43%, PPSTG of 69%, PPHB of 8% and PPHG

of 64% is still achieved. PP-ERST/H still shows significant improvements when

3.5 Performance Evaluations 61

compared to PPST/H, for graf and wall images, which have a large number of edge

pixels, that are only pruned away by the ER step.

Figure 3.11: On Nios-II with FPU enabled (a) Speedup in execution time
for Shi-Tomasi with PPST (b) Additional speedup achieved with PP-ERST

(c) Speedup in execution time for Harris with PPH (d) Additional speedup
achieved with PP-ERH

Impact of on-chip data cache: In order to analyse the impact of cache on

the proposed method, the baseline and proposed algorithms were implemented on

two configurations of the Nios-II processor: with and without cache (FPU was

disabled in both cases). The speedup achieved by the PP-ERST/H is reported in

Fig. 3.12. When the cache is disabled, the memory access time becomes the major

component of the total execution time, in comparison to the computation time.

However, even in this case, a substantial speedup of 33% for PP-ERSTB and 37%

for PP-ERHB is seen.

Selection of threshold Tc: As seen in the evaluation results, the speedup

achieved with pruning is dependent on the image content. The same threshold

of Tc and Tp was applied for all images, but depending on the content - presence

of textures, edges and their contrast - the speedup due to pruning varied.

62 3 Low-Complexity Pruning for Corner Detection

Figure 3.12: Efficiency evaluation with/without cache: speedup in execu-
tion time (a) Shi-Tomasi with PP-ERSTB (b) Harris with PP-ERHB

The impact of varying the threshold on the corner detection and the speedup

achieved with the proposed pruning methods is analysed. Figure 3.13 shows the

number of corners released when the threshold Tc is varied for the baseline Shi-

Tomasi and Harris algorithms and it can be clearly seen that the number of corners

released at a given threshold depends on the image content.

Figure 3.13: Number of corners vs. threshold Tc in baseline (a) Shi-Tomasi
and (b) Harris algorithms

Figure 3.13 (b) shows that Harris requires much lower threshold values for Tc

to select comparable number of corners with Shi-Tomasi. This is because Shi-

Tomasi and Harris corner measure values have different ranges. Harris corner

measure is directly proportional to the determinant of the autocorrelation matrix,

det(M) as in Eq. 3.3. Shi-Tomasi corner measure is proportional to the root of

the determinant of the autocorrelation matrix det(M) as shown in Eq. 3.2.

3.5 Performance Evaluations 63

Figure 3.14 shows the impact of varying the threshold Tp (Tc = 0.05 for Shi-Tomasi

and Tc = 0.005 for Harris to ensure the required number of N = 300 corners is

found). A high value of Tp results in insufficient number of corners whereas a low

value of Tp reduces the overall speedup achieved by pruning. The investigations

show that when threshold Tp is set such that 300 corners is found, the repeatability

ρ and feature matches µ do not vary much with the threshold and is similar to

the results reported in Table 3.5.

In addition, in Fig 3.14, the benefit of PP-ER when compared to PP can be clearly

seen when the thresholds are set lower. At lower thresholds such as when Tp = 0.01,

partial pruning (PP) alone is unable to prune away many non-corner candidates

and incurs an overhead in computations as seen in images bark, ubc, boat and wall.

However due to the efficient pruning by the ER step, PP-ER achieves a speedup

of an average of 59% for STB and 56% for HB at Tp = 0.01. This shows that PP-

ER is a highly efficient pruning technique and the ER step is critical for higher

computation savings.

Global Motion Estimation on Aerial Videos

As the main objective of reducing the complexity of the corner detection is to

enable low-complexity global motion estimation, the proposed pruning techniques

PPST/HB and PP-ERST/HB are employed in a feature-based GME pipeline as de-

scribed in Fig. 2.6, on the VIRAT [121] aerial video dataset with 150 frames as

shown in Fig. 3.15.

The GME is performed on every frame pair in the chosen video sequence. For

every frame, a maximum of N = 300 corners is detected using the box variants of

the baseline algorithms (STB and HB) and their corresponding proposed pruning

based methods. The thresholds are set as follows: Shi-Tomasi Box (Tc = 0.01,

Tp = 0.01) and Harris Box (Tc = 0.001, Tp = 0.01). Then, the Kanade-Lucas-

Tomasi (KLT) feature tracking [54] (as in Section 2.3.2) is used to find the feature

correspondences in the next frame. The Random Sample Consensus (RanSaC)

64 3 Low-Complexity Pruning for Corner Detection

Figure 3.14: Number of corners and speedup in execution time vs. pruning
threshold Tp on PPSTB, PP-ERSTB, PPHB and PP-ERHB

3.5 Performance Evaluations 65

Figure 3.15: Sample frames from VIRAT [121] video dataset: evaluation
of GME with pruning-based corner detection

algorithm [96] is then applied to the feature correspondences with a 2D affine

motion model as in Eq. 2.3, for the GME.

The pruning-based corner detection used the C implementation in Section 3.5.

The rest of the modules in feature-based GME, were implemented using standard

libraries, in OpenCV, for the KLT feature tracker and RanSaC algorithm. The

corner detection was executed on the Nios-II platform (as in Appendix B with the

floating point unit enabled) and the detected corners were then fed into the GME

pipeline, executed on a standard desktop.

For a frame pair (F1, F2), the parameters of the affine model T are estimated

by the GME. This is used to align the frame F1 with respect to frame F2 by

eliminating the global motion, resulting in an estimated frame F ′2 = T (F1). The

peak-signal-to-noise-ratio (PSNR) is computed for the frame difference between

the actual frame F2 and the estimated frame F ′2 in order to measure the accuracy

of the GME as shown below:

PSNR = 10× log10

(
2552

MSE

)
(3.17)

MSE is the mean of the squared-error between the two frames F2 and F ′2. The

relative error in PSNR when pruning based corner detection replaces the conven-

tional corner detectors in the GME is represented as the error margin ∆PSNR

computed as:

∆PSNR =
PSNRproposed − PSNRbaseline

PSNRbaseline

(3.18)

66 3 Low-Complexity Pruning for Corner Detection

∆ PSNR
PPSTB PPHB PP-ERSTB PP-ERHB

Min -0.3% 0.0% -0.4% -0.4%
Max 0.1% 0.0% 0.2% 0.2%

Table 3.6: Error margin in GME accuracy with pruning based corner
detection

Table 3.6 shows the error margin in PSNR for the video frames when the PPST/H

and PP-ERST/H are used in comparison to the corresponding baseline algorithms.

The error margin is within 0.5% and shows that the pruning based corner detection

achieves comparable accuracy in GME with the baseline corner detection methods.

As the image content does not change substantially in every frame, in order to

demonstrate the computation savings with pruning, a key frame is chosen to rep-

resent a batch of 15 consecutive frames. Figure 3.16 shows that a speedup in

execution time ψ (as in Eq. 3.16) of 50% with Shi-Tomasi and 20% with Harris

corner detection is achieved when the proposed PP-ERST/H pruning technique is

employed.

As these frames contain many edges that need to be removed after PPST/H, PP-

ERST/H shows higher savings in computation time for both STB and HB. For the

Gaussian variants of the baseline algorithms, even higher savings are expected

in computations than the box variants. These results show how pruning lowers

the per-frame computation complexity of the corner detection enabling GME on

resource constrained embedded platforms.

Summary

In this chapter, a low complexity pruning technique [1, 2] is presented to accelerate

corner detection with Shi-Tomasi and Harris algorithms. The proposed technique

systematically selects corner candidates for Shi-Tomasi and Harris corner detectors

by efficiently pruning away non-corner regions. Unlike existing pruning techniques

3.6 Summary 67

Figure 3.16: Speedup in execution time (ψ) on Nios-II for pruning based
corner detection in GME

that operate only on the individual pixels, the proposed pruning steps closely ap-

proximate the corner measure of the Shi-Tomasi and Harris algorithms, by con-

sidering the gradient patterns in the neighbourhood of the pixel. This results in

minimal loss of the potential corner candidates during pruning. In addition, the

pruning also results in small candidate sets and the complex corner measure is

applied only to this small pool of candidates. Finally, the pruning measure itself

involves only simple computations compared to the more computationally complex

corner measure, thereby leading to significant computation savings.

Evaluations on an embedded platform (Nios-II processor) with on-chip floating-

point hardware, show that the proposed PP-ER pruning technique leads to a

substantial speedup (in terms of execution time) of 47%-71% in Shi-Tomasi and

10%-65% in Harris for 300 corners. In the absence of the FPU which typifies

low-cost/low-power embedded systems, both Shi-Tomasi and Harris benefit from

PP-ER with computational savings of 48%-82% and 45%-81% respectively. When

compared to the partial pruning (PP), the PP-ER pruning technique for 300 cor-

ners, shows an average additional speedup of up to 11% for Harris and 13% for

Shi-Tomasi. However, for lower threshold settings when PP fails to achieve any

speedup, PP-ER achieves a much higher average additional speedup of 56% for

Harris and 59% for Shi-Tomasi. Also, PP-ER enables the use of the more ro-

bust but computationally complex Gaussian filter in corner detection especially

68 3 Low-Complexity Pruning for Corner Detection

on systems that do not support FPU. Hence, the proposed low-complexity pruning

technique, PP-ER, is highly suited for corner detection in real-time and low-power

vision-based embedded systems, such as the UAVs.

4
Automating Threshold Selection for

Corner Detection

Introduction

Video imagery captured on-board surveillance UAVs exhibits a wide range of image

content and illumination conditions, resulting in wide variations in the quality

and quantity of the corners across frames. Manual intervention to set the optimal

parameters for corner detection is infeasible as these videos need to be processed

in real-time and on-board. In order to increase the robustness of these platforms,

there is a need for automated parameter selection for corner detection which can

adapt to the scene conditions. In addition, methods employed to automate the

69

70 4 Automating Threshold Selection for Corner Detection

parameter selection need to be highly compute-efficient in order to cater to the

real-time requirements of these applications.

As seen in Fig. 3.1, the Shi-Tomasi [50] and Harris [51] corner detectors necessitate

the selection of a threshold parameter (Tc) manually in order to identify good

quality corners. This threshold is set relative to the maximum observed corner

measure value in the image - for example, 1% of the maximum corner measure

value is a typical choice [58]. Figure 4.1 shows the result of a fixed threshold

on 2 images - the same threshold (Tc = 0.3) used on trees image results in 300

corners whereas on the bike image extracts only 92 corners. The conservative

low threshold of 1% (Tc = 0.01) is set up as in [58], by standard Matlab and

OpenCV implementations, in order to mitigate this problem. However, a fixed

global threshold has the following issues:

1. Widely varying image content : The contrast and spread of textures can vary

drastically, especially for aerial video applications, and a fixed threshold

cannot guarantee that the required number of corners will always be found.

In addition, within a single frame, the presence of a small high contrast

region can elevate the threshold so much that candidates from lower contrast

regions are missed out completely resulting in a very small corner set [122].

2. Real-time processing : Setting a conservative low threshold results in unnec-

essary computations for images rich with a large number of corner regions.

This is illustrated in Fig. 4.1 (e) and (f) where, for the trees image richer with

corners, a low threshold results in a very large number of corner candidates

compromising the real-time implementation of corner detection.

Therefore, there is a need for the threshold selection to be automated, so that

corner detection can be robust to the varying scene conditions, experienced in

video applications such as aerial videos.

Drastic illumination change between frames severely affects the corner detectors,

as the fixed threshold results in varied set of corners when illumination changes.

In [123], the drastic illumination changes are handled by operating on logarithmic

4.1 Introduction 71

Figure 4.1: Example of inappropriate threshold settings (a) bike image
(b) trees image, Corner regions at “too high” threshold = 0.3 for (c) bike
resulting in only 92 corners and (d) trees resulting in 300 corners, and (e)
and (f) Corner regions at “too low” threshold = 0.01.

images instead. While this approach achieves higher repeatability of the detected

corners, in the face of a drastic illumination change between scenes, it does not

guarantee the required number of corners when the image content varies over time.

Also it increases the complexity of the corner detection by about 10% as reported

in [123]. A similar approach in [124] uses moment images to counter illumination

variation, but still requires a fixed threshold selection. Corner detection is applied

in a block based manner such that thresholds are applied for each block indepen-

dently, instead of using a global threshold for the entire frame in [122]. This can

deal with situations when a very high contrast region elevates the global threshold.

However, this can also lead to noisy corners for very low contrast regions [125].

The work in [125] aims to reduce the number of noisy corners when a conservative

threshold is set with additional region-based checks. It still required a pair of

thresholds to be specified by the user.

In this chapter, a novel iterative thresholding scheme is proposed, that eliminates

the need for the user to specify the quality threshold (Tc) and guarantees the

extraction of the specified number of (N) corners. As the evaluations show, the

proposed method is able to adapt the computations to the image content. For

72 4 Automating Threshold Selection for Corner Detection

images rich with corner regions, the required number of corners can be found with

lesser number of iterations. A novel non-maximum suppression (NMS) strategy is

also proposed, that exploits the iterative release of corner candidates, to reduce

the number of candidates processed in each iteration.

Iterative Thresholding

In the conventional Shi-Tomasi and Harris corner detectors, the corner measure

C is computed on all pixels of the image (refer to Eq. 3.2 and Eq. 3.3). The

parameters to threshold for quality of the corners Tc, the maximum number of

corners to be detected N , and the minimum distance of separation between the

extracted corners d, are specified by the user. The threshold Tc is applied on the

corner measure to discard the non-corner regions: a pixel is a corner candidate

if (C > Tc ∗ Max(C)), where Max(C) is the highest corner measure value in

the image [58]. The corner candidates are then sorted based on the value of C,

and non-maximal suppression is applied to extract the final corners as shown in

Fig. 3.1. As seen in Section 4.1, the user-defined threshold Tc does not guarantee

that the required number of N corners will be found for a given image.

Figure. 4.2 shows the proposed method for automating the threshold selection

for corner detection, which guarantees the required number of N corners. It is

proposed that the corner detection is started with a sufficiently high threshold

Tc, to release the corner candidates. Non-maximal suppression is applied to these

corner candidates and final corners are extracted. If the required number of N

corners are found, the algorithm stops. If not, the threshold is lowered to release

additional candidates and extract corners. This process of releasing candidates is

continued until the required number of (N) corners is found.

The time complexity of such an iterative thresholding is a function of the number

of sampling trials (k) and the number of candidates in each trial (nc) as shown:

t = f(k, nc) (4.1)

4.2 Iterative Thresholding 73

Figure 4.2: Automated thresholding for corner detection

For each trial, the image needs to be scanned to collect the corner candidates for

the threshold considered. These corner candidates need to be sorted and non-

maximal suppression is applied on them. Ideally, the required number of corners

need to be extracted with the least number of trials and the minimum number of

total candidates considered.

Now consider how the threshold Tc should be lowered. A brute force approach

is an exhaustive sampling of thresholds using uniform steps between successive

thresholds until N corners have been found. The OpenCV implementation (Dy-

namicAdaptedFeatureDetector [76]) selects the optimal parameters for detecting

corners by a similar exhaustive trial-and-error with various threshold values and

involves näıve multiple executions of the detector, i.e. large number of trials (k).

In the proposed method, the following steps are used to reduce the number of

trials (k) as well as the number of corner candidates nc:

1. Non-linear threshold steps : The majority of the pixels in the image have

very low corner measure values resulting in a non-linear distribution of pixels.

The steps used to lower the threshold for corner measure Tc needs to account

for this non-linear distribution of the pixels so that the number of trials k,

needed to extract the required number of N corners, can be reduced.

2. Mask-based non-maximal suppression (NMS): The corner candidates are pro-

cessed in batches in each iteration of threshold lowering. This allows the

74 4 Automating Threshold Selection for Corner Detection

neighbours of already selected corners to be suppressed from being consid-

ered as candidates in future iterations. A mask-based NMS step is used to

achieve this. This limits the number of candidates (nc) processed in each

trial, to only regions that are not already represented with corners.

Both these steps are discussed in detail below.

Non-linear Threshold Steps

In Fig. 4.3 (a), the histogram of pixels based on their (Shi-Tomasi) corner measure

for a natural image is shown: the further in x-axis, the higher the corner measure.

As can be seen, the distribution of pixels based on their corner measures is non-

linear, as there are very few high quality corner regions compared to smooth

regions. Using uniform threshold steps will release very few candidates for the

higher range of corner measures needing a large number of trials (k) to extract the

required number of corners. In contrast, in lower ranges of corner measures the

uniform threshold step can potentially result in a very large number of candidates

(nc) being released at once, causing a sharp increase in the number of candidates

(nc) in a single trial. In order to prevent this, the threshold steps are also lowered

in a non-linear manner as shown in Fig. 4.3 (b). Large steps are used for high

values of corner measure that releases the candidates with less number of trials.

But for lower ranges of corner measure, small steps are used so that in each trial,

the number of candidates released does not surge. The initial threshold Tc = 0.4

and the minimum threshold is set as 0.0001. The threshold steps are chosen such

that the step width falls non-linearly reducing by half each time. It was found that

breaking this step width into another intermediate step with a 2:1 width further

helped contain the corner candidates released in lower ranges of corner measures.

4.2 Iterative Thresholding 75

Figure 4.3: Threshold step selection: (a) Histogram of pixels based on
their Shi-Tomasi corner measure for the trees image, (b) Threshold steps
shown as circles with the step widths

Mask-based Non-Maximal Suppression

The pixels surrounding a corner also have a high corner response, and non-maximal

suppression (NMS) is used to select one representative pixel in this region, which

has the local maximum, as the corner. In [105] a simple and widely-used NMS

scheme was proposed as shown in Listing 2. For each pixel considered as a potential

corner candidate, the list of all the corners already selected is scanned to check if

the current pixel is in the neighbourhood of any of the selected corners. If it is,

then this pixel is suppressed; otherwise it is included as a corner.

For corner detection, the user specifies the number of corners N to be found and

the minimum distance d that needs to be enforced with NMS between the corners

as these parameter values are application dependent. The classic NMS scheme

works well when:

1. Required number of corners N to be found is small, and/or

2. Minimum distance d between corners is small.

76 4 Automating Threshold Selection for Corner Detection

Listing 2 Conventional non-maximal suppression

1: Compute corner measure C for all pixels in image I
2: for each pixel pi in I do
3: if Ci > Tc ∗Max(C) then
4: Add pi to corner candidates
5: end if
6: end for
7: for each corner candidate p do
8: for each selected corner k do
9: if distance(p, k) < d then

10: Discard p
11: Go to next p
12: end if
13: end for
14: Add p to the list of selected corners
15: end for

In both these cases, the list of corner candidates that need to be scanned before

the current corner is selected is small. However when either of these parameter

values: N , in order to get a dense corner set, or d for a well-spread out corner

set, the computations for NMS also increase because many more corner candidates

need to be processed before the required number of corners is found.

In [69], a parallel NMS algorithm was proposed for GPU implementation that uses

label maps to maintain the status of pixels during NMS. The proposed algorithm

is well-suited for implementation on the parallel processing architecture for GPU,

however it involves multiple scans of the image during non-maximal suppression

and is not suitable for a CPU implementation.

Here, a mask-based NMS strategy is proposed using label maps similar to [69],

which can be applied effectively to the automated thresholding scheme. Corners

are selected in batches in the iterative thresholding method. Therefore, once a

corner is selected, its neighbourhood can be suppressed from being processed as

corner candidates in subsequent iterations, leading to a reduction in the corner

candidates and hence, computations for sorting.

The proposed mask-based non-maximal suppression strategy is outlined in List-

ing 3. A binary label map, the same size as the image, is maintained. The label

4.2 Iterative Thresholding 77

Listing 3 Iterative thresholding with mask-based non-maximal suppression

1: Compute corner measure C for all pixels in image I
2: Initialize label map to not suppressed
3: while N corners not found do
4: for each pixel pi in I do
5: if Ci > Tc ∗Max(C) and pi is not suppressed then
6: Add pi to corner candidates
7: Ci = 0
8: end if
9: end for

10: Sort corner candidates based on C
11: for each corner candidate p do
12: if p is not suppressed then
13: Add p to the list of selected corners
14: Set label of all neighbours within d to suppressed
15: end if
16: end for
17: Go to next lower Tc
18: end while

for each pixel can be either:

� Not suppressed : This is the initial state of every pixel. This means that the

pixel is either not processed yet or it is not suppressed by an already chosen

corner. For any pixel to be selected as a corner candidate, it needs to be not

suppressed.

� Suppressed : This is the state of a pixel that is in the vicinity (determined

by the minimum distance d) of an already selected corner.

In each iteration of processing corner candidates as in Fig. 4.2, the candidates are

ranked based on their corner measure and selected as corners if they are not sup-

pressed. Once a candidate is selected as a corner, the neighbourhood pixels within

d are all updated to a suppressed status. The neighbourhood can be determined

using precomputed masks based on the minimum distance parameter d as shown

in Fig. 4.4. When releasing new corner candidates in a subsequent iteration, it

is checked if the candidate is also not suppressed. If not, this corner candidate is

discarded from further processing.

78 4 Automating Threshold Selection for Corner Detection

Figure 4.4: Non-maximal suppression masks for various minimum distance
values, d. (Grey pixels are suppressed by the black pixel)

In this section, an automated thresholding scheme has been proposed, that iter-

atively releases corner candidates and performs a mask-based non-maximal sup-

pression. This results in corner detection that is adaptive to the image content

and eliminates the need for manually specifying the threshold parameter for corner

quality.

Performance Evaluations

In this section, the proposed iterative thresholding method as outlined in Listing 3,

is applied to Shi-Tomasi and Harris detectors, and its performance is evaluated.

Evaluation Setup: The baseline algorithms are the Shi-Tomasi (ST) and Harris

(H) corner detectors with a fixed threshold and conventional NMS as in Listing 2.

These parameters are used: the required number of corners N = 300, minimum

distance between corners d = 5 and threshold Tc = 0.01. For the proposed iterative

thresholding (IT) method, the threshold steps used are shown in Table 4.1 setup

as in Fig. 4.3. The C implementation for the baseline corner detectors developed

in Section 3.5 is extended to include the iterative thresholding and mask-based

NMS as in Listing 3. The image data used is shown in Fig. 4.5.

Evaluation metric: As the main objective of the iterative thresholding is to au-

tomatically release minimum number of corner candidates for a given image, in

4.3 Performance Evaluations 79

Iteration No. Threshold Tp Step Size
1 0.4000 -
2 0.2662 0.1338
3 0.1993 0.0669
4 0.1324 0.0669
5 0.0989 0.0335
6 0.0654 0.0335
7 0.0487 0.0167
8 0.0320 0.0167
9 0.0236 0.0084
10 0.0153 0.0084
11 0.0111 0.0042
12 0.0069 0.0042
13 0.0048 0.0021
14 0.0027 0.0021
15 0.0017 0.0010
16 0.0006 0.0010
17 0.0001 0.0005

Table 4.1: Threshold steps for automated thresholding technique

Figure 4.5: Image dataset [119] used for the evaluation (a) graf (800x640)
(b) boat (850x680) (c) bark (765x512) (d) leuven (900x600) (e) bike
(1000x700) (f) trees (1000x700) (g) ubc (800x640) (h) wall (1000x700)

80 4 Automating Threshold Selection for Corner Detection

order to extract the required N corners, the total number of corner candidates

after thresholding Nc, is used as the evaluation metric for efficiency.

In the baseline detectors, the number of corner candidates after applying the

fixed threshold Tc is computed, as N fixed
c . For the proposed iterative thresholding

method, if nc corners are released in a single iteration, the total number of corner

candidates released at the end of all the iterations given by N iterative
c is:

N iterative
c =

∑
Iter

nc (4.2)

The corner candidates size normalised by the image size Isize given by Ñc =

Nc/Isize is reported. Additionally, the relative reduction in the number of corner

candidates when iterative thresholding replaces the fixed threshold, represented as

∆Nc, is also reported, given by:

∆Nc =
N fixed

c −N iterative
c

N fixed
c

(4.3)

Table 4.2 shows that the number of corner candidates with the fixed threshold

for the baseline detectors (ST and H) has a wide variation among the various

images. While graf releases only 5.8% with the fixed threshold of Tc = 0.01, wall

releases 59.4% of the candidates. This confirms that a single fixed threshold is

not appropriate for all image content. With iterative thresholding, the number

of corner candidates falls to 0.2-0.7% for all images. This corresponds to 94.4-

99.6% relative reduction in the total number of corner candidates for Shi-Tomasi

and 71.3-98.4% for Harris corners, when iterative thresholding replaces a fixed

threshold to detect N = 300 corners. Naturally, images with very distinct textures

that released large number of candidates with the fixed threshold - such as trees

and wall - see the maximum reduction in candidates when iterative thresholding

is employed instead.

It is also worth noting that for a given image, the number of candidates released

for a fixed threshold Tc = 0.01, is in general higher for Shi-Tomasi than Harris

4.3 Performance Evaluations 81

Shi-Tomasi Harris

Ñc % ∆Nc Ñc % ∆Nc

Images ST ST+IT H H+IT
graf 5.8% 0.3% 94.4% 1.1% 0.3% 71.3%
boat 26.6% 0.4% 98.7% 4.4% 0.3% 94.0%
bike 8.0% 0.3% 96.4% 0.9% 0.3% 66.2%
bark 44.2% 0.7% 98.5% 2.4% 0.5% 79.3%

leuven 15.8% 0.3% 98.1% 3.8% 0.3% 91.5%
ubc 29.4% 0.2% 99.2% 3.0% 0.3% 90.0%

trees 49.8% 0.3% 99.5% 9.1% 0.1% 98.4%
wall 59.4% 0.3% 99.6% 12.5% 0.2% 98.1%

Table 4.2: Reduction in the total number of corner candidates with itera-
tive thresholding (S+IT and H+IT) for 300 Shi-Tomasi and Harris corners:

total number of corner candidates Ñc and relative reduction when iterative
thresholding replaces fixed threshold ∆Nc

- for example, graf releases 5.8% Shi-Tomasi candidates but only 1.1% Harris

candidates. This shows that the same fixed threshold does not work across Shi-

Tomasi and Harris as the corner measure distributions of the two methods differ.

Therefore the relative reduction in corner candidates seen in Table 4.2 with the

proposed iterative thresholding is lesser for Harris compared to Shi-Tomasi for a

threshold of Tc = 0.01.

To further demonstrate the impact of IT, the results with a larger number of

required corners, N = 1000, are shown in Table 4.3. For Shi-Tomasi, as the same

threshold Tc = 0.01 can still be used to detect N = 1000 corners, the baseline

releases the same number of corner candidates. Evidently, to extract 1000 corners,

more candidates will need to be released and processed by the proposed method

compared to the case of N = 300. This is also seen in the increase in the number

of iterations/trials (k) that need to be done in iterative thresholding, when N is

increased from an average of 2.75 for N = 300 to 5 for N = 1000. For Harris,

the threshold of Tc = 0.01 is too high and does not extract sufficient corners

for images graf and bike when N = 1000, highlighting the limitation of a fixed

threshold. Therefore, a lower threshold of Tc = 0.001 is used for the baseline

Harris (referred to as H(L) in Table 4.3) and the results in % relative reduction

for both the threshold settings are shown.

82 4 Automating Threshold Selection for Corner Detection

Shi-Tomasi Harris

Ñc % ∆Nc Ñc % ∆Nc

Images ST ST+IT H H (L) H+IT Vs H Vs H (L)
graf 5.8% 2.0% 65.3% 1.1% 3.0% 2.0% -90.5% 32.1%
boat 26.6% 1.7% 93.8% 4.4% 14.0% 1.7% 61.7% 88.0%
bike 8.0% 1.5% 81.3% 0.9% 4.0% 1.6% -72.3% 60.8%
bark 44.2% 1.4% 96.8% 2.4% 18.3% 2.1% 11.8% 88.4%

leuven 15.8% 2.5% 84.4% 3.8% 9.7% 2.8% 24.3% 70.7%
ubc 29.4% 1.9% 93.6% 3.0% 13.5% 2.2% 27.4% 83.8%

trees 49.8% 0.8% 98.4% 9.1% 32.4% 0.8% 91.6% 97.6%
wall 59.4% 0.8% 98.7% 12.5% 41.7% 1.1% 90.9% 97.3%

Table 4.3: Reduction in the total number of corner candidates with it-
erative thresholding (S+IT and H+IT) for 1000 Shi-Tomasi and Harris
corners: ST and H use Tc = 0.01 whereas H(L) uses a lower threshold
Tc = 0.001 so that N = 1000 can be found in all images

Next, the proposed iterative thresholding (ST + IT and H + IT) is compared with

the following options for iteratively reducing the threshold where the sampling

steps are equal:

� Exhaustive iterative thresholding : The thresholds are exhaustively sampled

by dividing the threshold range into 100 uniform steps. This is referred to

as EIT - for exhaustive iterative thresholding, specifically as ST + EIT and

H + EIT.

� Coarse iterative thresholding : In order to show the effectiveness of non-

uniform threshold steps, a uniform threshold step scheme is employed that

uses the same number of steps as the proposed method (in this case, 20).

This is referred to as ST + CIT and H + CIT.

Table 4.4 shows that using uniform steps for threshold lowering results in much

higher number of trials (k) to release the required corner candidates, whereas

with non-linear steps, the proposed IT method required fewer trials. The second

advantage of using non-linear steps is seen in the % relative reduction of candidates

(∆Nc) for Harris. CIT uses uniform steps for all thresholds and releases many more

candidates in lower threshold ranges resulting in poorer % relative reduction of

candidates (∆Nc). This is also seen in Table 4.5 when N = 1000 where for several

4.4 Summary 83

% Relative reduction in candidates ∆Nc No. of trials (k)
ST + IT 98.1% 2.8

ST + EIT 98.8% 34.5
ST + CIT 98.6% 7.8

H + IT 86.1% 5.6
H + EIT 88.5% 74.8
H + CIT 81.5% 15.6

Table 4.4: Comparison of iterative thresholding methods for 300 Shi-
Tomasi and Harris corners

% Relative reduction in candidates ∆Nc No. of trials (k)
ST + IT 89% 5

ST + EIT 91.1% 66.6
ST + CIT 87.1% 14.1

H + IT 77.3% 9.8
H + EIT 60.8% 91.9
H + CIT 1.6% 18.6

Table 4.5: Comparison of Iterative Thresholding methods for 1000 Shi-
Tomasi and Harris corners

images, the uniform steps for EIT and CIT result in far higher candidates being

released than the proposed IT method. This shows that by reducing the step

size in a non-uniform manner, the proposed iterative thresholding also reduces the

number of candidates released in the lower ranges of corner measures.

The results thus far use the conventional NMS as in Listing 2. Table 4.6 shows that

when the proposed mask-based NMS as in Listing 3 is applied, further reduction

in the number of candidates can be achieved, with an average relative reduction

(average of ∆Nc for all images) of more than 95%. The impact of the mask-

based NMS is higher when N is increased because many of the candidates that

are released in the trials with low thresholds have been already suppressed by the

chosen corners in the earlier trials.

Summary

In this chapter, an iterative thresholding method was presented to automate the

selection of quality threshold in the Shi-Tomasi and Harris corner detectors that

84 4 Automating Threshold Selection for Corner Detection

Shi-Tomasi Harris
N Conv NMS Mask NMS Conv NMS Mask NMS

300 98.0% 99.1% 86.1% 95.5%
1000 89.0% 97.3% 77.3% 96.0%

Table 4.6: Relative reduction (%) in corner candidates (∆Nc) of proposed
mask-based NMS vs. conventional NMS with iterative thresholding S +
IT and H + IT

leads to savings in computations for corner detection, by being adaptive to the im-

age content. Unlike existing methods that involve exhaustive sampling of thresh-

olds which cannot be realized in real-time processing, a non-linear threshold sam-

pling scheme was proposed that employs varying threshold steps depending on the

corner response. This leads to a faster release of the required number of corner

candidates, at the same time, preventing a surge of candidates in lower ranges of

corner measures. In effect, the proposed method is able to find a near-optimal

threshold that releases just enough candidates for extracting the required number

of corners. In addition, a novel mask-based non-maximal suppression technique

was proposed [4], that complements the iterative release of corner candidates, by

suppressing the neighbours of corners selected after the current release. This re-

sults in a substantial reduction in the number of corner candidates processed in

subsequent iterations of sampling with lower thresholds.

The proposed iterative thresholding with mask-based NMS technique, results in an

average reduction in the number of corner candidates of 98.2% for Shi-Tomasi and

95.7% for Harris compared to using fixed thresholds. Thus the proposed method

enables the Shi-Tomasi and Harris corner detectors to be employed, without the

need for manual intervention and with low-complexity, in applications where the

image content varies drastically, as is the case in aerial videos captured on-board

surveillance UAVs.

5
Accelerating Automated Thresholding

with Pruning

In Chapter 4, an automated thresholding method was proposed, that eliminated

the need to manually select the quality threshold parameter for Shi-Tomasi and

Harris corner detectors. The method was able to find a near-optimum threshold

that released just enough candidates for extracting the required number of corners.

Earlier in Chapter 3, a compute-efficient pruning technique [1] was proposed that

was used to rapidly extract corner candidates for Shi-Tomasi and Harris corner

detectors. In this chapter, the automated thresholding method is combined with

the low-complexity pruning technique resulting in further reduction in the com-

putational complexity of Shi-Tomasi and Harris corner detectors at the same time

making them robust under wide range of image content [3, 4].

85

86 5 Accelerating Automated Thresholding with Pruning

Iterative Thresholding with Pruning

In Section 3.3.1, a pruning measure P (Eq. 3.5) was introduced that is computa-

tionally simpler than the corner measure C, to select corner candidates, and an

edge removal step ER (as in Section 3.3.2) was employed to further enhance the

pruning process. The complex corner measure C was then applied to only the

small pool of corner candidates selected after the pruning process. In this sec-

tion, the pruning technique is combined with the automated thresholding scheme

proposed in Chapter 4.

As seen in Fig. 5.1, the distribution of the image pixels based on the pruning

measure P , is non-linear, similar to the distribution of the corner measure C.

This is expected because the pruning measure is derived from the corner measure

itself. Therefore first, the pruning measure P is computed for all pixels in the

image. Similar to the lowering of threshold Tc in Chapter 4, the pruning threshold

Tp is lowered in each iteration using the threshold steps as shown in Fig. 4.3 (b)

to release corner candidates in a controlled manner.

Figure 5.1: Histogram of pixels based on the pruning measure P , and
corner measures C for Shi-Tomasi and Harris

Figure. 5.2 shows the block diagram for the proposed iterative thresholding with

pruning technique. As described earlier, the release of the corner candidates is

5.1 Iterative Thresholding with Pruning 87

controlled by the lowering of the threshold for pruning measure Tp. The corner

measure C is computed only on these corner candidates. A novel bin-based ap-

proach is used to collect the corner candidates and select the best corners without

the need to threshold with Tc. The iterative processing stops when the required

number of N corners has been found.

Figure 5.2: Proposed automated thresholding with pruning technique

The pruning threshold Tp is lowered in a controlled manner to release candidates on

which the computationally complex corner measure C is computed. The process

stops when the required number of N corners is found. For images that are rich

with good corners, the proposed technique can detect these corners with a small

number of iterations and a very small corner candidate set. Hence, the method

becomes compute-efficient by being adaptive to the image content.

The bin-based processing of corner candidates is the critical step in the proposed

method. The entire range of values of corner measure C that a corner candidate

can take is divided into a predefined number of bins. Every candidate is then

assigned a bin, based on its corner measure C. This results in a crude ordering of

the corner candidates such that, the bins for the highest ranges of corner measure

values contain the best corner candidates in the image.

88 5 Accelerating Automated Thresholding with Pruning

In every iteration, as more corner candidates are classified into bins, the growth

of each bin is monitored. If a bin stops growing, it is deemed to have saturated

and the candidates in this bin are ready for further processing. Only the corner

candidates from the saturated bins are then passed on for further sorting and non-

maximal suppression. At the end of an iteration, if the required number of corners

have been accumulated, the algorithm stops. If not, the threshold Tp is lowered in

a systematic manner and the next iteration starts.

Figure. 5.3 shows the automated thresholding with pruning method at work for

detecting 1000 Shi-Tomasi corners in the boat image. On the left, the histogram

of the image pixels is shown based on the pruning measure P . The y-axis shows

the number of pixels as log10(no.ofpixels). On the right, the corner measure

bins have been shown. The value of the corner measure increases with the bin

number; for example, bin 18 holds the best quality corners. In each iteration, as

the threshold on pruning measure Tp is lowered, the corner measure C is computed

on the candidates released, sorted based on C and placed into the corresponding

corner measure bins. In the 3rd iteration, bin 18 saturates, i.e. stops growing.

The candidates from this bin are then sorted, NMS is applied and a total of 231

final corners is obtained from this bin. This process continues, and corners are

accumulated in each iteration. The technique stops after the 6th iteration as the

required number of 1000 corners has been found.

The proposed automated thresholding method is outlined in Listing 4. The key

elements of the automated thresholding technique are:

1. Selection of pruning threshold steps and the bin boundaries of the corner

measure bins,

2. Detection of saturating bins,

3. Efficient non-maximal suppression, and

4. Deterministic and compute-efficient convergence of the iterations.

Next, each of these elements is discussed in greater detail.

5.1 Iterative Thresholding with Pruning 89

Figure 5.3: Automated thresholding with pruning at work: Lowering of
pruning threshold Tp and saturation of corner measure bins in automated
thresholding technique used to detect 1000 corners

90 5 Accelerating Automated Thresholding with Pruning

Listing 4 Iterative thresholding with pruning for corner detection

1: Compute pruning measure P for all pixels in image I
2: Initialize NMS label map to not suppressed
3: while N corners not found do
4: for each pixel pi in I do
5: if Pi > Tp ∗Max(P) and pi is not suppressed then . Pruning (PP)
6: if pi passes the Edge Removal step then . Pruning (ER)
7: Add pi to corner candidates Ci

8: Compute corner measure C
9: end if

10: end if
11: end for
12: Classify candidates in Ci into corner measure bins bk
13: for each bin bk starting from the highest quality bin do . Scan the bins
14: if bk has saturated then
15: Sort candidates in bin bk in descending order of C
16: for each candidate pi in sorted bin bk do
17: if pi is not suppressed then
18: Select pi as final corner . Select corner
19: Update NMS label map of neighbours of pi within distance d
20: end if
21: end for
22: else
23: Exit the bin scan
24: end if
25: end for
26: Select the next lower Tp
27: end while

Selection of Pruning Threshold Steps and Bin Boundaries

As the pruning measure P has been derived from the corner measure C, the

threshold steps shown in Fig. 4.3 (b) are applicable to the threshold Tp as well.

Therefore, the threshold Tp is reduced in the same manner as threshold Tc as

described in 4.2.1.

The boundaries of the corner measure bins used to collect the corner candidates,

are also setup in a non-linear manner. This ensures that each bin has roughly

similar number of pixels; this property of the bins is necessary for them to saturate.

The bin boundaries have been chosen as shown in Fig. 4.3. First the major bins

are setup such that the range of thresholds for every bin is half that of its higher

5.1 Iterative Thresholding with Pruning 91

neighbour major bin. Every major bin is then sub-divided into a 2:1 distribution

to ensure that there is not a huge surge of pixels for a new major bin. When

assigning every corner candidate to a bin, first its major bin is found, followed by

the sub-bin. Note that the bin boundaries are specified as a factor of the highest

corner measure value max(C) found for the image.

Detection of Saturating Bins

After the corner candidates have been classified into the corner measure bins, in

each iteration, the growth of each bin is monitored, for detecting saturation in the

bins. The bins are scanned from the highest corner measure. If the current bin

has saturated, its corner candidates are released for further processing. The scan is

stopped at the first bin that is found to be growing. This way the best corners in

the image are extracted from bins that have saturated and are not likely to grow

any more.

The reason for bins to saturate is the high degree of correlation between the pruning

measure P and the corner measure C. Pixels with high values of P are also likely

to have high values of C. Therefore, after a couple of iterations the higher quality

bins stop growing and saturate as can be observed in Fig. 5.3. The candidates in

these bins are released, sorted and NMS is applied to them, thereby extracting

final corners.

Efficient Non-Maximal Suppression

The mask-based non-maximal suppression (NMS) strategy in Section 4.2.2 when

applied to the proposed iterative thresholding with pruning method, leads to fur-

ther reduction in computations. This is because the size of corner candidate sets

selected in each iteration that undergo the complex corner measure is also further

reduced. The pseudo code for the mask-based NMS is shown in Listing 4.

92 5 Accelerating Automated Thresholding with Pruning

Max. growth for saturation (%)
Bins 1-5 1
Bins 6-11 5
Bins 12-18 10

Table 5.1: Criteria for saturation of corner measure bins

Deterministic and Compute-Efficient Convergence of Itera-

tions

In order to ensure that the proposed iterative thresholding with pruning method

conserves computations as much as possible, in spite of the non-linear nature of

the image, several checks are applied.

1. Saturation criterion for corner measure bins : It was observed that due to

the non-linear nature of the corner measure distribution, in the lower qual-

ity ranges, the corner measure bins continue to grow, with every iterative

release of corner candidates. Therefore, a stringent saturation criterion pre-

vents corner candidates in the lower quality corner measure bins from being

processed, as these bins do not saturate. Therefore, the saturation criterion

is relaxed for lower quality bins as shown in Table 5.1.

2. Lowering of pruning threshold Tp: At the end of every iteration, it is deter-

mined if the proposed method is close to finding the required N number of

features or not. If it is close, the predefined steps to lower the threshold Tp

are replaced by a conservative step (that is much smaller than the predefined

step). This ensures that the candidates are released in a controlled manner

depending on the number of corners that are remaining to be found.

This estimation is based on a measure of the yield of corners from the sat-

urating bins, in the current iteration. The yield is a crude indicator of the

density of the corner candidates - for example, if the candidates are densely

located, then the non-maximal suppression leads to many of the corner can-

didates being suppressed, resulting in a lower yield.

5.1 Iterative Thresholding with Pruning 93

First, the number of corners remaining to be found (nremainingCorners) is de-

termined as shown:

nremainingCorners = N − nchosenCorners (5.1)

Where nchosenCorners is the number of corners found thus far and N is the

total number of corners required to be found.

The current yield, represented as rcurrent, refers to the yield at the end of the

current iteration of corner candidates processing. Given the total number of

pixels in the saturating bins, ncurrentSaturating and the total number of corners

selected in the current iteration, ncurrentCorners, rcurrent is computed as:

rcurrent =
ncurrentSaturating

ncurrentCorners

(5.2)

Similarly, the yield needed in the next iteration for the nremainingCorners to

be selected is represented as rnext and computed as:

rnext =
nnextSaturating

nremainingCorners

(5.3)

Where nnextSaturating refers to the number of pixels in the bin that is next in

line to saturate and nremainingCorners refers to the number of corners remain-

ing to be found.

When rcurrent > rnext, it indicates there are not enough candidates in the next

bin to extract the remaining number of corners and therefore more candidates

need to be released. This is an indication to go for a regular iteration with the

predefined steps for threshold lowering. When rcurrent < rnext, it indicates

that the method is likely to find the required number of corners with the next

bin when it saturates. Therefore, a controlled release of candidates can be

done, to ensure that the next bin indeed saturates. In the implementation,

the following condition is used: rnext > rcurrent + 2 to trigger a controlled

release of candidates.

94 5 Accelerating Automated Thresholding with Pruning

Performance Evaluations

In this section, the combined iterative thresholding with pruning method (referred

to as Automated Thresholding or AT) is evaluated in comparison to fixed/manual

threshold techniques for Shi-Tomasi and Harris corner detectors. Following this,

the additional reduction in complexity achieved by employing the mask-based

NMS with the automated thresholding is demonstrated.

Evaluation Setup

For the evaluation of the proposed automated thresholding with pruning technique,

the following fixed threshold techniques are used:

1. Conventional Shi-Tomasi (ST) and Harris (H) detectors : Fixed threshold

of Tc = 0.01 for Shi-Tomasi and Tc = 0.001 for Harris is used.

2. Pruning based Shi-Tomasi (ST+P) and Harris detectors (H+P): The prun-

ing technique PP-ERST/H [1], as described in Section 3.3, is applied to both

the ST/H detectors. A fixed threshold for the pruning measure of Tp = 0.01

is used. The threshold Tc is the same as that of the conventional ST/H.

The proposed automated thresholding with pruning technique is referred to ST+AT

and H+AT when applied to Shi-Tomasi and Harris corner detectors respectively.

The threshold steps and corner measure bin boundaries, in the proposed auto-

mated thresholding technique, are setup to release corner candidates that have

a non-linearly increasing distribution as shown in Table 4.1 and 5.2 respectively.

Table 4.1 shows that as iterations increase, the step size by which the pruning

threshold Tp is lowered reduces and this ensures that corner candidates released in

a given iteration are not very large in number compared to the previous iteration.

Table 5.2 shows the bin boundaries for the corner measure bins used to collect the

corner candidates, are also setup such that the width of bins for lower threshold

5.2 Performance Evaluations 95

Threshold Factors
Bin No. Min Max Bin Width

1 0.4 1 0.6
2 0.2662 0.4 0.1338
3 0.1993 0.2662 0.0669
4 0.1324 0.1993 0.0669
5 0.0989 0.1324 0.0335
6 0.0654 0.0989 0.0335
7 0.0487 0.0654 0.0167
8 0.032 0.0487 0.0167
9 0.0236 0.032 0.0084
10 0.0153 0.0236 0.0084
11 0.0111 0.0153 0.0042
12 0.0069 0.0111 0.0042
13 0.0048 0.0069 0.0021
14 0.0027 0.0048 0.0021
15 0.0017 0.0027 0.001
16 0.0006 0.0017 0.001
17 0.0001 0.0006 0.0005

Table 5.2: Corner measure bin boundaries

values are much smaller than the higher threshold values. A maximum of N = 300

corners is extracted in all cases.

The following images are used - bike, trees and images of Mars from the navigation

camera of the Curiosity rover [126] - as shown in Fig. 5.4 for the evaluations.

Images bike and trees have an image size of 1000x700 pixels. Images mars1-5

have an image size of 1024x1024.

The C implementations of the baseline algorithms have been used from Section 3.5.

The proposed automated thresholding (AT) method has also been implemented

in C as outlined in Listing 4.

The compute-efficiency of the proposed automated thresholding technique is demon-

strated by executing all the algorithms on the Nios-II embedded platform (as de-

scribed in Appendix B) and measuring the execution time. All the algorithms are

executed as applications on the Nios-II/f fast core with the on-board cache and

floating-point units enabled.

96 5 Accelerating Automated Thresholding with Pruning

Figure 5.4: Image data [119, 126] used for evaluation of automated thresh-
olding with pruning (AT) technique

Accuracy Evaluation

The feature matches, µ as described in Section 3.5.2, and computed using Eq. 3.13

and Eq. 3.14, is used as the evaluation criterion for the accuracy. This metric shows

how close the corner sets generated by the pruning based method is, compared to

the conventional detectors without pruning.

Table 5.3 shows that the feature matches, µ for the automated thresholding tech-

nique (ST+AT, H+AT) is the same as that of fixed thresholding pruning (ST+P,

H+P) and is an average of 98% for Shi-Tomasi and 97.3% for Harris. This shows

that the proposed method (AT) is able to extract corner sets which are a very close

match of the corresponding conventional detector, without needing to specify the

threshold Tc or Tp manually. This can be attributed to the novel strategy, to wait

for the corner measure bins to saturate before the corners are selected, in each

iteration of pruning. This ensures, that the loss of any high quality corners during

iterative pruning is minimal.

5.2 Performance Evaluations 97

Feature matches µ (%)
Images ST+P ST+AT H+P H+AT

bike 93.1 93.1 90.7 90.7
trees 97.9 97.9 95.1 95.1

mars1 100 100 100 100
mars2 99.7 99.3 99.7 99.3
mars3 100 100 99.3 99.3
mars4 100 100 99.7 99.7
mars5 97 96.7 97 97

Table 5.3: Accuracy evaluation for proposed automated thresholding with
pruning technique

Efficiency Evaluation

Figure 5.5 shows the execution time on Nios-II, for all the corner detection methods

considered. Although images bike and trees have the same image size, both the

conventional detectors (ST and H) have a longer execution time for trees compared

to bike as it has more textures and hence more corner candidate regions to process

before the required number of corners can be extracted. A similar variation in

execution times is also observed for the Mars images e.g. mars1 which has a

higher contrast and hence more corner candidates has a higher execution time

compared to mars5.

When pruning with the fixed threshold is applied (ST+P and H+P), bike shows

computation savings because the corner measure is applied to a small pool of

corner candidates selected by the pruning process. However, trees does not show

substantial improvement in the execution time in ST+P and incurs an overhead

in H+P. This is because the threshold for pruning, Tp and corner measure Tc is too

low for this image and the pool of corner candidates is very large. In such cases,

pruning leads to additional computations. Similar observations were observed in

Section 3.5.3 in the case of the wall image. These results show that, if the image

content is unknown, then setting a fixed threshold in a conservative manner is not

computationally efficient as the number of corner regions that are selected by the

fixed threshold is dependent on the nature of the image content and therefore,

unnecessary computations are incurred for images rich with corner regions.

98 5 Accelerating Automated Thresholding with Pruning

Figure 5.5: Efficiency evaluation with Nios-II for the proposed automated
thresholding with pruning technique for (a) Shi-Tomasi and (b) Harris
corner detectors

The automated thresholding technique (ST+AT, H+AT) alleviates this problem

and exploits the nature of the image content to achieve high computation savings.

For ST+AT, an average speedup in execution time, ψ (as in Eq. 3.16) of 67% is

achieved compared to the conventional algorithm, ST, while HT+AT achieves an

average speedup of 51% compared to the conventional algorithm, H. Rich images

such as trees have a low speedup with fixed threshold pruning, specifically, -22%

with ST+P and -18% with H+P (i.e. 22% and 18% overhead respectively). But

5.2 Performance Evaluations 99

with automated thresholding, the pruning is adaptive to the image content and the

required number of corners is found at a higher threshold resulting in a speedup in

execution time ψ of 66% with ST+AT and 49% with H+AT. Note that the Nios-

II platform has the floating point unit (FPU) enabled for all these evaluations.

As seen in Section 3.5.3, even higher speedup in execution time can be expected

when the FPU is disabled. The evaluations show that it is possible to automate

the thresholding process for corner detection and guarantee the required number

of N corners, and also achieve this with lower computational complexity.

Automated Thresholding with Mask-based NMS

The evaluations thus far used the conventional non-maximal suppression strategy

as outlined in Listing 2. In this section, the additional benefits, of incorporating the

mask-based NMS strategy as outlined in Listing 3 with the automated thresholding

(AT) technique, are demonstrated.

The images in Fig 4.5 have been used for the evaluations. The proposed mask-

based NMS strategy is applied with automated thresholding (AT) and is referred to

as AT + maskNMS. It is compared with automated thresholding with conventional

NMS strategy, referred to as AT + convNMS.

The main objective of the mask-based NMS strategy is to reduce the total number

of candidates after pruning, that undergo the complex corner measure. Let the

number of corner candidates for the automated thresholding with conventional

NMS (AT + convNMS) be NAT+convNMS
c and for the mask-based NMS (AT +

maskNMS) be NAT+maskNMS
c , counted by summing up the number of candidates

released in each iteration as described in Eq. 4.2. The additional reduction (de-

noted as δ̃c), achieved by applying the mask-based NMS instead of the conventional

NMS strategy, normalized with the image size Isize, is computed as shown:

δ̃c =
NAT+maskNMS

c −NAT+convNMS
c

Is
(5.4)

100 5 Accelerating Automated Thresholding with Pruning

N=300 N=1000
Methods d=5 d=10 d=15 d=5 d=10 d=15

ST + AT + maskNMS 3% 12% 28% 10% 23% 37%
H + AT + maskNMS 9% 27% 38% 28% 39% 52%

Table 5.4: Additional reduction in the corner candidates (δ̃c) with mask-
based NMS for automated thresholding technique

In Table 5.4, the additional reduction in candidates (δ̃c) by using the mask-based

NMS with the automated thresholding is shown. It is clear that it is always

beneficial to apply the mask-based NMS in place of the conventional NMS as δ̃c

is positive. Clearly, when the minimum distance d between the corners is higher,

the overall reduction in the number of candidates also increases. A larger value for

d implies that more number of corner candidates need to be processed to get the

required number of N corners. In this scenario, the proposed mask-based NMS

strategy is able to avoid the processing of more number of candidates that are

already in the vicinity of corners chosen in earlier iterations. Similarly when the

number of corners to be detected, N, is increased, for many images, this results

in higher reduction of the number of corner candidates when the proposed mask-

based NMS strategy is applied.

The performance improvement achieved due to the savings in computations with

the mask-based NMS, is demonstrated by running the algorithms on the Nios-II

embedded platform (as described in Appendix B). Figure 5.6 shows the results

in terms of the relative speedup in execution time (ψNMS
1) of the automated

thresholding with pruning technique (AT) when the mask-based NMS is used

instead of the conventional NMS, and is computed as:

ψNMS =
tAT+convNMS − tAT+maskNMS

tAT+convNMS

(5.5)

1It is to be noted that the speedup in execution time (denoted as ψ), reported earlier in this
thesis for pruning and automated thresholding techniques, is with respect to the conventional
Shi-Tomasi and Harris corner detectors as is shown in Eq. 3.16. This relative speedup ψNMS , in
contrast, is with respect to the automated thresholding technique itself, when the conventional
NMS strategy is used, as is shown in Eq. 5.5.

5.2 Performance Evaluations 101

In Fig. 5.6, the execution time of the AT + convNMS method is shown as bar

charts for varying minimum distance d values for NMS and number of corners N .

It is clear that the overall execution time increases with the minimum distance,

as more number of candidates are suppressed with a larger d. Also, the execution

time for N = 300 is smaller than that for N = 1000. The relative speedup

in execution time (ψNMS) is shown overlaid as pointers in Fig. 5.6. The mask-

based NMS (AT+maskNMS) for a minimum distance of d = 15 pixels, leads to a

relative speedup (ψNMS) of 14% and 42% with 300 and 1000 Shi-Tomasi corners

respectively. For Harris, a speedup (ψNMS) of 11% and 47% is achieved for 300

and 1000 corners respectively. Also, as seen in Fig. 5.6 (a),(c) the relative speedup

(ψNMS) is higher when the minimum distance d for non-maximal suppression; this

is similar to the analysis in Table 5.4.

Figure 5.6: Evaluation results: Relative speedup ψNMS achieved by the
proposed mask-based NMS strategy compared to the conventional NMS
in the iterative pruning based Shi-Tomasi/Harris corner detectors (a) Shi-
Tomasi N = 1000 (b) Shi-Tomasi N = 300 (c) Harris N = 1000 (d) Harris
N = 300

It is to be noted that applying the automated thresholding with conventional NMS

(AT + convNMS) already led to a speedup in computation time compared to the

conventional detectors as reported in Section 5.2.3. By replacing the conventional

NMS with a mask-based NMS in the automated thresholding further reduction

102 5 Accelerating Automated Thresholding with Pruning

in complexity has been achieved as shown in this section, especially when larger

number of candidates need to be processed in the lower quality corner measure

bins.

Summary

In this chapter, the iterative thresholding method for automating the threshold

selection for corner detection, presented in Chapter 4, is combined with the low-

complexity pruning scheme introduced earlier in Chapter 3, in order to substan-

tially reduce the complexity of corner detection with Shi-Tomasi and Harris al-

gorithms, by adapting the computations to the nature of image content [3, 4].

This is enabled by employing the iterative thresholding with the lower complexity

pruning measure instead of the original corner measure. A novel bin-based mech-

anism has been proposed to collect corner candidates released, such that all the

potential corner candidates within a given range of corner measure values have

been collected before the final corners are selected. This ensures that the pruning

process that extracts the corner candidates has not left out any potential corners.

In addition, the issue of a surge of candidates in lower ranges of corner measure

has been mitigated systematically. First, the mask-based non-maximal suppres-

sion scheme removes corner candidates in the vicinity of already chosen corners

from further consideration. In addition, a heuristic measure of the yield of corners

from each bin is used to adapt the threshold steps for the subsequent release of

candidates.

Evaluations show an average feature match of 98% with the baseline Shi-Tomasi

and Harris detectors demonstrating the effectiveness of the bin mechanism in col-

lecting all the potential corner candidates. In addition, an average speedup in

execution time of 67% with Shi-Tomasi and 51% with Harris algorithms has been

shown with the evaluations on the embedded Nios-II platform. In effect, by the

controlled release of the corner candidates that undergo the complex corner mea-

sure, the proposed method adapts the computations needed for corner detection to

the image content resulting in low complexity. This makes the proposed scheme

5.3 Summary 103

suitable for low-resource platforms that need to perform corner detection on a

wide range of image content such as the surveillance UAVs with minimal human

intervention.

6
Low-Complexity Global Motion Estimation

with Sparse Features

Introduction

Estimating the motion of the camera by employing global motion estimation

(GME) is a primary step for processing videos captured by on-board cameras

on UAVs. However, as described in Chapter 2, existing methods for GME have

high computational complexity and are therefore not suitable for real-time and

on-board processing on low-complexity platforms. In Chapters 3– 5, the complex-

ity of the corner detection step has been reduced by adapting, the computations

for detecting corner regions, to the varying image content seen in aerial videos.

In this chapter, a novel low complexity GME method is proposed that exploits

105

106 6 Low-Complexity Global Motion Estimation with Sparse Features

the characteristics of aerial videos to adapt the computations needed for GME

with the complexity of the scene, by employing the minimum number of sparse

well-distributed features.

As has been described in Section 2.4, GME can be performed using direct meth-

ods that operate on all the pixels in the frame for estimation. Although they

provide high accuracy, feature-based methods have been preferred for their lower

complexity and robustness to outliers. As shown in Fig. 2.6, the feature-based

GME pipeline first detects and tracks features in a pair of frames to compute the

feature correspondences. The robust estimator then fits a global motion model

to these correspondences to compute the global motion between the frames. As

videos have small baselines, a feature tracking step - with corner detectors such

as Harris, Shi-Tomasi or FAST [52] combined with a tracking algorithm such as

KLT [54] - is preferred as in [39], to a more computationally complex feature

descriptor-matching step - using SIFT [55] or SURF [56].

Although the feature-based GME methods have lower computational complexity

compared to the direct methods (as they operate only on features instead of all

the pixels for GME), the number of features used for the estimation still has a

substantial impact on the computational complexity of GME. Table 6.1 shows the

average execution time for the feature detection, tracking and estimation steps in

the GME for a typical aerial video sequence in [39] for various number of features 1.

Clearly, the number of features has a direct impact on the execution time of the

feature tracking step. At 3000 features, as is used in [39], the execution time of

the feature tracking step dominates the GME execution time.

The background PSNR2 (peak-signal-to-noise-ratio) that quantifies the accuracy

of the GME remains similar for all the densities of features considered in Table 6.1,

showing that even a low density of features can achieve reasonable quality of GME

1The OpenCV v2.4.9 implementation of Shi-Tomasi feature detector and KLT tracker was
used. The multi-threading in OpenCV was turned off to simulate a low-resource embedded
platform.

2Background PSNR has been computed by removing the moving objects from the frames
and then calculating the PSNR of the successive frames after GME as described in Eq. 3.17 in
Section 3.5.4

6.1 Introduction 107

Number of Features PSNR (dB) Tdetect (ms) Ttrack (ms) Testimate (ms)

500 38.2 265 208 3
1000 38.2 254 371 4
2000 38.1 262 689 6
3000 38.2 269 1042 8

Table 6.1: Accuracy (PSNR) and execution time (Tdetect: time for feature
detection, Ttrack: time for feature tracking, Testimate: time for robust es-
timation) of feature-based GME for various densities of features for TNT
Aerial 350m video sequence

for most of this video. This motivates us to question the choice of the number of

features to be used for GME in order to substantially reduce the computations.

As described in Section 2.4, existing methods to achieve low-complexity GME

have been proposed for direct GME methods. They use either lower-precision

images [98] or a subset of the image pixels [97, 92]. There is also substantial

work in literature [112, 113, 114] to reduce the complexity of the robust parameter

estimation algorithm, Random Sample Consensus (RanSaC). However, all these

methods still assume that a large number of feature correspondences is available,

and therefore incur the associated computation overhead of tracking for a large

feature set.

In this chapter, a systematic selection of features is proposed such that a sparser

feature set can be employed by removing redundancies. In this context, spatial

distribution has been addressed as an important criterion for the usefulness of

feature detectors. In [111, 127] a metric to measure the coverage of the feature

detector output is provided. Genetic algorithms are used to improve the coverage

of feature detectors in [128]. All these approaches measure and improve coverage

of the corner detectors for any end application. In contrast, in this chapter, the

spatial distribution of the feature set and its coverage of the frame, is considered in

the context of reducing the number of features needed for global motion estimation

(GME). Specifically, during the feature selection, the usefulness of a feature is

determined by not just the feature quality as corner detectors do, but also its

location in the frame.

108 6 Low-Complexity Global Motion Estimation with Sparse Features

It is proposed that the number of features should be adaptive to the scene content

and camera motion, such that when scene conditions are conducive, the GME can

be performed with sparse features and only when needed, higher density of features

is employed. To this end, a low complexity GME method, referred to as sparse-

GME, is proposed that uses spatial distribution constraints to carefully select

features, monitors the performance of the sparse features in the robust estimation

to detect failures and ramps up the density of features only when needed.

The rest of the chapter is organized as follows. In Section 6.2, the feature-based

GME pipeline is analysed to identify the assumptions that lead to a requirement

of a high density of features for GME. In Section 6.3, the proposed sparse-GME

method is presented. Section 6.4 discusses the computation cost of sparse-GME.

The proposed method is evaluated with baseline algorithms in Section 6.5. The

chapter concludes with Section 6.6.

Feature-based Global Motion Estimation

In this section, the feature-based GME is considered to analyse the need for a high

density of features for the GME.

Robust Estimation

As described in Section 2.4, the goal of the GME algorithm is to determine the

parameters of a global (camera) motion model that defines the camera motion

between two frames. The 2D projective motion model, or homography [93, 94] is

commonly used to represent the global motion in aerial videos [32].

As seen in Eq. 2.4, for successive video frames I and J , the displacement of every

pixel at (x, y) in the current frame I to the new location (u, v) in the next frame

6.2 Feature-based Global Motion Estimation 109

J can be represented using a homography matrix H as follows:
u

v

1

 =


h11 h12 h13

h21 h22 h23

h31 h32 1

 .

x

y

1

 (6.1)

Parameter estimation involves computing the parameter values of the homography

matrix H. Let XI = (x, y) be the feature in frame I, and let its corresponding

location in frame J be XJ = (x′, y′). The correspondence (XI , XJ) is determined

by a feature tracking/matching algorithm. If H represents the global motion

of each feature correspondence, then from Eq. 6.1, a pair of equations for each

correspondence can be derived as follows:

x′i = h11xi + h12yi + h13 − h31xix′i − h32yix′i

y′i = h21xi + h22yi + h23 − h31xiy′i − h32yiy′i (6.2)

Since one correspondence results in a pair of equations, in order to solve for 8

unknowns in H, at least 4 correspondences are needed. However, the feature

correspondences could be noisy, due to localisation and tracking errors, or belong

to a moving object, in which case, they cannot be used.

Noisy correspondences can be dealt with by using a large number N of correspon-

dences and solving an over-determined system of equations as shown below:



x1 y1 1 0 0 0 −x1x′1 −y1x′1
...

xN yN 1 0 0 0 −xNx′N −yNy′N
0 0 0 x1 y1 1 −x1y′1 −y1y′1

...

0 0 0 xN yN 1 −xNy′N −yNy′N





h11

h12

h13

h21

h22

h23

h31

h32



=



x′1
...

x′N

y′1
...

y′N


(6.3)

110 6 Low-Complexity Global Motion Estimation with Sparse Features

The set of N feature correspondences (XI , XJ) are used to solve for the param-

eters of H in a least-squares manner where the error E, between the measured

correspondence (x′i, y
′
i) and the estimated correspondence (ui, vi), is minimized:

E =
N∑
i

(x′i − ui)2 + (y′i − vi)2 (6.4)

As mentioned earlier, the feature correspondence can also belong to a moving

object and in this case, it cannot be used for estimating the global motion, as

the feature moves independent of the global motion. These are the outliers in the

parameter estimation process.

The classical least-squares estimation, described thus far, fails in the presence of

such outliers, and robust estimation techniques are employed to deal with such

cases. Figure 6.1 shows the problem of fitting a straight line model to data that

contains a large number of outliers. In the context of global motion estimation,

the data corresponds to the feature correspondences and the model is homography

(in place of the straight line) and the problem is to robustly fit the homography

model to this data. In Fig. 6.1 (a), the data points closest to the line represent

feature correspondences adhering to the global motion. The data points further

away are either inaccurate (noisy) background feature correspondences or, belong

to moving objects, and are therefore outliers.

Figure 6.1: Illustration of Random Sample Consensus (RanSaC) algorithm
[129] (a) Data points with noise (b) Compute error for a hypothesis set (c)
Determine the corresponding consensus set (d) Find and report the largest
consensus set after several iterations

The Random Sample Consensus (RanSaC) [96] is a classic robust estimation al-

gorithm. It is an iterative hypothesize-and-test algorithm. It selects a random

6.2 Feature-based Global Motion Estimation 111

sample set and estimates the model for this sample. It then computes the error,

also known as reprojection error, of all data points to this model. By applying a

threshold on the reprojection error as in Fig. 6.1 (b)(c), it generates a consensus

set containing inliers. This process is repeated iteratively, until the probability of

finding a consensus set larger than what has been found is very less. The largest

consensus set is reported as the inliers, as shown in Fig. 6.1 (d).

With a dense feature set, it is expected that there are sufficient feature correspon-

dences adhering to the global motion (in other words, belonging to the background)

and they become inliers during RanSaC, thereby making all features that belong

to the foreground or are too noisy, as outliers.

Density of Feature Correspondences

In practice, a dense set of feature correspondences is used for the estimation for

the following reasons:

1. Spatial Distribution: If the sparse set of features are not well spread out in the

frame, then they form a degenerate set, and cannot estimate the homography

parameters. Spatial distribution is therefore critical for estimation. Allowing

a large number of features to be selected, ensures that there is representation

for every region in the image during estimation. However, as [111, 128, 127]

show, depending on the feature detector, the spatial distribution may vary

significantly, and having a high density does not necessarily guarantee good

spatial distribution.

2. Background features : For a feature correspondence to be useful for estima-

tion, its motion needs to adhere to global motion, i.e. belong to the back-

ground in the scene. In the presence of moving objects (foreground), a high

density of features ensures that a sufficient number of background feature

correspondences is still available for the robust estimation, to declare the

foreground features as outliers and estimate global motion accurately.

112 6 Low-Complexity Global Motion Estimation with Sparse Features

3. Accuracy of feature correspondences : Feature tracking is prone to errors due

to occlusions, repetitive textures (resulting in features landing on similar

looking neighbouring features) and distortions due to rotations and scaling.

It is known that KLT cannot handle large distortions [78]. Having a high

density of features ensures that at least a small number of accurate feature

correspondences are available to estimate the global motion accurately.

Now, consider the case of global motion estimation for aerial videos. The video

captured by on-board cameras on UAVs have the following characteristics that are

of interest during GME:

1. Predominantly simple camera motion: The camera motion experienced by

successive frames in aerial surveillance videos is predominantly translational.

Large rotations are only experienced when the vehicle is doing bank turns

as shown in Fig. 2.1. This implies that the feature tracker can be setup for

a smooth translation motion, and be expected to provide highly accurate

feature correspondences for most of the video sequence. This in turn implies

that the noise in the data used for GME can be expected to be low for most

of the video frames in an aerial video.

2. Small foreground : In the surveillance application scenario, the background

occupies the majority of the scene and moving objects are sparse and present

only occasionally. This implies that the outlier ratio can be expected to be

fairly small for most of the video frames in the aerial video.

It is clear that, the majority of the frames in the aerial surveillance videos ex-

perience simple motions, with very small number of moving objects, resulting in

feature correspondences that are both useful (background features) and accurate.

Therefore, when the overall noise in the data is expected to be small and the out-

lier ratio is also small, a dense feature set is not necessary for GME. By a careful

selection of features, even a sparse set can achieve high quality GME for most of

the video frames. This is confirmed by the results in Table 6.1.

6.3 GME with sparse features 113

In the next section, a low-complexity GME method is presented that employs mini-

mum number of features for estimation, which is enabled by an evaluation strategy

capable of detecting successful estimations followed by a systematic repopulation

method to ramp up features in the event of a failure in estimation.

GME with sparse features

The objective of the proposed sparse-GME method is to adapt, the number of

features used for GME, to the complexity of the scene. The idea is to stay lean

when scene conditions are conducive - i.e. moving objects (foreground) are very

sparse, camera motion is predominantly translational and the image has a natural

spread of content. When any of these conditions is violated - i.e. features are lost

due to the limitations of the tracker or occlusions, or majority of the features fall

on moving objects or the features are not naturally spread out in the frame - only

then, the density of the features shall be increased.

The sparse-GME starts with a sparse feature set which is well-distributed in the

frame. The frame is processed in a block-based manner, extracting n1 features in

each block of a k ∗ k grid (for the evaluations n1 = 1 and k = 4, resulting in 16

features has been considered). An evaluation method is proposed to determine

if the GME with the sparse feature set is successful or not. This is followed by

a systematic repopulation strategy that injects additional features to improve the

accuracy of the GME when the current estimation has failed. These steps are

described in detail next.

Evaluation of estimation

A simple low-complexity strategy is proposed to evaluate the current estimation,

which can be used to determine whether additional features are needed to complete

the GME.

114 6 Low-Complexity Global Motion Estimation with Sparse Features

Figure. 6.2 visualizes the various outcome scenarios in parameter estimation with

sparse features by illustrating the feature correspondences in the model parameter

space. Figure. 6.2 (a) is an example of a successful estimation: the inlier feature

correspondences (black circles) are close to the model and the outliers (empty cir-

cles) are distinctly far from the inliers set. In this case, RanSaC is able to correctly

classify the inliers and outliers and the model fitted by the inliers represents global

motion.

Figure 6.2: RanSaC failure cases with sparse features: (a) Successful esti-
mation with clear classification of inliers and outliers (b) Failed estimation
with a single feature correspondence (grey) skewing the estimation (c)
Failed estimation with very poor agreement between the inliers

Failure in estimation, i.e. the estimated model is far from the actual global motion

experienced, is due to the following reasons:

1. Inaccurate correspondences or foreground features participate and skew the

estimation. This means that the inlier/outlier classification itself is faulty.

Two possible scenarios arise:

(a) As shown in Fig. 6.2 (b), majority of the correspondences are useful,

however a very small number of inaccurate correspondences or features

on moving objects (represented by grey circles) are responsible for erro-

neous estimation. Removing or replacing these feature correspondences

could still lead to correct estimation.

(b) As shown in Fig. 6.2 (c), majority of the correspondences are not agree-

ing well to the model. Therefore a higher density of features is needed

6.3 GME with sparse features 115

so that the camera motion can be captured with sufficient number of

features representing the majority motion.

2. Inlier/outlier classification is correct, however the inliers form a degenerate

set due to insufficient coverage of the frame.

The aim of the evaluation strategy is to distinguish between all these scenarios

in order to complete the GME by employing the minimum number of features

required. The evaluation strategy uses two criteria: (1) Inlier agreement (2) Spatial

distribution constraint, which are described next.

Inlier Agreement

In order to evaluate the accuracy of the estimation, first it is determined if the

set of feature correspondences agree with the estimated model well. In RanSaC,

the reprojection threshold, used to separate the inliers from the outliers, deter-

mines how tightly the inlier set agrees with the estimated model. As shown in

Fig. 6.3, the RanSaC is invoked with two reprojection thresholds T1 and T2 called

2-RanSaC such that T2 < T1. If the inlier/outlier classification remains the same

for both T1 and T2, then the inliers can be relied upon for further evaluation.

The correspondences that are inliers for both the estimations are considered as

high-confidence inliers. (The thresholds of T1 = 3 and T2 = 1 are used for the

experiments.)

Next, it is ensured that there is a high degree of agreement to the model in the

inlier set. The location error, LE of the inliers is computed and checked if it is

below a threshold as given below:

LE = |Hest(xi, yi)− tracker(xi, yi)| (6.5)

LE < TLE

Where for feature at (xi, yi), Hest(xi, yi) represents the GM estimated location by

applying the homography Hest and tracker(xi, yi) represents the tracked location.

116 6 Low-Complexity Global Motion Estimation with Sparse Features

Figure 6.3: RanSaC with two reprojection thresholds (2-RanSaC)

All the high-confidence inliers need to have a low location error. For the evalua-

tions, TLE = 0.5 was used. Successful estimation as in Fig. 6.2 (a) should meet

the above inlier agreement criterion.

Spatial Distribution Constraint

An additional check for the spatial distribution is required to rule out the possibil-

ity of a degenerate set - i.e. a situation where a there is a small number of inliers

with high degree of agreement but not representing global motion due to lack of

coverage of the frame. It is required that the high-confidence inliers cover at least

a majority of the image content (for the evaluations, at least 75% of the k ∗ k grid

was used).

The evaluation of the estimation is performed as follows:

� The estimation is considered successful as in Fig. 6.2 (a) if there are suf-

ficient number of high-confidence inliers satisfying the spatial distribution

constraint, with low location errors.

6.3 GME with sparse features 117

� Failure due to a small number of incorrect feature correspondences skewing

the estimation as in Fig. 6.2 (b) is detected by the presence of shaky corre-

spondences, i.e. features that are inliers for RanSaC with threshold T1 but

become outliers for the tighter reprojection threshold T2.

� For the case of Fig. 6.2 (c) both the checks for inlier agreement as well as

spatial distribution constraint fail.

Finally, for a successful estimation, the homography model corresponding to the

estimation with a better inlier agreement is reported. First, the estimation with

the tighter threshold T2 is considered. If it fails the inlier agreement, then the

estimation with T1 is considered. When either of them are not “good”, i.e. they

fail the inlier agreement check, the next repopulation option is considered.

Figure 6.4 illustrates the flow of the evaluation steps described thus far, for the

GME with the sparse set. A sparse set of feature correspondences are selected

in phase 1 (P1). RanSaC is applied with two thresholds T1 and T2 as shown in

Fig. 6.3 in the step: 2-RanSaC, providing the estimated homographies H1 and H2

respectively and the high-confidence inliers. Next, the inlier agreement is checked

for the high-confidence inliers with H1 and H2. It is also checked if enough high-

confidence inliers meet the spatial distribution constraint. If both these checks are

passed, the model among H1 and H2 that had better inlier agreement, is reported.

When either of these checks fails, a systematic repopulation as shown in phases

P2-P4 is undertaken, as described in the next section.

Repopulation

Repopulation with additional features is done in a phased manner to improve

the accuracy of the GME when a failure is detected by the above evaluation

method. Phase 1 (P1) represents the first pass of the estimation with a sparse

well-distributed feature set with n1 features per block in a k ∗ k grid (n1 = 1

and k = 4 was used). When the estimation in P1 fails, subsequent phases of

repopulation are performed, as detailed below:

118 6 Low-Complexity Global Motion Estimation with Sparse Features

Figure 6.4: Flow of proposed sparse-GME method

1. Selective injection of alternate features : When the feature correspondences

are lost during estimation (2-RanSaC step) - as either outliers or shaky

features, the spatial distribution check fails, as there are not sufficient well-

spread high-confidence inliers. This leads to a selective injection of features

represented as phase P2 in Fig. 6.4.

It is to be noted that the check for sufficient high-confidence inliers is per-

formed after the check for inlier agreement and therefore the high-confidence

inliers are in high degree of agreement. Additional features are needed only

to “support” the current estimation. Therefore, in the blocks that have lost

representation, additional feature correspondences are generated. For each

such alternate feature, it is determined if it supports the current estimation

by computing its location error as in Eq. 6.5 and checking if it is small.

If sufficient “supporters” with these alternate features are found, the cor-

responding homography H is reported. This process is undertaken for H2

first, if it passes the inlier agreement check and if not, then H1 is considered.

2. Uniform increase in density of features : If neither of the estimates H1 and

6.4 Cost Analysis 119

H2 pass the inlier agreement check (i.e. have low location errors for all

their high-confidence inliers), then it indicates that the confidence in the

estimation by the sparse set in P1 is low. A higher density of features of

n2 is then applied and the inlier agreement is determined as shown in phase

P3. If this fails as well, then the estimation is performed with the worst

case dense set of features n3 in phase P4. For the evaluations, n2 = 5 and

n3 = 10 is used.

The flow of the proposed sparse-GME through all the phases, as described in this

section, is shown in Fig. 6.4.

Cost Analysis

The proposed sparse-GME method works with minimum number of features for

GME compared to conventional approaches that employ a dense set. This leads to

savings in computations in the feature correspondence step. However, in order to

determine whether the GME was successful with this sparse set of correspondences,

additional computations are needed. The motivation for the proposed method

is that assuming most of the frames in a video undergo simple global motion

with a very small number of moving objects, the GME has a high chance of

being successful with a sparse but well-covered feature set. Therefore, the only

overhead for each frame is in checking if GME was successful or not and since

these computations use a very sparse set of features, this overhead is substantially

less compared to the computation cost of GME with a very dense set of features.

In this section, the computation cost of the proposed method is considered by

looking at the cost of each of the phases (P1, P2, P3, P4) of iterative repopulation,

employed by the proposed method as shown in Fig. 6.4. It is expected that most

of the frames in a video sequence go through only phase P1, and only when GME

fails at P1 are phases P2, P3 and P4 taken. The complexity of each individual

step in these phases is discussed below:

120 6 Low-Complexity Global Motion Estimation with Sparse Features

1. 2-RanSaC : This step includes computations for generating the feature cor-

respondence - i.e. feature detection and tracking and the robust estimation

using these correspondences. In a conventional GME, tracking with KLT

and estimation with RanSaC is performed on a dense feature set.

� KLT tracking [77]: KLT has two major steps - (1) Building an image

pyramid for each frame (2) Finding the corresponding location for each

feature. Step 1 is needed irrespective of the number of features. When

the dense feature set is replaced by a systematically selected sparse

feature set, the computations in Step 2 are reduced, proportional to

the reduction in the number of features.

� RanSaC: The time complexity t of RanSaC [129] is given by:

t = k(tM + m̄sN) (6.6)

Where tM is the time to compute a single model, m̄s is the average

number of models per sample, k is the number of samples drawn and

N is the number of data points. When the sparse feature set is used

instead of a dense set, the number of data points N is reduced.

It is clear that the computation cost of 2-RanSaC is directly proportional

to the number of data points, i.e. feature correspondences. Therefore de-

pending on which phase uses this step - whether the sparse set in P1 or the

dense set in P3 are used - the complexity is proportional to the size of the

corresponding feature set.

2. Inlier agreement check : This involves computing the location error for the set

of feature correspondences as in Eq. 6.5 and therefore is directly proportional

to the number of feature correspondences.

3. Find alternate features : For each additional feature considered, this step

finds the feature correspondence using KLT tracking algorithm and then

computes the location error as in Eq. 6.5. The number of such additional

features considered determines the computation cost of this step.

6.5 Performance Evaluations 121

The steps that check for enough high-confidence inliers or supporters are simple

checks with a predefined threshold. In summary, the computation cost of phases

P1 and P2 are substantially less, compared to that of P3 and P4, as the number

of data points used in these phases is much lesser. The more complex P3 and P4

phases are used only when the GME fails and as will be seen in Section 6.5, the

number of frames that use these phases is very small in a video sequence thereby

substantially reducing the overall GME complexity.

Performance Evaluations

In this section, the performance of the proposed sparse-GME method is evaluated

on a variety of aerial video datasets. First, the experimental setup is described:

specifically, the video datasets and the evaluation criteria. Then, the performance

results of the proposed method are shown.

Evaluation Setup

Aerial Video Datasets: The aerial video datasets TNT Aerial [39] and CLIF

[130] as shown in Fig. 6.5 have been chosen for the evaluation. The TNT Aerial

sequences were recorded on a UAV with a downward looking moving camera, with

full HDTV resolution (1920x1080, 30 fps). Radial distortion compensation was

applied manually and the resulting cropped frames are of resolution 1904x1072.

The names of the video sequences represent the height of the camera - for e.g.

TNT-350m was recorded by the UAV at a height of 350m.

Simulated frames: As the video datasets above do not contain challenging sce-

narios with camera motion and moving objects, simulated data is also generated

to evaluate the proposed method, when the camera motion is drastic and/or num-

ber of objects is large. The images in Fig. 6.6 are used. In Fig. 6.7, the applied

simulations are illustrated. The simulations involve:

122 6 Low-Complexity Global Motion Estimation with Sparse Features

Figure 6.5: Aerial video datasets for evaluation (a) CLIF (b) TNT-350m
(c) TNT-500m (d) TNT-1000m (e) TNT-1500m

6.5 Performance Evaluations 123

� Moving objects : Figure. 6.7 (a) shows the original image (current frame)

with the simulated objects, black square patches, overlaid. The objects are

positioned in a spread out manner such that only one moving object appears

in one block in a 4x4 grid. This is to ensure that the worst case scenario for

GME in the presence of moving objects is simulated: i.e. the feature chosen

within a block falls on the moving object and therefore is not useful for

GME. Figure. 6.7 (b) shows the simulated next frame with both the object

and camera motion applied to the current frame. Random local motion is

applied to the simulated objects within ±10 pixels.

� Camera motion: The simulated frames contain 0-10 moving objects. The

camera motion is simulated as 1-10 degrees of in-plane rotation and scale

factor of 1-0.8x.

The feature correspondences shown as optical flow vectors in Fig. 6.7 (c) show

how the object motion differs from the background motion. All the frames have a

resolution of 352x288.

Figure 6.6: Images used for the simulated data for evaluation of the pro-
posed sparse-GME method

Baseline: A feature-based GME (as shown in Fig. 2.6) with dense features called

dense-GME is used as the baseline, with the following parameter values for the

various algorithms:

� Shi-Tomasi feature detector : Threshold for quality Tc = 0.001 , Minimum

distance for non-maximal suppression d = 10, maximum no. of features

N = 1000 (as described in Section 3.2)

124 6 Low-Complexity Global Motion Estimation with Sparse Features

Figure 6.7: Simulated Frames: (a) Frame1 (b) Frame 2 (c) Optical flow
generated by the KLT tracker on Frame 1; Row 1 shows 7 moving objects
with in-plane rotation of 5 degrees; Row 2 shows 5 moving objects with
scale factor of 0.9

� KLT feature tracker : Window size W = 31, Maximum no. of iterations

k = 20, Number of pyramid levels Lmax = 2 (Simulated Data) and Lmax = 4

(Video Data), Minimum eigen threshold λth = 0.0001

� RanSaC estimation: Reprojection threshold Treproj = 3.0

In addition, a naive approach of only using sparse features is also compared so that

the significance of the repopulation stage in the proposed sparse-GME method

can be demonstrated. This involves the sparse feature set used in the phase P1 of

the proposed sparse-GME method, without any of the subsequent evaluation and

repopulation steps. This approach is referred to as 4x4x1.

For the proposed sparse-GME method, a 4x4 grid (k = 4) as described in Fig. 6.4

is used for all feature selections. For the check for inlier agreement in P1, the

threshold for LE, TLE = 0.5 is used and all high confidence inliers need to have

a location error lower than this threshold. The same threshold for location error

is used in P2, while selecting alternate features. For the similar check in P3,

80% of high confidence inliers are required to have a location error lower than

6.5 Performance Evaluations 125

the TLE = 0.5. For the check on enough number of high confidence inliers and

supporters, it is required that 75% of the total number of feature correspondences

used for the estimation are high confidence inliers or supporters. The proposed

sparse-GME method, as shown in Fig. 6.4, was implemented in OpenCV (v2.9)

using standard libraries for Shi-Tomasi corner detection, KLT feature tracking and

RanSaC algorithms.

Evaluation Criteria: To evaluate the GME accuracy, the background peak

signal-to-noise ratio (PSNR) is calculated between the actual frame F1 and the

estimated frame F ′1 = H(F2) where H is the homography reported by the GME

as in [98].

The moving objects (foreground) are excluded from the PSNR computation so

that the differences are related to only GME errors and non-foreground changes

between the frames. The PSNR is computed similar to 3.17 as shown:

PSNR = 10× log10

(
2552

MSE

)
(6.7)

Here MSE is the mean of the squared-error of the pixel intensities between the

actual frame F1 and estimated frame F ′1 after the foreground has been removed.

For the video dataset, the difference in the background PSNR when the pro-

posed sparse-GME method is employed, in comparison to the baseline dense-GME

method is represented as δPSNR and computed as:

δPSNR = PSNRsparse − PSNRdense (6.8)

The number of frames which have a PSNR difference smaller than TPSNR = 1

dB between the proposed and baseline methods is also counted and reported as

126 6 Low-Complexity Global Motion Estimation with Sparse Features

successful cases of GME, φ in Table 6.2, computed as:

φi =

1 δPSNRi < TPSNR

0 Otherwise

φ =

∑nF

i=1 φi

nF

(6.9)

For the simulated frames, the actual background PSNR values are reported.

The efficiency of the proposed method is evaluated by considering the repopulation

phase taken by GME for that frame pair. As seen in Section 6.4, phase P1 has the

lowest computation cost. For the video dataset, the % of frames that take each

phase P1-P4 are reported in Table 6.3. For the simulated frames, the % of frame

pairs that take each phase P1-P4 for a given camera and object motion are shown.

Performance Results

Aerial Video Datasets: Table 6.2 shows the accuracy evaluation results for

the video sequences. The sparse-GME achieves background PSNR similar (within

1 dB) to the baseline dense-GME for 97% and above cases in all the video se-

quences. This is represented as the % of successful frames, φ. The average drop

in background PSNR (δPSNR) when the sparse-GME is used is in the range of

only [-0.08,-0.2] dB. This shows that the sparse-GME method is able to achieve

comparable accuracy as the dense GME.

Table 6.3 shows that in 94% and above cases for all the video sequences, the sparse

feature phase P1 is used by sparse-GME. The dense phases P3 and P4 are chosen

only by at most 2.6% of the frames. This shows that the proposed method is

effective in detecting conditions conducive for sparse features to be used for GME,

and it stays lean in such situations.

Simulated frames: Figure. 6.8 shows the evaluation results for simulated frames

with 0-10 moving objects in the frames (with a camera motion of in-plane rotation

of 2 degrees). The sparse-GME is able to match the accuracy of the baseline

6.5 Performance Evaluations 127

% Successful Frames (φ) Difference in PSNR (δPSNR) dB
TNT 350m 100 -0.1
TNT 750m 97.4 -0.21

TNT 1000m 99.7 -0.14
TNT 1500m 99.6 -0.08

CLIF 99 -0.11

Table 6.2: Accuracy evaluations of sparse-GME with aerial video datasets

Repopulation Phases
P1 (%) P2 (%) P3 (%) P4 (%)

TNT 350m 94.9 5.1 0 0
TNT 750m 94.9 2.6 2.6 0

TNT 1000m 98.5 0.2 1.4 0
TNT 1500m 95.7 2.4 2.0 0

CLIF 98.3 0.4 1.1 0.2

Table 6.3: Efficiency evaluations of sparse-GME with aerial video datasets

dense-GME even with a large number of moving objects. Clearly, as the number

of moving objects increases, the naive sparse feature set in 4x4x1, fails while the

sparse-GME successfully detects the failed evaluations and ramps up the required

number of features achieving good GME accuracy.

As shown in Fig. 6.8, when the number of moving objects is between 1-3, sparse

GME stops at phase P1 for 100% of the frames. As the number of moving objects

is increased, the sparse-GME needs to employ the next phases of P2-P4. Note

that when the phase P1 fails, selective injection of features by looking for an

alternative feature in blocks that contain outliers or shaky inliers, i.e. phase P2

results in accurate GME. This phase is able to avoid a uniform increase in density

in all blocks when P1 fails.

The proposed method is also evaluated when the inter-frame camera motion is

drastic - in-plane rotations of 1-10 degrees and scale changes of 1-0.8x. As the

global motions are all simulated, the background PSNR with the ground truth

GME parameters is shown in Fig. 6.9 and 6.10. As can be seen, the conventional

dense-GME is able to achieve comparable accuracy as that with the ground truth,

only for small global motions - rotation angles less than 5 degrees and scale factors

128 6 Low-Complexity Global Motion Estimation with Sparse Features

Figure 6.8: Accuracy and efficiency evaluation of sparse-GME with simu-
lated moving objects

less than 0.9x. Beyond this, having a dense set alone is not helpful. This is be-

cause the KLT feature tracker is unable to deal with the drastic distortions caused

by the rotation and scale changes resulting in inaccurate feature correspondences.

Therefore, the proposed method also deteriorates in performance as it is using a

subset of the KLT feature correspondences used by the dense-GME. The repop-

ulation phases of P2-P4 are invoked but do not contribute to any improvement

in GME accuracy as the newly injected feature correspondences are also inaccu-

rate. In Chapter 7, the robustness of the KLT feature tracker is addressed, and

when applied to GME shows a substantial improvement in the performance of the

sparse-GME (refer to results in Fig. 7.12).

Figure 6.9: Accuracy and efficiency evaluation of sparse-GME with simu-
lated camera motion (in-plane rotation)

6.6 Summary 129

Figure 6.10: Accuracy and efficiency evaluation of sparse-GME with sim-
ulated camera motion (scale change)

Summary

In this chapter, a strategy for low-complexity global motion estimation with very

sparse feature sets, is proposed that adapts the number of features needed for GME

with the complexity of the scene and the camera motion, leading to substantial

reduction in computations for GME in aerial surveillance videos. A sparse feature

set with sufficient spatial distribution is selected and a computationally simple

approach is proposed to determine the quality of GME using this set of features.

A systematic repopulation with additional features is performed only if the GME

fails with the sparse set. Unlike existing techniques for reducing complexity of the

robust estimation that assume a dense feature set is always available, the proposed

method detects the need for higher density and only then ramps up the number

of features. This is enabled by the rapid evaluation of the GME with the sparse

features.

For aerial video sequences, the accuracy of the GME with the proposed method

is similar to that of GME with a dense feature set for 97% and above cases, while

the computations are limited to GME with a very sparse feature set of around

16 features for around 95% of the frames. On simulated data, it is shown that

the proposed method is able to match the accuracy of the dense feature set GME

when the number of moving objects increases, by systematically moving to higher

densities.

130 6 Low-Complexity Global Motion Estimation with Sparse Features

The evaluations with drastic camera motion show that when the tracker is itself

unable to handle the motion and results in high noise in the feature correspon-

dences, both the dense feature set and the proposed method suffer. It should be

noted that such situations of drastic camera motion are infrequent in aerial videos,

and a more robust tracker is needed to improve the performance of GME in these

situations.

The proposed method enables low-complexity global motion estimation in aerial

surveillance videos by, staying computationally lean when the global motion is

simple and manageable, and ramping up the number of features, only when GME

fails.

7
Adaptive Windowing for Robust and

High-Speed KLT Tracker

Introduction

Feature tracking is an essential step in global motion estimation (GME) as well as

many computer vision applications, such as image registration and object tracking

that extract higher level information about camera and/or object motion from the

local optical flow vectors of each feature. The Kanade-Lucas-Tomasi (KLT) feature

tracking algorithm [54] has been extensively used, as it is very effective for small

frame-to-frame displacements of features (which is common in video frames), and

its low computational complexity enables it to be deployed on resource constrained

platforms. In order to handle larger displacements, a multi-resolution approach

131

132 7 Adaptive Windowing for Robust and High-Speed KLT Tracker

is presented in [77], which is based on a pyramidal implementation of KLT. The

KLT tracker is used to find the feature correspondences for the Shi-Tomasi/Harris

corners that can be used for estimating the global motion for aerial videos as shown

in Fig. 2.6.

Despite using a pyramidal implementation to handle large displacements, the win-

dow size used by KLT is still set up large enough to capture a wide range of

displacements (default value in OpenCV is W = 21 and Matlab is W = 31).

However when the frame rate of the video is high leading to small displacement

between frames, this setup wastes computations. Also, KLT assumes that the

patch (defined by the window size) around the feature undergoes only translation

motion. Therefore, in the presence of rotation and scaling, with a large window

size, KLT is known to suffer from high inaccuracies [78]. This leads to errors in the

global motion estimation (GME) that employs these KLT feature correspondences

as shown in Fig. 6.9 and 6.10 in Chapter 6. This is a severe limitation of KLT

as drastic frame-to-frame rotation is common in many applications, for example

videos captured on-board UAVs that perform bank turns [78].

Several efforts to handle non-translation motion by KLT have been proposed in

literature. One common method is to switch to a more complex feature detector-

descriptor and employ feature matching [117]; however the higher computational

complexity is prohibitive for their use on low-resource platforms. Inertial mea-

surement units on-board the aerial vehicle provide the relative 3D motion of the

vehicle and this data is used to arrive at initial estimates for KLT leading to in-

creased robustness under drastic motions [78, 81]. In this chapter, a technique

that is not dependent on IMUs is proposed. An affine formulation for KLT [79]

employs an affine model instead of the translation model for the motion of the fea-

ture patch in the search window, allowing the feature patch to undergo rotation,

scaling and skew. However, this is highly compute-intensive and real-time perfor-

mance is achieved only with GPU implementations [80]. In [82] an uncertainty

estimate for the KLT feature correspondence is computed using the intensity and

disparity variations within the patch. This is used in an iterative window sampling

method that arrives at the optimal window size for each feature. However, this

7.1 Introduction 133

iterative sampling needs to be performed for each core KLT operation to estimate

the displacement and is infeasible for real-time applications.

As KLT is susceptible to errors, evaluating the feature correspondence is critical

for ensuring the accuracy of the global motion estimation and other algorithms

that rely on this data. A good survey on such online evaluation methods is pre-

sented in [84]. Such evaluations associate an error/uncertainty estimate with each

track, allowing the applications that use the feature tracks, to detect situations

when KLT fails to find the correct correspondence. In [85], the time-reversibility

constraint of trackers has been applied to compute a forward-backward error for

tracks, and this metric is used to discard potentially erroneous tracks. In [86],

theoretical error estimates for KLT tracks is presented, however it is reported that

the error estimate computations are so high that they cannot be used for real-time

applications.

In this chapter, it is shown that it is necessary for the KLT window size to adapt to

the presence of distortions around the feature points in order to increase the qual-

ity of the tracks as is confirmed in [82]. A novel adaptive windowing method [5] is

proposed for KLT that monitors the KLT performance for a given window size as

an indicator of successful tracking, and does not require explicit error/uncertainty

estimate computations as in existing methods. In particular, it is shown for the

first time that the iterations needed to converge within KLT, can be used as a

crude indicator of the quality of the feature track, thereby providing a simple and

compute-efficient means to arrive at a suitable near-optimal window size. The

proposed strategy is applied to each level of the pyramid in the hierarchical imple-

mentation of KLT to significantly improve the robustness to large displacements

and distortions. The extensive evaluations with simulated as well as annotated

tracking datasets show that the proposed strategy significantly outperforms the

translation model-based KLT in terms of robustness. In addition, the proposed

strategy achieves comparable robustness as the affine model based KLT at 7x

run-time speedup.

134 7 Adaptive Windowing for Robust and High-Speed KLT Tracker

The chapter is organized as follows. Section 7.2 presents an overview of the KLT

algorithm and an analysis of the relationship between the search window size,

the motion experienced by the feature and the accuracy of the KLT tracker and

motivates the need for adapting the window size of KLT in order to enhance

its robustness to distortions. Section 7.3 presents the proposed adaptive window

strategy for KLT that can be applied to pyramidal KLT implementation. It is

shown that the iterations needed to converge within KLT can be used as a crude

indicator of the window size being too small, and this can guide the adaptive

strategy to land at a suitable window size. In Section 7.4, using simulated as well

as a real annotated tracking dataset [117], it is demonstrated that the proposed

adaptive strategy outperforms the conventional fixed-window KLT in terms of

robustness, and achieves significantly lower runtime without sacrificing robustness

when compared to the well-known affine KLT. Chapter concludes with Section 7.5.

KLT Feature Tracker

The goal of the KLT tracking algorithm is to find the displacement d = [dx, dy]
>

for a feature x in two images I(x) and J(x) such that the residual error E(d)

defined in Eq. 7.1 is minimized as shown:

E(d) =
∑
W

[I(x)− J(x+ d)]2 (7.1)

The residual E (d) is the intensity difference computed for a region of support

defined by the search window W around the feature x. Given a starting position

for d (initialized to d = 0), Eq. 7.1 solves the least squares optimization problem

by iteratively modifying d as d ← d + ∆d, through a Newton-Raphson method,

such that E (d) is minimized. A detailed derivation of the KLT feature tracker is

presented in Appendix A.

Eq. 7.1 assumes a translation model and is sufficient when the motion between

the video frames is predominantly translational. In the presence of fast rotation

or scale changes, this translation model fails. In order to track patches undergoing

7.2 KLT Feature Tracker 135

rotation and scaling with KLT, an affine model was proposed in [79]. The residual

error of the affine model is defined as in Eq. 7.2:

E(d) =
∑
W

[I(x)− J(Ax+ d)]2 (7.2)

Here, A is the affine transformation matrix given by:

A =

1 + dxx dxy

dxy 1 + dyy

 (7.3)

The six parameters (dx, dy, dxx, dyy, dxy, dyx) allow rotation, anisotropic scaling,

skew and translation. However, this robustness comes with a computation cost

trade-off. Therefore, the translation model is used as the basis of the proposed

method.

Effect of Search Window Size for Rotation/Scaling

As shown in Fig. 7.1 (a), if a pixel P1 in the current frame moves to P2 in the next

frame, with a maximum inter-frame displacement dmax, it is advisable to setup the

search window size W = 2 ∗ dmax + 1, such that the displacement of the feature

is captured within the KLT search window [77]. Figure 7.1 (b) illustrates the

translation model assumed by KLT as in Eq. 7.1 in which all the pixels within the

search window W around P1 have the same displacement given by (dx, dy). This

assumption is valid only when the feature itself undergoes translation motion. As

shown in Fig. 7.1 (c) when there is rotation, the displacement of each of the pixels

in W varies and this violates the underlying assumption of a translation motion

model by KLT.

When the feature undergoes translation motion alone, having a larger window size

is preferable because any noise in the intensity patterns within the window is aver-

aged out. However, when the feature undergoes rotation or scaling, then the pixels

within the neighbourhood defined by the window, have varying displacement. As

we move further away from the centre of this window, these variations increase

136 7 Adaptive Windowing for Robust and High-Speed KLT Tracker

Figure 7.1: Search window size and feature patch displacement (a) Window
size W needs to capture maximum displacement dmax (b) Displacements
of neighbouring pixels for translation (c) Displacements of neighbouring
pixels for rotation

– therefore, relying on the farther away pixels results in higher error in the KLT

estimates. In such cases, it is to be noted that, typically the centre pixel undergoes

a small displacement and therefore, this can still be captured with a small window

size without including potentially erroneous estimates from far away pixels.

Hence, for images undergoing rotation and scaling, the window size needs to be

large enough to capture the displacement of the feature but small enough to not

invite potentially erroneous estimates from pixels far from the centre of the feature

patch. Similar to the conclusions in [82], there exists an optimum window size that

results in the most accurate track for KLT for a given feature patch and inter-frame

motion.

When the frame undergoes a global rotation or scaling motion, as shown in Fig.

7.2 (b) and (c), then the local displacement and distortion experienced by different

features depends on their location in the frame. Figure 7.2 shows the distribution

of the displacement reported by KLT for the various features. It is clear that an

optimum window size needs to be determined for each individual feature in the

presence of global rotation and/or scaling in order to deal with the wide range of

displacements and distortion.

7.2 KLT Feature Tracker 137

Figure 7.2: Illustration of local displacement in the presence of various
global motions. Row 1: Local feature motions for various global motion
(a) translation (b) rotation (c) scaling, Row 2: Histogram of the local
displacements

Implications of Fixed Search Window Size with Pyramidal

KLT

As seen in Section 2.3.2, a pyramidal approach [77] is employed in order to satisfy

the linearity assumption made in the core step of KLT (refer to A.5 in Appendix A)

which works only if the displacement ∆d is very small. As shown in Fig. 2.4, image

pyramids with Lm levels are constructed for both the frames I and J . KLT optical

flow (dLm) is computed at the highest pyramid level Lm, which corresponds to the

lowest resolution sub-sampled image of the frame. The result is propagated to the

next level (Lm−1) as the initial guess for the pixel displacement in this level. This

process continues until level L0 (original frame I0) is reached. The main advantage

of this hierarchical approach is that the displacement dL to be found at each level,

can be kept very small such that the linear approximation in the KLT core step

remains valid. The initial guess gL−1 at any level L− 1 can be defined as shown:

gL−1 = 2(gL + dL) (7.4)

138 7 Adaptive Windowing for Robust and High-Speed KLT Tracker

where dL is the displacement and gL is the initial guess at the higher level L. At

the start of the algorithm, since there is no initial guess, gLm (the initial guess for

level Lm) is set to 0. By adding the initial guess (gL) with the KLT estimate dL

across levels, the total displacement d that can be captured by the pyramidal KLT

with Lm levels is derived as:

d =
Lm∑
L=0

2LdL (7.5)

If the elementary KLT step at any level can capture a displacement of dmax,

then the final maximum displacement d is obtained by substituting dL = dmax in

Eq. 7.5 and computing the sum of the geometric series as d = (2Lm+1 − 1).dmax.

For example, for a pyramid with Lm = 2 levels, this means a gain of 7 times

the pixel displacement that can be captured at each level; in other words, with

a window size W = 3, that can capture dmax = 1 pixel and a 2-level pyramid, a

maximum displacement d = 7 pixels can be captured.

The above formulation however, assumes that the displacement that is captured at

each pyramid level is the same. In practice, the displacement captured depends on

the pyramid level. Consider this example: with a 2-level pyramid, if a maximum

displacement of d = 16 pixels needs to be captured, what should the window size

at each level be? At the highest level L2, without any initial guess, the maximum

displacement to be captured translates to dmax = d/2L
m = 16/22 = 4. Therefore

a window size Wmin = 9 needs to be used at L2. But once the displacement

has been successfully captured at L2 then the subsequent levels of pyramid only

“refine” this result. For instance, if the result at L2 is d2 = 3.75, and the actual

displacement is 4 pixels, then at level L1 only a displacement corresponding to the

error of 0.5 = (4− 3.75) ∗ 2 pixels needs to be captured.

Figure 7.3 shows the displacement reported by KLT for 500 features at each level

of a 2-level pyramid for the camera motions - translation, rotation and scaling.

It is clearly seen that for the majority of the features, the larger displacement is

captured at L2 - for instance in Fig. 7.3 (a), a translation of (10, 10) was applied

to the image, resulting in a displacement of 14 pixels. At L2, this translates to 3.5

pixels, corresponding to the peak of the histogram at L2. Note that the peaks for

7.2 KLT Feature Tracker 139

lower levels of the pyramid for all motions are closer to 0 compared to the level

L2. This confirms that the largest displacement is captured at the highest level of

the pyramid, and subsequent levels refine this estimate.

Figure 7.3: Histogram of displacements across pyramid levels for a 2-level
pyramid with 500 features in the presence of (a) translation (b) rotation
(c) scaling

The conventional KLT uses the same window size on all levels of the pyramid.

Therefore, with W = 9 and a 2-level pyramid, theoretically, a maximum displace-

ment of dmax = 4 can be captured at each level, adding up to d = (2Lm+1 −

1).dmax = (2(2+1) − 1).4 = 28 pixels should be captured. However, in reality as

Fig. 7.3 shows, the largest displacement is captured at the highest level L2; there-

fore, if indeed a maximum displacement of 28 pixels needs to be captured the

window size needs to be larger at W = 15, in order to capture the displacement

of 28/22 = 7 pixels at L2.

140 7 Adaptive Windowing for Robust and High-Speed KLT Tracker

Returning to the example, if the same window size as L2 of W = 9 is applied at

the lower level L1 (that needs to capture a displacement of only 0.5 pixels), the

accuracy of the tracker will fall in the presence of distortions, as this window size

will be “too large”.

In the analysis so far, it is assumed that for all features, the highest level suc-

cessfully (i.e. with a very low error) captures the displacement. Although this

assumption is valid for high quality features, when the quality is lower, the er-

ror in tracking also increases for the highest pyramid level, and the actual large

displacement may be captured at a subsequent lower level. Therefore, when the

displacement itself has to be captured at the higher levels, the window size needs

to be large enough. But once it has been captured, and this estimate needs to be

only “refined” with higher resolution in the lower levels of the pyramid, then a

smaller window size is more appropriate to capture the errors in the initial guess,

which were propagated from the higher level of the pyramid.

Based on the analysis in Section 7.2.1 and 7.2.2, it is clear that the conventional

KLT using a translation model is susceptible to errors when a fixed window size

is used, in the presence of rotation and scaling. Given a feature with an asso-

ciated local motion, there exists an optimal window size that is large enough to

capture the displacement of the feature but small enough to not be affected by

the distortion that the neighbourhood of the feature undergoes. Therefore:

� In the presence of rotation and scaling, a fixed window size cannot be applied

to all features in the frame. It needs to adapt to the motion experienced by

each individual feature.

� Within the pyramidal implementation, the displacement that needs to be

captured at the higher levels is typically larger compared to the subsequent

lower levels, and therefore the window size needs to adapt to the displacement

that needs to be captured at each level.

7.3 Adapting KLT Window Size 141

Adapting KLT Window Size

In this section, a novel adaptive windowing method is proposed for KLT, to

improve its robustness in the presence of distortions due to rotations and scale

changes. The proposed method finds a near-optimal window size for each feature

to improve the accuracy of the feature correspondence.

Types of Tracking Errors

Since it is established that an optimal window size will result in the highest accu-

racy for a feature correspondence, it is critical to understand the kind of tracking

errors that occur when this window size is sub-optimal - i.e. “too small” or “too

large”, in order to detect the failure due to sub-optimal window size. This is

illustrated in Fig. 7.4 that shows the KLT tracks for a global in-plane rotation

of 10 degrees. A global rotation has been chosen as this global motion involves

various degrees of displacement as well as distortion in the local motion for the

features. For a feature at (x, y) in current frame, the ground truth correspon-

dence (xGT , yGT) in next frame is known and the KLT estimate is represented

as (xKLT , yKLT). The tracking error εt for each correspondence is computed as

follows:

εt =
√

(xGT − xKLT)2 + (yGT − yKLT)2 (7.6)

The feature correspondences are classified into 3 categories based on their tracking

errors εt: green dots represent tracks with εt < 1 pixel; yellow dots represent tracks

with 1 ≤ εt ≤ 5 pixels, and red dots represent tracks with εt > 5 pixels.

When the window size is too small to capture the required displacement as in Fig.

7.4 (a), the tracks drift away resulting in high tracking error (represented by red

tracks) or are pushed out of the frame (represented by blue dots). This is because,

with a smaller region of support, the KLT estimates are easily skewed by noisy

pixels within the search window.

142 7 Adaptive Windowing for Robust and High-Speed KLT Tracker

Figure 7.4: KLT tracks with in-plane rotation of 10 degrees (a) W = (3, 3),
(b) W = (31, 31). For a range of window sizes (x-axis) (c) Total no. of
tracks categorized based on tracking error εt

In contrast, when the window size is too large as in Fig. 7.4 (b), the estimates from

the noisy pixels get averaged out and the displacement is comfortably captured,

resulting in the KLT estimates being close to the final location. However, as

there is distortion due to rotation, the far away neighbours tend to skew the KLT

estimate and tracking error increases resulting in many yellow tracks.

Figure 7.4 (c) shows the trend in tracking errors when window size is varied: the

no. of red tracks with large tracking errors (εt > 5 pixels) and blue (out of frame)

tracks dominate the small window sizes, whereas for large window sizes, the no.

of yellow tracks with tracking error 1 ≤ εt ≤ 5 pixels dominates the tracks. The

proposed method aims to arrive at an appropriate window size for each feature

track resulting in higher number of green tracks and reducing the noisy tracks –

both red and yellow.

7.3 Adapting KLT Window Size 143

Detecting Tracking Failure

For the search window in KLT to be adaptive to the displacement and distortion

experienced by a feature across frames, the KLT feature correspondence with

the current window size being sampled, needs to be evaluated to determine the

degree of tracking success. First, a well-known metric is considered: the forward-

backward error [85] for tracking success which has been included in the Matlab

implementation of KLT. The limitations of this metric for the goal of finding an

optimal window size are highlighted and the necessary conditions for incorporating

it to the proposed method are shown. Then it is shown that the iterations taken

by KLT to converge for a given window size can be used as an indicator of tracking

performance in the smaller ranges of window size and this motivates a window size

sampling scheme that starts with a small window and grows if needed.

Forward-Backward Error

The forward-backward error [85] is a well-cited metric to automatically detect

tracking failures. It is based on the time-reversibility (also known as forward-

backward consistency) assumption: that correct tracking should be independent

of the direction of time-flow. In other words, if the tracking is correct for a feature

correspondence (P1, P2) where P1 is the location of the feature in frame t and P2 is

its location in frame t+ 1, then if the tracker is applied in the reverse direction in

time, to P2 in frame t+ 1, it should arrive at a location very close to P1 in frame

t. Therefore tracking is applied in both the forward and backward directions in

time, and the error between the two trajectories, called the forward-backward error

is computed. This error is used to automatically detect slowly drifting tracking

trajectories in [85] and is now a parameter flag in the Matlab implementation of

KLT. In [85], if the forward-backward error is higher than a threshold of 1 pixel,

then the track is declared a failure.

First, the forward-backward error is applied to a large window size (W = 31) to

detect features with distortions that became yellow tracks (with tracking error

144 7 Adaptive Windowing for Robust and High-Speed KLT Tracker

W = 31 G Y R B
No. of Tracks 64 148 35 11

No. of tracks with FB Error< 1 Pixel 56 117 8 -
% Tracks correctly classified 88% 21% 77% -

Table 7.1: Forward-Backward Error for Detection of Tracking Failure for
Various Types of Tracks with W = 31 (G: εt < 1, Y: 1 ≤ εt ≤ 5, R: εt > 5,
B: Out-of-frame)

1 ≤ εt ≤ 5). Table 7.1 shows the results for the feature set with a camera motion

of an in-plane rotation of 10 degrees. Using the forward-backward error, 88% of

the green tracks are correctly declared as successful. But only 21% of the yellow

tracks are declared as failures. In other words, the forward-backward error is

well within the 1-pixel threshold for 79% of the yellow tracks, and therefore it is

unable to distinguish the yellow tracks from the (more accurate) green tracks. This

is attributed to the fact that although these yellow tracks have a higher tracking

error εt, it does not cause the reverse track to drift away, resulting in a small

forward-backward error.

Next the forward-backward error is applied to small window sizes that resulted in

the failed red tracks (tracking error εt > 5 pixels). An example is shown for the

same camera motion as above of in-plane rotation of 10 degrees, with a window

size of W = 5 in Table 7.2. For the red tracks, in 91% cases the forward-backward

error is higher than the threshold of 1 pixel. However, it was found that, out of

these 91% tracks, 32% fail in the reverse direction by going out of frame or being

declared a KLT failure, and therefore in these cases the forward-backward error is

not even computed. This also happens for green tracks that are wrongly declared

as failures - in this case, 24% are declared as tracking failures, however 9% of them

are in fact due to failure of the reverse KLT tracking. In all, for W = 5, there

are 28 cases of reverse track failing compared to 5 cases for W = 31. This shows

that although forward-backward error can be used to detect an erroneous track,

it assumes that the tracker is setup to handle the displacements of the majority of

features - specifically, that the window size is “large enough”. However, it is unable

to detect the yellow tracks with a large window size. For the red tracks with the

small window size, applying the forward backward error check is unnecessary as

7.3 Adapting KLT Window Size 145

W = 5 G Y R B
No. of Tracks 124 6 53 75

No. of tracks with FB Error< 1 Pixel 94 2 5 -
% Tracks correctly classified 76% 67% 91% -

Table 7.2: Forward-Backward Error for Detection of Tracking Failure for
Various Types of Tracks with W = 5 (G: εt < 1, Y: 1 ≤ εt ≤ 5, R: εt > 5,
B: Out-of-frame)

there are a large number of failures in the reverse tracks. In the proposed method,

the forward-backward error is only applied as a final check after a suitable window

size is determined using simpler checks.

Convergence within Maximum KLT Iterations

It was found that the red tracks that have drifted far from their actual location

(tracking error εt > 5 pixels) also converge with distinctly larger number of KLT

iterations as shown in Fig. 7.5, where the average number of iterations1 is signif-

icantly higher for the lost red tracks. However, the yellow tracks converge fast

similar to the green tracks at the end of KLT. Therefore, the iterations can be

used as an indicator to detect tracking errors caused by a window size that is

“too small” to capture the displacement of the feature (represented by the red

tracks). This motivates a window size sampling scheme that starts with a small

window size and grows when a tracking failure is detected, by monitoring the KLT

iterations.

Handling Erroneous Early Convergences

Not all drifting (red) tracks hit the maximum iterations with a small window

size. Sometimes, tracks converge fast for a certain window size when they hit a

local minimum - on a similar looking patch in the neighbourhood. Increasing the

window size, exposes more of the neighbourhood and the track can be pushed

out of the local minimum. In order to prevent such early convergences at local

1Note that the number of iterations that KLT takes to converge at each level of the pyramid
is averaged, for each feature.

146 7 Adaptive Windowing for Robust and High-Speed KLT Tracker

Figure 7.5: Average no. of iterations taken by KLT to converge for the
various classes of tracks based on their tracking errors

minima, a stability criterion is employed that requires the previous and the current

window size sampled to be fast convergences. A minimum iterations threshold (= 8

iterations) was empirically determined, and is used to declare the convergence as

fast.

Integrating with Pyramidal KLT

In Section 7.2.2, it was shown that the displacement that needs to be captured

varies across the pyramid levels. Therefore, the window size sampling strategy

is applied to, each feature, at each level of the pyramid, in the pyramidal KLT

implementation, so that an appropriate window size is used depending on the dis-

placement that needs to be captured at that level of the pyramid. Specifically,

this allows the window size to grow as needed at the highest level when the dis-

placement to be captured is unknown. Once the displacement has been captured,

at the subsequent lower levels, smaller window sizes result in fast convergences

avoiding noisy estimates from far away neighbours in the presence of distortion.

Figure 7.6 shows the flow of the proposed adaptive window strategy for KLT

(applied to each feature and a given level L of the pyramid) by combining all the

steps described above. The initial estimate gL for the current feature is passed

from the processing at the higher level L + 1. As described in Section 7.2.2, at

7.4 Performance Evaluations 147

the highest level Lm the initial guess is 0. KLT is applied with a window size

W , starting with the smallest size Wmin. If KLT converges within the maximum

number of iteration (MaxIterations), then a check for fast convergence is performed

by looking at the earlier window size sampled. Therefore, at least two window sizes

are always sampled. If either of these checks fails, then the window is declared

as sub-optimal and the next higher window size is sampled. If both these checks

are passed and the current level is not the highest level Lm of the pyramid, then

the track is selected and passed on to the next lower level (L− 1) of the pyramid

processing. However, if this is the highest level Lm, the forward-backward error

[85] is applied as an additional check before selecting the track. It should be

noted that for the lower levels, as there is an initial guess from the higher level,

forward-backward error cannot be applied to qualify the tracks. Finally, when the

maximum window size Wmax is reached, if the lowest pyramid level (L = 0) is

reached, the track is selected only if it converged within the maximum number

of iterations, otherwise it is rejected. For higher levels, the track is selected and

passed on to the next lower level (L− 1) of the pyramid processing.

Performance Evaluations

In this section, the proposed adaptive window size strategy for KLT will be evalu-

ated with existing KLT algorithms. The proposed method is referred to as Adap-

tive KLT. First, the evaluation setup will be described. Next, the performance

results will be reported.

Evaluation Setup

The evaluations need to compare the proposed Adaptive KLT method with the

baseline KLT algorithms on its robustness to distortions and its overall efficiency

while achieving this robustness.

Image data: First, in order to evaluate the robustness, simulated frames have

been generated, by applying global rotation and scale change, as described in

148 7 Adaptive Windowing for Robust and High-Speed KLT Tracker

Figure 7.6: Adaptive windowing for KLT feature tracker (at each pyramid
level)

Section 6.5.1, without the moving objects. Images from Fig. 7.7 have been used.

A range of in-plane rotations of angles 0-20 degrees and scale factor of 0-0.8x is

applied on these images.

Figure 7.7: Image data used for simulated data in the evaluation of adap-
tive windowing for KLT

7.4 Performance Evaluations 149

In addition, a ground truth annotated tracking dataset in [117] is used, as shown

in Fig. 7.8. The dataset consists of video sequences where the camera and the

transparent plate with the rectangular texture are moved to create – rotation,

zoom, perspective distortion and panning. This causes both displacement and

distortion for the features on the texture area. The ground truth has been provided

for the motion of the plane formed by the four red dots at the corners of the plate,

in the form of the homography matrix H. Applying this homography, the ground

truth tracked locations, for the features in the texture area, can be determined.

Feature detection is performed only inside the plane texture area and features very

close to the boundary are ignored in order to eliminate boundary effects as shown

in Fig. 7.8 (d). Features are selected in every frame and tracked in the next frame.

As the frame-to-frame motion is very small for this dataset, every other frame is

skipped and the results are shown for this wider baseline video sequence.

Baseline algorithms: In order to evaluate the proposed adaptive window size

strategy for KLT, it is compared with the following baseline algorithms:

1. Conventional translation-model (as in Eq. 7.1) KLT tracking algorithm with

a fixed window size Wfixed, referred to as Conv KLT. For the baseline KLT

algorithms these parameter values were used: Wfixed = 31, Maximum no. of

iterations k = 20, No. of pyramid levels Lmax = 2, Minimum eigen threshold

λth = 0.0001.

2. Affine-model (as in Eq. 7.2) KLT [79] with a fixed window size Wfixed, re-

ferred to as Affine KLT. All other parameters are setup the same as for Conv

KLT above.

For the Adaptive KLT, Minimum window size Wmin = 5, Maximum window size

Wmax = 31, Step size step = 2, Minimum no. of iterations minIterations = 8. All

other parameters are the same as the baseline algorithms. The KLT implementa-

tions in OpenCV v2.4.9 for the conventional (calcOpticalFlowPyrLK) and affine

KLT (cvCalcAffineFlowPyrLK) are used for the baselines. The Adaptive KLT

150 7 Adaptive Windowing for Robust and High-Speed KLT Tracker

Figure 7.8: Sample frames from the tracking dataset [117] used for eval-
uations (a) Rotation (b) Perspective Distortion (c) Zoom (d) Shi-Tomasi
features (red) selected within the texture area

7.4 Performance Evaluations 151

was implemented by modifying the calcOpticalFlowPyrLK function as outlined in

Fig. 7.6.

Evaluation Criteria: Feature detection is performed with the Shi-Tomasi fea-

ture detector [50] in the current frame resulting in a feature set. Each variant of

the KLT tracker (Conv KLT, Affine KLT, Adaptive KLT) is then applied on this

feature set. This generates the corresponding location (xKLT , yKLT) for each fea-

ture at (x, y) in the current frame. The ground truth correspondences (xGT , yGT)

in the next frame, are available for both the simulated frames and the tracking

dataset. The tracking error εt is computed as in Eq. 7.6. If the tracking error

εt < 1 pixel, the track is labeled useful (corresponding to the green tracks in the

earlier sections), else it is labeled as noisy (red and yellow tracks). The robust-

ness of the tracker to various motions is determined by the extent to which it can

maximize the number of useful tracks and minimize the number of noisy tracks.

Performance Results

Robustness Evaluations:

Figure 7.9 shows the average number of useful and noisy tracks for all the sim-

ulated frames in the chosen images. For the global rotation, the performance of

all the KLT variants is comparable for angles in the range of 1-5 degrees. In the

range of 6-15 degrees, Conv KLT sees a drastic drop in the no. of useful features,

and a corresponding increase in the no. of noisy features, indicating an overall rise

in the tracking error. Affine KLT is able to salvage many of the noisy tracks and

hence shows an improvement in the no. of useful tracks compared to Conv KLT.

However the Adaptive KLT is the most successful in eliminating the noisy tracks

while still matching the Affine KLT in the number of useful tracks reported, thus

generating the cleanest feature set among all the KLT variants considered for this

range of angles. Beyond 15 degrees, all the 3 variants of KLT are unable to deal

with the distortion incurred.

152 7 Adaptive Windowing for Robust and High-Speed KLT Tracker

Figure 7.9: Accuracy evaluation of adaptive windowing for KLT: Number
of useful and noisy tracks for varying (a) rotation angles and (b) scale
factors

When the scale factor is increased, Conv KLT suffers in the range of 0.89-0.8x,

showing a marked decrease in the no. of useful tracks and a corresponding increase

in the no. of noisy tracks. However, both Affine KLT and the proposed Adaptive

KLT perform better for the larger scale changes.

For the annotated tracking dataset [117], the evaluation results for the texture

“bu” (building) are presented in Fig. 7.10. Rotation, as shown in Fig. 7.10 (a),

(b), incurs the most inter-frame distortions among all the 3 motions considered.

Conv KLT suffers in frames 7-9 and 13-15 and Affine KLT improves the number

of useful tracks, however it is unable to keep the noisy tracks to a minimum.

Adaptive KLT outperforms the Affine KLT both in the number of useful and

noisy tracks. For perspective distortion, as shown in Fig. 7.10 (c), (d), the total

number of tracks goes down towards the end of the video sequence, as very less

area of the texture is seen. Conv KLT suffers in terms of robustness, but both

Affine and Adaptive KLT show similar robustness. The zoom video sequence in

Fig. 7.10 (e), (f) has a zoom-out motion, and therefore the area covered by the

texture goes down as the video progresses. This is reflected in the total no. of

7.4 Performance Evaluations 153

tracks reported by all KLT variants falling. In frames 6-8 both the Conv and

Affine KLT suffer in terms of number of noisy tracks but Adaptive KLT keeps

the noisy tracks to a minimum. In the panning video sequence in Fig. 7.10 (g),

(h), the displacement is large and the distortion in minimal. Adaptive KLT has

comparable performance with the Conv KLT, but Affine KLT is unable to handle

the large displacement.

Figure 7.10: Robustness results on tracking dataset [117] (a)-(b) Rotation
(c)-(d) Perspective Distortion (e)-(f) Zoom (g)-(h) Panning

154 7 Adaptive Windowing for Robust and High-Speed KLT Tracker

Overall, the robustness results show that even though Affine KLT is designed to

allow distortions in the template patch, it is still outperformed by Adaptive KLT.

This can be attributed to the large fixed search window size that is used with

Affine KLT which prevents it from reaching the accuracy, that a more controlled

and therefore, optimal window size reached by the Adaptive KLT can offer, leading

to higher number of useful tracks. In addition, the proposed Adaptive KLT is

able to reliably discard the noisy tracks, after all the window sampling trials, by

applying the convergence within maximum iterations criterion, at the lowest level

of the pyramid. In contrast, the baselines report all tracks as long as they are

within the frame, and this leads to a large number of noisy tracks when there is

drastic distortion.

Efficiency Evaluations:

Next, the efficiency of the proposed Adaptive KLT method is compared with the

baselines when applied to the annotated tracking dataset [117] as in Fig. 7.8.

The computation times were measured on a 3.5 GHz Intel (R) Xeon (R) desktop

computer and are shown in Fig. 7.11. As expected, the Affine KLT being the most

computationally complex of all the methods considered here, results in the highest

computations times – incurring an average computation time 7x times more than

the proposed Adaptive KLT. As Adaptive KLT iteratively samples various window

sizes, in the presence of distortion, the computation time is marginally higher than

the Conv KLT which uses a single fixed window. The Affine KLT is only able to

operate at an average of 5 frames per second (FPS), while the Adaptive KLT and

Conv KLT operates at an average of 39.6 FPS and 41.5 FPS respectively. This

shows that the proposed Adaptive KLT is not only robust against distortions but

it can also be used in real-time applications.

Adaptive KLT for Sparse-GME

In Chapter 6, the sparse-GME method was proposed that adapts the number of

feature correspondences needed for performing global motion estimation with the

7.4 Performance Evaluations 155

Figure 7.11: Computation time on tracking dataset [117] (a) Rotation (b)
Perspective Distortion (c) Zoom (d) Panning motions

complexity of the scene. For the evaluations in Section 6.5, the conventional fixed

window KLT, Conv KLT, was employed. These results are shown in the left col-

umn of the Fig. 7.12. Ground truth refers to the background PSNR (as computed

in Section 6.5) corresponding to the ground truth global motion. Dense-GME

refers to using a dense feature set. Sparse-GME refers to the proposed adaptive

feature selection proposed in Chapter 6. 4x4x1 is a naive sparse features method

that does not adaptively repopulate features when GME fails. The right column

in Fig. 7.12 shows the same set of results when the Adaptive KLT is employed

in place of the Conv KLT. It is clear that when the number of moving objects in

the scene increases, a larger density of features can achieve higher accuracy for

the GME and employing the more robust Adaptive KLT does not significantly

improve the results. However, when the global rotations are increased as shown in

Fig. 7.12 (c), the density of the feature set does not affect the GME accuracy. With

larger rotation angles, even the Dense-GME suffers. This is because the tracking

accuracy deteriorates with larger rotation angles due to distortion. Adaptive KLT

improves the accuracy of the feature correspondences and this results in a substan-

tial improvement in the accuracy of the GME for both Dense-GME as well as the

156 7 Adaptive Windowing for Robust and High-Speed KLT Tracker

Sparse-GME, as shown in Fig. 7.12 (d). Similar improvement in GME accuracy is

seen for scale change in Fig. 7.12 (e), (f). Adaptive KLT therefore enables the use

of very sparse feature sets for global motion estimation achieving high accuracy in

the presence of distortions.

Figure 7.12: GME with adaptive windowing for KLT (right column) com-
pared to using conventional KLT (left column) (a, b) Moving objects 1-10
(c, d) In-plane rotation angle 1-10 degrees (e, f) Scale factor of 1-0.8x

Summary

In this chapter, a novel adaptive window size strategy [5] is proposed for the classi-

cal Kanade-Lucas-Tomasi (KLT) feature tracker in order to make it robust against

7.5 Summary 157

distortions due to rotations and scaling. It was shown that the search window size

determines the accuracy of the KLT feature tracker, and in the presence of dis-

tortions around the feature due to rotation and scaling, this window size needs

to adapt to the local displacement of the feature. The proposed adaptive strat-

egy adopts a controlled selection of window size by sampling various window sizes

starting with the smallest window. By employing the iterations needed to converge

for KLT with a given window size, as an indicator of the success of KLT, the sam-

pling of window size is performed with no additional computational overhead for

evaluating the KLT tracks. This enables faster sampling of window sizes resulting

in a near-optimal window size when the iterations needed to converge, stabilize.

The proposed window size sampling scheme also lends itself well to the pyramidal

implementation of KLT, such that the optimal window size is determined at each

level of the image pyramid, leading to higher accuracy.

The evaluations on a tracking dataset show that the proposed strategy significantly

outperforms the conventional fixed-window KLT in terms of robustness against

rotation and scaling, and achieves comparable robustness of the more complex

affine KLT with 7x faster runtime. It was also shown that when applied for global

motion estimation with simulated global motion, of drastic in-plane rotations and

scale changes, adaptive windowing for KLT leads to 70% reduction in the GME

error for the proposed sparse-GME, compared to using a fixed window size.

The proposed adaptive window size strategy substantially improves the robustness

of the KLT feature tracker without incurring computational overhead. This im-

proved KLT can therefore be applied to scenarios where the distortion around the

feature is likely to be high. For the aerial surveillance videos, the proposed method

results in low-complexity yet robust feature tracking leading to high accuracy in

the global motion estimation without additional computational cost.

8
Framework for Adaptive Low-Complexity

GME

In this thesis, compute-efficient and adaptive techniques have been developed for

the key functional blocks in a feature-based global motion estimation (GME)

pipeline, namely corner detection, feature tracking and robust estimation. This

chapter describes how these functional blocks can be combined to realize an adap-

tive and low-complexity GME pipeline for on-board processing of aerial videos.

In a conventional setup of a feature-based GME, as shown in Fig. 2.6, the GME

is performed as a one-shot pipeline in which each block processes the frame(s)

and hands over the results to the next stage in the pipeline: the corner detec-

tor passes the locations for corners to the feature tracker, which then generates

the feature correspondences and passes them to the robust estimator, that finally

159

160 8 Framework for Adaptive Low-Complexity GME

computes the global motion model parameters. Therefore, the parameters for each

of these functional blocks, are setup to handle worst case scenarios. In this the-

sis, low-complexity and adaptive methods for the functional blocks of GME have

been developed by replacing fixed parameters with adaptive parameter selection

methods as highlighted below:

� Quality threshold in corner detection: The proposed methods for corner de-

tection with Shi-Tomasi and Harris in Chapters 3, 4 and 5 allow the com-

putations needed for corner detection to adapt to the number and density

of corners needed by the end-application. This is achieved, by replacing

the corner measure with a simpler pruning method, to rapidly select corner

candidates, and then automating the threshold selection for extracting these

candidates. In contrast to a fixed threshold, that is setup to detect the re-

quired number of corners for a wide range of image content, the threshold

for quality of corners now adapts to the required number of corners and the

quality of the image content.

� Search window size in feature tracking : The robustness and complexity of

the KLT feature tracker is enhanced in Chapter 7 by replacing a fixed search

window parameter with an adaptive window. The fixed window is setup to

capture the largest displacement. However, for small inter-frame displace-

ments, this incurs unnecessary computations. In addition, in the presence of

distortions, the tracking accuracy deteriorates substantially. The adaptive

windowing method is applied to each KLT operation - i.e. for each feature

at every pyramid level, thereby adapting to the specific local displacement

that needs to be captured.

� Number of features for robust estimation: In Chapter 6, the robust estimator

RanSaC, is employed on very sparse but well-distributed feature correspon-

dences. An on-line evaluation method is used to associate severity levels for

estimation failures and this guides a progressive re-population of features,

only in regions that have lost representation. The conventional robust es-

timation assumes that a dense set of feature correspondences is available.

161

In contrast, the number of features needed for estimation in the proposed

method, adapts to the complexity of the camera and object motion in the

frame pair and additional features are added on an on-demand basis depend-

ing on the quality of the current estimation.

It is proposed to combine the individual functional blocks such that the GME can

be performed with minimal computation effort when conditions are conducive,

specifically:

� Image content : The frame contains enough number of well-distributed, good

quality corners.

� Feature correspondences : Chosen corners can be tracked successfully, i.e.

KLT can handle the camera motion, the features are not occluded or move

out of the frame, and the majority of the correspondences belong to the

background and can contribute to the GME.

The overall flow of the proposed adaptive low-complexity GME framework is shown

in Fig. 8.1. The sparse-GME method as proposed in Chapter 6 acts as the main

controller. A well-distributed feature set is extracted by detecting corners using

the proposed pruning-based corner detection (PP-ER + Shi-Tomasi/Harris), as de-

scribed in Chapters 3-5, in a block-based manner. The proposed adaptive window

based KLT feature tracker is employed to generate the feature correspondences for

this sparse set. This is fed into the sparse-GME which then applies the 2-RanSaC

method as described in Chapter 6 and evaluates the GME with the sparse set. If

the GME is successful in the presence of conducive conditions, the process ends.

Only if the GME is not successful, the corner detector and feature tracker are in-

voked by the controller for additional feature correspondences. The sparse-GME

progressively checks the severity of the failure and then creates demand for more

corners to re-populate blocks that have lost representation, in a systematic man-

ner as shown in Fig. 6.4. In the following sections, these interactions between the

modules are described in more detail.

162 8 Framework for Adaptive Low-Complexity GME

Figure 8.1: Unified framework for low-complexity and adaptive GME

Corner Detection

The automated thresholding with pruning method proposed in Chapters 3, 4 and 5

for the Shi-Tomasi and Harris corner detectors, lends itself well to block-based pro-

cessing, where each block is processed as an independent image and reports its cor-

ners, as shown in Fig. 8.2. The required number of corners per block (nPerBlock)

and the blocks in which the features need to be extracted (Bi) are sent in as input

from the GME controller. The corner detector applies the proposed automated

thresholding on each block Bi, and an optimal threshold Ti is found releasing

sufficient candidates to extract the required number of corners, nPerBlock. The

inputs from the GME controller vary depending on the severity of the alignment

failure as described later in Section 8.3.

8.1 Corner Detection 163

It should be noted that the flow of sparse-GME in Fig. 6.4, assumes that all blocks

in the frame contain corner regions - e.g. all 16 blocks in the 4x4 grid have corners.

In the first pass of automated thresholding in corner detection, a global minimum

threshold on quality of corners can be applied on the best corner extracted in a

block, to discard blocks without corner regions. This defines the usable blocks in

the frame. The GME controller can use this information to adjust the density

of features per block, such that sufficient number of corners are extracted for

successful evaluation. The GME controller performs a spatial distribution check,

and increases density per block if the total usable area has fallen for the current

frame.

Thus the corner detection block and the GME controller adapt to the image con-

tent in extracting sufficient number of corners for successful estimation.

Figure 8.2: Adaptive low-complexity corner detection for GME (a) block
processing for corner detection (b) optimal threshold to detect required
number of corners for each block with a different corner measure histogram
(c) flow of automated thresholding at block level

164 8 Framework for Adaptive Low-Complexity GME

Feature Tracking

For each selected corner, adaptive windowing for KLT is applied resulting in ac-

curate feature correspondence in the presence of wide range of distortions. As is

described in Chapter 7, the adaptive windowing is applied to every level of the

pyramid in the pyramidal implementation of KLT. The improved robustness of

KLT, leading to higher tracking accuracy of the feature correspondences allows

GME to be performed with a sparse set of features for a wide range of distortions

due to rotations and scaling.

The conventional GME pipeline invests in a large number of features to compen-

sate for inaccurate tracks due to distortion. However, the inability of the tracker in

handling large distortions limits the range of rotation angles/zoom factors that can

be handled for GME. In the proposed method, as shown in Fig. 8.3, the window

size for tracking adapts to the local motion of the features, thereby improving the

accuracy of the tracker. Fig. 8.3 (b) shows an example for a sparse feature set un-

dergoing global rotation: the optimal window size Wi that the adaptive windowing

arrives at, for each pyramid level is shown. The adaptive windowing is performed

for each pyramid level Lk for each corner Ci. The proposed method alleviates

the problem of inaccurate tracks skewing the estimation and higher robustness

can be achieved even with very sparse set of features. The GME controller can

also provide good initial estimates for tracking and minimum window size for the

adaptive windowing strategy by maintaining a history of the global motions for

the previous frames resulting in lower computations for KLT. Together, the GME

controller and the adaptive windowing for KLT, invest resources in an on-demand

manner, depending on the local motion experienced by each feature. The feature

correspondences are then passed on to the GME controller.

8.2 Feature Tracking 165

Figure 8.3: Adaptive feature tracking for robust feature correspondences
(a) Varying displacements for global motion of in-plane rotation (b) Win-
dow size at which the method converges for each feature and at each pyra-
mid level of KLT (c) Flow of adaptive windowing method

166 8 Framework for Adaptive Low-Complexity GME

GME Controller

The GME controller (sparse-GME) starts with a very sparse, well-distributed fea-

ture set for the estimation and proceeds to progressively repopulate with addi-

tional features, only if the evaluation of the current estimation fails. As shown in

Fig. 8.4 the GME controller uses progressive phases of repopulation (called P1-P4

for phases 1-4), with P1 being the initial sparse feature set. The corresponding

feature tracks from the feature tracker are used by the robust estimator for the

current GM estimation. The controller then evaluates this estimation as described

in Fig. 6.4. Subsequent phases of repopulation are entered if the current estimation

fails.

Corner detector : Phases P1 and P2 use a very sparse feature set with sufficient

coverage, whereas phases P3 and P4 require denser sets. The specific number of

corners and the blocks in which they are required become the input for corner

detection block. Only blocks that need corners need to be processed. For the

experiments, the sparse set of n1 = 1 per block and dense sets of n2 = 5 and

n3 = 10 features per block was used.

Robust estimator : The robust estimator (RanSaC algorithm) is invoked in two

modes as follows:

� RanSaC : This is the conventional RanSaC which is invoked with a dense

set in phase P4 when none of the earlier sparse feature sets result in suc-

cessful GME. The GME controller does not perform any evaluation for the

estimation, and the GME model parameters from the RanSaC are reported

directly.

� 2-RanSaC : This mode is applied for the sparse feature phases of P1 and P3.

As shown in Fig. 6.3, 2-RanSaC refers to applying two sets of thresholds

that determines the high confidence inliers enabling the evaluation of the

estimation.

8.4 Summary 167

Figure 8.4: Flow of the GME controller showing inputs to the corner
detector for each phase of repopulation in sparse-GME; each subsequent
phase increases density as n1 < n2 < n3

Note that for phase P2, only “supporters” for the current estimation in the blocks

that have lost features during tracking or estimation are collected. In this case,

the GME model parameters estimated in phase P1 are used and RanSaC is not

invoked.

Thus the GME controller monitors the performance of the sparse feature sets for

the current scene and adapts the features to the complexity of the scene.

Summary

In this chapter, a unified framework for adaptive and low-complexity global motion

estimation is presented, by combining all the individual functional blocks for corner

detection, feature tracking and robust estimation. A GME controller performs

estimation with a very sparse but well-distributed feature set and evaluates the

168 8 Framework for Adaptive Low-Complexity GME

estimation by monitoring the number, spread and degree of agreement of the

inliers to the estimation. In the event of a failure, additional corners are extracted

in specific regions where features have been lost. The corner detector proceeds

in a block-based manner, with an optimal threshold for quality of corners being

determined in each block of the frame. The adaptive windowing in the feature

tracker improves the robustness of each track, enabling a sparse set of features

to be used in a wider range of global motions. Combined, the proposed GME

pipeline adapts to the image content during corner detection, to the local motion

during feature tracking and to the global motion and presence of moving objects

during robust estimation. This leads to a low-complexity GME pipeline that

predominantly operates on low computation mode and ramps up resources only

when the conditions for successful global motion estimation are not met. This

makes the proposed low-complexity and adaptive GME realizable on low-resource

platforms on surveillance UAVs.

9
Conclusions and Future Work

Conclusions

The contributions in this thesis have led to the development of low-complexity

techniques for key functional blocks (corner detection, feature tracking and robust

estimation) in global motion estimation (GME) for on-board processing of aerial

videos. Also, the proposed techniques can adapt to varying image content and

camera motions.

The proposed pruning method (referred to as PP-ER in this thesis) for Shi-Tomasi

and Harris corner detectors, leverages on a computationally simpler pruning mea-

sure and edge removal step derived from the original corner measures, to rapidly

extract high-quality corner candidates. Thresholding the pixels based on their

169

170 9 Conclusions and Future Work

pruning measure in partial-pruning (PP) discards the non-corner pixels, but re-

leases candidates that also contain edge pixels. The edge-removal (ER) step dis-

cards these edge pixels in a compute efficient manner by binning together pixels in

the neighbourhood of a candidate, with similar gradient directions, through direct

comparisons of the gradient magnitudes. As these corner candidates represent a

very small portion of the image, the proposed method results in substantial re-

duction in the complexity of corner detection by restricting the corner measure

computations involving floating point arithmetic to only these candidates. It was

shown that incorporating the intensity variations in the neighbourhood of a pixel,

as is done in the proposed method, resulted in much higher accuracy compared

to existing approaches that selected candidates that were intensity or gradient

maxima. Another factor contributing to the accuracy is that the original corner

measures of Shi-Tomasi and Harris are still applied to the candidates to rank them

and select the final corners. Evaluations on a Nios-II processor without floating

point unit, show a speedup in execution time of 48-82% in Shi-Tomasi and 45-81%

in Harris corner detection when detecting 300 corners. The computation savings

are dependent on the threshold used for pruning and corner measures. If this is

set very low, then a large number of pixels are released as candidates and pruning

can then become a computational overhead as both the pruning and the corner

measure will be applied to the candidate pixels.

The proposed automated thresholding method addresses the problem of setting

optimal thresholds for corner detection. Unlike existing methods that employ

exhaustive sampling to arrive at an optimal threshold, the proposed method relies

on iterative thresholding with non-linear steps in threshold reduction, leading to a

small number of trials to release sufficient number of corner candidates. The mask-

based non-maximal suppression exploits the batch processing of corner candidates

to turn off neighbours of already selected corners, leading to further reduction in

corner candidates. The evaluations show a reduction in the corner candidates of

98.2% in Shi-Tomasi and 95.7% in Harris corner detectors. The proposed non-

linear steps for lowering the threshold on the corner measure is only a crude fit

to the non-linearly increasing distribution of pixels. This distribution depends on

9.1 Conclusions 171

both the image content and the corner detection method. For images with very

rich content, the initial threshold used for sampling may itself be too low and

release candidates much larger in number than required. In general, it was found

that for the same number of required corners, Harris incurs more number of scans

than Shi-Tomasi.

The proposed automated thresholding is combined with the PP-ER pruning tech-

nique resulting in further reduction in the complexity of corner detection, as the

corner measure computation is restricted to the small pool of corner candidates

that are released in each iteration. The novel bin mechanism roughly orders and

collects the corner candidates, and ensures that all the corner candidates for a

given range of corner measure values are collected before corners are extracted

using non-maximal suppression. This results in corners which are very similar to

the conventional Shi-Tomasi/Harris detectors; the evaluations show an average of

98% match. When the required number of corners and/or the minimum distance is

high, the number of candidates that need to be processed also grows. It was found

that the ER step and the mask-based NMS are critical in reducing the number

of spurious corner candidates from being released in the lower quality ranges. In

addition, a heuristic measure of the yield of corners from previous iteration and

the remaining number of corners to be extracted, is used for a controlled release of

candidates in the lower quality ranges. Evaluations of the proposed method show

an average speedup in execution time of 67% for Shi-Tomasi and 51% in Harris

corner detectors.

The proposed low-complexity GME method (sparse-GME) employs minimum num-

ber of well-distributed sparse features. The method relies on a quick evaluation

of GME to facilitate additional features to be injected in a selective and system-

atic manner. The evaluation strategy monitors the inlier agreement during the

estimation to determine if it leads to a successful or failed estimation. As aerial

videos predominantly have conducive conditions for successful GME, i.e. simple

camera motion and small number of moving targets, GME is achieved with the

first-pass sparse feature set itself for the majority of the frames. The 2-RanSaC

mode allows the localization of feature correspondences causing estimation failure,

172 9 Conclusions and Future Work

allowing the proposed method to phase out the repopulation by prioritizing cov-

erage improvement to replace these features, over a uniform increase in density of

features. When the number of moving objects in the scene increases, leading to

loss of feature correspondences, the selective injection to improve coverage results

in successful GME, by targeting blocks with moving objects. This postpones a

uniform increase in density to the infrequently occurring case of drastic camera

motions and/or a high number of moving targets. It was found that for the evalu-

ation method, the error in the tracked and estimated location was better than the

error between the actual and estimated intensity patches, as the latter was unable

to distinguish between alignment errors and actual physical differences for the fea-

tures between the two frames. Evaluations on aerial video datasets show that for

95% of the frames, GME with the first pass sparse estimation is performed, while

achieving a similar accuracy as the dense set of features for 97% of the cases. For

extreme camera motions with rotations or scale changes, it was found that the

proposed method was unable to match the accuracy of a dense feature set. This

is attributed to the choice of the final dense set which was still not sufficient, and

this set needs to be selected by characterizing the worst case scenario for camera

motion based on the expected trajectories of the aerial vehicle.

The proposed adaptive windowing for KLT feature tracker monitors the itera-

tions taken by KLT to converge, as an indicator of tracking accuracy to arrive

at an optimal window size. By growing the window size to be just sufficient for

capturing the displacement, it achieves robustness to distortions by keeping the

neighbourhood small, at the same time avoiding unnecessary computations com-

pared to the conventional fixed large window scheme. It was found that although

the forward-backward error, commonly used for evaluating feature tracking, was

able to detect failures when the window size was too small, it failed when the

window size was too large. The proposed method uses the KLT iterations to de-

tect drifting tracks when tracking fails with small window sizes, and avoids the

additional KLT in the reverse direction that is required by the forward-backward

error. The method tackles the issue of accidental convergence at local minima,

which cannot be detected with the KLT iterations, by applying additional checks,

9.2 Future Work 173

specifically stable convergence for two consecutive window sizes and the forward-

backward error. Further, it was shown that the proposed adaptive windowing was

suitable to be applied across pyramid levels in a hierarchical KLT implementation,

to improve accuracy in the presence of distortions at all levels of the pyramid pro-

cessing. Evaluations show that the proposed method is able to achieve substantial

improvement in accuracy when the distortions are increased, without a significant

computational overload, at 7x faster runtime compared to conventional methods.

If the average displacement between frames is large due to the speed of the aerial

vehicle and/or low frame rate, the proposed method will always need to grow the

window size to be able to capture this displacement.

Finally, a unified adaptive framework for low-complexity GME is proposed that

combines all the proposed methods for corner detection, tracking and robust esti-

mation. The sparse-GME method creates additional demand for corners and their

correspondences dynamically based on the evaluation of the current estimation.

This replaces the conventional one-shot GME pipeline in which each block works

hard and hands over the results to the next block in the pipeline, with an adaptive

and low-complexity GME in which additional computations are incurred in each

block only when conditions for successful GME are not met.

Future Work

The following directions for future work are identified based on the contributions

in this thesis:

� Enhance automated thresholding: An automated thresholding method

for corner detection was proposed in this thesis that uses non-linear threshold

steps for the threshold sampling scheme. The threshold steps are now fixed.

However, the choice of the initial threshold for sampling as well as subsequent

threshold steps need to adapt to the number of corner candidates being

released in each trial so that they closely match the image content. Also,

the threshold steps for Shi-Tomasi need to be different from Harris corner

174 9 Conclusions and Future Work

detector. When pruning is not used, the number of sampling trials to release

corner candidates can be reduced by doing a rough sorting and collection of

candidates for a range of thresholds instead of a single threshold.

� Confidence measure for RanSaC algorithm: In this thesis, the RanSaC

algorithm was employed with very sparse features and a method was pro-

posed to evaluate the estimation using a pair of re-projection thresholds.

This work can be incorporated within the RanSaC algorithm itself such that

given any size of the features correspondences data, RanSaC provides an es-

timation with an associated confidence measure, that allows the application

to then make informed choices in terms of increasing density. This would al-

low the RanSaC algorithm to be used with very sparse features, in a compute

efficient manner.

� Confidence measure for KLT: In this thesis, it was shown that the iter-

ations needed to converge can be used as a reliable indicator of KLT success

to adapt the KLT window size. Another such indicator is the error between

the intensity patches, which can be explored to detect KLT failure. Also, the

displacement reported and the window size used by KLT can be analyzed for

detecting failures - such as the presence of distortion, when the displacement

will be very small compared to the window. All these can be combined to

get a confidence measure for the KLT for a given window size, leading to a

better evaluation scheme.

� Systematic parameter selection for adaptive windowing for KLT:

In the proposed adaptive windowing method for KLT, the choice of the

parameter values for the minimum and maximum window size, as well as

the step sizes can have an impact on the computational complexity. For

aerial videos with uniform motion, it will be beneficial to keep a history of

the average displacements for previous frames to predict the displacement

in the current frame. This can be used to derive the minimum window size

in the adaptive window method. The theoretical maximum window size will

9.2 Future Work 175

depend on the image size and number of pyramid levels. In addition, the

frame rate and the vehicle speed can guide the choice of these parameters.

� Integrated implementation of proposed GME framework: The com-

putation efficiency of the contributions in this thesis, have been demon-

strated as separate modules. An integrated real-time implementation for

the adaptive and low-complexity GME as outlined in Chapter 8 needs to be

completed. The intermediate data for the individual algorithms - such as the

pruning measures and corner measure bins during corner detection and im-

age pyramid representation during feature tracking - need to be maintained

until the GME is completed. Data representation for efficient memory us-

age needs to be explored. It was demonstrated that the proposed pruning

technique for corner detection leads to benefits on platforms without floating

point units. Further studies are to be undertaken to evaluate performance

benefits in terms of power consumption in comparison with other existing

work such as [68, 71] on representative embedded platforms. In addition,

the integrated GME framework needs to be employed on a UAV platform to

evaluate its performance during flight.

� Mosaic-based compression (MBC) for aerial videos: MBC or ROI

coding can achieve very high compression rates for aerial videos. As de-

scribed in Chapter 2, GME is the first step but is also a bottleneck in terms of

computations. The real-time implementation of the proposed low-complexity

GME framework needs to be applied to an ROI coding pipeline and evalu-

ated for aerial video compression on embedded platforms, compared to the

conventional GME methods. An important consideration is to characterize

the accuracy of GME required for efficient compression. For instance, prior

to compression, the moving targets are extracted as ROIs and the accuracy

of this step will in turn depend on the accuracy of the GME. This can then

guide the appropriate selection of the parameters in the sparse-GME.

� Robust KLT for motion discontinuities: The adaptive windowing method

176 9 Conclusions and Future Work

for KLT proposed in this thesis is applicable to any scenario where the uni-

form translation motion model is violated for a large search window size.

An example is object tracking in sports videos where the boundary of the

objects experience severe motion discontinuities as the background is mov-

ing with the camera and the object is also moving independently. Further

evaluations are needed to assess if the adaptive windowing can be applied to

improve the accuracy of tracking for these objects.

Appendices

177

A
Description of the Kanade-Lucas-Tomasi

(KLT) feature tracker

In this appendix, the Kanade-Lucas-Tomasi (KLT) feature tracking algorithm is

described. The main objective of KLT is to register a feature patch from one

frame to its new location in the successive frame thereby providing the feature

correspondence. As is mentioned in [54], KLT is faster because it examines far

fewer potential matches to register the feature patch, compared to other tech-

niques. This is achieved by considering the image as a 2D signal and employing

the spatial intensity gradient of the image to find a good match using a type of

Newton-Raphson iteration. The intuitive reasoning behind the KLT algorithm is

presented for the 1D case in Section A.1. This is followed by the formulation for

179

180 A Description of the Kanade-Lucas-Tomasi (KLT) feature tracker

2D case, which is applied to feature tracking in images [54] in Section A.2 where

the core computation in KLT is derived.

1-dimensional Case

The basic problem of feature correspondence can be described in 1D as shown in

Fig. A.1 (a). Consider a curve G(x) which is shifted horizontally by a disparity

of h resulting in F (x) such that G(x) = F (x+ h). In the 1D sense, KLT aims to

find the disparity h so that the two curves can be aligned.

Figure A.1: KLT for 1D case (a) Registering two signals: finds the disparity
h such that (x+ h) is the correspondence for x (b) Newton-Raphson type
iterations in KLT to find the correspondence (x, x′) where x′ = x+ h

If the disparity h is small, linear approximation can be used in the neighbourhood

of x for F (x) as illustrated in Fig. A.1 (a) giving:

F ′(x) ≈ (F (x+ h)− F (x))/h = (G(x)− F (x))/h (A.1)

Therefore, disparity h can be solved by:

h ≈ (G(x)− F (x))/F ′(x) (A.2)

A.2 2-dimensional Case: Feature Tracking 181

The approximation to h above depends on x, and therefore it is reasonable to

combine the estimates of h in the neighbourhood of x by averaging them as:

h =

∑
x(G(x)− F (x))/F ′(x)∑

x 1
(A.3)

Now that the disparity h has been estimated, F (x) can be moved by this estimate

to x+h, and this procedure can be repeated in a Newton-Raphson style iterations

as follows:

h0 = 0,

hk+1 = hk +

∑
x(G(x)− F (x+ hk))/F ′(x+ hk)∑

x 1
(A.4)

In Fig. A.1 (b), these iterations are illustrated. Assume the estimation of disparity

h starts at x with h0 = 0. h1 is found by linearly approximating with the line f1

giving the new location x1 = x + h1. The estimation is now performed at x1 by

linearly approximating with line f2 that gives the new disparity h2 providing the

next location at x2 = x1 + h2. This process continues and converges to x′ = x+ h

provided h is small.

It is clear that the search for the disparity h is not brute force and exhaustive

but is guided by the spatial intensity gradient F ′(x) and the intensity difference

G(x)−F (x) in an iterative manner leading to reduction in the potential matches.

2-dimensional Case: Feature Tracking

The formulation for finding the disparity h in the 1D case can be applied to 2D

case (for finding the correspondence of a feature patch) where x and h are 2 -

dimensional row vectors. The linear approximation in A.1 can be written as:

F (x + h) ≈ F (x) + h
∂

∂x
F (x) (A.5)

182 A Description of the Kanade-Lucas-Tomasi (KLT) feature tracker

An alternative derivation is used for h where the disparity h must minimize the

L2 norm measure of the difference between the two patches E:

E =
∑
x

(F (x + h)−G(x))2 (A.6)

To minimize E, its derivative is set to 0 as:

0 =
∂

∂h
E

≈ ∂

∂h

∑
x

[F (x) + h
∂

∂x
F (x)−G(x)]2

=
∑
x

2
∂F

∂x
[F (x) + h

∂

∂x
F (x)−G(x)]

Solving for h gives:

h ≈

[∑
x

(
∂F

∂x

)T

[G(x)− F (x)]

][∑
x

(
∂F

∂x

)T (
∂F

∂x

)]−1
(A.7)

If x = (x, y) and ∂F/∂x = [∂F/∂x, ∂F/∂y]T = [Fx, Fy]
T , then a spatial gradient

matrix M at (x, y) can be expressed as:

M =
∑
x

(
∂F

∂x

)T (
∂F

∂x

)

=
∑

(x,y)∈W

 Fx
2 FxFy

FxFy Fy
2

 (A.8)

Also an the image difference δF at (x, y) can be defined as:

δF = G(x)− F (x) (A.9)

A.2 2-dimensional Case: Feature Tracking 183

An image mismatch vector b̄ is defined using the image difference δF , as:

b̄ =
∑
x

(
∂F

∂x

)T

[G(x)− F (x)]

=
∑
x

(
∂F

∂x

)T

[δF]

=
∑

(x,y)∈W

δF.Fx

δF.Fy

 (A.10)

Substituting the spatial gradient matrix M in A.8 and image mismatch vector b̄ in

A.10 into A.7, the core computation for estimating the disparity h can be derived

as:

hT ≈M−1b̄ (A.11)

The above estimation of disparity h is performed in an iterative manner as in A.4.

As F (x) and G(x) are assumed to be spatially shifted versions of each other, the

computations for the spatial gradient matrix M can be performed once for each

location (x, y) using G(x). In each iteration k, the image mismatch vector b̄k is

recomputed as it depends on the image difference δFk:

b̄k =
∑

(x,y)∈W

δFk.Fx

δFk.Fy


δFk = G(x)− F (x + hk−1)

Therefore, the core computation in each iteration k is given by:

hk = hk−1 +M−1b̄k (A.12)

The pseudo code of pyramidal implementation for the KLT feature tracking algo-

rithm is provided in [77].

B
Experimental Setup with Nios-II

The Nios-II embedded soft core processor was used to demonstrate the reduction

in the computational complexity, achieved with the proposed pruning (Chapter 3)

and automated thresholding (Chapter 5), for the Shi-Tomasi/Harris corner de-

tection algorithms. As the Nios-II is a configurable soft IP core, it allows the

addition and removal of on-chip features. Of particular interest was the floating

point unit (FPU) and data cache. The execution time was measured by enabling

and disabling the floating point hardware and the data cache. The details of the

experimental setup with Nios-II processor have been provided below:

1. FPGA development board : Altera’s Cyclone III FPGA development kit [131]

with the Cyclone III EP3C120F780 FPGA as in Fig. B.1 was used for the

evaluations. It supports 256-Mbyte dual-channel DDR2 SDRAM, 8-Mbyte

Sync-SRAM and 64-Mbyte flash.

185

186 B Experimental Setup with Nios-II

Figure B.1: Top view of Cyclone III FPGA development board

2. Nios-II on-chip configuration: The Quartus II v9.1 was used to create the

hardware design files to configure the Nios-II soft core processor [132] on

the FPGA, using the SOPC builder tool. Nios-II/f (fast) core was used for

the evaluations as shown in Fig. B.2. The configuration setup is described

below:

� System frequency: 75 MHz

� On-chip RAM: 12 Kb

� On-chip instruction cache: 32 Kb

� On-chip data cache: None (disabled) or 32 Kb (enabled)

� Floating point hardware: enabled/disabled

3. Software tools : The Nios-II embedded development suite (EDS) v9.1 was

used to compile, download and execute the C code on the FPGA. The C

187

Figure B.2: Nios-II/f (fast) core configuration

code was executed bare metal on the Nios-II, without any operating system.

The steps for executing the C code on the Nios-II [133] are listed below:

(a) A Nios-II application and board support package (BSP) project are

created from template by linking them to the hardware design (.sopc)

file.

(b) The C source codes are added to the application project.

(c) The read-only zip file system (rozipfs) is setup as a software package in

the BSP project by linking it to the on-chip flash memory.

(d) The Quartus flash programmer tool is used to download the image files

used by the C code into the flash memory.

(e) The projects are compiled and built. The Quartus tool is used to con-

nect to the Cyclone III board, to download and execute the executable

file.

References

[1] Nirmala Ramakrishnan, Meiqing Wu, Siew-Kei Lam, and Thambipillai

Srikanthan. Enhanced low-complexity pruning for corner detection. Journal

of Real-Time Image Processing, 2(1):197–213, 2016.

[2] Meiqing Wu, Nirmala Ramakrishnan, Siew-Kei Lam, and Thambipillai

Srikanthan. Low-complexity pruning for accelerating corner detection. In

IEEE International Symposium on Circuits and Systems (ISCAS), pages

1684–1687. IEEE, 2012.

[3] Nirmala Ramakrishnan, Meiqing Wu, Siew-Kei Lam, and Thambipillai

Srikanthan. Automated thresholding for low-complexity corner detection. In

IEEE NASA/ESA Conference on Adaptive Hardware and Systems (AHS),

pages 97–103. IEEE, 2014.

[4] Nirmala Ramakrishnan, Meiqing Wu, Siew-Kei Lam, and Thambipillai

Srikanthan. Mask-based non-maximal suppression with iterative pruning

for low-complexity corner detection. In IEEE 14th International Symposium

on Integrated Circuits (ISIC), pages 368–371. IEEE, 2014.

[5] Nirmala Ramakrishnan, Thambipillai Srikanthan, Siew Kei Lam, and

Gauri Ravindra Tulsulkar. Adaptive window strategy for high-speed and

robust KLT feature tracker. In Pacific-Rim Symposium on Image and Video

Technology (PSIVT), pages 355–367. Springer, 2015.

189

190 REFERENCES

[6] Rita Cucchiara and Giovanni Gualdi. Mobile video surveillance systems:

An architectural overview. In Mobile Multimedia Processing, pages 89–109.

Springer, 2010.

[7] Hovering over UAV risks. https://www.zurichcanada.com/en-ca/

knowledge-hub/articles/2015/10/hovering-over-opportunities. Ac-

cessed: 2016-03-26.

[8] UAV worldwide market forecast. http://www.prnewswire.com/

news-releases/teal-group-predicts-worldwide-uav-production-will

-total-93-billion-in-its-2015-uav-market-profile-and-

forecast-300128745.html. Accessed: 2016-03-26.

[9] Pixhawk open hardware project for UAVs autopilot. https://pixhawk.

org/. Accessed: 2016-11-01.

[10] Precision hawk UAV platform. http://www.precisionhawk.com/. Ac-

cessed: 2016-04-12.

[11] DJI Phantom 3 drone. http://www.dji.com/product/phantom-3-pro. Ac-

cessed: 2016-03-25.

[12] Fotokite. http://fotokite.com/wp-content/uploads/2016/01/160113_

Brochure_Fotokite_Pro.pdf. Accessed: 2016-03-25.

[13] UAVs for early diagnosis of HIV in infants. http://www.unicef.org/

media/media_90462.html. Accessed: 2016-03-23.

[14] Amazon Prime Air. http://www.amazon.com/b?node=8037720011. Ac-

cessed: 2016-03-31.

[15] Ken Whitehead, Chris H Hugenholtz, Stephen Myshak, Owen Brown, Adam

LeClair, Aaron Tamminga, Thomas E Barchyn, Brian Moorman, and Brett

Eaton. Remote sensing of the environment with small unmanned aircraft

systems (UASs), part 2: scientific and commercial applications. Journal of

Unmanned Vehicle Systems, 2(3):86–102, 2014.

https://www.zurichcanada.com/en-ca/knowledge-hub/articles/2015/10/hovering-over-opportunities
https://www.zurichcanada.com/en-ca/knowledge-hub/articles/2015/10/hovering-over-opportunities
http://www.prnewswire.com/news-releases/teal-group-predicts-worldwide-uav-production-will
http://www.prnewswire.com/news-releases/teal-group-predicts-worldwide-uav-production-will
 -total-93-billion-in-its-2015-uav-market-profile-and-
forecast-300128745.html
https://pixhawk.org/
https://pixhawk.org/
http://www.precisionhawk.com/
http://www.dji.com/product/phantom-3-pro
http://fotokite.com/wp-content/uploads/2016/01/160113_Brochure_Fotokite_Pro.pdf
http://fotokite.com/wp-content/uploads/2016/01/160113_Brochure_Fotokite_Pro.pdf
http://www.unicef.org/media/media_90462.html
http://www.unicef.org/media/media_90462.html
http://www.amazon.com/b?node=8037720011

REFERENCES 191

[16] Ali Haydar Göktoǧan and Salah Sukkarieh. Autonomous remote sensing

of invasive species from robotic aircraft. In Handbook of Unmanned Aerial

Vehicles, pages 2813–2834. Springer, 2015.

[17] Stuart M Adams and Carol J Friedland. A survey of unmanned aerial vehicle

(UAV) usage for imagery collection in disaster research and management. In

9th International Workshop on Remote Sensing for Disaster Response, 2011.

[18] Sivakumar Rathinam, Zu Whan Kim, and Raja Sengupta. Vision-based

monitoring of locally linear structures using an unmanned aerial vehicle.

Journal of Infrastructure Systems, 14(1):52–63, 2008.

[19] Konstantinos Kanistras, Goncalo Martins, Matthew J Rutherford, and Ki-

mon P Valavanis. Survey of unmanned aerial vehicles (UAVs) for traffic

monitoring. In Handbook of Unmanned Aerial Vehicles, pages 2643–2666.

Springer, 2015.

[20] Chad C Haddal and Jeremiah Gertler. Homeland security: Unmanned aerial

vehicles and border surveillance. Technical Report Congressional Research

Service RS21698, 2010.

[21] Conservation drones. http://conservationdrones.org/. Accessed: 2016-

03-23.

[22] Ken Whitehead and Chris H Hugenholtz. Remote sensing of the environment

with small unmanned aircraft systems (UASs), part 1: A review of progress

and challenges. Journal of Unmanned Vehicle Systems, 2(3):69–85, 2014.

[23] Giuseppe Loianno, Gareth Cross, Chao Qu, Yash Mulgaonkar, Joel A Hesch,

and Vijay Kumar. Flying smartphones: Automated flight enabled by con-

sumer electronics. Robotics & Automation Magazine, IEEE, 22(2):24–32,

2015.

[24] Shaojie Shen, Yash Mulgaonkar, Nathan Michael, and Vijay Kumar. Vision-

based state estimation and trajectory control towards high-speed flight with

a quadrotor. Proc. of Robotics: Science and Systems (RSS), 2013.

http://conservationdrones.org/

192 REFERENCES

[25] Shoaib Ehsan and Klaus D McDonald-Maier. On-board vision processing

for small UAVs: Time to rethink strategy. In NASA/ESA Conference on

Adaptive Hardware and Systems (AHS), pages 75–81. IEEE, 2009.

[26] Dries Hulens, Toon Goedemé, and Jon Verbeke. How to choose the best

embedded processing platform for on-board UAV image processing? In

International Joint Conference on Computer Vision, Imaging and Computer

Graphics Theory and Applications, pages 1–10. IEEE, 2015.

[27] Honghai Liu, Shengyong Chen, and Naoyuki Kubota. Intelligent video sys-

tems and analytics: A survey. IEEE Transactions on Industrial Informatics,

9(3):1222–1233, 2013.

[28] Weiming Hu, Tieniu Tan, Liang Wang, and Steve Maybank. A survey on vi-

sual surveillance of object motion and behaviors. IEEE Transactions on Sys-

tems, Man, and Cybernetics, Part C: Applications and Reviews, 34(3):334–

352, 2004.

[29] Hannah M Dee and Sergio A Velastin. How close are we to solving the

problem of automated visual surveillance? Machine Vision and Applications,

19(5-6):329–343, 2008.

[30] Datamapper aerial data analytics. https://www.datamapper.com/. Ac-

cessed: 2016-04-12.

[31] Aryo Wiman Nur Ibrahim, Pang Wee Ching, GL Gerald Seet, WS Michael

Lau, and Witold Czajewski. Moving objects detection and tracking frame-

work for UAV-based surveillance. In Fourth Pacific-Rim Symposium on Im-

age and Video Technology (PSIVT), pages 456–461. IEEE, 2010.

[32] Michael Teutsch and Wolfgang Krüger. Detection, segmentation, and track-

ing of moving objects in UAV videos. In Ninth International Conference

on Advanced Video and Signal-Based Surveillance (AVSS), pages 313–318.

IEEE, 2012.

https://www.datamapper.com/

REFERENCES 193

[33] Isaac Cohen and Gerard Medioni. Detecting and tracking moving objects

for video surveillance. In IEEE Computer Society Conference on Computer

Vision and Pattern Recognition (CVPR), volume 2. IEEE, 1999.

[34] Marko Heikkila and Matti Pietikainen. A texture-based method for model-

ing the background and detecting moving objects. IEEE Transactions on

Pattern Analysis and Machine Intelligence, 28(4):657–662, 2006.

[35] AG Amitha Perera, Chukka Srinivas, Anthony Hoogs, Glen Brooksby, and

Wensheng Hu. Multi-object tracking through simultaneous long occlusions

and split-merge conditions. In IEEE Computer Society Conference on Com-

puter Vision and Pattern Recognition (CVPR), volume 1, pages 666–673.

IEEE, 2006.

[36] Jia Wei Tang, Nasir Shaikh-Husin, Usman Ullah Sheikh, and MN Mar-

sono. FPGA-based real-time moving target detection system for unmanned

aerial vehicle application. International Journal of Reconfigurable Comput-

ing, 2016, 2016.

[37] T Klassen. The UAV video problem: using streaming video with unmanned

aerial vehicles. Military and Aerospace Electronics, 20(7), 2009.

[38] Malavika Bhaskaranand and Jerry D Gibson. Low-complexity video encod-

ing for UAV reconnaissance and surveillance. In Military Communications

Conference (MILCOM), pages 1633–1638. IEEE, 2011.

[39] Holger Meuel, Marco Munderloh, Matthias Reso, and Jörn Ostermann.

Mesh-based piecewise planar motion compensation and optical flow clus-

tering for ROI coding. APSIPA Transactions on Signal and Information

Processing, 4, 2015.

[40] Michal Irani, Steve Hsu, and P Anandan. Video compression using mosaic

representations. Signal Processing: Image Communication, 7(4):529–552,

1995.

194 REFERENCES

[41] Eren Soyak, Sotirios A Tsaftaris, and Aggelos K Katsaggelos. Low-

complexity tracking-aware H.264 video compression for transportation

surveillance. IEEE Transactions on Circuits and Systems for Video Tech-

nology, 21(10):1378–1389, 2011.

[42] Frédéric Dufaux and Fabrice Moscheni. Background mosaicking for low bit

rate video coding. In Proceedings of International Conference on Image

Processing (ICIP), volume 1, pages 673–676. IEEE, 1996.

[43] Michal Irani, P al Anandan, Jim Bergen, Rakesh Kumar, and Steve Hsu.

Efficient representations of video sequences and their applications. Signal

Processing: Image Communication, 8(4):327–351, 1996.

[44] Malavika Bhaskaranand and Jerry D Gibson. Global motion assisted low

complexity video encoding for UAV applications. IEEE Journal of Selected

Topics in Signal Processing, 9(1):139–150, 2015.

[45] Cesario Vincenzo Angelino, Luca Cicala, Marco De Mizio, Paolo Leoncini,

Enrico Baccaglini, Marco Gavelli, Nadir Raimondo, and Roberto Scopigno.

Sensor aided H.264 video encoder for UAV applications. In Picture Coding

Symposium (PCS), pages 173–176. IEEE, 2013.

[46] Pascual Campoy, Juan F Correa, Ivan Mondragón, Carol Mart́ınez, Miguel

Olivares, Luis Mej́ıas, and Jorge Artieda. Computer vision onboard UAVs

for civilian tasks. In Unmanned Aircraft Systems, pages 105–135. Springer,

2008.

[47] Mark D Pritt and Kevin J LaTourette. Aircraft navigation by means of image

registration. In Applied Imagery Pattern Recognition Workshop (AIPR):

Sensing for Control and Augmentation, pages 1–6. IEEE, 2013.

[48] Feng Lin, Xiangxu Dong, Ben M Chen, Kai-Yew Lum, and Tong H Lee.

A robust real-time embedded vision system on an unmanned rotorcraft

for ground target following. IEEE Transactions on Industrial Electronics,

59(2):1038–1049, 2012.

REFERENCES 195

[49] Tinne Tuytelaars and Krystian Mikolajczyk. Local invariant feature detec-

tors: a survey. Foundations and Trends® in Computer Graphics and Vision,

3(3):177–280, 2008.

[50] Jianbo Shi and Carlo Tomasi. Good features to track. In IEEE Computer

Society Conference on Computer Vision and Pattern Recognition (CVPR),

pages 593–600. IEEE, 1994.

[51] Chris Harris and Mike Stephens. A combined corner and edge detector. In

Alvey vision conference, pages 147–151, 1988.

[52] Edward Rosten and Tom Drummond. Machine learning for high-speed cor-

ner detection. In European Conference on Computer Vision (ECCV), pages

430–443. Springer, 2006.

[53] Stephen M Smith and J Michael Brady. SUSAN: A new approach to low level

image processing. International Journal of Computer Vision, 23(1):45–78,

1997.

[54] Bruce D. Lucas and Takeo Kanade. An iterative image registration technique

with an application to stereo vision. In Proceedings of the 7th International

Joint Conference on Artificial Intelligence, pages 674–679, 1981.

[55] David G Lowe. Distinctive image features from scale-invariant keypoints.

International Journal of Computer Vision, 60(2):91–110, 2004.

[56] Herbert Bay, Tinne Tuytelaars, and Luc Van Gool. SURF: Speeded up

robust features. In European Conference on Computer vision (ECCV), pages

404–417. Springer, 2006.

[57] Dirk Farin and Peter H. N. de With. Evaluation of a feature-based global-

motion estimation system. Visual Communications and Image Processing,

5960, 2005.

[58] Cordelia Schmid, Roger Mohr, and Christian Bauckhage. Evaluation of in-

terest point detectors. International Journal of Computer Vision, 37(2):151–

172, 2000.

196 REFERENCES

[59] Han Wang and Michael Brady. Real-time corner detection algorithm for

motion estimation. Image and Vision Computing, 13(9):695–703, 1995.

[60] Christopher Claus, Robert Huitl, Joachim Rausch, and Walter Stechele.

Optimizing the SUSAN corner detection algorithm for a high speed FPGA

implementation. In International Conference on Field Programmable Logic

and Applications (FPL), pages 138–145. IEEE, 2009.

[61] Henrik Aanæs, Anders Lindbjerg Dahl, and Kim Steenstrup Pedersen. Inter-

esting interest points. International Journal of Computer Vision, 97(1):18–

35, 2012.

[62] Chih-Chi Cheng, Chia-Hua Lin, Chung-Te Li, and Liang-Gee Chen. iVisual:

An intelligent visual sensor SoC with 2790 fps CMOS image sensor and 205

GOPS/W vision processor. IEEE Journal of Solid-State Circuits, 44(1):127–

135, 2009.

[63] Benedikt Dietrich. Design and implementation of an FPGA-based stereo

vision system for the EyeBot M6. Master’s thesis, University of Western

Australia, 2009.

[64] Tarik Saidani, Lionel Lacassagne, Samir Bouaziz, and Taj Muhammad

Khan. Parallelization strategies for the points of interests algorithm on the

cell processor. In Parallel and distributed processing and applications, pages

104–112. Springer, 2007.

[65] Fouzhan Hosseini, Amir Fijany, and Jean-Guy Fontaine. Highly parallel

implementation of Harris Corner detector on CSX SIMD architecture. In

Euro-Par Parallel Processing Workshops, pages 137–144. Springer, 2011.

[66] Stephane Piskorski, Lionel Lacassagne, Samir Bouaziz, and Daniel Etiemble.

Customizing CPU instructions for embedded vision systems. In International

Workshop on Computer Architecture for Machine Perception and Sensing

(CAMP), pages 59–64. IEEE, 2006.

REFERENCES 197

[67] Beau J Tippetts, Dah-Jye Lee, and James K Archibald. An on-board vision

sensor system for small unmanned vehicle applications. Machine Vision and

Applications, 23(3):403–415, 2012.

[68] X Benedetti and Pietro Perona. Real-time 2-D feature detection on a re-

configurable computer. In IEEE Computer Society Conference on Computer

Vision and Pattern Recognition (CVPR), pages 586–593. IEEE, 1998.

[69] Lucas Teixeira, Waldemar Celes Filho, and Marcelo Gattass. Accelerated

corner-detector algorithms. In 19th British Machine Vision Conference

(BMVC), pages 625–634, 2008.

[70] Sudipta N Sinha, Jan-Michael Frahm, Marc Pollefeys, and Yakup Genc. Fea-

ture tracking and matching in video using programmable graphics hardware.

Machine Vision and Applications, 22(1):207–217, 2011.

[71] Pradip Mainali, Qiong Yang, Gauthier Lafruit, Luc Van Gool, and Rudy

Lauwereins. Robust low complexity corner detector. IEEE Transactions on

Circuits and Systems for Video Technology, 21(4):435–445, 2011.

[72] Sultan Alkaabi and Farzin Deravi. Candidate pruning for fast corner detec-

tion. Electronics Letters, 40(1):18–19, 2004.

[73] Mosalam Ebrahimi and Walterio W Mayol-Cuevas. Adaptive sampling for

feature detection, tracking, and recognition on mobile platforms. IEEE

Transactions on Circuits and Systems for Video Technology, 21(10):1467–

1475, 2011.

[74] Yitzhak Yitzhaky and Eli Peli. A method for objective edge detection eval-

uation and detector parameter selection. IEEE Transactions on Pattern

Analysis and Machine Intelligence, 25(8):1027–1033, 2003.

[75] Stephen P DelMarco, Victor Tom, and Helen F Webb. A theory of automatic

parameter selection for feature extraction with application to feature-based

multisensor image registration. IEEE Transactions on Image Processing,

16(11):2733–2742, 2007.

198 REFERENCES

[76] OpenCV Dynamic Adapted Feature Detector Implementation. http://

docs.opencv.org/2.4/modules/features2d/doc/common_interfaces_

of_feature_detectors.html#dynamicadaptedfeaturedetector. Ac-

cessed: 2015-12-07.

[77] Jean-Yves Bouguet. Pyramidal implementation of the Lucas Kanade feature

tracker. Technical report, Microsoft Research Labs, Intel Corporation, 2000.

[78] Supannee Tanathong and Impyeong Lee. Translation-based KLT tracker

under severe camera rotation using gps/ins data. IEEE Geoscience and

Remote Sensing Letters, 11(1):64–68, 2014.

[79] Jean-Yves Bouguet. Pyramidal implementation of the affine Lucas Kanade

feature tracker: description of the algorithm. Intel Corporation, 5:1–10,

2001.

[80] Jun-Sik Kim, Myung Hwangbo, and Takeo Kanade. Realtime affine-

photometric KLT feature tracker on GPU in CUDA framework. In 12th In-

ternational Conference on Computer Vision Workshops (ICCV Workshops),

pages 886–893. IEEE, 2009.

[81] Myung Hwangbo, Jun Sik Kim, and Takeo Kanade. Inertial-aided KLT fea-

ture tracking for a moving camera. In IEEE/RSJ International Conference

on Intelligent Robots and Systems (IROS), pages 1909–1916. IEEE, 2009.

[82] Masatoshi Okutomi and Takeo Kanade. A locally adaptive window for signal

matching. International Journal of Computer Vision, 7(2):143–162, 1992.

[83] Pradip Mainali, Qiong Yang, Gauthier Lafruit, Rudy Lauwereins, and Luc

Van Gool. Robust low complexity feature tracking. In International Con-

ference on Image Processing (ICIP), pages 829–832. IEEE, 2010.

[84] Juan C SanMiguel, Andrea Cavallaro, and José M Mart́ınez. Adaptive on-

line performance evaluation of video trackers. IEEE Transactions on Image

Processing, 21(5):2812–2823, 2012.

http://docs.opencv.org/2.4/modules/features2d/doc/common_interfaces_of_feature_detectors.html#dynamicadaptedfeaturedetector
http://docs.opencv.org/2.4/modules/features2d/doc/common_interfaces_of_feature_detectors.html#dynamicadaptedfeaturedetector
http://docs.opencv.org/2.4/modules/features2d/doc/common_interfaces_of_feature_detectors.html#dynamicadaptedfeaturedetector

REFERENCES 199

[85] Zdenek Kalal, Krystian Mikolajczyk, and Jiri Matas. Forward-backward

error: Automatic detection of tracking failures. In 20th International Con-

ference on Pattern Recognition (ICPR), pages 2756–2759. IEEE, 2010.

[86] Sameer Sheorey, Shalini Keshavamurthy, Huili Yu, Hieu Nguyen, and

Clark N Taylor. Uncertainty estimation for KLT tracking. In Asian Con-

ference on Computer Vision-Workshops, pages 475–487. Springer, 2014.

[87] Iain Matthews, Takahiro Ishikawa, and Simon Baker. The template update

problem. IEEE Transactions on Pattern Analysis & Machine Intelligence,

(6):810–815, 2004.

[88] Timo Zinßer, Christoph Gräßl, and Heinrich Niemann. Efficient feature

tracking for long video sequences. In Pattern Recognition, pages 326–333.

Springer, 2004.

[89] Tiziano Tommasini, Andrea Fusiello, Emanuele Trucco, and Vito Roberto.

Making good features track better. In IEEE Computer Society Conference on

Computer Vision and Pattern Recognition (CVPR), pages 178–183. IEEE,

1998.

[90] Michal Irani and P Anandan. About direct methods. In Vision Algorithms:

Theory and Practice, pages 267–277. Springer, 1999.

[91] Aljoscha Smolić, Thomas Sikora, and Jens-Rainer Ohm. Long-term global

motion estimation and its application for sprite coding, content description,

and segmentation. IEEE Transactions on Circuits and Systems for Video

Technology, 9(8):1227–1242, 1999.

[92] Yosi Keller and Amir Averbuch. Fast gradient methods based on global

motion estimation for video compression. IEEE Transactions on Circuits

and Systems for Video Technology, 13(4):300–309, 2003.

[93] Frederic Dufaux and Janusz Konrad. Efficient, robust, and fast global mo-

tion estimation for video coding. IEEE Transactions on Image Processing,

9(3):497–501, 2000.

200 REFERENCES

[94] Adrien Bartoli, Navneet Dalal, and Radu Horaud. Motion panoramas. Com-

puter Animation and Virtual Worlds, 15(5):501–517, 2004.

[95] Philip HS Torr and Andrew Zisserman. Feature based methods for structure

and motion estimation. In Vision Algorithms: Theory and Practice, pages

278–294. Springer, 1999.

[96] Martin A Fischler and Robert C Bolles. Random sample consensus: a

paradigm for model fitting with applications to image analysis and auto-

mated cartography. Communications of the ACM, 24(6):381–395, 1981.

[97] Hussein Alzoubi and W David Pan. Very fast global motion estimation using

partial data. In International Conference on Acoustics, Speech and Signal

Processing (ICASSP), volume 1, pages I–1189–I–1192. IEEE, 2007.

[98] Md Nazmul Haque, Moyuresh Biswas, Mark R Pickering, and Michael R

Frater. A low-complexity image registration algorithm for global motion es-

timation. IEEE Transactions on Circuits and Systems for Video Technology,

22(3):426–433, 2012.

[99] Ryan C Jones, Daniel DeMenthon, and David S Doermann. Building mosaics

from video using MPEG motion vectors. In International Conference on

Multimedia (Part 2), pages 29–32. ACM, 1999.

[100] Michael Tok, Alexander Glantz, Marina Georgia Arvanitidou, Andreas

Krutz, and Thomas Sikora. Compressed domain global motion estimation

using the Helmholtz tradeoff estimator. In 17th International Conference on

Image Processing (ICIP), pages 777–780. IEEE, 2010.

[101] Ramon L Felip, Llúıs Barceló, Xavier Binefa, and John R Kender. Robust

dominant motion estimation using MPEG information in sport sequences.

IEEE Transactions on Circuits and Systems for Video Technology, 18(1):12–

22, 2008.

REFERENCES 201

[102] Martin Haller, Andreas Krutz, and Thomas Sikora. Evaluation of pixel-and

motion vector-based global motion estimation for camera motion character-

ization. In 10th Workshop on Image Analysis for Multimedia Interactive

Services (WIAMIS), pages 49–52. IEEE, 2009.

[103] David Capel and Andrew Zisserman. Automated mosaicing with super-

resolution zoom. In IEEE Computer Society Conference on Computer Vision

and Pattern Recognition (CVPR), pages 885–891. IEEE, 1998.

[104] Jen-Chi Huang and Wen-Shyong Hsieh. Automatic feature-based global

motion estimation in video sequences. IEEE Transactions on Consumer

Electronics, 50(3):911–915, 2004.

[105] Carlo Tomasi and Takeo Kanade. Detection and tracking of point features.

Technical report, School of Computer Science, Carnegie Mellon University,

1991.

[106] Pietro Azzari, Luigi Di Stefano, and Stefano Mattoccia. An evaluation

methodology for image mosaicing algorithms. In Advanced Concepts for

Intelligent Vision Systems, pages 89–100. Springer, 2008.

[107] Michael Tok, Alexander Glantz, Andreas Krutz, and Thomas Sikora.

Feature-based global motion estimation using the Helmholtz principle.

In International Conference on Acoustics, Speech and Signal Processing

(ICASSP), pages 1561–1564. IEEE, 2011.

[108] James R Bergen, Patrick Anandan, Keith J Hanna, and Rajesh Hingorani.

Hierarchical model-based motion estimation. In European Conference on

Computer Vision (ECCV), pages 237–252. Springer, 1992.

[109] Mahesh Ramachandran and Rama Chellappa. Stabilization and mosaicing

of airborne videos. In International Conference on Image Processing (ICIP),

pages 345–348. IEEE, 2006.

202 REFERENCES

[110] Xiaoming Chen, Zhendong Zhao, Ahmad Rahmati, Ye Wang, and Lin

Zhong. Sensor-assisted video encoding for mobile devices in real-world envi-

ronments. IEEE Transactions on Circuits and Systems for Video Technology,

21(3):335–349, 2011.

[111] Shoaib Ehsan, Nadia Kanwal, Adrian F Clark, and Klaus D McDonald-

Maier. Measuring the coverage of interest point detectors. In Image Analysis

and Recognition, pages 253–261. Springer, 2011.

[112] Ondřej Chum and Jǐŕı Matas. Randomized RANSAC with Td, d test.

In British Machine Vision Conference (BMVC), volume 2, pages 448–457,

2002.

[113] Ondřej Chum and Jǐŕı Matas. Matching with PROSAC-progressive sample

consensus. In Computer Society Conference on Computer Vision and Pattern

Recognition (CVPR), volume 1, pages 220–226. IEEE, 2005.

[114] David Nistér. Preemptive RANSAC for live structure and motion estimation.

Machine Vision and Applications, 16(5):321–329, 2005.

[115] Daniel J Mirota, Masaru Ishii, and Gregory D Hager. Vision-based naviga-

tion in image-guided interventions. Annual review of biomedical engineering,

13:297–319, 2011.

[116] Adam Schmidt, Marek Kraft, and Andrzej Kasiński. An evaluation of image

feature detectors and descriptors for robot navigation. In Computer Vision

and Graphics, pages 251–259. Springer, 2010.

[117] Steffen Gauglitz, Tobias Höllerer, and Matthew Turk. Evaluation of interest

point detectors and feature descriptors for visual tracking. International

Journal of Computer Vision, 94(3):335–360, 2011.

[118] Arturo Gil, Oscar Martinez Mozos, Monica Ballesta, and Oscar Reinoso. A

comparative evaluation of interest point detectors and local descriptors for

visual SLAM. Machine Vision and Applications, 21(6):905–920, 2010.

REFERENCES 203

[119] Affine Covariant Features. http://www.robots.ox.ac.uk/~vgg/

research/affine/. Accessed: 2015-12-04.

[120] Nios II Processor: The World’s Most Versatile Embedded Proces-

sor. http://www.altera.com/devices/processor/nios2/ni2-index.

html. Accessed: 2015-12-04.

[121] Sangmin Oh, Anthony Hoogs, Amitha Perera, Naresh Cuntoor, Chia-Chih

Chen, Jong Taek Lee, Saurajit Mukherjee, JK Aggarwal, Hyungtae Lee,

Larry Davis, et al. A large-scale benchmark dataset for event recognition

in surveillance video. In IEEE Conference on Computer Vision and Pattern

Recognition (CVPR), pages 3153–3160. IEEE, 2011.

[122] Shizhe Shen, Xiaolong Zhang, and Wei Heng. Auto-adaptive Harris Corner

detection algorithm based on block processing. In International Symposium

on Signals Systems and Electronics (ISSSE), volume 1, pages 1–4. IEEE,

2010.

[123] Flore Faille. A fast method to improve the stability of interest point de-

tection under illumination changes. In International Conference on Image

Processing (ICIP), volume 4, pages 2673–2676. IEEE, 2004.

[124] Diego Rodŕıguez and Nabil Aouf. Robust Harris-SURF features for robotic

vision based navigation. In 13th International IEEE Conference on Intelli-

gent Transportation Systems (ITSC), pages 1160–1165. IEEE, 2010.

[125] Gioacchino Vino and Angel D Sappa. Revisiting Harris Corner detector algo-

rithm: A gradual thresholding approach. In Image Analysis and Recognition,

pages 354–363. Springer, 2013.

[126] Raw images from Curiosity rover, Mars science laboratory. http://mars.

jpl.nasa.gov/msl/multimedia/raw/. Accessed: 2015-12-07.

[127] Shoaib Ehsan, Adrian F Clark, and Klaus D McDonald-Maier. Rapid on-

line analysis of local feature detectors and their complementarity. Sensors,

13:10876–10907, 2013.

http://www.robots.ox.ac.uk/~vgg/research/affine/
http://www.robots.ox.ac.uk/~vgg/research/affine/
http://www.altera.com/devices/processor/nios2/ni2-index.html
http://www.altera.com/devices/processor/nios2/ni2-index.html
http://mars.jpl.nasa.gov/msl/multimedia/raw/
http://mars.jpl.nasa.gov/msl/multimedia/raw/

204 REFERENCES

[128] Erkan Bostanci. Enhanced image feature coverage: Key-point selection using

genetic algorithms. arXiv preprint arXiv:1512.03155, 2015.

[129] RanSaC in 2011 (30 years after). http://www.imgfsr.com/CVPR2011/

Tutorial6/RANSAC_CVPR2011.pdf. Accessed: 2016-05-03.

[130] Wide Area Aerial Surveillance Dataset (CLIF 2006). https://www.sdms.

afrl.af.mil/index.php?collection=clif2006. Accessed: 2016-05-03.

[131] Cyclone III FPGA development board: Reference manual. https:

//www.altera.com/content/dam/altera-www/global/en_US/pdfs/

literature/manual/rm_cycloneiii_dev_kit_host_board.pdf. Ac-

cessed: 2016-11-19.

[132] Nios-II classic processor reference guide. https://www.altera.com/

content/dam/altera-www/global/en_US/pdfs/literature/hb/nios2/

n2cpu_nii5v1.pdf. Accessed: 2016-11-19.

[133] Nios-II software development tutorial. https://www.altera.com/

content/dam/altera-www/global/en_US/pdfs/literature/tt/tt_my_

first_nios_sw.pdf. Accessed: 2016-11-19.

http://www.imgfsr.com/CVPR2011/Tutorial6/RANSAC_CVPR2011.pdf
http://www.imgfsr.com/CVPR2011/Tutorial6/RANSAC_CVPR2011.pdf
https://www.sdms.afrl.af.mil/index.php?collection=clif2006
https://www.sdms.afrl.af.mil/index.php?collection=clif2006
https://www.altera.com/content/dam/altera-www/global/en_US/pdfs/literature/manual/rm_cycloneiii_dev_kit_host_board.pdf
https://www.altera.com/content/dam/altera-www/global/en_US/pdfs/literature/manual/rm_cycloneiii_dev_kit_host_board.pdf
https://www.altera.com/content/dam/altera-www/global/en_US/pdfs/literature/manual/rm_cycloneiii_dev_kit_host_board.pdf
https://www.altera.com/content/dam/altera-www/global/en_US/pdfs/literature/hb/nios2/n2cpu_nii5v1.pdf
https://www.altera.com/content/dam/altera-www/global/en_US/pdfs/literature/hb/nios2/n2cpu_nii5v1.pdf
https://www.altera.com/content/dam/altera-www/global/en_US/pdfs/literature/hb/nios2/n2cpu_nii5v1.pdf
https://www.altera.com/content/dam/altera-www/global/en_US/pdfs/literature/tt/tt_my_first_nios_sw.pdf
https://www.altera.com/content/dam/altera-www/global/en_US/pdfs/literature/tt/tt_my_first_nios_sw.pdf
https://www.altera.com/content/dam/altera-www/global/en_US/pdfs/literature/tt/tt_my_first_nios_sw.pdf

	List of Figures
	List of Tables
	List of Listings
	List of Abbreviations
	1 Introduction
	1.1 Motivation
	1.2 Scope and Objectives
	1.3 Research Contributions
	1.3.1 Research Publications

	1.4 Organisation of the Thesis

	2 Literature Survey
	2.1 Unmanned Aerial Vehicles for Surveillance
	2.2 On-board Vision-based Tasks for Surveillance
	2.2.1 Motion Detection
	2.2.2 Video Compression
	2.2.3 Vision-aided Navigation

	2.3 Local motion estimation
	2.3.1 Feature Detection
	2.3.2 Feature Tracking

	2.4 Global Motion Estimation
	2.4.1 Global Motion Models
	2.4.2 Parameter Estimation Approaches
	2.4.3 State-of-the-art GME techniques
	2.4.4 Feature-based GME with KLT Feature Tracker

	2.5 Summary

	3 Low-Complexity Pruning for Corner Detection
	3.1 Introduction
	3.2 Shi-Tomasi and Harris Corner Detectors
	3.3 Pruning Technique for Corner Detection
	3.3.1 Partial Pruning
	3.3.2 Removing Edge Pixels

	3.4 Cost Analysis
	3.5 Performance Evaluations
	3.5.1 Evaluation Setup
	3.5.2 Accuracy Evaluation
	3.5.3 Efficiency Evaluation
	3.5.4 Global Motion Estimation on Aerial Videos

	3.6 Summary

	4 Automating Threshold Selection for Corner Detection
	4.1 Introduction
	4.2 Iterative Thresholding
	4.2.1 Non-linear Threshold Steps
	4.2.2 Mask-based Non-Maximal Suppression

	4.3 Performance Evaluations
	4.4 Summary

	5 Accelerating Automated Thresholding with Pruning
	5.1 Iterative Thresholding with Pruning
	5.1.1 Selection of Pruning Threshold Steps and Bin Boundaries
	5.1.2 Detection of Saturating Bins
	5.1.3 Efficient Non-Maximal Suppression
	5.1.4 Deterministic and Compute-Efficient Convergence of Iterations

	5.2 Performance Evaluations
	5.2.1 Evaluation Setup
	5.2.2 Accuracy Evaluation
	5.2.3 Efficiency Evaluation
	5.2.4 Automated Thresholding with Mask-based NMS

	5.3 Summary

	6 Low-Complexity Global Motion Estimation with Sparse Features
	6.1 Introduction
	6.2 Feature-based Global Motion Estimation
	6.2.1 Robust Estimation
	6.2.2 Density of Feature Correspondences

	6.3 GME with sparse features
	6.3.1 Evaluation of estimation
	6.3.1.1 Inlier Agreement
	6.3.1.2 Spatial Distribution Constraint

	6.3.2 Repopulation

	6.4 Cost Analysis
	6.5 Performance Evaluations
	6.5.1 Evaluation Setup
	6.5.2 Performance Results

	6.6 Summary

	7 Adaptive Windowing for Robust and High-Speed KLT Tracker
	7.1 Introduction
	7.2 KLT Feature Tracker
	7.2.1 Effect of Search Window Size for Rotation/Scaling
	7.2.2 Implications of Fixed Search Window Size with Pyramidal KLT

	7.3 Adapting KLT Window Size
	7.3.1 Types of Tracking Errors
	7.3.2 Detecting Tracking Failure
	7.3.2.1 Forward-Backward Error
	7.3.2.2 Convergence within Maximum KLT Iterations
	7.3.2.3 Handling Erroneous Early Convergences

	7.3.3 Integrating with Pyramidal KLT

	7.4 Performance Evaluations
	7.4.1 Evaluation Setup
	7.4.2 Performance Results
	7.4.3 Adaptive KLT for Sparse-GME

	7.5 Summary

	8 Framework for Adaptive Low-Complexity GME
	8.1 Corner Detection
	8.2 Feature Tracking
	8.3 GME Controller
	8.4 Summary

	9 Conclusions and Future Work
	9.1 Conclusions
	9.2 Future Work

	Appendices
	A Description of the Kanade-Lucas-Tomasi (KLT) feature tracker
	A.1 1-dimensional Case
	A.2 2-dimensional Case: Feature Tracking

	B Experimental Setup with Nios-II
	References

