
TECHNOLOGY TRANSFER: INNOVATIVE SOLUTIONS IN MEDICINETECHNOLOGY TRANSFER: FUNDAMENTAL PRINCIPLES AND INNOVATIVE TECHNICAL SOLUTIONS, 2019

12

1. Introduction
For the past years, the au-

thors have been developing the
concept of systematic computer
simulation training at univer-
sities. Spreadsheets are chosen
to be the leading environment
for computer simulation train-
ing, their application discussed
in articles [1, 2]. Using spread-
sheet processors (autonomous,
integrated and cloud-based) as
examples, the authors demon-
strate components of technology
of computer simulation of de-
termined and stochastic objects
and processes of various nature.
Extensive application of artificial
intelligence in everyday life calls
for students’ early acquaintance
with its models and methods
including neural network-based
while teaching machine learning
[3]. It conditions the need for
developing training methods of
computer simulation of neural
networks in the general-purpose
simulation environment, i.e.
spreadsheets.

The first description of
spreadsheet application to arti-
ficial neural network simulation
of visual phenomena belongs to
Thomas T. Hewett, Professor of
the Department of Psychology
of Drexel University [4]. His
approach implies simultaneous
studying a neural network and
understanding its functioning as
psychology students conclude the
laws of the neural impulse spread
by applying the trial-and-error
method.

The patent “Embedding neural networks into spreadsheet
applications” [5] describes an artificial neural network with
a plurality of processing elements called neurons arranged
in layers. A network has an input layer, an output layer, and
one or more “hidden” layers in between, necessary to allow
solutions of non-linear problems. Each unit (in some ways
analogous to a biological neuron: dendrites – input layer,
axon – output layer, synapses – weights, soma – summation
function) is capable of generating an output signal which is de-
termined by the weighted sum of input signals it receives and
an activation function specific to that unit. A unit is provided
with inputs, either from outside the network or from other
units, and uses these to compute a linear or non-linear output.
The unit’s output goes either to other units in subsequent lay-
ers or to outside the network. The input signals to each unit
are weighted by factors derived in a learning process. In his
patent, Ruggiero details a network structure (multi-level), an
activation function (sigmoidal), a coding method (polar), etc.
He presents a mathematical apparatus for network training
and determines a method of data exchange between a spread-
sheet processor nucleus and an add-in to it. The patent author

suggests storing input data in
columns, maximum and mini-
mum values for each column of
input data, the number of learn-
ing patterns. Data can be nor-
malized or reduced to the polar
range [0; 1] both in spreadsheets
and add-ins.

The authors of [6] give an
example of applying the non-lin-
ear optimization tool, Microsoft
Excel Solver, to forecasting stock
prices using the “grey-box” con-
cept, in which the model is evi-
dent, yet, the details of its reali-
zation are hidden.

According to [7], Anderson
first selected Iris versicolor, the
common blue flag, because he
believed it to be clearly defined,
and it was common and easily ob-
served. He recorded several mor-
phological characters in more
than 2,000 individuals belonging
to 100 populations, data far more
extensive than those that any bot-
anist had yet obtained on a sin-
gle species. In the famous article
“The Use of Multiple Measure-
ments in Taxonomic Problems”
indicating that “Table I shows
measurements of the flowers of
fifty plants each of the two spe-
cies Iris setosa and I. versicolor,
found growing together in the
same colony and measured by
Dr E. Anderson, to whom I am
indebted for the use of the data”
[8]. Fisher’s article contained only
three references two of which to
Anderson’s works – that of [9]
and that of [10] marked with “(in
the Press)”. The set of data used

by Fisher and collected by Anderson was introduced as “Iris
flower data set” (or “Iris data set” and “Iris data”). The phrase
“Fisher’s Iris data set” traditionally expresses Fisher’s role as the
founder of linear discriminant analysis, but not the authorship
of the data set. So, it is possible to pay tribute to Edgar Anderson
by naming this data set after him – Anderson’s Iris data set.

2. Methods
Let’s consider the pattern classification problem by taking

a Anderson’s Iris data, composed of data on 150 measurements
of three Iris species – Iris setosa, Iris virginica and Iris versicol-
or) – including 50 measurements for each species. There were
measured four features: sepal length (SL), sepal width (SW),
petal length (PL), and petal width (PW).

To draw a grounded conclusion on the Iris type, let’s build
a three-layered neural network with the following architecture
(Fig. 1):

– the input layer is a four-dimensional arithmetical vector
(x1, x2, x3, x4) the components of which are corresponding mea-
sured features of Anderson’s Irises (SL, SW, PL, PW) normal-
ized according to the network activation function;

APPLICATION OF CLOUD-BASED
SPREADSHEETS TO ARTIFICIAL NEURAL

NETWORK MODELLING
Oksana Markova

PhD, Senior Lecturer
Department of Computer Systems and Networks

Kryvyi Rih National University
11 V. Matusevycha str., Kryvyi Rih, Ukraine, 50027

markova@mathinfo.ccjournals.eu

Serhiy Semerikov
Doctor of Pedagogical Sciences, Professor

Department of Computer Science and Applied Mathematics
Kryvyi Rih State Pedagogical University

54 Gagarina ave., Kryvyi Rih, Ukraine, 50086
semerikov@gmail.com

Abstract: The article substantiates the necessity to develop
methods of computer simulation of neural networks in the
spreadsheet environment. The systematic review of their ap-
plication to simulating artificial neural networks is performed.
The authors distinguish basic approaches to solving the prob-
lem of network computer simulation training in the spread-
sheet environment, joint application of spreadsheets and
tools of neural network simulation, application of third-par-
ty add-ins to spreadsheets, development of macros using the
embedded languages of spreadsheets; use of standard spread-
sheet add-ins for non-linear optimization, creation of neural
networks in the spreadsheet environment without add-ins and
macros. It is shown that to acquire neural simulation compe-
tences in the spreadsheet environment, one should master the
models based on the historical and genetic approach. The arti-
cle considers ways of building neural network models in cloud-
based spreadsheets, Google Sheets. The model is based on the
problem of classifying multidimensional data provided in “The
Use of Multiple Measurements in Taxonomic Problems” by R.
A. Fisher. Edgar Anderson’s role in collecting and preparing
the data in the 1920–1930s is discussed as well as some pecu-
liarities of data selection.
Keywords: Anderson’s Iris, computer simulation, neural net-
works, cloud-based spreadsheets.

13

COMPUTER SCIENCES

– the hidden layer has dimension 9 (the minimal required
number according to Kolmogorov-Arnold representation theo-
rem) and is described by the vector (h1, h2, h3, h4, h5, h6, h7, h8, h9);

– the output layer is a three-dimensional arithmetical vector
(y1, y2, y3) the components of which are probabilities indicating
the correspondence of the data set to one of the three Iris types.

The bias neuron equal to 1 (marked red in Fig. 1) is added
to the neurons of the input and hidden layers. The bias neurons
are noted for not having synapses so they cannot be located in
the output layer.

3. Results
Let’s first introduce Anderson’s Irises into spreadsheets with

the following values of cells: A1 is Iris Data, A2 is SL, B2 is SW,
C2 is PL, D2 is PW, E2 is Species. The table cells A3:E152 include
Anderson’s Irises. It isn’t possible to input the data of the given
set into the input layer as the value of the four characteristics is
beyond the range limits [0; 1]. The next step is normalization of
columns A, B, C and D to meet the given range and coding of
Iris types from column E.

Each Iris type is coded by the three-dimensional arithmeti-
cal vector: for i-Iris (Iris setosa is 1, Iris versicolor is 2, Iris virgi-
nica is 3) let’s set the i-th component in 1, and the other ones –
in 0. To do this, let’s introduce the following values into the cells:
G1 is encoding, G2 is setosa, H2 is versicolor, I2 is virginica, G3
is =if($E3=G$2,1,0).

Next, let’s copy the formula from the cell G3 to the range
G3:I152 and obtain the following model codes for the three Iris
types: for Iris setosa – (1, 0, 0), for Iris virginica – (0, 0, 1) and for
Iris versicolor – (0, 1, 0).

Each column is normalized separately. To perform this,
let’s find minimum and maximum values by introducing
the following values: E154 is min, E155 is max, A154 is
=min(A3:A152), A155 is =max(A3:A152). Let’s apply the cells
A154:A155 to the range B154:D155 and introduce the follow-
ing values into the cells: K1 is normalization, K2 is x1, L2 is
x2, M2 is x3, N2 is x4, K3 is =(A3–A$154)/(A$155–A$154). The
latter formula is applied to the range K3:N152. Its essence is
explained by: normalization=(value–min)/(max–min). This
approach results in the minimum value normalized to 0, while
the maximum one – to 1.

According to the chosen architecture, let’s add the bias
neuron to the four neurons of the input layer by introducing
its name (x5) into the cell O2 and its value (1) into the range
O3:O152. On this stage, the input layer is formed as x1, x2,
x3, x4, x5.

The next step includes transmission of a signal from the
input layer to the hidden one of the neural network. Let’s denote
the weight coefficient of the synapse connecting the neuron xi
(i=1, 2, 3, 4, 5) of the input layer with the neuron hj (j=1, 2, ..., 9)
of the hidden layer by ,xh

ijw while the weight coefficient con-
necting the neuron hj of the hidden layer with the neuron yk
(k=1, 2, 3) of the input layer is denoted by .hy

jkw In this case, the
force of the signal coming to the neuron hj of the hidden layer
is determined as a scalar product of signal values on the input
signals and corresponding weight coefficients. To determine a
signal going further to the output layer, let’ apply the logistic
function of activation f(S)=1/(1+e–S), where S is a scalar product.
The formulae for determining the signals on the hidden and
output layers will look like:

+

=

 =

∑
4 1

1

,xh
j i ij

i

h f x w
+

=

 =

∑
9 1

1

.hy
k j jk

j

y f h w

Accordingly, two matrices should be created. The ma-
trix wxh of 5×9 contains weight coefficients connecting five
neurons of the input layer (the first four contain normalized
characteristics of Anderson’s Irises, while the fifth one is the
bias neuron) with the neurons of the hidden layer. The matrix
why of 10×3 contains weight coefficients connecting ten neu-
rons of the hidden layer (nine of which are calculated and the
tenth one is the bias neuron) with the neurons of the output
layer. For the “untaught” neural network, initial values of the
weight coefficients can be set either randomly or left unde-
termined or equal to zero. To realize the latter, let’s fill the
cells with the following values: R1 is wxh, Q2 is input/hidden,
R2 is 1, S2 is =R2+1, Q3 is 1, Q4 is =Q3+1, R3 is 0, R9 is why,
Q10 is hidden/output, R10 is 1, S10 is =R10+1, Q11 is 1, Q12
is =Q11+1, R11 is 0. To create the matrices, let’s copy the cells
R3 into the range R3:Z7, R11 – into R11:T20, S2 – into T2:Z2,
Q4 – into Q5:Q7, S10 – into T10, Q12 – into Q13:Q20.

4 features
SL SW PL PW

input
layer x1 x2 x3 x4 1

hidden
layer h1 h2 h3 h4 1 h5 h6 h7 h8 h9

output
layer y1 y2 y3

Anderson’s Iris Type

Fig. 1. Architecture of the neural network to solve the problem of Anderson’s Iris classification

TECHNOLOGY TRANSFER: INNOVATIVE SOLUTIONS IN MEDICINETECHNOLOGY TRANSFER: FUNDAMENTAL PRINCIPLES AND INNOVATIVE TECHNICAL SOLUTIONS, 2019

14

To calculate the scalar product of the vector row of the input
layer values by the matrix vector-column of the weight coeffi-
cients why, let’s apply the matrix multiplication function: AB1 is
calculate the hidden layer, AB2 is h1, AC2 is h2, AD2 is h3, AE2
is h4, AF2 is h5, AG2 is h6, AH2 is h7, AI2 is h8, AJ2 is h9, AK2
is h10, AB3 is =1/(1+exp(mmult($K3:$O3,R$3:R$7))), AK3 is 1.
Next, let’s copy the cell AK3 into the range AK4:AK152, while
AB3 – into AB3:AJ152.

Considering the fact that all the matrix elements of the
weight coefficients wxh equal to zero, after duplicating the
formulae, the calculated elements of the hidden layer will be
equal to 0.5.

In the same way, let’s calculate the output layer elements:
AM1 is calculate the output layer, AM2 is y1, AN2 is y2, AO2 is
y3, AM3 is =1/(1+exp(mmult($AB3:$AK3,R$11:R$20))). Next,
let’s copy the cell AM3 to the range AM3:AO152.

Neural network training is performed by varying weight
coefficients so that with each training step the difference
between the calculated values of the output layer and the
desired (reference ones) reduces. To solve the problem, the
three-dimensional vectors resulted from coding of the three
Iris types are reference. To find the difference between the
calculated and the reference output vectors let’s apply the
Euclidean distance: AQ2 is distance, AR2 is sum of distances,
AQ3 is =sqrt((AM3-G3)^2+(AN3-H3)^2+(AO3-I3)^2), AR3 is
=sum(AQ3:AQ152). Next, let’s copy the cell AQ3 to the range
AQ4:AQ152. The cell AR3 contains general deviation of the
calculated output vectors from the reference ones.

Under this approach, the neural network training can be
treated as an optimization problem in which the target function
(the sum of distances in the cell AR3) will be minimized by
varying the matrix weight coefficients wxh (the range R3:Z7)
and why (the range R11:T20). To solve this problem, application
of cloud-based spreadsheets (Google Sheets) is not enough and
it is necessary to install an additional cloud-based component
(add-in) Solver. Adjustment of the add-in Solver to solve the set
goal: the target function (Set Objective) is minimized (To: Min)
by changing the values (By Changing) of the matrix weight
coefficients in the range (Subject To) from –10 tо +10 by one
of the optimization methods (Solving Method). To reduce the
total distances, the actions with Solver can be done repeatedly
as it is expedient to experiment with combination of various
optimization methods by changing the variation limits of the
weight coefficients. It is not necessary to try to reduce the val-
ue of the total distances to zero as this can be a greater (quite
smaller) value.

On the assumption of the chosen coding method, the
output vector actually contains three probabilities: yi denotes
the probability of the given sample being the i-type Iris,
where i=1 for Iris setosa, 2 for Iris versicolor and 3 for Iris
virginica. Then, to find out which Iris type describes the in-
put vector (SL, SW, PL, PW), the most probable component
should be determined. To do this, let’s fill the cells in the
following way: AT2 is Calculated Iris species, AT3 is =if(max-
(AM3:AO3)=AM3,G2,if(max(AM3:AO3)=AN3,H2, I2)),

AU3 is =if(AT3=E3,»right!»,»wrong»). Next, the range AT3:AU3
is copied to the range AT4:AU152.

The obtained result enables to visualize pattern recognition
simulated in spreadsheets. The built model will be considered
relevant in all 150 cases, the column AU contains the value
«right!» To check the limits of the built model application, let’s
try to input the vector not coinciding with any reference input
vector. For this, let’s copy the table row 152 to 158 and delete the
content of the cells E158:I158, AQ158, AU158. Let’s introduce
averaged values borrowed from the description of Iris versicolor
in the article by Anderson [10]: 5.50, 2.75, 3.50 and 1.25. The
reference values x1=0.3333, x2=0.3125, x3=0.4237, x4=0.4792 are
conveyed to the input layer, while on the hidden layer there are
calculated h1–h9 and the values of the output layer y1=0.0000,
y2=1.0000, y3=0.0000. As the maximum value of the output
layer 1.0000 corresponds to the other Iris type, it is possible to
conclude that Iris versicolor is identified.

4. Discussion and conclusions
The conducted review makes it possible to find the follow-

ing solutions of the problem of computer simulation of neural
networks in the spreadsheet environment:

1) joint application of spreadsheets and neural network
tools, in which data is exported to the unit calculating weighting
factors imported to spreadsheets and used in calculations;

2) application of third-party add-ins for spreadsheets, ac-
cording to which structured spreadsheet data is processed in
the add-in, calculation results are arranged in spreadsheet cells;

3) macros development enables direct software control over
neural network training and creation of a user’s specialized
interface;

4) application of standard add-ins for optimization calls for
transparent network realization and determination of an opti-
mization criterion (minimization of a squared deviation total of
the calculated and etalon outputs of the network);

5) creation of neural networks in the spreadsheet environ-
ment without add-ins and macros requires transparent realiza-
tion of a neural network with evident determination of each step
of adjustment of its weighting factors.

Edgar Anderson appeared to be not a simple botanist
whose data were the basis for Fisher’s known method. Ander-
son’s Irises resulted from his long experience of working out
relevant models to describe changes in specific populations by
means of a limited number of characteristics. Yet, Anderson
had also coped with the opposite problem of building simple
multi-dimensional data interpretation 40 years before Chern-
off faces appeared.

The described methods of applying cloud-based spread-
sheets as a machine learning tools can enable solution of all
basic problems of neural network simulation. The only limita-
tion is not so much the volume of a spreadsheet as the memory
space and the speed of the device processing it. In the special
course projects if the limitation is overcome, this becomes a
stimulus for replacing the simulation environment by a more
relevant one.

References
1. Semerikov, S. O., Teplytskyi, I. O., Yechkalo, Yu. V., Kiv, A. E. (2018) Computer Simulation of Neural Networks Using Spread-

sheets: The Dawn of the Age of Camelot. CEUR Workshop Proceedings, 2257, 122–147. Available at: http://ceur-ws.org/
Vol-2257/paper14.pdf

2. Semerikov, S. O., Teplytskyi, I. O., Yechkalo, Yu. V., Markova, O. M., Soloviev, V. N., Kiv, A. E. (2019). Computer Simulation of
Neural Networks Using Spreadsheets: Dr. Anderson, Welcome Back. CEUR Workshop Proceedings, 2393, 833–848. Available
at: http://ceur-ws.org/Vol-2393/paper_348.pdf

15

COMPUTER SCIENCES

3. Zaremba, T. (1990). Case Study III: Technology in Search of a Buck. Neural Network PC Tools, 251–283. doi: https://doi.org/
10.1016/b978-0-12-228640-7.50018-0

4. Hewett, T. T. (1985). Using an Electronic Spreadsheet Simulator to Teach Neural Modeling of Visual Phenomena (Report
No. MWPS-F-85-1). Drexel University, Philadelphia.

5. Ruggiero, M. (1993). Pat. No. 5,241,620 US. Embedding neural networks into spreadsheet applications. declareted: 31.08.1993.
6. Kendrick, D. A., Mercado, P. R., Amman, H. M. (2006). Computational Economics. Princeton University Press. doi: https://

doi.org/10.1515/9781400841349
7. Stebbins, G. L. (1978). Edgar Anderson 1897-1969. National Academy of Sciences, Washington.
8. Fisher, R. A. (1936). The use of multiple measurements in taxonomic problems. Annals of Eugenics, 7 (2), 179–188.

doi: https://doi.org/10.1111/j.1469-1809.1936.tb02137.x
9. Anderson, E. (1935). The irises of the Gaspé Peninsula. Bulletin of the American Iris Society, 59, 2–5.

10. Anderson, E. (1936). The Species Problem in Iris. Annals of the Missouri Botanical Garden, 23 (3), 457. doi: https://doi.org/
10.2307/2394164

© The Author(s) 2019
This is an open access article under the CC BY license

(http://creativecommons.org/licenses/by/4.0).

Received date 09.10.2019
Accepted date 04.11.2019
Published date 23.11.2019

