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Abstract

Background: Eukaryotes use distinct networks of biogenesis factors to synthesize,
fold, monitor, traffic, and secrete proteins. During heterologous expression,
saturation of any of these networks may bottleneck titer and yield. To understand
the flux through various routes into the early secretory pathway, we quantified
the global and membrane-associated translatomes of Komagataella phaffii.

Results: By coupling Ribo-seq with long-read mRNA sequencing, we generated a
new annotation of protein-encoding genes. By using Ribo-seq with subcellular
fractionation, we quantified demands on co- and posttranslational translocation
pathways. During exponential growth in rich media, protein components of the
cell-wall represent the greatest number of nascent chains entering the ER.
Transcripts encoding the transmembrane protein PMA1 sequester more
ribosomes at the ER membrane than any others. Comparison to Saccharomyces
cerevisiae reveals conservation in the resources allocated by gene ontology, but
variation in the diversity of gene products entering the secretory pathway.

Conclusion: A subset of host proteins, particularly cell-wall components, impose
the greatest biosynthetic demands in the early secretory pathway. These proteins
are potential targets in strain engineering aimed at alleviating bottlenecks during
heterologous protein production.

Keywords: Ribosome profiling; Protein secretion; Resource allocation; Pichia
pastoris

As a microbial cell factory, yeasts offer many advantages for recombinant protein

production including their natural properties and potential in synthetic biology .

Yeasts grow rapidly to high densities in inexpensive media and are robust to phys-

ical and chemical stress [1]. They also have an endomembrane system that is fun-

damentally conserved with higher eukaryotes [2]. This oxidative environment sup-

ports glycosylation and subsequent glycan modification, folding using ATP-driven

molecular chaperones and protein disulfide isomerases, and protein quality control

[3]. Compared to mammalian cells, yeasts have simpler genomes and can be more

easily characterized and modified [4]. Combine these features with tools such as

CRISPR/cas9, and the range of tractable species is expanding [5, 6]. Komagataella

phaffii (one of two species previously known as P. pastoris [7–9]) stands out as

a host for recombinant protein expression due to its high secretion capacity, its

ability to metabolize methanol as its primary carbon source, its safety record as a

source of biologics, and its extensive literature compared to other non-model yeasts

https://www.researchsquare.com/article/rs-60134/v2
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[10, 11]. Thus, K. phaffii is an ideal chassis to rapidly implement changes designed

to improve protein expression and secretion [4]. Indeed, recent work in K. phaffii

has focused on systems-level analysis [12] and implementing design approaches of

synthetic biology such as molecular parts lists and strain engineering [13, 14]. Such

changes may accelerate product development and allow cheap, local production of

pharmaceuticals [15, 16].

Identifying and relieving protein biogenesis bottlenecks is one strategy to improve

yields of high-value, recombinant proteins [1, 17]. For secreted proteins expressed

in K. phaffii, an early bottleneck is the translocation of newly made proteins from

the cytoplasm into the lumen of the endoplasmic reticulum (ER) [18, 19]. Yeasts

have multiple pathways for translocation, which use partially overlapping sets of

biogenesis factors (reviewed in [2]). In the major pathway into the ER, translocation

occurs through a membrane-embedded protein complex called the sec translocon. At

least three major translocons exist in yeasts (the Ssh1 complex; two Sec61 complexes

with, and without, Sec62p, Sec63p, Sec66p and Sec71p), which can accept proteins

as they are synthesized by ribosomes (cotranslationally) or after synthesis of the

polypeptide chain is complete (posttranslationally). Besides translocon architecture,

co- and posttranslational pathways differ in their reliance on cytosolic molecular

chaperones [20, 21]. Translocons bind hydrophobic amino acid motifs, called signal

peptides, found at the amino termini of secreted proteins [22]. Some signal peptides

are dependent upon a cytosolic factor, the Signal Recognition Particle, and the ER-

bound SRP receptor to engage a translocon [23]; these tend to be longer or more

hydrophobic than SRP independent signals [24, 25]. Binding of a signal peptide

to a translocon opens the channel and allows the rest of the protein to pass into

the lumen. In addition to secreted proteins, the sec translocon is a major point of

entry for integral membrane proteins of the endomembrane system [26]. Integral

membrane proteins that use a sec translocon require SRP for targeting to the ER

over mitochondria [24].

For any production host, ribosomes, molecular chaperones, and sec translocons

represent limited pools of resources that are distributed between heterologous pro-

teins and the host proteome [27–29]. Unlike resources that are replenished enzymat-

ically (like aminoacyl-tRNAs), ribosomes, translocons and chaperones only act on a

single nascent chain at a time. While in use, they are sequestered and unavailable for

other tasks. Although computational models that approximate these effects exist for

bacteria [30], the complexity of eukaryotic translation is insufficiently understood to

predict these allocations from transcriptomics alone. Accurate accounting of these

resources could allow strains to be engineered in ways to relieve bottlenecks spe-

cific to a target. The secretome of K. phaffii has been characterized under several

conditions [31], but the precise biosynthetic requirements of each protein remain

unknown. Sequence features of secreted proteins, like glycosylation motifs, allow

approximation of their direct biosynthetic costs such as ATP, carbohydrates, disul-

fide bonds, or GPI-anchors [32]. Per molecule costs can be coupled with measure-

ments of gene expression to identify most expensive host proteins. Deletion of these

proteins improves yields of secreted heterologous proteins in mammalian systems

[33, 34]. However, while these analyses account for demands on global resources,

they are limited by insufficient experimental data which links gene products to spe-

cific biogenesis subnetworks. For instance, overloading cotranslational translocons
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could limit secretory yields even if metabolic demands are met and posttransla-

tional translocons are available. Quantification of global ribosome, cotranslational

translocon and SRP use is available for S. cerevisiae. [24, 35, 36] However, these

measurements are unavailable for other industrially significant species, including K.

phaffi.

Which host proteins sequester the most biogenesis machinery in the early secre-

tory pathway of K. phaffii? Which host genes produce the most nascent chains,

which will compete for chaperones and sorting factors within the endomembrane

system? To answer these questions, we quantified active translation globally and at

the surface of the ER or mitochondria. Our analysis reveals the set of proteins that

enter the secretory pathway cotranslationally and predicts the set that enter post-

translationally. In each set, we estimate demand for ribosomes and translocons. We

distinguish between resources that act on a per nascent chain basis from machinery

that is utilized based on elongation time.

1 Materials & Methods
1.1 Strains and culture conditions

All experiments were performed using Komagataella phaffii GS115 (Invitrogen).

For each Ribo-seq biological replicate, 500 ml liquid cultures of YPD (1% yeast ex-

tract, 2% peptone and 2% glucose) were grown to an OD600 nm of 2 at 30 ◦C with

shaking in baffled 2 l flasks. Cells were harvested by vacuum filtration through a

0.8 µm filter. Immediately after filtering, cells were scraped off the filter using a

chilled scoopula and submerged in a 50 ml conical tube containing liquid nitrogen.

When indicated in order to match conditions of S. cerevisiae fractionated Ribo-seq

data [35], cycloheximide (CHX) was added to 100 µg ml−1 for 3 min prior to har-

vesting. CHX treatments longer than a few minutes can alter ribosome abundance

near the start of transcripts [37]. Short incubations with CHX enhance targeting

of translocation competent ribosome-nascent chain complex while not perturbing

non-secretory polysomes [36].

1.2 Lysis and subcellular fractionation

Cells were lysed in either soluble lysis buffer (50 mM MOPS, 25 mM potassium hy-

droxide, 100 mM potassium acetate, 2 mM magnesium acetate, 1 mM dithiothreitol

and 100 µg mL−1 CHX) or membrane lysis buffer (soluble lysis buffer with 1% Tri-

ton X-100). Lysis buffers for each sample were frozen by adding 2 ml dropwise to a

50 ml conical tube containing liquid nitrogen. For each biological replicate, 2
3 frozen

cells were mixed with 2 ml frozen soluble lysis and the remaining 1
3 were mixed with

2 ml frozen membrane lysis buffer. Cell fractions were pulverized for 2 min in a 50 ml

ball mill chamber with a single 2 cm steel ball (Retsch) and collected into 1.5 ml

conical tubes. After thawing, lysates were centrifuged at 20,000 x g for 10 minutes.

Supernatants from samples lysed with membrane lysis buffer were collected and

used as “total” fractions. Supernatants from samples lysed with soluble lysis buffer

were collected and used as “soluble” fractions. The pellets from sample lysed with

soluble lysis buffer were resuspended in 2 ml membrane lysis buffer and centrifuged.

The supernatants were collected and used as “membrane” fractions. Triton-X 100

was added to 1% in soluble fractions, so that all three fractions were in equivalent

buffers.
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1.3 Ribo-Seq

Lysed samples were digested using 40 U of ribonuclease A (Ambion) for 1 h at room

temperature. Digested samples were layered on a 10 % to 50 % sucrose gradient

prepared in 50 mM Tris pH 7.5, 200 mM sodium chloride, and 2 mM magnesium

acetate case using a Gradient Master (Biocomp). Gradients were centrifuged at

39 000 rpm for 2.5 h in a TH-641 rotor (Thermo). After centrifugation, gradients

were fractionated using a Piston Gradient Fractionator (Biocomp) and monosome

peaks were retained. Total RNA was extracted using a standard phenol-chloroform

method and alcohol precipitated. Ribosome protected footprints, corresponding to

(18 nt to 34 nt), were excised from a TBE urea gel. RNA was collected from excised

gel fragments using RNA gel extraction buffer (300 mM sodium acetate, 1 mM

EDTA, and 0.25% SDS), precipitated, and resuspended in water containing 20 U/ml

SUPERase•In (Invitrogen).

Purified fragments were used to prepare sequencing libraries as described in [38]

with some modification. Linker ligations were allowed to proceed for 4 hours, and

afterwards, samples were pooled and purified by TBE-urea PAGE. The pooled li-

brary was depleted of ribosomal RNA using the Ribo-Zero Gold rRNA Removal Kit

(Illumina), following manufacturer’s instructions. Reverse transcriptions were per-

formed using SuperScript II (Invitrogen). After circularization, PCR amplification

and TBE PAGE purification, libraries were quantified using a Qubit 2.0 Fluorom-

eter (Invitrogen) and sequenced using a HiSeq 4000 (Illumina.) Linker sequences

were trimmed and libraries were demultiplexed using Cutadapt [39].

1.4 Long read RNA sequencing

Cells were grown in YPD at 30 ◦C with agitation to an OD600 nm of 2 and harvested

by centrifugation. Total RNA was obtained using a Direct-Zol kit (Zymo Research).

Cells were vortexed with glass beads for 2 minutes during incubation with TRI

reagent. After purifying RNA, a library was prepared using a PCR-cDNA kit ac-

cording to manufacturer’s instructions (SQK-PCS109, Oxford Nanopore Technolo-

gies) and sequenced using a minION R9.4.1 flow cell. Base calling was performed

using Guppy (Oxford Nanopore Technologies).

1.5 Transcript assembly

A novel transcriptome was assembled using data derived from Ribo-Seq, long-read

RNA-Seq, and a prior genome sequence of strain GS115 [40]. A flowchart of the

annotation pipeline is provided in Figure S2c. Ribo-seq reads and long reads were

aligned to the reference genome using HISAT2 [41] and Minimap2 [42] respectively.

Stringtie version 1.3.6 was used to assemble transcripts from Ribo-seq data, with

reads mapping to each strand processed separately [43]. Pinfish was used to assem-

ble transcripts from long reads (Oxford Nanopore Technologies). After transcript

assembly, PASA [44] was used to combine the Stringtie and Pinfish models into a

single transcriptome. Transdecoder [45] was then run twice: first, to identify candi-

date coding regions with PASA model with a lower limit of 100 amino acids, and

second, to identify coding regions in just the Stringtie model with a lower limit of

40 amino acids. The latter run has a reduced risk of misannotating start codons in

the 5’-UTR. Transdecoder annotated transcripts from TransdecoderPASA were used
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to train GlimmerHMM [46] and CodingQuarry [47], which were used to provide de

novo predictions in the genome. EVidenceModeler [48] was used to incorporate pre-

dictions from PASA, TransdecoderStringtie, TransdecoderPASA, GlimmerHMM and

CodingQuarry. File processing, UTRs, and tRNAs annotations were provide by the

update utility in the Funannotate package [49].

1.6 Mapping of ribosome protected reads to codons and masking

Ribo-seq reads were mapped to the genome of Komagataella pastoris GS115 [40]

using HISAT2 [41, 50]. Alignments were converted from SAM to sorted and indexed

BAM files using Samtools and only included reads with mapping quality threshold

of 60 [51]. Mapped reads were loaded into R using the GenomicAlignments package

from Bioconductor[52] and converted to their 3’ end positions before determining

p-site offsets. P-site offsets were determined using the RiboProfiling package in

Bioconductor [53]. Each read was mapped to a single codon. Masking files were cre-

ated by first parsing the coding sequence (CDS) annotation file associated with the

reference genome into a fasta file simulating every possible 28 nt combination (ap-

proximate length of a ribosome protected mRNA fragment). This fasta file was then

aligned to reference genome twice, once to only include reads with mapping quality

greater than or equal to 60 (unambiguously assigned), and another to include all

reads (ambiguously assigned). Both alignment files were used to generate RPCPG

data tables. The unambiguously assigned reads were subtracted from ambiguously

assigned reads and codons with a nonzero difference were included in mask. The

first and last five codons in genes’ open reading frames (ORFs) were masked to

correct for variable read quality at the beginning and ending of transcripts inherent

to Ribo-Seq [54].

1.7 Metagene correction and quantification of metabolic demand

Read counts were normalized at the codon level using a metagene analysis that

provides a global profile for each data set. First, for each ORF, reads at each

codon position were scaled by the average reads per codon mapped ORF. Then,

for codon position, either a mean or median value was calculated from all ORFs

using the following scheme: for positions 1 to 100, a rolling mean with a window

of 10 codons; for positions 100 to 1000, a rolling mean with a window of 100; for

positions 1000 and onward, a rolling median with a window of 1000. In calculating

corrected transcripts per million (cTPM), codon read counts were scaled by divid-

ing the metagene-derived value at that position and normalized by their pseudo

gene lengths (theoretical gene length minus number of masked codons) and a per

million scaling factor unique to each data set. In calculating ribosomes per million

(cRPM), a ribosome scaling factor was created for each gene by dividing the sum

of the metagene-derived values at all codon positions by the sum of smoothed reads

per codon with the mask applied (a gene with zero masked codons will have a ri-

bosome scaling factor equal to one, while a gene that contains masked codons will

have a scaling factor greater than one). The ribosome scaling factor is multiplied by

unmasked gene read counts and normalized by a per million scaling factor unique

to each data set to give RPM. Membrane enrichment is quantified for each gene as

the log2 ratio of membrane cTPM scores or total cTPM scores to soluble cTPM

scores.
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1.8 Classification and annotation of ORFs

Gene names were hierarchically assigned to novel K. phaffii transcripts through

homology. Firstly, transcripts were assigned names inherited from S. cerevisiae using

BlastP [55] with an expected value less than 1e-5. For genes that were not predicted

to be homologous, gene names were assigned common names using EggNOG 4.5

[56] using a taxonomic scope limited to ascomycetes. Genes that did not share

homology with S. cerevisiae or known ascomycetes were assigned names inherited

from K. phaffii GS115 [40] using BlastP with expected values less than 1e-5. Novel

genes that were not assigned names using methods above were named after the

moniker given during transcript assembly.

ORFs were classified by function, cellular location, and sequence features using

various prediction software. Functions were assigned ontologically using clusters

of orthologous groups (COG) and were prepared using EggNOG 4.5 [56]. Vironoi

tessellations were created to quantitatively map the biosynthetic composition of

these functions using COGs and expression metrics derived from Ribo-Seq cTPM

[57]. DeepLoc was used to predict the subcellular localization associated with ORF

products [58]. Sequence features such as signal sequences, transmembrane domains

(TMD), and GPI anchors were identified using SignalP 5.0 [59], TOPCONS [60],

and predGPI [61] respectively.

1.9 S. cerevisiae analysis

Ribo-seq data for total protein synthesis were taken from [62], and data obtained

from soluble or membrane-bound ribosome fractions were obtained from [35]. All

data were processed in the same way as K. phaffi using the S288C reference genome

R64-2-1 [63].

2 Results
2.1 Ribo-seq and long-read RNA-seq improve open reading frames annotations

We sought to globally quantify several aspects of protein synthesis in K. phaffii

GS115. We asked which genes were responsible for sequestering limited biosyn-

thetic resources, such as ribosomes and ER translocons. We also asked which genes

were responsible for producing the most nascent chains, which is critical for pre-

dicting amino acid usage, as well as modifications that act on a per chain basis

(i.e., N-terminal acetylation, GPI anchoring, vesicular sorting). Ribo-seq provides a

snapshot of protein translation, allowing us to answer both of these questions [64].

It is a high throughput sequencing technique used to infer ribosome abundance at

each codon of each transcript. In Ribo-seq, a non-specific ribonuclease generates

20 nt to 22 nt or 28 nt to 30 nt “footprints” of ribosome-protected mRNA depending

on the translational conformation of the ribosome [65], which are then sequenced.

We performed a series of Ribo-seq experiments to capture global translation and

translation on the surface of organelles (Figure 1). Our data sets captured foot-

print lengths from 15 nt to 42 nt (Figure S1a). Nearly all (99%) footprints mapped

within open reading frames (ORFs). Our profiling data also indicate active trans-

lation through the appearance of three nucleotide periodicity in read depth that is

preserved across the transcriptome (Figure S1b).

We noticed that ribosome-protected read patterns were often inconsistent with

prior annotations of open reading frames (Figure S2a). At many loci, Ribo-seq
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Table 1 Comparison of ORF annotations

Annotationa Total ORFs Homologsb Length differencesc

Current study 5329

GS115 (PRJNA304976) 5064 5035 514

GS115 (PRJEA37871) 5040 5100 697

CBS7435 (PRJEA62483) 5291 5198 604

aNCBI bioproject numbers located in parenthesis.
bBlastP matches from current study to prior study.

cNumber of homologs with different predicted lengths.

appeared to indicate that translation began at an alternate start codon. Inaccuracies

in ORF structure are problematic, since the length of a reading frame is a critical

parameter used for quantifying translation and the position of the start site is used

in correction using global profiles (see below). We therefore sought to improve the

GS115 annotation using Ribo-seq. Several methods that rely solely on Ribo-seq to

annotate structure rely on the three nucleotide periodicity of reads to define reading

frames [66]. They require substantial coverage for each gene; however, sparse Ribo-

seq coverage could still support re-annotation if it were treated like stranded RNA-

seq data. Moreover, de novo open reading frame predictors can be trained using

verified translational start sites, and so improving the accuracy of annotations for

a subset of the transcriptome was expected to improve overall prediction accuracy.

We therefore adapted consensus methods used in gene prediction and annotation

with standard RNA-seq data, with optimizations for fungi [48, 49]. Our approach

uses Ribo-seq to construct transcript models, which are then used to train several

de novo annotators.

Like other yeasts, K. phaffii has short intergenic sequences, leading to overlapping

untranslated regions (UTRs), even on transcripts encoded on the same DNA strand.

As a result, methods that construct transcripts from short-read sequencing merge

data from adjacent genes into a single transcript. We therefore collected long-read

data using Oxford Nanopore PCR-cDNA sequencing and developed a pipeline to

integrate Ribo-seq, long-read RNA-seq, and de novo gene prediction (Figure S2b,

c). Our annotation is provided as Additional File 1. ORFs that were fully covered

by Ribo-seq data were allowed to be as short as 40 amino acids, increasing the

number of annotated genes compared to other annotations of K. phaffii (Table 1)

[40, 67, 68]. Homologs between our annotation and prior annotations are provided as

Additional File 2. Our annotation adjusted the translational start site of about 10%

of ORFs compared to each previous model. Overall, Ribo-seq reads were mapped

to 5,303 genes in K. phaffii in the assembly presented here. We have named genes

based on homology to prior annotations, to S. cerevisiae and to other ascomycetes.

2.2 Translational landscape of K. phaffii

Each read in Ribo-seq originates from a translating ribosome. Thus, by comparing

the distribution of reads, we can answer our first question and identify which tran-

scripts sequester ribosomes and ribosome-associated factors, like the sec translocon.

As a method to predict the abundance of polypeptide chains, Ribo-seq has greater

sensitivity than mass spectrometry, and more closely matches measurements of pro-

tein abundance than RNA-seq [69]. To answer our second question, the number of

nascent polypeptide chains produced per unit time can be approximated using a
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modified form of the transcripts per million (TPM) metric used in RNA-seq. TPM

has advantages over other metrics (RPKM or FPKM) for its intuitive interpreta-

tion during differential analysis and for its congruence with proteomics [70, 71].

In RNA-seq, reads are generally long enough to be unambiguously mapped to the

transcriptome, and they can be assumed to equally cover a transcript. In Ribo-seq,

however, these assumptions do not hold, and biases due to ambiguous mapping and

unequal coverage must be corrected.

Ribosome protected fragments are small, 22 nt to 30 nt, and may map to multiple

mRNA sequences when the transcriptome contains homologous stretches. Ambigu-

ously mapped reads can be handled in one of several ways, often with shortcomings.

Discarding multi-mapped reads [72–75] depreciates read counts for highly expressed

genes. Randomly assigning reads to ORFs with equivalent percentage of alignment

[64, 76, 77] overestimates read counts for lowly expressed genes. Here, we adapt the

method of Taggart et al. [62], who used computational masks to exclude homolo-

gous segments of the predicted transcriptome. We calculated a mask over the K.

phaffii transcriptome accounting for all possible 28 nt reads, excluding 3% of codon

positions available. To estimate gene expression via TPM, reads must be scaled

by ORF length. Unlike discarding or randomly assigning reads, masking adjusts

the gene length to reflect mRNA positions available for analysis. However, masking

alone is insufficient because ribosome protected reads are not evenly distributed

across transcripts.

Ribosome-protected reads are more abundant near the 5’ end of ORFs [64, 78].

This effect may be due slower elongation rates at the beginning of translation [79]

or abortive translation [62]. Regardless of the mechanism, the positional bias is ob-

served in nearly every transcript and results in a global read profile that is conserved

across the translatome (Figure 2a). As a result, estimates of the expression of short

ORFs will appear inflated (and long ORFs deflated), since only the ribosome-rich

region of the global profile is sampled. We again adapt the method of Taggart el

al. [62], where the positional bias is removed by scaling reads at each codon by the

empirical global profile. (Figure 2b). We use corrected TPM (cTPM), with masking

and scaling, as a measure of the rate at which nascent chains are produced. For

example, transcripts of RPL5 and YEF3 display similar numbers of ribosomes at

the start of their ORFs (Figure 2c), suggesting similar initiation rates. However,

because YEF3 is a longer ORF, its standard TPM is smaller than the TPM of

RPL5. Here, we assume that if RPL5 were as long as YEF3, then its translational

profile will be similar to the global profile, resulting in similar cTPM scores.

While cTPM estimates the number of nascent polypeptide chains, it does not an-

swer our question regarding ribosome sequestration. Longer transcripts sequester a

greater number of ribosomes in order to produce the same number of nascent chains

as a shorter transcript. If ribosomes accumulate near the start codon in vivo, then

it is important to include this effect while measuring allocation. cTPM, therefore,

is an inappropriate metric. If ribosome-protected reads could be unambiguously

mapped to the transcriptome, then simple read counts estimate ribosome usage per

gene. However, when masking is applied, the position of the mask becomes impor-

tant (Figure 2a, b). Two masks of the same length, applied at different positions,

will hide different amounts of ribosomes based on the global profile. To correct for
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Table 2 Nascent chains produced in K. phaffii

Nascent chains (%)a Genes (n)

Ontological Functions

Translation, Ribosomal Structure and Biogenesis 44.0% 366

Function Unknown 11.0% 1602

Post-Translational Modification, Protein Turnover and Chaperones 9.0% 409

Energy Production and Conversion 8.0% 207

Intracellular Trafficking, Secretion and Vesicular Transport 4.0% 382

Carbohydrate Transport and Metabolism 3.0% 218

Cell Wall/Membrane/Envelope Biogenesis 3.0% 85

Amino Acid Transport and Metabolism 3.0% 191

Transcription 2.0% 355

RNA Processing and Modification 2.0% 242

Predicted Features of ER destined proteins

Lumenal and secreted proteinsb 8% 266

GPI Anchors 79%c 117

Transmembrane proteinsd 7% 960

aNascent chains are percentage of the total cTPM represented by each category.
bTotal number of genes with an N-terminal signal sequence and may include a GPI anchor.

cPercentage of nascent chains containing signal sequences that also contain a predicted GPI anchor.
dTransmembrane proteins either have no signal sequence but one transmembrane domain (TMD), or two or more TMDs.

this, we introduce a ribosome scaling factor that accounts for masking of each gene.

The factor represents the fraction of ribosomes expected to be observed when the

gene-specific mask is applied to the global translational profile. We generate a new

metric for each gene, corrected ribosomes per million (cRPM), which is practically

equivalent to reads per million (RPM) in standard RNA-seq. In our example in

Figure 2c, cRPM and RPM are almost identical, as expected since there are no

masks applied to RPL5 or YEF3. Read counts, cTPM and cRPM for each gene in

each dataset are provided as Additional File 3.

After applying corrections, we find that the majority of nascent chains synthesized

in K. phaffii are from genes involved in translation, ribosomal structure and biogen-

esis (see Table 2 and Figure 3a), as expected for log-phase growth. The majority of

nascent chains encoded by genes of unknown function are predicted to be extracel-

lular, where they are likely components of the cell wall. We consider endomembrane

lumenal and secreted proteins to be those with (i) predicted N-terminal signal se-

quences, (ii) are not predicted to be localized to the mitochondria, and (iii) contain

less than or equal to one transmembrane domain, as these are frequently GPI an-

chors. Some single-pass, type I transmembrane proteins will be misannotated by

this definition. The number of genes containing these predictive features and the

relative percentage of nascent chains they produce are summarized in Table 2. A

majority of nascent chains for genes containing a signal sequence also contain GPI

anchors, suggesting that this structural class represents the majority of products

that will be processed by the secretory pathway.

2.3 Biogenesis demands in the early secretory pathway

We next investigated the global demands for machinery needed for translocation

into the ER. Subcellular fractionation was used to separate membrane-bound ri-

bosomes from free floating, soluble ribosomes. Membrane-bound ribosomes were

detergent solubilized, and then samples from both soluble and membrane fractions

were subject to Ribo-Seq (Figure 1). As in S. cerevisiae, libraries derived from the

membrane fractions are enriched in ribosome-protected footprints originating from

transcripts that encode proteins destined for the ER or mitochondria [35] (Figure
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4). Membrane enrichment scores were calculated as the log2 ratio of cTPM for

membrane and soluble fractions and were reproducible (Figure S3a and provided in

Additional File 3 ). The magnitude of membrane enrichment scores depends on the

efficiency of fractionation, and if a gene falls below the diagonal line in Figure 4,

it will have a negative enrichment score. As in S. cerevisae, membrane enrichment

scores are limited by the length of the ORF when transcripts encode signal-sequence

bearing proteins [35, 36] (Figure 5). This effect is due to a kinetic competition be-

tween trafficking rate and translation elongation rate. Figure 5 also reveals that a

membrane enrichment score of 2 effectively separates two populations, and so we

define genes with scores greater than 2 as cotranslationally translocated into either

the ER or mitochondria. The set of cotranslationally translocated nascent polypep-

tides is enriched for those involved in energy production and conversion, cell wall

and membrane biogenesis, and various transporters (Figure 3b). To assess entry

into the ER, we filtered out transcripts encoding proteins predicted to localize in

the mitochondria by DeepLoc (Figure 3c). Finally, we define proteins that enter

the ER through a posttranslational sec translocon as those having a predicted N-

terminal signal sequence and less than 2-fold membrane enrichment (Figure 3d).

Posttranslationally trafficked membrane proteins rely on other mechanisms, such as

the GET pathway [22].

A more diverse group of proteins enter the ER through cotranslational translo-

cons than those that enter posttranslationally (Figure 3c,d and Table 3). While the

diversity of functions for proteins that enter the ER posttranslationally is relatively

small (mostly unknown function and then cell wall and membrane biogenesis), we

find that posttranslational translocation handles a majority of total nascent chains

entering the ER. These genes encode primarily small proteins such as SCV12161.1p

or cell wall proteins processed with GPI-anchors, such as Spi1p. Although its func-

tion is unknown, Spi1p is also predicted to be GPI-anchored, and both SPI1 and

SCV12161.1 produce among most nascent proteins within the cell under conditions

tested here (Figure 3a). We then classified the genes of unknown function that en-

tered the ER by their predicted final location. The majority of these gene products,

approximately four fifths, are predicted to be localized extracellularly and have an

unusual discrepancy between their relative ribosomal usage, nascent chains pro-

duced, and average gene length compared to unknown genes predicted to localize

elsewhere (Table S1).

2.4 Comparing the translational landscape between K. phaffii and S. cerevisiae

Of the 5,329 K. phaffii genes annotated here, 73% have a homolog in S. cerevisiae.

Unlike K. phaffii, S. cerevisiae is thought to have undergone a whole-genome dupli-

cation, and so many S. cerevisiae genes have paralogs [80]. The influence of paralogy

is evident in how these two species allocate translational throughput. We calculated

of cTPM and cRPM in S. cerevisiae (Additional File 4 ) using prior data acquired

under similar growth conditions [35, 62]. The overall distribution of cTPM by onto-

logical category is similar between species (Figure S4). Under the conditions tested

here (glucose-containing rich media), TEF1, encoding translational elongation fac-

tor 1 alpha, is the most translated protein in K. phaffii. The TEF1 promoter is

used to drive constitutive expression in K. phaffi [81], and our results suggest that
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Table 3 Comparison of translocon demands by ontological function.

Genes (n) Nascent chainsa (%) Ribosomesb (%)

Cotranslationally Translocatedc

Function Unknown 261 8.00% 11.0%

Cell Wall/Membrane/Envelope Biogenesis 41 7.00% 12.0%

Post-Translational Modification, Protein Turnover and Chaperones 89 7.00% 12.0%

Carbohydrate Transport and Metabolism 114 7.00% 9.0%

Intracellular Trafficking, Secretion and Vesicular Transport 95 6.00% 7.0%

Inorganic Ion Transport and Metabolism 82 5.00% 10.0%

Lipid Transport and Metabolism 72 4.00% 5.0%

Posttranslationally Translocatedd

Function Unknown 30 36% 11.0%

Cell Wall/Membrane/Envelope Biogenesis 10 15% 10.0%

Post-Translational Modification, Protein Turnover and Chaperones 5 0% 0.0%

aCalculated as percent of total cTPM for all proteins predicted to be ER destined.
bCalculated as percent of total cRPM for all proteins predicted to be ER destined.

cProteins with greater than 2-fold membrane enrichment and not predicted to be mitochondrial.
dProteins with less than 2-fold membrane enrichment and not predicted to be mitochondrial and contained a predicted signal sequence.

the native TEF1 ORF is translated more than the ORFs linked to other promoters

used for expression in glucose, such GAP (here, TDH3 ) and PGK1 [11]. S. cere-

visiae generates a similar amount of nascent chains to the same function, but it does

so using a combination of its paralogous genes TEF1 and TEF2. Unsurprisingly,

Crabtree-positive S. cerevisiae generates three times more polypeptides involved in

glycolysis and fermentation than K. phaffii (e.g., ENO1/2, GPM1, FBA1, TDH2/3,

TPI1, PGK1, PDC1, ADH1 ).

Indeed, these two species also show divergence in energy production with regards

to cotranslational mitochondrial import (Figure 6). Our subcellular fractionation

assay recovers all membrane-bound ribosomes, including those attached to the mi-

tochondria. A greater number of nuclear-encoded mitochondrial proteins undergo

membrane-localized translation in K. phaffii. Recovery of membrane associated

mRNA strongly depends on active translation [35]. Therefore, less active transla-

tion of mitochondrially destined proteins may become reflected in lower membrane-

enrichment scores.

We next asked whether ER translocation pathways are conserved between the two

species. Between homologs, membrane enrichment scores correlated with a Pear-

son’s r of 0.85 (Figure S3b). Genes encoding transmembrane proteins or cytosolic

proteins which lack ER or mitochondrial targeting sequences had the highest corre-

lation. Signal-sequence bearing proteins, including GPI-anchored proteins, however,

had lower correlation (Figure 6a). There were several genes which only showed co-

translational membrane enrichment in one species, and in some cases this was due

to loss of a signal peptide in one of the homologs. The ten genes that showed the

greatest difference in magnitude, while still showing evidence for membrane enrich-

ment in both species, are reported in Table 4). Notably, this list includes PDI1,

encoding an ER lumenal protein-disulfide isomerase that is essential for ER home-

ostasis. Mitochondrially localized proteins have greater membrane enrichment in K.

phaffii, which may be related to the greater use of aerobic respiration compared to

S. cerevisiae (Figure 6c).

Finally, we explored the relationship between the burden imposed by production of

polypeptide chains (cTPM), ribosome demand (cRPM) and translocation pathway

(membrane enrichment score) for ER destined proteins within the two species (Fig-

ure 7). In S. cerevisiae, most of these chains originate from a single gene, CCW12,
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Table 4 Membrane enrichment for secreted, lumenal and GPI-anchored proteins in K. phaffii and
S. cerevisiae

Gene Product K. phaffii S. cerevisiae

Increased enrichment

FLO9 Lectin-like protein, flocculin (isoform 2) 5.32 1.06

ZPS1 Putative GPI-anchored protein 5.80 2.54

SGA1 Sporulation-specific glucoamylase 4.49 1.32

BIG1 Cell wall beta-1,6-glucan level regulator 4.51 1.99

GDA1 Guanosine-diphosphatase 4.99 2.50

FLO9 Lectin-like protein, flocculin (isoform 1) 2.99 1.06

Decreased enrichment

YKL077W Uncharacterized protein 1.39 3.49

PDI1 Protein disulfide isomerase 2.21 4.35

MNL1 Uncharacterized protein 1.53 3.81

KRE5 Beta-1,6-glucan biosynthesis protein (isoform 2) 2.84 5.47

while in K. phaffii, there are a wider variety of genes, with SCV12161.1 being the

most dominant. Strikingly, posttranslational targeting is used for about two-thirds

of lumenal, secreted or GPI-anchored nascent chains in both species. K. phaffii,

however, is distinguished by at least one major cell wall protein, Pst1p, which en-

ters the ER cotranslationally. In both species, Pma1p is the dominant membrane

protein passing into the ER. In terms of ribosome sequestration, the trend reverses;

cotranslational translocation is responsible for sequestering two thirds of ribosomes

used to produce secreted or GPI-anchored proteins. While PST1 yields slightly

more nascent chains than PMA1, PMA1 is more than twice as long as PST1 and

sequesters 1.36 times more ribosomes. Thus, PMA1 represents a significant burden

to the secretory systems of both S. cerevisiae and K. phaffii as it is predicted to

sequester more ribosomes, cotranslational translocons, and lumenal chaperones to

synthesize and transport nascent chains into the ER.

3 Discussion
The yields of engineered, recombinant proteins are restricted by bottlenecks in bio-

genesis [1]. Certain bottlenecks are metabolic, including insufficient ATP or other

high-energy compounds, nucleotides for mRNA synthesis, amino acids, carbohy-

drates for glycosylation, and reducing equivalents. A promising systems-level ap-

proach to remove bottlenecks is to identify and delete host proteins with the greatest

demand for metabolic resources. Indeed, the Lewis lab has elegantly demonstrated

in CHO cells that deleting expensive proteins (in terms of ATP equivalents) in-

creases the yield of heterologous secreted proteins [33, 34, 82]. Similar modeling of

metabolic demand has been performed by the Nielsen lab for the secretome of S.

cerevisiae [32]. Other bottlenecks are due to insufficient cellular protein biosynthetic

machinery, such as polymerases, ribosomes, translocons, and molecular chaperones.

Focusing on metabolic demand will likely relieve pressure on machinery with tightly

coupled–and therefore accurately predicted–energetic requirements (e.g., cycles of

translation elongation by the ribosome). However, it only approximates demand for

chaperones and translocons, which gate entry into the ER. Compared to tightly

coupled complexes, chaperones and translocons are ambiguous in their energetic

demand. Chaperones perform cycles of binding and rebinding that depend on the

folding pathways of client proteins [83]. Translocation into the ER is driven by

ATP-hydrolyzing chaperones, translation elongation, or a combination of the two

in a client dependent manner [84, 85]. Engineering of the early secretory pathway,
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such as the optimization of signal sequences for protein targeting [86] and reduc-

ing the effect of the ERAD system [19], provides varying degrees of success. These

approaches are contingent on the complexity of the protein product and must be

empirically optimized [87, 88]. Our data and analysis may augment these efforts by

accounting for capacity of translation, co- and posttranslational translocation.

Despite the ability of Ribo-seq to accurately quantify gene expression, our study

has several caveats that limit interpretation. First, we have only considered yeast

undergoing log phase growth in liter scale, aerated shaking cultures using rich media.

This design enabled comparison to several published data sets using S. cerevisiae

that were collected under identical conditions [35, 62]. We chose strain GS115, a

commonly used commercially available strain that is a histidine auxotroph (his4 ).

Even under rich media with abundant extracellular histidine, this auxotrophy may

influence gene expression compared to strains which supply HIS4. Future work in-

volves quantifying demands at industrial scale in stirred bioreactors under induction

of a heterologous protein. Second, we assume that elongation rates are relatively

constant across genes. However, if the elongation rate is altered for a transcript,

it may result in greater or fewer ribosome protected reads. We argue that on the

whole, our assumption is valid, given that Ribo-seq accurately predicts mature

protein stoichiometry [62, 89]. Third, Ribo-seq does not account for protein degra-

dation; indeed, some proteins are cotranslationally ubiquitinated [90]. Our results

should therefore not be interpreted as revealing steady-state protein levels in K.

phaffii. However, our goal was to quantify the costs of protein synthesis, and so we

argue that Ribo-seq is a more appropriate tool than mass spectrometry. Despite

these limitations, our approach allowed us to interrogate protein translocation into

the ER.

Most secreted proteins, including high-value targets like antibodies, will enter

the ER via a sec translocon [2]. The translocon subunits Sec62p, Sec63p, Sec66p

and Sec72p are required for the translocation of certain proteins, particularly those

with shorter or less hydrophobic signal peptides [21, 25, 36]. Molecular chaperones

are also implicated in protein translocation, through binding of proteins in the

cytoplasm (Ssa1p) [20] or the ER lumen (Kar2p) [84]. However, many gene products

are able to associate with more than one class of translocon [25, 36]. In addition,

while recent structural work suggests that the heptameric Sec61 complex cannot

directly bind a ribosome [91, 92], there is a preponderance of evidence demonstrating

that the proteins dependent on this complex are translated at the ER membrane

[24, 35, 36, 93, 94]. Further, even if a protein does not strictly require particular

machinery, like SRP, it may nonetheless sequester it in vivo, reducing availability

for proteins that do require these factors [35, 93]. Because of these complexities, it

is unsurprising that it has remained difficult to precisely tune a translocon for a

specific engineered protein. Rather, optimization will likely require understanding

the needs of the target, what the target will sequester, and how this will relate to

the balance of resources in the host.

Our calculations for nascent chains produced, ribosomes used, and predicted

translocation pathways suggest that each gene presents a unique combination of

challenges to the cellular biosynthetic capacity. For instance, long, cotranslationally

translocated proteins will impart little demand on cytoplasmic chaperones, but will
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sequester ribosomes, translocons, and lumenal chaperones for extended periods of

time (Figure 8a). However, because of sustained translation on the surface of the

ER, fewer instances of SRP targeting are required. A shorter cotranslational protein

will require fewer ribosomes, translocons, and lumenal chaperones to produce the

same number of polypeptide chains. However, if the gene is short enough to fail to

sustain translation at the membrane (Figures 5, 8b), then it may require multiple

rounds of SRP targetting to get there. If sufficient nascent chains are exposed to the

cytosol, the gene may also require cytosolic chaperones. If translation terminates

prior to membrane attachment, then posttranslational translocons may be needed as

well. Long, posttranslationally translocated proteins will also sequester ribosomes,

but will require both lumenal and cytosolic chaperones (Figure 8c). There are few

genes in K. phaffii in this category (Figure 5). Finally, short, posttranslationally

translocated proteins will sequester few ribosomes, no cotranslational translocons,

and some cytosolic and lumenal chaperones. Our experimental approach cannot

measure transit time through posttranslational translocons; we speculate that it

will be correlated to polypeptide length.

Some resources used in biogenesis of ER proteins are dependent on chain number,

rather than elongation time. For instance, GPI-anchored proteins each receive a

single lipid anchor [95], retrograde transport is mediated by the K/HDEL recogni-

tion [96], and protein sorting in the secretory pathway involves interactions between

cargo and receptors, such as Sec24p [97]. In optimizing these systems, cTPM may

be the appropriate metric to consider, and strain engineering efforts could focus on

deleting or downregulating highly expressed host proteins. In yeasts, GPI-anchored

cell wall proteins present the greatest burden by cTPM. Other aspects are dependent

on total polypeptide length, such as the potential ratcheting mechanism provided

by Kar2p during translocation [84]. Although not considered here, cTPM scaled by

protein length may be the appropriate metric used in engineering. A third aspect is

the availability of resources such as ribosomes or translocons, which are sequestered

while in operation. cRPM is an appropriate metric to understand ribosome seques-

tration. For cotranslational translocation, we propose that cRPM could be used as

a proxy, as one ribosome binds one translocon during import. In S. cerevisiae and

K. phaffii, expression of PMA1 appears to be a major ribosome sink, and therefore

also a translocon sink. In K. phaffii, PST1 is a second major sink for ribosomes and

translocons.

Although fungi are genetically and physiologically diverse, most mechanistic

knowledge about secretion is derived from studies in S. cerevisiae [2]. Based on a re-

cent molecular dating using 332 genomes [98], K. phaffii and S. cerevisiae diverged

roughly 230 million years ago, whereas the S. cerevisiae whole-genome duplication

occurred roughly 90 million years ago. Thus, sequence variation is found in nearly all

of the proteins conserved in the two species, and due to the paralogy in S. cerevisiae,

additional differences exist in the regulation of gene expression. Our comparison of

K. phaffii and S. cerevisiae suggests that the path a conserved protein takes to

the ER is not necessarily the same between species, even for essential genes critical

to health of the secretory pathway, like PDI1. However, we find that even though

the number and diversity of genes differ between the species, categorically there

is conservation in the biosynthetic demand. For instance, our data suggest that K.
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phaffii can provide more nuanced engineering of the cell wall, as it is composed by a

greater number of genes. Optimizing fungal species separately may increase protein

secretion yields in ways not predicted through analysis of model organisms alone.

These results call for a more thorough understanding of industrially used fungal

secretion systems for rationally engineering cellular factories during bioproduction.

3.1 Conclusions

Protein biogenesis is a complex phenomena that not only requires raw materials

(energy and amino acids), but also access to specialized cellular machinery. Our

analysis in K. phaffii reveals several principles about these pathways that will

be useful in strain engineering. First, we find that a small number of host genes

are responsible for most of the protein entering the secretory pathway. Second,

GPI-anchored protein components of the cell wall represent the greatest number

of nascent chains within the secretory pathway. Third, cotranslational transloca-

tion pathways must accommodate a wider set of proteins than posttranslational

pathways. Fourth, orthologs may enter the endoplasmic reticulum through different

translocation pathways. Fifth, despite differences in the number of genes associated

with biological function, the amount of nascent chains entering the ER are simi-

lar between K. phaffii and S. cerevisiae. Finally, we provide an updated genome

annotation based on both Ribo-seq and long-read RNA-seq.
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Guedj, M., Jaffrézic, F., French StatOmique Consortium: A comprehensive evaluation of normalization methods

for illumina high-throughput RNA sequencing data analysis. Brief. Bioinform. 14(6), 671–683 (2013)

71. Wagner, G.P., Kin, K., Lynch, V.J.: Measurement of mRNA abundance using RNA-seq data: RPKM measure is

inconsistent among samples. Theory Biosci. 131(4), 281–285 (2012)

72. Anders, S., Pyl, P.T., Huber, W.: HTSeq–a python framework to work with high-throughput sequencing data.

Bioinformatics 31(2), 166–169 (2015)

73. Baudin-Baillieu, A., Legendre, R., Kuchly, C., Hatin, I., Demais, S., Mestdagh, C., Gautheret, D., Namy, O.:

Genome-wide translational changes induced by the prion [PSI+]. Cell Rep. 8(2), 439–448 (2014)

74. Guo, H., Ingolia, N.T., Weissman, J.S., Bartel, D.P.: Mammalian microRNAs predominantly act to decrease

target mRNA levels. Nature 466(7308), 835–840 (2010)

75. Xiao, Z., Zou, Q., Liu, Y., Yang, X.: Genome-wide assessment of differential translations with ribosome

profiling data. Nat. Commun. 7, 11194 (2016)

76. Gardin, J., Yeasmin, R., Yurovsky, A., Cai, Y., Skiena, S., Futcher, B.: Measurement of average decoding rates

of the 61 sense codons in vivo. Elife 3 (2014)

77. Trapnell, C., Pachter, L., Salzberg, S.L.: TopHat: discovering splice junctions with RNA-Seq. Bioinformatics

25(9), 1105–1111 (2009)

78. Ingolia, N.T.: Ribosome profiling: new views of translation, from single codons to genome scale. Nat. Rev.

Genet. 15(3), 205–213 (2014)

79. Tuller, T., Carmi, A., Vestsigian, K., Navon, S., Dorfan, Y., Zaborske, J., Pan, T., Dahan, O., Furman, I.,

Pilpel, Y.: An evolutionarily conserved mechanism for controlling the efficiency of protein translation. Cell

141(2), 344–354 (2010)

80. Scannell, D.R., Butler, G., Wolfe, K.H.: Yeast genome evolution–the origin of the species. Yeast 24(11),

929–942 (2007)

81. Ahn, J., Hong, J., Lee, H., Park, M., Lee, E., Kim, C., Choi, E., Jung, J., Lee, H.: Translation elongation factor

1-alpha gene from pichia pastoris: molecular cloning, sequence, and use of its promoter. Appl. Microbiol.

Biotechnol. 74(3), 601–608 (2007)

82. Kallehauge, T.B., Li, S., Pedersen, L.E., Ha, T.K., Ley, D., Andersen, M.R., Kildegaard, H.F., Lee, G.M.,

Lewis, N.E.: Ribosome profiling-guided depletion of an mRNA increases cell growth rate and protein secretion.

Sci. Rep. 7, 40388 (2017)

83. Balchin, D., Hayer-Hartl, M., Hartl, F.U.: In vivo aspects of protein folding and quality control. Science

353(6294), 4354 (2016)

84. Matlack, K.E., Misselwitz, B., Plath, K., Rapoport, T.A.: BiP acts as a molecular ratchet during

posttranslational transport of prepro-alpha factor across the ER membrane. Cell 97(5), 553–564 (1999)

85. Brodsky, J.L., Goeckeler, J., Schekman, R.: BiP and sec63p are required for both co- and posttranslational

protein translocation into the yeast endoplasmic reticulum. Proc. Natl. Acad. Sci. U. S. A. 92(21), 9643–9646

(1995)

86. Mori, A., Hara, S., Sugahara, T., Kojima, T., Iwasaki, Y., Kawarasaki, Y., Sahara, T., Ohgiya, S., Nakano, H.:

Signal peptide optimization tool for the secretion of recombinant protein from saccharomyces cerevisiae. J.

Biosci. Bioeng. 120(5), 518–525 (2015)

87. Sumi, A., Okuyama, K., Kobayashi, K., Ohtani, W., Ohmura, T., Yokoyama, K.: Purification of recombinant

human serum albumin efficient purification using STREAMLINE. Bioseparation 8(1-5), 195–200 (1999)

88. Potgieter, T.I., Cukan, M., Drummond, J.E., Houston-Cummings, N.R., Jiang, Y., Li, F., Lynaugh, H., Mallem,

M., McKelvey, T.W., Mitchell, T., Nylen, A., Rittenhour, A., Stadheim, T.A., Zha, D., d’Anjou, M.: Production

of monoclonal antibodies by glycoengineered pichia pastoris. J. Biotechnol. 139(4), 318–325 (2009)

89. Li, G.-W., Burkhardt, D., Gross, C., Weissman, J.S.: Quantifying absolute protein synthesis rates reveals

principles underlying allocation of cellular resources. Cell 157(3), 624–635 (2014)

90. Duttler, S., Pechmann, S., Frydman, J.: Principles of cotranslational ubiquitination and quality control at the

ribosome. Mol. Cell 50(3), 379–393 (2013)

91. Wu, X., Cabanos, C., Rapoport, T.A.: Structure of the post-translational protein translocation machinery of the

ER membrane. Nature, 1 (2018)

92. Itskanov, S., Park, E.: Structure of the posttranslational sec protein-translocation channel complex from yeast.

Science 363(6422), 84–87 (2019)

93. del Alamo, M., Hogan, D.J., Pechmann, S., Albanese, V., Brown, P.O., Frydman, J.: Defining the specificity of

cotranslationally acting chaperones by systematic analysis of mRNAs associated with Ribosome-Nascent chain

complexes. PLoS Biol. 9(7), 1001100 (2011)

94. Diehn, M., Eisen, M.B., Botstein, D., Brown, P.O.: Large-scale identification of secreted and

membrane-associated gene products using DNA microarrays. Nat. Genet. 25(1), 58–62 (2000)

95. Mayor, S., Riezman, H.: Sorting GPI-anchored proteins. Nat. Rev. Mol. Cell Biol. 5(2), 110–120 (2004)

96. Semenza, J.C., Hardwick, K.G., Dean, N., Pelham, H.R.: ERD2, a yeast gene required for the

receptor-mediated retrieval of luminal ER proteins from the secretory pathway. Cell 61(7), 1349–1357 (1990)

97. Geva, Y., Schuldiner, M.: The back and forth of cargo exit from the endoplasmic reticulum. Curr. Biol. 24(3),

130–6 (2014)

98. Shen, X.-X., Opulente, D.A., Kominek, J., Zhou, X., Steenwyk, J.L., Buh, K.V., Haase, M.A.B., Wisecaver,

J.H., Wang, M., Doering, D.T., Boudouris, J.T., Schneider, R.M., Langdon, Q.K., Ohkuma, M., Endoh, R.,



Alva et al. Page 19 of 23
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Figures

Figure 1 Overview of Ribo-seq and subcellular fractionation. Ribosomes (grey) bound to a
translocon (red) are only solubilized in the presence of detergent. The total sample has footprints
originating from both membrane-bound and free-floating ribosomes. The soluble fraction is
enriched in footprints from free-floating ribosomes. The membrane fraction is enriched in
footprints from membrane-bound ribosomes.

Figure 2 Corrections applied to Ribo-seq data. a. Ribosome-protected read counts at each
codon were scaled by the total reads mapping to the ORF. Dots represent individual codons, and
the line represents a composite of rolling means and medians see Methods. Regions in orange are
the same width and are used to demonstrate that masked codons at the beginning of ORFs have
a greater influence of calculated expression than masked codons at the end of ORFs. b. Data from
a after metagene correction. c. Comparison of ribosome-protected reads per codon for highly
expressed genes of different length. TPM for RPL5 gene is approximately 135% greater than TPM
for YEF3 while producing approximately 38% as many ribosome-protected reads. After metagene
correction cTPM scores are similar preserving the same difference in ribosome sequestration.

Figure 3 Protein expression and trafficking in K. phaffi. Tessellations are calculated using cTPM
from the total fraction of a CHX treated culture and represent relative quantities of nascent
chains produced from each gene. a. Nascent chains produced by all ribosomes. b. Nascent chains
from genes showing 2-fold membrane enrichment. This includes mitochondrial and ER destined
proteins. c. Nascent chains from genes showing 2-fold membrane enrichment that are not
predicted to be mitochondrial. d. Nascent chains from genes showing less than 2-fold membrane
enrichment but with a predicted ER signal sequence.

Figure 4 Comparison of translation from samples of membrane-bound and soluble fraction.
Values are calculated using fractions obtained after incubation with CHX.

Figure 5 Nascent peptide length and membrane enrichment for secreted, lumenal, or
GPI-anchored proteins Proteins have a predicted N-terminal signal sequence. GPI anchors are
included. The shaded box is drawn over genes with less than 2-fold membrane enrichment, which
are considered posttranslationally targeted.

Figure 6 Correlation of membrane enrichment scores between species. Scores are deteremined
using the membrane-bound and soluble fractions of ribosomes from cultures treated with CHX. a.
Enrichment scores restricted to signal sequence bearing proteins. Contrast dots represent genes
found in Table 2. b. Enrichment scores restricted to non-mitochondrial transmembrane proteins.
c. Enrichment scores restricted to mitochondrial proteins. d. Enrichment scores restricted to
cytosolic proteins.

Figure 7 Demands imposed on secretion pathway. Blue lines represent membrane proteins and
orange lines represent secreted, lumenal or GPI-anchored proteins. a. Demands in S. cerevisiae. b.
Demands in K. phaffii.
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Figure 8 Demands imposed by different translocation pathways. a. Cotranslational translocation
of long protein and short proteins. b. Translocation of short proteins which require both co- and
posttranslational translocons c. Posttranslational translocation.
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Supplemental Figures

Figure S1 Ribo-Seq models active translation. a. Distribution of reads for different length RNA
fragments. b. P-site offset for 30nt fragment reveals active translation.

Figure S2 Ribo-seq and long-read RNA-seq improve transcriptome annotation. Images are
screen captures from Integrated Genome Viewer (MIT). a. Ribo-seq reads are stranded. In the top
register, ribosome-protected footprint reads mapped to transcripts translated left to right are in
red, and reads mapped transcripts translighted right to left are in blue. The middle register shows
a prior annotation of transcripts and ORFs. The arrows indicate genes where the annotated
translational start site disagrees with Ribo-seq. In both cases, an alternate start codon is used.
The bottom register shows the annotation developed here using RNA-seq and long-read RNA-seq
data. b. In an example transcript, Ribo-seq (top register) and long-read RNA-seq (bottom
register) reveal both the open reading frame and the untranslated regions (UTRs). c. Flow-chart
of the annotation pipeline.

Figure S3 Comparison of membrane enrichment between data sets a Comparing membrane
enrichment in two Ribo-Seq data sets in K. phaffii. b Comparing membrane enrichment in
Ribo-Seq data sets in K. phaffii and S. cerevisiae.

Figure S4 Comparison of metabolic burden for K. phaffii and S. cerevisiae. a. Total nascent
chains for K. phaffii. b. Total nascent chains for S. cerevisiae.
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Supplemental Tables

Table S1 Biosynthetic demands for proteins with unknown functions by predicted subcellular
localization

Genes (n) Mean length (aa) Nascent chainsa (%) Ribosomesb (%)

Cotranslationally Translocatedc

Endoplasmic reticulum 113 446 7.0% 19.0%

Cell membrane 56 494 6.0% 15.0%

Lysosome/Vacuole 30 482 2.0% 7.0%

Posttranslationally Translocatedd

Extracellular 13 246 79.0% 44.0%

Cell membrane 9 267 2.0% 3.0%

Endoplasmic reticulum 7 453 0.0% 1.0%

aCalculated as percent of total cTPM for all proteins predicted to be ER destined.
bCalculated as percent of total cRPM for all proteins predicted to be ER destined.

cProteins with greater than 2-fold membrane enrichment and not predicted to be mitochondrial.
dProteins with less than 2-fold membrane enrichment and not predicted to be mitochondrial and contained a predicted signal sequence.

Additional files
Additional file 1 — GS115 CRG.gff

GFF3-format annotation of K. phaffii strain GS115.

Additional file 2 — annotation homology.csv

Comparison between the annotation presented in the current work to prior annotations.

Additional file 3 — kphaffii.csv

Comma-separated values containing data and bioinformatic predictions for K. phaffii strain GS115.

Additional file 4 — scerevisiae.csv

Comma-separated values containing data and bioinformatic predictions for S. cerevisiae, based on reference strain

S288C.


