
Speeding up
Networking

Van Jacobson
van@packetdesign.com

Bob Felderman
feldy@precisionio.com

Precision I/O

Linux.conf.au 2006
Dunedin, NZ

mailto:van@packetdesign.com
mailto:van@packetdesign.com
mailto:feldy@precisionio.com
mailto:feldy@precisionio.com

LCA06 - Jan 27, 2006 - Jacobson / Felderman

This talk is not about ‘fixing’
the Linux networking stack

The Linux networking stack isn’t broken.

• The people who take care of the stack know
what they’re doing & do good work.

• Based on all the measurements I’m aware of,
Linux has the fastest & most complete stack of
any OS.

2

LCA06 - Jan 27, 2006 - Jacobson / Felderman

This talk is about fixing
an architectural problem
created a long time ago
in a place far, far away. . .

3

LCA06 - Jan 27, 2006 - Jacobson / Felderman 4

LCA06 - Jan 27, 2006 - Jacobson / Felderman

In the beginning . . .

• First OS networking stack (MIT, 1970)

• Ran on a multi-user ‘super-computer’
(GE-640 @ 0.4 MIPS)

• Rarely fewer than100 users; took ~2 minutes
to page in a user.

• Since ARPAnet performance depended only
on how fast host could empty its 6 IMP
buffers, had to put stack in kernel.

ARPA created MULTICS

4

LCA06 - Jan 27, 2006 - Jacobson / Felderman

The Multics stack begat
many other stacks . . .
• First TCP/IP stack done on Multics (1980)

• People from that project went to BBN to
do first TCP/IP stack for Berkeley Unix
(1983).

• Berkeley CSRG used BBN stack as
functional spec for 4.1c BSD stack (1985).

• CSRG wins long battle with University of
California lawyers & makes stack source
available under ‘BSD copyright’ (1987).

5

LCA06 - Jan 27, 2006 - Jacobson / Felderman

Multics architecture, as
elaborated by Berkeley,

became ‘Standard Model’

Softint Socket read()ISR

System Application

Interrupt level Task level

packet byte streamskb

6

LCA06 - Jan 27, 2006 - Jacobson / Felderman

“The way we’ve always done it”

is not necessarily the same as

“the right way to do it”

7

There are a lot of problems associated
with this style of implementation . . .

LCA06 - Jan 27, 2006 - Jacobson / Felderman

Protocol Complication

• Since data is received by destination
kernel, “window” was added to distinguish
between “data has arrived” & “data was
consumed”.

• This addition more than triples the size of
the protocol (window probes, persist
states) and is responsible for at least half
the interoperability issues (Silly Window
Syndrome, FIN wars, etc.)

8

LCA06 - Jan 27, 2006 - Jacobson / Felderman

Internet Stability
• You can view a network connection as a

servo-loop:

• A kernel-based protocol implementation
converts this to two coupled loops:

• A very general theorem (Routh-Hurwitz)
says that the two coupled loops will always
be less stable then one.

• The kernel loop also hides the receiving app
dynamics from the sender which screws up
the RTT estimate & causes spurious
retransmissions.

S R

S K R

9

LCA06 - Jan 27, 2006 - Jacobson / Felderman

Compromises
Even for a simple stream abstraction like TCP,
there’s no such thing as a “one size fits all”
protocol implementation.

• The packetization and send strategies are
completely different for bulk data vs.
transactions vs. event streams.

• The ack strategies are completely different
for streaming vs. request response.

Some of this can be handled with sockopts
but some app / kernel implementation
mismatch is inevitable.

10

LCA06 - Jan 27, 2006 - Jacobson / Felderman

Performance

• Kernel-based implementations often have
extra data copies (packet to skb to user).

• Kernel-based implementations often have
extra boundary crossings (hardware
interrupt to software interrupt to context
switch to syscall return).

• Kernel-based implementations often have
lock contention and hotspots.

(the topic for the rest of this talk)

11

LCA06 - Jan 27, 2006 - Jacobson / Felderman

Why should we care?

• Networking gear has gotten fast enough
(10Gb/s) and cheap enough ($10 for an 8
port Gb switch) that it’s changing from a
communications technology to a backplane
technology.

• The huge mismatch between processor
clock rate & memory latency has forced
chip makers to put multiple cores on a die.

12

LCA06 - Jan 27, 2006 - Jacobson / Felderman

Why multiple cores?
• Vanilla 2GHz P4 issues 2-4 instr / clock

⇒ 4-8 instr / ns.

• Internal structure of DRAM chip makes
cache line fetch take 50-100ns (FSB speed
doesn’t matter).

• If you did 400 instructions of computing on
every cache line, system would be 50%
efficient with one core & 100% with two.

• Typical number is more like 20 instr / line
or 2.5% efficient with one core (20 cores
for 100%).

13

LCA06 - Jan 27, 2006 - Jacobson / Felderman

Good system performance
comes from having lots of

cores working independently

• This is the canonical Internet problem.

• The solution is called the “end-to-end
principle”. It says you should push all work
to the edge & do the absolute minimum
inside the net.

14

LCA06 - Jan 27, 2006 - Jacobson / Felderman

The end of the wire isn’t
the end of the net

SoftintISR Socket read()

Socket
read()

Socket

read()

15

On a uni-processor it doesn’t matter but on a
multi-processor the protocol work should be done
on the processor that’s going to consume the data.

This means ISR & Softint should
do almost nothing and Socket
should do everything.

LCA06 - Jan 27, 2006 - Jacobson / Felderman

How good is the stack at
spreading out the work?

16

Let’s look at some

LCA06 - Jan 27, 2006 - Jacobson / Felderman

Test setup
• Two Dell Poweredge 1750s (2.4GHz P4 Xeon,

dual processor, hyperthreading off) hooked up
back-to-back via Intel e1000 gig ether cards.

• Running stock 2.6.15 plus current Sourceforge
e1000 driver (6.3.9).

• Measurements done with oprofile 0.9.1. Each
test was 5 5-minute runs. Showing median of 5.

• booted with idle=poll_idle. Irqbalance off.
17

LCA06 - Jan 27, 2006 - Jacobson / Felderman

●

●

●

●

●
●

●
●

●●

●

●● ●

●

●

●

●

● ●●●
●

●

● ●
● ●
●●

●

●●● ●●● ●●

●

●

●

●●
●

●

●

●

●

●
●●
●●●●●●●●●●●●●●

●

●●●●
●

●●●

●
●●●●●●●●●●●●●●●●●

●
●●●●

●

●

●●●●●●

●

●
●

●●●
●

●
●

●
●●●

●

●

●●●

●

●
●●●●●

●

●●●●

●

●●●
●
●●●●●

●

●

●
●●

●●●

●

●

●

●●

0 5 10 15

0
5

1
0

1
5

device interrupt & app on same cpu

d
e

v
ic

e
 i
n

te
rr

u
p

t
&

 a
p

p
 o

n
 d

if
fe

re
n

t
c
p

u

e1000_intr

e1000_clean

_raw_spin_lock

tcp_v4_rcv

schedule

__switch_to

__copy_user_intel

Digression: comparing
two profiles

18

LCA06 - Jan 27, 2006 - Jacobson / Felderman

Uni vs. dual processor

• 1cpu: run netserver (netperf) with cpu
affinity set to same cpu as e1000 interrupts.

• 2cpu: run netserver with cpu affinity set to
different cpu from e1000 interrupts.

(%) Busy Intr Softint Socket Locks Sched App

1cpu 50 7 11 16 8 5 1

2cpu 77 9 13 24 14 12 1

19

LCA06 - Jan 27, 2006 - Jacobson / Felderman

Uni vs. dual processor

• 1cpu: run netserver (netperf) with cpu
affinity set to same cpu as e1000 interrupts.

• 2cpu: run netserver with cpu affinity set to
different cpu from e1000 interrupts.

(%) Busy Intr Softint Socket Locks Sched App

1cpu 50 7 11 16 8 5 1

2cpu 77 9 13 24 14 12 1

19

LCA06 - Jan 27, 2006 - Jacobson / Felderman

This is just Amdahl’s law
in action

• Benefit (cycles to do work) grows at most
linearly.

• Cost (contention, competition,
serialization, etc.) grows quadratically.

• System capacity goes as C(n) = an - bn2
For big enough n, the quadratic always wins.

• The key to good scaling is to minimize b.

When adding additional processors:

20

LCA06 - Jan 27, 2006 - Jacobson / Felderman

Locking destroys
performance two ways

• The lock has multiple writers so each has
to do a (fabulously expensive) RFO cache
cycle.

• The lock requires an atomic update which
is implemented by freezing the cache.

To go fast you want to have a single writer
per line and no locks.

21

LCA06 - Jan 27, 2006 - Jacobson / Felderman

• Networking involves a lot of queues.
They’re often implented as doubly linked
lists:

• This is the poster child for cache thrashing.
Every user has to write every line and
every change has to be made multiple
places.

• Since most network components have a
producer / consumer relationship, a lock
free fifo can work a lot better.

22

LCA06 - Jan 27, 2006 - Jacobson / Felderman

net_channel - a cache aware,
cache friendly queue

typedef struct {
 uint16_t tail; /* next element to add */
 uint8_t wakecnt; /* do wakeup if != consumer wakecnt */
 uint8_t pad;
} net_channel_producer_t;

typedef struct {
 uint16_t head; /* next element to remove */
 uint8_t wakecnt; /* increment to request wakeup */
 uint8_t wake_type; /* how to wakeup consumer */
 void* wake_arg; /* opaque argument to wakeup routine */
} net_channel_consumer_t;

struct {
 net_channel_producer_t p CACHE_ALIGN; /* producer's header */
 uint32_t q[NET_CHANNEL_Q_ENTRIES];
 net_channel_consumer_t c; /* consumer's header */
} net_channel_t ;

23

LCA06 - Jan 27, 2006 - Jacobson / Felderman

net_channel (cont.)
#define NET_CHANNEL_ENTRIES 512 /* approx number of entries in channel q */

#define NET_CHANNEL_Q_ENTRIES \
 ((ROUND_UP(NET_CHANNEL_ENTRIES*sizeof(uint32_t),CACHE_LINE_SIZE) \
 - sizeof(net_channel_producer_t) - sizeof(net_channel_consumer_t)) \
 / sizeof(uint32_t))

#define CACHE_ALIGN __attribute__((aligned(CACHE_LINE_SIZE)))

static inline void net_channel_queue(net_channel_t *chan, uint32_t item) {
 uint16_t tail = chan->p.tail;
 uint16_t nxt = (tail + 1) % NET_CHANNEL_Q_ENTRIES;
 if (nxt != chan->c.head) {
 chan->q[tail] = item;
 STORE_BARRIER;
 chan->p.tail = nxt;
 if (chan->p.wakecnt != chan->c.wakecnt) {
 ++chan->p.wakecnt;
 net_chan_wakeup(chan);
 }
 }
}

24

LCA06 - Jan 27, 2006 - Jacobson / Felderman

“Channelize” driver

• Remove e1000 driver hard_start_xmit &
napi_poll routines. No softint code left in
driver & no skb’s (driver deals only in packets).

• Send packets to generic_napi_poll via a net
channel.

(%) Busy Intr Softint Socket Locks Sched App

1cpu 50 7 11 16 8 5 1

2cpu 77 9 13 24 14 12 1

drvr 58 6 12 16 9 9 1
25

LCA06 - Jan 27, 2006 - Jacobson / Felderman

“Channelize” driver

• Remove e1000 driver hard_start_xmit &
napi_poll routines. No softint code left in
driver & no skb’s (driver deals only in packets).

• Send packets to generic_napi_poll via a net
channel.

(%) Busy Intr Softint Socket Locks Sched App

1cpu 50 7 11 16 8 5 1

2cpu 77 9 13 24 14 12 1

drvr 58 6 12 16 9 9 1
25

LCA06 - Jan 27, 2006 - Jacobson / Felderman

“Channelize” socket
• socket “registers” transport signature with

driver on “accept()”. Gets back a channel.

• driver drops all packets with matching
signature into socket’s channel & wakes app
if sleeping in socket code. Socket code
processes packet(s) on wakeup.

(%) Busy Intr Softint Socket Locks Sched App

1cpu 50 7 11 16 8 5 1

2cpu 77 9 13 24 14 12 1

drvr 58 6 12 16 9 9 1

sock 28 6 0 16 1 3 1
26

LCA06 - Jan 27, 2006 - Jacobson / Felderman

“Channelize” socket
• socket “registers” transport signature with

driver on “accept()”. Gets back a channel.

• driver drops all packets with matching
signature into socket’s channel & wakes app
if sleeping in socket code. Socket code
processes packet(s) on wakeup.

(%) Busy Intr Softint Socket Locks Sched App

1cpu 50 7 11 16 8 5 1

2cpu 77 9 13 24 14 12 1

drvr 58 6 12 16 9 9 1

sock 28 6 0 16 1 3 1
26

LCA06 - Jan 27, 2006 - Jacobson / Felderman

“Channelize” socket
• socket “registers” transport signature with

driver on “accept()”. Gets back a channel.

• driver drops all packets with matching
signature into socket’s channel & wakes app
if sleeping in socket code. Socket code
processes packet(s) on wakeup.

(%) Busy Intr Softint Socket Locks Sched App

1cpu 50 7 11 16 8 5 1

2cpu 77 9 13 24 14 12 1

drvr 58 6 12 16 9 9 1

sock 28 6 0 16 1 3 1
26

LCA06 - Jan 27, 2006 - Jacobson / Felderman

“Channelize” App
• App “registers” transport signature. Gets back an

(mmaped) channel & buffer pool.

• driver drops matching packets into channel &
wakes app if sleeping. TCP stack in library
processes packet(s) on wakeup.

(%) Busy Intr Softint Socket Locks Sched App

1cpu 50 7 11 16 8 5 1

2cpu 77 9 13 24 14 12 1

drvr 58 6 12 16 9 9 1

sock 28 6 0 16 1 3 1

App 14 6 0 0 0 2 5
27

LCA06 - Jan 27, 2006 - Jacobson / Felderman

“Channelize” App
• App “registers” transport signature. Gets back an

(mmaped) channel & buffer pool.

• driver drops matching packets into channel &
wakes app if sleeping. TCP stack in library
processes packet(s) on wakeup.

(%) Busy Intr Softint Socket Locks Sched App

1cpu 50 7 11 16 8 5 1

2cpu 77 9 13 24 14 12 1

drvr 58 6 12 16 9 9 1

sock 28 6 0 16 1 3 1

App 14 6 0 0 0 2 5
27

LCA06 - Jan 27, 2006 - Jacobson / Felderman

“Channelize” App
• App “registers” transport signature. Gets back an

(mmaped) channel & buffer pool.

• driver drops matching packets into channel &
wakes app if sleeping. TCP stack in library
processes packet(s) on wakeup.

(%) Busy Intr Softint Socket Locks Sched App

1cpu 50 7 11 16 8 5 1

2cpu 77 9 13 24 14 12 1

drvr 58 6 12 16 9 9 1

sock 28 6 0 16 1 3 1

App 14 6 0 0 0 2 5
27

LCA06 - Jan 27, 2006 - Jacobson / Felderman

10Gb/s ixgb netpipe tests
NPtcp streaming test between two nodes.

NPtcp ping-pong test between two nodes (one-way latency measured).

(4.3Gb/s throughput limit due to DDR333 memory;
cpus were loafing)

28

LCA06 - Jan 27, 2006 - Jacobson / Felderman

more 10Gb/s

NPtcp streaming test between two nodes.

NPtcp ping-pong test between two nodes (one-way latency measured).

29

LCA06 - Jan 27, 2006 - Jacobson / Felderman

more 10Gb/s

LAM MPI: Intel MPI Benchmark (IMB) using 4 boxes (8 processes)

SendRecv bandwidth (bigger is better)

LAM MPI: Intel MPI Benchmark (IMB) using 4 boxes (8 processes)

SendRecv Latency (smaller is better)

30

LCA06 - Jan 27, 2006 - Jacobson / Felderman

more 10Gb/s

LAM MPI: Intel MPI Benchmark (IMB) using 4 boxes (8 processes)

SendRecv bandwidth (bigger is better)

LAM MPI: Intel MPI Benchmark (IMB) using 4 boxes (8 processes)

SendRecv Latency (smaller is better)

31

LCA06 - Jan 27, 2006 - Jacobson / Felderman

Conclusion

• With some relatively trivial changes, it’s
possible to finish the good work started by
NAPI & get rid of almost all the interrupt /
softint processing.

• As a result, everything gets a lot faster.

• Get linear scalability on multi-cpu / multi-
core systems.

32

LCA06 - Jan 27, 2006 - Jacobson / Felderman

Conclusion (cont.)

• Drivers get simpler (hard_start_xmit &
napi_poll become generic; drivers only
service hardware interrupts).

• Anything can send or receive packets,
without locks, very cheaply.

• Easy, incremental transition strategy.

33

