
Report from Dagstuhl Seminar 19371

Deduction Beyond Satisfiability
Edited by
Carsten Fuhs1, Philipp Rümmer2, Renate Schmidt3, and
Cesare Tinelli4

1 Birkbeck, University of London, GB, carsten@dcs.bbk.ac.uk
2 Uppsala University, SE, philipp.ruemmer@it.uu.se
3 University of Manchester, GB, renate.schmidt@manchester.ac.uk
4 University of Iowa – Iowa City, US, cesare-tinelli@uiowa.edu

Abstract
Research in automated deduction is traditionally focused on the problem of determining the satis-
fiability of formulas or, more generally, on solving logical problems with yes/no answers. Thanks
to recent advances that have dramatically increased the power of automated deduction tools,
there is now a growing interest in extending deduction techniques to attack logical problems
with more complex answers. These include both problems with a long history, such as quantifier
elimination, which are now being revisited in light of the new methods, as well as newer problems
such as minimal unsatisfiable cores computation, model counting for propositional or first-order
formulas, Boolean or SMT constraint optimization, generation of interpolants, abductive reas-
oning, and syntax-guided synthesis. Such problems arise in a variety of applications including
the analysis of probabilistic systems (where properties like safety or liveness can be established
only probabilistically), network verification (with relies on model counting), the computation of
tight complexity bounds for programs, program synthesis, model checking (where interpolation
or abductive reasoning can be used to achieve scale), and ontology-based information processing.
The seminar brought together researchers and practitioners from many of the often disjoint sub-
communities interested in the problems above. The unifying theme of the seminar was how to
harness and extend the power of automated deduction methods to solve problems with more
complex answers than binary ones.

Seminar September 8–13, 2019 – http://www.dagstuhl.de/19371
2012 ACM Subject Classification Theory of computation → Automated reasoning, Computing

methodologies → Knowledge representation and reasoning, Theory of computation → Logic
and verification

Keywords and phrases abduction, automated deduction, interpolation, quantifier elimination,
synthesis

Digital Object Identifier 10.4230/DagRep.9.9.23
Edited in cooperation with Warren Del-Pinto

Except where otherwise noted, content of this report is licensed
under a Creative Commons BY 3.0 Unported license

Deduction Beyond Satisfiability, Dagstuhl Reports, Vol. 9, Issue 9, pp. 23–44
Editors: Carsten Fuhs, Philipp Rümmer, Renate Schmidt, and Cesare Tinelli

Dagstuhl Reports
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://www.dagstuhl.de/19371
http://dx.doi.org/10.4230/DagRep.9.9.23
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/dagstuhl-reports/
http://www.dagstuhl.de

24 19371 – Deduction Beyond Satisfiability

1 Executive Summary

Carsten Fuhs
Philipp Rümmer
Renate Schmidt
Cesare Tinelli

License Creative Commons BY 3.0 Unported license
© Carsten Fuhs, Philipp Rümmer, Renate Schmidt, and Cesare Tinelli

This report contains the program and outcomes of Dagstuhl Seminar 19371 on “Deduction
Beyond Satisfiability” held at Schloss Dagstuhl, Leibniz Center for Informatics, during
September 10–15, 2017. It was the thirteenth in a series of Dagstuhl Deduction seminars
held biennially since 1993.

Research in automated deduction has traditionally focused on solving decision problems,
which are problems with a binary answer. Prominent examples include proving the un-
satisfiability of a formula, proving that a formula follows logically from others, checking
the consistency of an ontology, proving safety or termination properties of programs, and
so on. However, automated deduction methods and tools are increasingly being used to
address problems with more complex answers, for instance to generate programs from formal
specifications, compute complexity bounds, or find optimal solutions to constraint satisfaction
problems.

In some cases, the required extended functionality (e.g., to identify unsatisfiable cores)
can be provided relatively easily from current deduction procedures. In other cases (e.g.,
for Craig interpolation, or to find optimal solutions of constraints), elaborate extensions of
these procedures are needed. Sometimes, altogether different methods have to be devised
(e.g., to count the number of models of a formula, compute the set of all consequences
of an ontology, identify missing information in a knowledge base, transform and mine
proofs, or analyze probabilistic systems). In all cases, the step from yes/no answers to such
extended queries and complex output drastically widens the application domain of deductive
machinery. This is proving to be a key enabler in a variety of areas such as formal methods
(for software/hardware development) and knowledge representation and reasoning.

While promising progress has been made, many challenges remain. Extending automated
deduction methods and tools to support these new functionalities is often intrinsically difficult,
and challenging both in theory and implementation. The scarcity of interactions between the
involved sub-communities represents another substantial impediment to further advances,
which is unfortunate because these sub-communities often face similar problems and so
could greatly benefit from the cross-fertilization of ideas and approaches. An additional
challenge is the lack of common standards for interfacing tools supporting the extended
queries. Developing common formalisms, possibly as extensions of current standard languages,
could be as transformative to the field as the introduction of standards such as TPTP and
SMT-LIB has been in the past.

This Dagstuhl seminar brought together researchers working on deduction methods and
tools that go beyond satisfiability and other traditional decision problems; specialists that
work on advanced techniques in deduction and automated reasoning such as model counting,
quantifier elimination, interpolation, abduction, or optimization; and consumers of deduction
technology who need answers to more complex queries than just yes/no questions.

The unifying theme of the seminar was how to harness and extend the power of automated
deduction methods to solve a variety of non-decision problems with useful applications.
Research questions addressed at the seminar were the following:

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/

Carsten Fuhs, Philipp Rümmer, Renate Schmidt, and Cesare Tinelli 25

What kind of information should be passed to a “beyond satisfiability” deduction tool,
and what information should be returned to the user? The goal should be to enhance the
understanding of related concepts in different subfields and applications, and to converge
towards common formalisms.
How can current ideas, results and systems in one sub-community of researchers and
practitioners benefit the needs of other communities?
What are outstanding challenges in using and building deduction tools to attack logical
problems with complex answers?

19371

26 19371 – Deduction Beyond Satisfiability

2 Table of Contents

Executive Summary
Carsten Fuhs, Philipp Rümmer, Renate Schmidt, and Cesare Tinelli 24

Overview of Talks
Safe Decomposition of Startup Requirements: Verification and Synthesis
Alberto Griggio . 28

Proof Checking in Zipperposition
Alexander Bentkamp . 28

Guiding High-Performance SAT Solvers with Unsat-Core Predictions
Nikolaj S. Bjørner . 29

Proof reconstruction in conflict-driven satisfiability
Maria Paola Bonacina . 29

Tractable QBF and model counting via Knowledge Compilation
Florent Capelli . 30

Forgetting-Based Abductive Reasoning and Inductive Learning in Ontologies
Warren Del-Pinto . 30

Proofs in SMT
Pascal Fontaine . 31

Loop Acceleration for Under-Approximating Program Analysis
Florian Frohn . 31

From Derivational Complexity to Runtime Complexity of Term Rewriting
Carsten Fuhs . 32

Decision Procedures Beyond Satisfiability
Jürgen Giesl . 32

Spacer on Jupyter
Arie Gurfinkel . 33

Abstract Execution
Reiner Hähnle . 33

Reasoning about Expected Runtimes of Probabilistic Programs (and Quantitative
Separation Logic)
Benjamin Kaminski . 34

Algorithmic Proof Analysis by CERES
Alexander Leitsch . 34

Efficient SAT-Based Reasoning Beyond NP
Joao Marques Silva . 35

Correct-by-Decision Solving and Applications
Alexander Nadel . 35

A Resolution-Based Calculus for Preferential Logics
Claudia Nalon . 36

Logically Constrained Rewriting over Bit Vectors
Naoki Nishida . 36

Carsten Fuhs, Philipp Rümmer, Renate Schmidt, and Cesare Tinelli 27

Using SMT solvers to reason about firewalls
Ruzica Piskac . 37

Inductive Inference with Recursion Analysis in Separation Logic
Quang Loc Le . 37

Probabilistic Symbolic Execution using Separation Logic
Quoc-Sang Phan . 38

Code commutation
Albert Rubio . 38

Bit-Vector Interpolation and Quantifier Elimination by Lazy Reduction
Philipp Rümmer . 39

Forgetting for Computing Snap-Shots of Ontologies: Progress and Challenges
Renate Schmidt . 39

Efficient Validation of FOLID Cyclic Induction Reasoning
Sorin Stratulat . 40

Rule-Based Nonmonotonic Reasoning with Probabilities
Andrzej Szalas . 40

A Fixpoint Logic and Dependent Effects for Temporal Property Verification
Tachio Terauchi . 41

Abduction in DL by translation to FOL
Sophie Tourret and Christoph Weidenbach . 41

On Hierarchical Symbol Elimination and Applications
Viorica Sofronie-Stokkermans . 42

Saturation Theorem Proving: From Inference Rules to Provers
Uwe Waldmann . 42

Loop Detection by Logically Constrained Rewriting
Sarah Winkler . 43

Participants . 44

19371

28 19371 – Deduction Beyond Satisfiability

3 Overview of Talks

3.1 Safe Decomposition of Startup Requirements: Verification and
Synthesis

Alberto Griggio (Bruno Kessler Foundation – Trento, IT)

License Creative Commons BY 3.0 Unported license
© Alberto Griggio

Joint work of Alberto Griggio, Alessandro Cimatti, Luca Geatti, Stefano Tonett

The initialization of complex cyber-physical systems often requires the interaction of various
components that must start up with strict timing requirements on the provision of signals
(power, refrigeration, light, etc.). In order to safely allow an independent development of
components, it is necessary to ensure a safe decomposition, i.e. the specification of local
timing requirements that prevent later integration errors due to the dependencies.

We propose a high-level formalism to model local timing requirements and dependencies.
We consider the problem of checking the consistency (existence of an execution satisfying the
requirements) and compatibility (absence of an execution that reach an integration error)
of the local requirements, and the problem of synthesizing a region of timing constraints
that represent all possible correct refinements of the original specification. We show how the
problems can be naturally translated into a reachability and synthesis problem for timed
automata with shared variables. Exploiting the linear structure of the requirements, we
propose an encoding of the problem into SMT. We evaluate the SMT-based approach using
Mathsat and show how it scales better compared to the automata-based approach using
Uppaal and nuXmv.

3.2 Proof Checking in Zipperposition
Alexander Bentkamp (Free University Amsterdam, NL)

License Creative Commons BY 3.0 Unported license
© Alexander Bentkamp

Joint work of Alexander Bentkamp, Simon Cruanes

Beyond a simple yes/no answer, automated theorem provers can typically generate proof
output. To detect soundness bugs and to ensure better guarantees on the correctness of
these proofs, we developed a proof checker for Zipperposition, a prover for polymorphic
higher-order logic. The checker reduces the proof into a series of ground problems, which
can be decidably and efficiently checked by a simple SMT prover.

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/

Carsten Fuhs, Philipp Rümmer, Renate Schmidt, and Cesare Tinelli 29

3.3 Guiding High-Performance SAT Solvers with Unsat-Core
Predictions

Nikolaj S. Bjørner (Microsoft Research – Redmond, US)

License Creative Commons BY 3.0 Unported license
© Nikolaj S. Bjørner

Joint work of Nikolaj S. Bjørner, Daniel Selsam
Main reference Daniel Selsam, Nikolaj Bjørner: “Guiding High-Performance SAT Solvers with Unsat-Core

Predictions”, in Proc. of the Theory and Applications of Satisfiability Testing – SAT 2019 – 22nd
International Conference, SAT 2019, Lisbon, Portugal, July 9-12, 2019, Proceedings, Lecture Notes
in Computer Science, Vol. 11628, pp. 336–353, Springer, 2019.

URL http://dx.doi.org/10.1007/978-3-030-24258-9_24

The NeuroSAT neural network architecture was introduced by Selsam et al for predicting
properties of propositional formulae. When trained to predict the satisfiability of toy problems,
it was shown to find solutions and unsatisfiable cores on its own. However, the authors
saw “no obvious path” to using the architecture to improve the state-of-the-art. In this
work, we train a simplified NeuroSAT architecture to directly predict the unsatisfiable cores
of real problems. We modify several state-of-the-art SAT solvers to periodically replace
their variable activity scores with NeuroSAT’s prediction of how likely the variables are to
appear in an unsatisfiable core. The modifications led to speedups of 10 percent on unseen
and diverse problems and 20 percent on problems form a scheduling domain. Our results
demonstrate that NeuroSAT can provide effective guidance to high-performance SAT solvers
on real problems. The talk introduces the techniques for representing CNF problems as
graphical neural networks, our choice of training approach and some caveats in whether the
measured improvements can be obtained in alternative ways. NeuroCore was developed in
collaboration with Daniel Selsam and develops on the NeuroSAT architecture also developed
by Selsam and collaborators.

References
1 Daniel Selsam, Matthew Lamm, Benedikt Bünz, Percy Liang, Leonardo de Moura, David

L. Dill: Learning a SAT Solver from Single-Bit Supervision. ICLR 2019.
2 Daniel Selsam, Nikolaj Bjørner: Guiding High-Performance SAT Solvers with Unsat-Core

Predictions. SAT 2019: 336-353

3.4 Proof reconstruction in conflict-driven satisfiability
Maria Paola Bonacina (Università degli Studi di Verona, IT)

License Creative Commons BY 3.0 Unported license
© Maria Paola Bonacina

Joint work of Maria Paola Bonacina, Stéphane Graham-Lengrand, Natarajan Shankar
Main reference Maria Paola Bonacina, Stéphane Graham-Lengrand, Natarajan Shankar: “Proofs in conflict-driven

theory combination”, in Proc. of the 7th ACM SIGPLAN International Conference on Certified
Programs and Proofs, CPP 2018, Los Angeles, CA, USA, January 8-9, 2018, pp. 186–200, ACM,
2018.

URL http://dx.doi.org/10.1145/3167096

Proofs of unsatisfiability, or, equivalently, validity, are an important output of automated
reasoning methods, and their transformation, exchange, and standardization is a key factor
for the interoperability of different automated reasoning systems. In theorem proving proof
reconstruction is the task of extracting a proof from the final state of a derivation after
generating the empty clause, and for several theorem-proving methods it is a standard,
though nontrivial, task. In SAT solving the conflict-driven clause learning procedure (CDCL)

19371

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://dx.doi.org/10.1007/978-3-030-24258-9_24
http://dx.doi.org/10.1007/978-3-030-24258-9_24
http://dx.doi.org/10.1007/978-3-030-24258-9_24
http://dx.doi.org/10.1007/978-3-030-24258-9_24
http://dx.doi.org/10.1007/978-3-030-24258-9_24
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://dx.doi.org/10.1145/3167096
http://dx.doi.org/10.1145/3167096
http://dx.doi.org/10.1145/3167096
http://dx.doi.org/10.1145/3167096
http://dx.doi.org/10.1145/3167096

30 19371 – Deduction Beyond Satisfiability

generates proofs by resolution: while this is true in principle, in practice, SAT-solver proofs
are so huge that their definition, generation, and manipulation is an active research topic. In
SMT solving, which represents a middle ground between first-order theorem proving and SAT
solving, proof generation is also crucial, and while it receives increasing attention, the field
does not seem to have a standard output format for proofs. This talk aims at contributing to
this discussion by presenting approaches to proof reconstruction in CDSAT (Conflict-Driven
SATisfiability), the paradigm for satisfiability modulo theories and assignments (SMT/SMA)
developed by the author with Stéphane Graham-Lengrand and Natarajan Shankar.

3.5 Tractable QBF and model counting via Knowledge Compilation
Florent Capelli (INRIA Lille, FR)

License Creative Commons BY 3.0 Unported license
© Florent Capelli

Joint work of Florent Capelli, Simone Bova, Stefan Mengel, Friedrich Slivovsky
Main reference Florent Capelli, Stefan Mengel: “Tractable QBF by Knowledge Compilation”, in Proc. of the 36th

International Symposium on Theoretical Aspects of Computer Science, STACS 2019, March 13-16,
2019, Berlin, Germany, LIPIcs, Vol. 126, pp. 18:1–18:16, Schloss Dagstuhl – Leibniz-Zentrum fuer
Informatik, 2019.

URL http://dx.doi.org/10.4230/LIPIcs.STACS.2019.18

We show how knowledge compilation can be used as a tool for solving QBF and more. More
precisely, we show that one can apply quantification on certain data structures used in
knowledge compilation which in combination with the fact that restricted classes of CNF-
formulas can be compiled into these data structures can be used to show fixed-parameter
tractable results for QBF. In particular, we rediscover a result by Hubie Chen (ECAI 04)
on FPT-tractability of QBF on bounded treewidth CNF and generalise it to aggregation
problems such as counting or enumerating the models of the input quantified CNF.

This talk will review joint work with Simone Bova, Stefan Mengel and Friedrich Slivovsky.

3.6 Forgetting-Based Abductive Reasoning and Inductive Learning in
Ontologies

Warren Del-Pinto (University of Manchester, GB)

License Creative Commons BY 3.0 Unported license
© Warren Del-Pinto

Joint work of Warren Del-Pinto, Renate A. Schmidt
Main reference Warren Del-Pinto, Renate A. Schmidt: “ABox Abduction via Forgetting in ALC”, in Proc. of the

The Thirty-Third AAAI Conference on Artificial Intelligence, AAAI 2019, The Thirty-First
Innovative Applications of Artificial Intelligence Conference, IAAI 2019, The Ninth AAAI
Symposium on Educational Advances in Artificial Intelligence, EAAI 2019, Honolulu, Hawaii, USA,
January 27 – February 1, 2019, pp. 2768–2775, AAAI Press, 2019.

URL http://dx.doi.org/10.1609/aaai.v33i01.33012768

We present an approach to performing abductive reasoning in large description logic (DL)
ontologies. The approach is based on the use of forgetting. Characteristics of the hypotheses
obtained and important considerations such as redundancy elimination will be discussed
alongside experimental results.

We also discuss the potential interaction between this form of abductive reasoning and
inductive learning in DL ontologies. In particular: how do the characteristics of these
hypotheses lend themselves to several learning problems in this setting?

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://dx.doi.org/10.4230/LIPIcs.STACS.2019.18
http://dx.doi.org/10.4230/LIPIcs.STACS.2019.18
http://dx.doi.org/10.4230/LIPIcs.STACS.2019.18
http://dx.doi.org/10.4230/LIPIcs.STACS.2019.18
http://dx.doi.org/10.4230/LIPIcs.STACS.2019.18
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://dx.doi.org/10.1609/aaai.v33i01.33012768
http://dx.doi.org/10.1609/aaai.v33i01.33012768
http://dx.doi.org/10.1609/aaai.v33i01.33012768
http://dx.doi.org/10.1609/aaai.v33i01.33012768
http://dx.doi.org/10.1609/aaai.v33i01.33012768
http://dx.doi.org/10.1609/aaai.v33i01.33012768

Carsten Fuhs, Philipp Rümmer, Renate Schmidt, and Cesare Tinelli 31

3.7 Proofs in SMT
Pascal Fontaine (LORIA & INRIA – Nancy, FR)

License Creative Commons BY 3.0 Unported license
© Pascal Fontaine

Joint work of Pascal Fontaine, Haniel Barbosa, Jasmin Blanchette, Hans-Jörg Schurr
Main reference Haniel Barbosa, Jasmin Christian Blanchette, Pascal Fontaine: “Scalable Fine-Grained Proofs for

Formula Processing”, in Proc. of the Automated Deduction – CADE 26 – 26th International
Conference on Automated Deduction, Gothenburg, Sweden, August 6-11, 2017, Proceedings,
Lecture Notes in Computer Science, Vol. 10395, pp. 398–412, Springer, 2017.

URL http://dx.doi.org/10.1007/978-3-319-63046-5_25

Satisfiability Modulo Theories (SMT) solvers are successfully used for various applications,
notably in verification platforms and as back-ends for interactive theorem provers. In both
cases, proofs are valuable. In the first, they help to improve confidence, and can also be used
for certification in an industrial context. In the second, proofs can be used to reconstruct
theorems within the kernel of proof assistants.

Ideally, proofs for SMT should be full and detailed, and at the same time they should not
be too large. The overhead of outputting proofs should preferably be small. The talk briefly
reviews the various aspects for outputting proofs in SMT, notably in the preprocessing phase,
and discusses some issues that still need to be tackled.

3.8 Loop Acceleration for Under-Approximating Program Analysis
Florian Frohn (MPI für Informatik – Saarbrücken, DE)

License Creative Commons BY 3.0 Unported license
© Florian Frohn

Joint work of Florian Frohn, Jürgen Giesl, Marc Brockschmidt, Matthias Naaf

In the last years, under-approximating loop acceleration techniques have successfully been
used to analyze programs operating on integers. Essentially, such techniques replace single-
path loops with non-deterministic straight-line code that under-approximates the effect
of the loops. The key to the success of this approach is its ability to construct symbolic
under-approximations that cover program traces of arbitrary length. Applications include
proving reachability, deducing lower bounds on the worst-case runtime complexity, and
proving non-termination.

In this talk, two novel acceleration techniques will be presented. Furthermore, we will
discuss several open problems related to loop acceleration. Finally, we will discuss an
empirical evaluation of the presented approach.

19371

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://dx.doi.org/10.1007/978-3-319-63046-5_25
http://dx.doi.org/10.1007/978-3-319-63046-5_25
http://dx.doi.org/10.1007/978-3-319-63046-5_25
http://dx.doi.org/10.1007/978-3-319-63046-5_25
http://dx.doi.org/10.1007/978-3-319-63046-5_25
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/

32 19371 – Deduction Beyond Satisfiability

3.9 From Derivational Complexity to Runtime Complexity of Term
Rewriting

Carsten Fuhs (Birkbeck, University of London, GB)

License Creative Commons BY 3.0 Unported license
© Carsten Fuhs

Main reference Carsten Fuhs: “Transforming Derivational Complexity of Term Rewriting to Runtime Complexity”,
in Proc. of the Frontiers of Combining Systems – 12th International Symposium, FroCoS 2019,
London, UK, September 4-6, 2019, Proceedings, Lecture Notes in Computer Science, Vol. 11715,
pp. 348–364, Springer, 2019.

URL http://dx.doi.org/10.1007/978-3-030-29007-8_20

Derivational complexity of term rewriting considers the length of the longest rewrite sequence
for arbitrary start terms, whereas runtime complexity restricts start terms to basic terms.
Recently, there has been notable progress in automatic inference of upper and lower bounds
for runtime complexity. We propose a novel transformation that allows an off-the-shelf tool
for inference of upper or lower bounds for runtime complexity to be used to determine upper
or lower bounds for derivational complexity as well. Our approach is applicable to derivational
complexity problems for innermost rewriting and for full rewriting. We have implemented
the transformation in the tool AProVE and conducted an extensive experimental evaluation.
Our results indicate that bounds for derivational complexity can now be inferred for rewrite
systems that have been out of reach for automated analysis thus far. At the Dagstuhl seminar,
we also discussed extensions and possible applications of our approach.

3.10 Decision Procedures Beyond Satisfiability
Jürgen Giesl (RWTH Aachen, DE)

License Creative Commons BY 3.0 Unported license
© Jürgen Giesl

Joint work of Jürgen Giesl, Florian Frohn, Peter Giesl, Marcel Hark
URL https://doi.org/10.1016/j.ipl.2018.06.012, https://doi.org/10.1007/978-3-030-25543-5_24,

https://doi.org/10.1007/978-3-030-29436-6_16
Main reference Florian Frohn, Jürgen Giesl: “Constant runtime complexity of term rewriting is semi-decidable”,

Inf. Process. Lett., Vol. 139, pp. 18–23, 2018.
URL http://dx.doi.org/10.1016/j.ipl.2018.06.012

Main reference Florian Frohn, Jürgen Giesl: “Termination of Triangular Integer Loops is Decidable”, in Proc. of
the Computer Aided Verification – 31st International Conference, CAV 2019, New York City, NY,
USA, July 15-18, 2019, Proceedings, Part II, Lecture Notes in Computer Science, Vol. 11562,
pp. 426–444, Springer, 2019.

URL http://dx.doi.org/10.1007/978-3-030-25543-5_24
Main reference Jürgen Giesl, Peter Giesl, Marcel Hark: “Computing Expected Runtimes for Constant Probability

Programs”, in Proc. of the Automated Deduction – CADE 27 – 27th International Conference on
Automated Deduction, Natal, Brazil, August 27-30, 2019, Proceedings, Lecture Notes in Computer
Science, Vol. 11716, pp. 269–286, Springer, 2019.

URL http://dx.doi.org/10.1007/978-3-030-29436-6_16

We give an overview on our recent work on finding (sub-)classes of programs with decidable
termination or complexity properties. All of our decision procedures give results that go
beyond binary “yes/no” answers.

Our first result is that it is semi-decidable whether the runtime complexity of a term
rewrite system is constant. In case of constant runtime complexity, our semi-decision
procedure also computes the exact worst-case runtime.

In our second result, we consider affine integer programs and show that termination is
decidable for programs that consist of a single loop where the update matrix is triangular.
Moreover, our procedure can also compute witnesses for eventual non-termination.

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://dx.doi.org/10.1007/978-3-030-29007-8_20
http://dx.doi.org/10.1007/978-3-030-29007-8_20
http://dx.doi.org/10.1007/978-3-030-29007-8_20
http://dx.doi.org/10.1007/978-3-030-29007-8_20
http://dx.doi.org/10.1007/978-3-030-29007-8_20
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1016/j.ipl.2018.06.012, https://doi.org/10.1007/978-3-030-25543-5_24, https://doi.org/10.1007/978-3-030-29436-6_16
https://doi.org/10.1016/j.ipl.2018.06.012, https://doi.org/10.1007/978-3-030-25543-5_24, https://doi.org/10.1007/978-3-030-29436-6_16
http://dx.doi.org/10.1016/j.ipl.2018.06.012
http://dx.doi.org/10.1016/j.ipl.2018.06.012
http://dx.doi.org/10.1016/j.ipl.2018.06.012
http://dx.doi.org/10.1007/978-3-030-25543-5_24
http://dx.doi.org/10.1007/978-3-030-25543-5_24
http://dx.doi.org/10.1007/978-3-030-25543-5_24
http://dx.doi.org/10.1007/978-3-030-25543-5_24
http://dx.doi.org/10.1007/978-3-030-25543-5_24
http://dx.doi.org/10.1007/978-3-030-29436-6_16
http://dx.doi.org/10.1007/978-3-030-29436-6_16
http://dx.doi.org/10.1007/978-3-030-29436-6_16
http://dx.doi.org/10.1007/978-3-030-29436-6_16
http://dx.doi.org/10.1007/978-3-030-29436-6_16

Carsten Fuhs, Philipp Rümmer, Renate Schmidt, and Cesare Tinelli 33

Finally, we regard a class of probabilistic programs with constant probabilities (so-called
CP programs) and present a procedure to decide (positive) almost sure termination and to
compute asymptotically tight bounds on their expected runtime. Based on this, we developed
an algorithm to infer the exact expected runtime of any CP program.

3.11 Spacer on Jupyter
Arie Gurfinkel (University of Waterloo, CA)

License Creative Commons BY 3.0 Unported license
© Arie Gurfinkel

Joint work of Arie Gurfinkel, Nikolaj Bjørner

Constrained Horn Clauses (CHC) is a fragment of First Order Logic modulo constraints that
captures many program verification problems as constraint solving. Safety verification of
sequential programs, modular verification of concurrent programs, parametric verification,
and modular verification of synchronous transition systems are all naturally captured as a
satisfiability problem for CHC modulo theories of arithmetic and arrays.

Of course, satisfiability of CHC is undecidable. Thus, solving them is a mix of science,
art, and a dash of magic. In this talk, we have presented a tutorial on using a CHC solver
Spacer that is build into SMT solver Z3. The tutorial is illustrated by a Jupyter notebook
that shows how different verification problems are modeled by CHC and solved by Spacer.

The corresponding notebook is available at: https://spacerexamples-ariegurfinkel.
notebooks.azure.com/

3.12 Abstract Execution
Reiner Hähnle (TU Darmstadt, DE)

License Creative Commons BY 3.0 Unported license
© Reiner Hähnle

Joint work of Reiner Hähnle, Steinhöfel, Dominic
Main reference Dominic Steinhöfel, Reiner Hähnle: “Abstract Execution”, in Proc. of the Formal Methods – The

Next 30 Years – Third World Congress, FM 2019, Porto, Portugal, October 7-11, 2019,
Proceedings, Lecture Notes in Computer Science, Vol. 11800, pp. 319–336, Springer, 2019.

URL http://dx.doi.org/10.1007/978-3-030-30942-8_20

We propose a new static software analysis principle called Abstract Execution, generalizing
Symbolic Execution: While the latter analyzes all possible execution paths of a specific
program, abstract execution analyzes a partially unspecified program by permitting abstract
symbols representing unknown contexts. For each abstract symbol, we faithfully represent
each possible concrete execution resulting from its substitution with concrete code. There is a
wide range of applications of abstract execution, especially for verifying relational properties
of schematic programs. We implemented abstract execution in a deductive verification
framework and proved correctness of eight well-known statement-level refactoring rules,
including two with loops. For each refactoring we characterize the preconditions that make
it semantics-preserving. Most preconditions are not mentioned in the literature.

19371

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://spacerexamples-ariegurfinkel.notebooks.azure.com/
https://spacerexamples-ariegurfinkel.notebooks.azure.com/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://dx.doi.org/10.1007/978-3-030-30942-8_20
http://dx.doi.org/10.1007/978-3-030-30942-8_20
http://dx.doi.org/10.1007/978-3-030-30942-8_20
http://dx.doi.org/10.1007/978-3-030-30942-8_20

34 19371 – Deduction Beyond Satisfiability

3.13 Reasoning about Expected Runtimes of Probabilistic Programs
(and Quantitative Separation Logic)

Benjamin Kaminski (RWTH Aachen, DE)

License Creative Commons BY 3.0 Unported license
© Benjamin Kaminski

Joint work of Benjamin Kaminski, Kevin Batz, Joost-Pieter Katoen, Christoph Matheja, and Thomas Noll
Main reference Benjamin Lucien Kaminski, Joost-Pieter Katoen, Christoph Matheja, Federico Olmedo: “Weakest

Precondition Reasoning for Expected Runtimes of Randomized Algorithms”, J. ACM, Vol. 65(5),
pp. 30:1–30:68, 2018.

URL http://dx.doi.org/10.1145/3208102

We present a weakest-precondition-style calculus a la Dijkstra tailored to reasoning about
the expected runtime of probabilistic programs. We put a particular focus on inductive
invariant-style reasoning for loops. These invariants are *quantitative* and thus lie inherently
beyond the scope of Boolean predicates. Major problems in this context are e.g. to (a)
synthesize inductive invariants completely from scratch or (b) shape non-inductive candidates
into an inductive invariants.

We also present a quantitative separation logic for reasoning about quantitative aspects
of randomized programs that have access to dynamic memory.

3.14 Algorithmic Proof Analysis by CERES
Alexander Leitsch (TU Wien, AT)

License Creative Commons BY 3.0 Unported license
© Alexander Leitsch

Proofs are more than just validations of theorems; they can contain interesting mathematical
information like bounds or algorithms. However this information is frequently hidden and
proof transformations are required to make it explicit. One such transformation on proofs
in sequent calculus is cut-elimination (i.e. the removal of lemmas in formal proofs to
obtain proofs made essentially of the syntactic material of the theorem). In his famous
paper “Untersuchungen über das logische Schließen” Gentzen showed that for cut-free
proofs of prenex end-sequents Herbrand’s theorem can be realized via the midsequent
theorem. In fact Gentzen defined a transformation which, given a cut-free proof p of a prenex
sequent S, constructs a cut-free proof p′ of a sequent S′ (a so-called Herbrand sequent)
which is propositionally valid and is obtained by instantiating the quantifiers in S. These
instantiations may contain interesting and compact information on the validity of S. Generally,
the construction of Herbrand sequents requires cut-elimination in a given proof p (or at least
the elimination of quantified cuts). The method CERES (cut-elimination by resolution) [3]
provides an algorithmic tool to compute a Herbrand sequent S′ from a proof p (with cuts) of
S even without constructing a cut-free version of p [5]. A prominent and crucial principle
in mathematical proofs is mathematical induction. However, in proofs with mathematical
induction Herbrand’s theorem typically fails. To overcome this problem we replace induction
by recursive definitions and proofs by proof schemata [1], [2], [4]. An extension of CERES to
proof schemata (CERESs) allows to compute inductive definitions of Herbrand expansions
(so-called Herbrand systems) representing infinite sequences of Herbrand sequents, resulting
in a form of Herbrand’s theorem for inductive proofs.

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://dx.doi.org/10.1145/3208102
http://dx.doi.org/10.1145/3208102
http://dx.doi.org/10.1145/3208102
http://dx.doi.org/10.1145/3208102
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/

Carsten Fuhs, Philipp Rümmer, Renate Schmidt, and Cesare Tinelli 35

References
1 A. Leitsch, N. Peltier, D. Weller. CERES for first-order schemata. LogCom: Journal of

Logic and Computation, vol. 27/7 1897-1954 (2017).
2 C. Dunchev, A. Leitsch, M. Rukhaia, D. WellerCut-Elimination and Proof Schemata. In Lo-

gic, Language and Computation, 117-136, Lecture Notes in Computer Science 8984 (2015).
3 M. Baaz and A. Leitsch. Methods of Cut-Elimination, Trends in Logic vol. 34, Springer,

(2011) .
4 D. Cerna and A. Leitsch. Schematic Cut Elimination and the Ordered Pigeonhole Principle.

IJCAR 2016: 241-256 (2016).
5 A. Leitsch and A. Lolic. Extraction of Epansion Trees. J.Autom.Reasoning 63(1): 95-126

(2019)

3.15 Efficient SAT-Based Reasoning Beyond NP
Joao Marques Silva (Federal University – Toulouse, FR)

License Creative Commons BY 3.0 Unported license
© Joao Marques Silva

The performance improvements made to SAT solvers over the last two decades have reshaped
the organization of reasoners for different problem domains, within and beyond NP. This
talk provides an overview of recent work on tackling decision and related problems beyond
NP. A few successful examples include Maximum Satisfiability (MaxSAT), Propositional
Abduction, Quantified Boolean Formulas (QBF), among others.

3.16 Correct-by-Decision Solving and Applications
Alexander Nadel (Intel Israel – Haifa, IL)

License Creative Commons BY 3.0 Unported license
© Alexander Nadel

Main reference Alexander Nadel: “A Correct-by-Decision Solution for Simultaneous Place and Route”, in Proc. of
the Computer Aided Verification – 29th International Conference, CAV 2017, Heidelberg, Germany,
July 24-28, 2017, Proceedings, Part II, Lecture Notes in Computer Science, Vol. 10427,
pp. 436–452, Springer, 2017.

URL http://dx.doi.org/10.1007/978-3-319-63390-9_23

To reduce a problem, provided in a human language, to constraint solving, one normally
maps it to a set of constraints, written in the language of a suitable logic. We highlight
a different paradigm, called Correct-by-Decision (CBD), in which the original problem is
converted into a set of constraints and a decision strategy, where the decision strategy is
essential for guaranteeing the correctness of the modeling. We have successfully applied CBD
at Intel for designing scalable SAT-based solutions for several sub-stages of the Physical
Design stage of chip design [1, 2, 3]. During our talk, we will walk through an example
CBD application for solving the problem of routing under constraints and discuss some open
questions, related to CBD.

References
1 Amit Erez and Alexander Nadel. Finding bounded path in graph using SMT for automatic

clock routing. In Daniel Kroening and Corina S. Pasareanu, editors, Computer Aided
Verification – 27th International Conference, CAV 2015, San Francisco, CA, USA, July
18-24, 2015, Proceedings, Part II, volume 9207 of Lecture Notes in Computer Science,
pages 20–36. Springer, 2015.

19371

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://dx.doi.org/10.1007/978-3-319-63390-9_23
http://dx.doi.org/10.1007/978-3-319-63390-9_23
http://dx.doi.org/10.1007/978-3-319-63390-9_23
http://dx.doi.org/10.1007/978-3-319-63390-9_23
http://dx.doi.org/10.1007/978-3-319-63390-9_23

36 19371 – Deduction Beyond Satisfiability

2 Alexander Nadel. Routing under constraints. In Ruzica Piskac and Muralidhar Talupur,
editors, 2016 Formal Methods in Computer-Aided Design, FMCAD 2016, Mountain View,
CA, USA, October 3-6, 2016, pages 125–132. IEEE, 2016.

3 Alexander Nadel. A correct-by-decision solution for simultaneous place and route. In
Rupak Majumdar and Viktor Kuncak, editors, Computer Aided Verification – 29th Inter-
national Conference, CAV 2017, Heidelberg, Germany, July 24-28, 2017, Proceedings, Part
II, volume 10427 of Lecture Notes in Computer Science, pages 436–452. Springer, 2017.

3.17 A Resolution-Based Calculus for Preferential Logics
Claudia Nalon (University of Brasilia, BR)

License Creative Commons BY 3.0 Unported license
© Claudia Nalon

Joint work of Claudia Nalon, Dirk Pattinson
Main reference Cláudia Nalon, Dirk Pattinson: “A Resolution-Based Calculus for Preferential Logics”, in Proc. of

the Automated Reasoning – 9th International Joint Conference, IJCAR 2018, Held as Part of the
Federated Logic Conference, FloC 2018, Oxford, UK, July 14-17, 2018, Proceedings, Lecture Notes
in Computer Science, Vol. 10900, pp. 498–515, Springer, 2018.

URL http://dx.doi.org/10.1007/978-3-319-94205-6_33

Preferential logics are part of a family of conditional logics intended for counterfactual
reasoning, allowing to infer and to withdraw conclusions in the presence of new facts. Sequent
or tableau calculi for such logics are notoriously hard to construct, and often require additional
syntactic structure. Various conditional logics require nested sequents, labelled sequents or
special transition formulae, together with non-trivial proofs of either semantic completeness
or cut elimination. In this talk, we present a recently developed resolution-based calculus
for the preferential logic S and argue that its pure syntactic nature makes it well suited for
automation.

3.18 Logically Constrained Rewriting over Bit Vectors
Naoki Nishida (Nagoya University, JP)

License Creative Commons BY 3.0 Unported license
© Naoki Nishida

Joint work of Naoki Nishida, Yoshiaki Kanazawa
Main reference Yoshiaki Kanazawa, Naoki Nishida, and Masahiko Sakai: “On representation of structures and

unions in logically constrained rewriting”, IEICE Technical Report SS2018-38, IEICE, Vol. 118,
No. 385, pp. 67–72, January 1019 (in Japanese).

URL https://www.ieice.org/ken/paper/20190116P1Jg/eng/

Recently, several methods for verifying imperative programs by means of transformations into
Term Rewrite Systems (TRSs, for short) have been investigated. In particular, constrained
rewrite systems are popular as sources of such transformations, since logical constraints used
for modeling control flows can be separated from terms that represent intermediate states
of the execution of target programs. In the existing methods, data types that can be used
in target programs are restricted to the integers and their one-dimensional arrays [1], and
hence we are not allowed to use other primitive data types, structures, or unions.

In this talk, we briefly introduce Logically Constrained TRSs (LCTRSs, for short) over the
bit vectors, which are obtained from C programs with structures and unions. Such LCTRSs
can be models of automotive embedded systems, and are useful to verify the corresponding

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://dx.doi.org/10.1007/978-3-319-94205-6_33
http://dx.doi.org/10.1007/978-3-319-94205-6_33
http://dx.doi.org/10.1007/978-3-319-94205-6_33
http://dx.doi.org/10.1007/978-3-319-94205-6_33
http://dx.doi.org/10.1007/978-3-319-94205-6_33
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://www.ieice.org/ken/paper/20190116P1Jg/eng/
https://www.ieice.org/ken/paper/20190116P1Jg/eng/
https://www.ieice.org/ken/paper/20190116P1Jg/eng/
https://www.ieice.org/ken/paper/20190116P1Jg/eng/

Carsten Fuhs, Philipp Rümmer, Renate Schmidt, and Cesare Tinelli 37

programs. Our framework of rewriting induction, a verification method of equivalence of
two functions, works for not only LCTRSs over the integers but also LCTRSs over the bit
vectors.

References
1 Carsten Fuhs, Cynthia Kop, and Naoki Nishida. Verifying procedural programs via con-

strained rewriting induction. ACM Transactions on Computational Logic, 18(2):14:1–14:50,
June 2017.

3.19 Using SMT solvers to reason about firewalls
Ruzica Piskac (Yale University – New Haven, US)

License Creative Commons BY 3.0 Unported license
© Ruzica Piskac

Joint work of William T. Hallahan, Ennan Zhai, Ruzica Piskac
Main reference William T. Hallahan, Ennan Zhai, Ruzica Piskac: “Automated repair by example for firewalls”, in

Proc. of the 2017 Formal Methods in Computer Aided Design, FMCAD 2017, Vienna, Austria,
October 2-6, 2017, pp. 220–229, IEEE, 2017.

URL http://dx.doi.org/10.23919/FMCAD.2017.8102263

This work present a systematic effort that can automatically repair firewalls, using the
programming by example approach. We encode firewall behavior as a set of first-order logic
formulas. In our approach, after administrators observe undesired behavior in a firewall,
they may provide input/output examples that comply with the intended behavior. Based on
the given examples, we automatically synthesize new firewall rules for the existing firewall.
This new firewall correctly handles packets specified by the examples, while maintaining the
rest of the behavior of the original firewall. Through a conversion of the firewalls to SMT
formulas, we offer formal guarantees that the change is correct. Our evaluation results from
real-world case studies show that our tool can efficiently find repairs.

3.20 Inductive Inference with Recursion Analysis in Separation Logic
Quang Loc Le (Teesside University – Middlesbrough, GB)

License Creative Commons BY 3.0 Unported license
© Quang Loc Le

Inductive inference is a vital ingredient of a proof system for reasoning about recursive data
structures (e.g., lists and trees) and functions. Especially, supporting an automated inductive
theorem prover in a substructural logic, e.g. separation logic, is notoriously hard. In this
work, we consider inductive inference for entailment problem in separation logic combined
with inductive definitions and arithmetic. We present a novel inductive entailment prover
where inductive inference is based on both circular reasoning (in the spirit of Brotherston)
and mathematical induction (based on Noetherian principle). The essence of our proposal is
a recursion analysis for automatically generating induction rules such that inductive proofs
could be obtained locally and efficiently. We have implemented our proposal in a prototype
tool and evaluated it over a set of challenging entailment problems taken from a recent
competition for solvers in separation logic. The experimental results show that our prover is
both effective and efficient. Indeed, it outperformed all existing state-of-the-art entailment
solvers.

19371

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://dx.doi.org/10.23919/FMCAD.2017.8102263
http://dx.doi.org/10.23919/FMCAD.2017.8102263
http://dx.doi.org/10.23919/FMCAD.2017.8102263
http://dx.doi.org/10.23919/FMCAD.2017.8102263
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/

38 19371 – Deduction Beyond Satisfiability

3.21 Probabilistic Symbolic Execution using Separation Logic
Quoc-Sang Phan (Synopsys Inc. – Mountain View, US)

License Creative Commons BY 3.0 Unported license
© Quoc-Sang Phan

Probabilistic symbolic execution is a technique to calculate the probability that a program
reaches a certain point, which is useful in, for example, reliability analysis. So far this
technique has been widely used in programs with numerical inputs, but it enjoys little success
when the program makes extensive use of dynamically allocated data structures, such as lists
and trees. In this talk, I will present our work-in-progress approach to this problem using
separation logic.

References
1 Antonio Filieri, Marcelo F. Frias, Corina S. Pasareanu, Willem Visser. Model Counting for

Complex Data Structures. SPIN 2015.
2 Long H. Pham, Quang Loc Le, Quoc-Sang Phan, Jun Sun, and Shengchao Qin. Enhan-

cing Symbolic Execution of Heap-based Programs with Separation Logic for Test Input
Generation. ATVA 2019.

3 Long H. Pham, Quang Loc Le, Quoc-Sang Phan, and Jun Sun. Concolic Testing Heap-
Manipulating Programs. FM 2019.

3.22 Code commutation
Albert Rubio (Complutense University of Madrid, ES)

License Creative Commons BY 3.0 Unported license
© Albert Rubio

Joint work of Elvira Albert, Miguel Gómez-Zamalloa, Miguel Isabel, Albert Rubio
Main reference Elvira Albert, Miguel Gómez-Zamalloa, Miguel Isabel, Albert Rubio: “Constrained Dynamic

Partial Order Reduction”, in Proc. of the Computer Aided Verification – 30th International
Conference, CAV 2018, Held as Part of the Federated Logic Conference, FloC 2018, Oxford, UK,
July 14-17, 2018, Proceedings, Part II, Lecture Notes in Computer Science, Vol. 10982,
pp. 392–410, Springer, 2018.

URL http://dx.doi.org/10.1007/978-3-319-96142-2_24

Two pieces of code commute if they reach the same state in any of the two orders of
execution. They can commute unconditionally if they commute in any possible initial state
or conditionally if it is only for a subset of the initial states. We will present the use of this
property in the context of the dynamic partial order technique. The property can be analyzed
automatically using SMT solvers, but it becomes challenging when the code involved in the
two pieces of code is complex.

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://dx.doi.org/10.1007/978-3-319-96142-2_24
http://dx.doi.org/10.1007/978-3-319-96142-2_24
http://dx.doi.org/10.1007/978-3-319-96142-2_24
http://dx.doi.org/10.1007/978-3-319-96142-2_24
http://dx.doi.org/10.1007/978-3-319-96142-2_24
http://dx.doi.org/10.1007/978-3-319-96142-2_24

Carsten Fuhs, Philipp Rümmer, Renate Schmidt, and Cesare Tinelli 39

3.23 Bit-Vector Interpolation and Quantifier Elimination by Lazy
Reduction

Philipp Rümmer (Uppsala University, SE)

License Creative Commons BY 3.0 Unported license
© Philipp Rümmer

Joint work of Backeman, Peter; Zeljic, Aleksandar
Main reference Peter Backeman, Philipp Rümmer, Aleksandar Zeljic: “Bit-Vector Interpolation and Quantifier

Elimination by Lazy Reduction”, in Proc. of the 2018 Formal Methods in Computer Aided Design,
FMCAD 2018, Austin, TX, USA, October 30 – November 2, 2018, pp. 1–10, IEEE, 2018.

URL http://dx.doi.org/10.23919/FMCAD.2018.8603023

The inference of program invariants over machine arithmetic, commonly called bit-vector
arithmetic, is an important problem in verification. Techniques that have been successful
for unbounded arithmetic, in particular Craig interpolation, have turned out to be difficult
to generalise to machine arithmetic: existing bit-vector interpolation approaches are based
either on eager translation from bit-vectors to unbounded arithmetic, resulting in complicated
constraints that are hard to solve and interpolate, or on bit-blasting to propositional logic,
in the process losing all arithmetic structure. We present a new approach to bit-vector
interpolation, as well as bit-vector quantifier elimination (QE), that works by lazy translation
of bit-vector constraints to unbounded arithmetic. Laziness enables us to fully utilise
the information available during proof search (implied by decisions and propagation) in
the encoding, and this way produce constraints that can be handled relatively easily by
existing interpolation and QE procedures for Presburger arithmetic. The lazy encoding
is complemented with a set of native proof rules for bit-vector equations and non-linear
(polynomial) constraints, this way minimising the number of cases a solver has to consider.

3.24 Forgetting for Computing Snap-Shots of Ontologies: Progress
and Challenges

Renate Schmidt (University of Manchester, GB)

License Creative Commons BY 3.0 Unported license
© Renate Schmidt

Main reference Jieying Chen, Ghadah Alghamdi, Renate A. Schmidt, Dirk Walther, Yongsheng Gao: “Ontology
Extraction for Large Ontologies via Modularity and Forgetting”, in Proc. of the 10th International
Conference on Knowledge Capture, K-CAP 2019, Marina Del Rey, CA, USA, November 19-21,
2019, pp. 45–52, ACM, 2019.

URL http://dx.doi.org/10.1145/3360901.3364424

Forgetting is non-standard reasoning technology to restrict the information in a knowledge
base by excluding some of the terms and symbols in the signature. My presentation focussed
on the use of forgetting for ontology extraction. Because ontologies can be very large, it
is useful to have tools that extract and create snap-shots of an ontology. The creation
of ontology extracts is an essential operation for the reuse, creation, evaluation, curation,
decomposition, integration and general use of ontologies. For example, it allows ontology
modellers to create and work with extracts of an ontology that succinctly summarise the
information relating to particular terms in the ontology. These could be used to create new
smaller ontologies tailor-made for a particular purpose required by a new application of
specific vendors.

After a brief introduction of forgetting the presentation discussed a trial of current
forgetting tools in an industry collaboration with SNOMED International and the challenges
that this research has thrown up.

19371

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://dx.doi.org/10.23919/FMCAD.2018.8603023
http://dx.doi.org/10.23919/FMCAD.2018.8603023
http://dx.doi.org/10.23919/FMCAD.2018.8603023
http://dx.doi.org/10.23919/FMCAD.2018.8603023
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://dx.doi.org/10.1145/3360901.3364424
http://dx.doi.org/10.1145/3360901.3364424
http://dx.doi.org/10.1145/3360901.3364424
http://dx.doi.org/10.1145/3360901.3364424
http://dx.doi.org/10.1145/3360901.3364424

40 19371 – Deduction Beyond Satisfiability

For the SNOMED use case the ability to produce extracts for very small signatures
compared to the signature of the whole ontology (1% or less) was required. The smaller the
extract signature, the more work forgetting tools have in order to compute an extract. The
research found that what helps is pre-computing a module and then applying forgetting; in
addition signature extension was needed to allow modellers to use existing refsets of concept
names. A novel workflow was developed consisting of four stages: (a) signature extension,
(b) ontology module extraction, (c) forgetting, and (d) feedback by domain experts, which
was evaluated on the SNOMED CT and NCIt ontologies. The investigation used three
different modularisation approaches (locality-based, semantic and minimal subsumption
modularisation) and three forgetting tools (NUI, LETHE and FAME).

Discussion of the various challenges that remain to be addressed has revealed useful
suggestions for improving the ontology extraction process and an alternative faster approach.

3.25 Efficient Validation of FOLID Cyclic Induction Reasoning
Sorin Stratulat (University of Lorraine – Metz, FR)

License Creative Commons BY 3.0 Unported license
© Sorin Stratulat

Checking the soundness of the cyclic induction reasoning for first-order logic with inductive
definitions (FOLID) may be costly; the standard checking method is decidable but based on
a doubly exponential complement operation for Büchi automata. In this talk, I will present
a semi-decidable polynomial method whose most expensive steps recall the comparisons
with multiset path orderings. In practice, it has been integrated in the Cyclist prover and
successfully checked all the proofs generated with the standard method and included in its
distribution.

FOLID cyclic proofs may also be hard to certify. Our method helps to represent the cyclic
induction reasoning as being well-founded, where the ordering constraints are automatically
built from the analysis of the proofs. Hence, it creates a bridge between the two induction
reasoning methods and opens the perspective to use the certification methods adapted for
well-founded induction proofs.

3.26 Rule-Based Nonmonotonic Reasoning with Probabilities
Andrzej Szalas (University of Warsaw, PL)

License Creative Commons BY 3.0 Unported license
© Andrzej Szalas

Main reference Andrzej Szałas: “Decision-Making Support Using Nonmonotonic Probabilistic Reasoning”. In:
Czarnowski I., Howlett R., Jain L. (eds) Intelligent Decision Technologies 2019. Smart Innovation,
Systems and Technologies, vol 142. Springer, Singapore

URL https://doi.org/10.1007/978-981-13-8311-3_4

The talk will be focused on a decision-making support by rule-based nonmonotonic reasoning
enhanced with probabilities. As a suitable rule-based tool we will analyze Answer Set
Programming (ASP) and explore its probabilistic extension permitting the use of probabilistic
expressions of two types. The first type represents an externally given prior probability
distribution on literals in an answer set program P. The second type represents a posterior
distribution conditioned on individual decisions and choices made, together with their
consequences represented by answer sets of P.

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1007/978-981-13-8311-3_4
https://doi.org/10.1007/978-981-13-8311-3_4
https://doi.org/10.1007/978-981-13-8311-3_4
https://doi.org/10.1007/978-981-13-8311-3_4

Carsten Fuhs, Philipp Rümmer, Renate Schmidt, and Cesare Tinelli 41

The ability to compare aspects of both the prior and posterior probabilities in the language
of the program P has interesting uses in filtering solutions/decisions one is interested in.
A formal characterization of this probabilistic extension to ASP as well as some examples
demonstrating its potential use will also be discussed.

The discussed techniques do not increase the complexity of standard ASP-based reasoning.

3.27 A Fixpoint Logic and Dependent Effects for Temporal Property
Verification

Tachio Terauchi (Waseda University – Tokyo, JP)

License Creative Commons BY 3.0 Unported license
© Tachio Terauchi

Joint work of Yoji Nanjo, Hiroshi Unno, Eric Koskinen, Tachio Terauchi
Main reference Yoji Nanjo, Hiroshi Unno, Eric Koskinen, Tachio Terauchi: “A Fixpoint Logic and Dependent

Effects for Temporal Property Verification”, in Proc. of the 33rd Annual ACM/IEEE Symposium
on Logic in Computer Science, LICS 2018, Oxford, UK, July 09-12, 2018, pp. 759–768, ACM, 2018.

URL http://dx.doi.org/10.1145/3209108.3209204

Existing approaches to temporal verification of higher-order functional programs have either
sacrificed compositionality in favor of achieving automation or vice-versa. In this paper we
present a dependent-refinement type & effect system to ensure that welltyped programs
satisfy given temporal properties, and also give an algorithmic approach—based on deductive
reasoning over a fixpoint logic–to typing in this system. The first contribution is a novel type-
and-effect system capable of expressing dependent temporal effects, which are fixpoint logic
predicates on event sequences and program values, extending beyond the (non-dependent)
temporal effects used in recent proposals. Temporal effects facilitate compositional reasoning
whereby the temporal behavior of program parts are summarized as effects and combined to
form those of the larger parts. As a second contribution, we show that type checking and
typability for the type system can be reduced to solving first-order fixpoint logic constraints.
Finally, we present a novel deductive system for solving such constraints. The deductive
system consists of rules for reasoning via invariants and well-founded relations, and is able to
reduce formulas containing both least and greatest fixpoints to predicate-based reasoning.

3.28 Abduction in DL by translation to FOL
Sophie Tourret (MPI für Informatik – Saarbrücken, DE) and Christoph Weidenbach (MPI
für Informatik – Saarbrücken, DE)

License Creative Commons BY 3.0 Unported license
© Sophie Tourret and Christoph Weidenbach

Joint work of Sophie Tourret, Patrick Koopman, Christoph Weidenbach

Description Logics (DL) are the languages of choice to reason about real world knowledge as
represented in web ontologies. One recurrent issue with ontologies is their incompleteness.
Abductive reasoning is one way to repair such faulty systems by automatically computing
possible explanations for observations that, although not entailed by the ontology, do not
contradict it. Most existing abduction techniques for DL have a limited expressiveness and
do not scale well. By relying on state-of-the-art tools for abduction in first-order logic, based
on SMT, we want to improve on the current situation.

19371

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://dx.doi.org/10.1145/3209108.3209204
http://dx.doi.org/10.1145/3209108.3209204
http://dx.doi.org/10.1145/3209108.3209204
http://dx.doi.org/10.1145/3209108.3209204
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/

42 19371 – Deduction Beyond Satisfiability

3.29 On Hierarchical Symbol Elimination and Applications
Viorica Sofronie-Stokkermans

License Creative Commons BY 3.0 Unported license
© Viorica Sofronie-Stokkermans

Joint work of Viorica Sofronie-Stokkermans, Dennis Peuter

We present possibilities of symbol elimination in extensions of a theory T0 with additional
function symbols whose properties are axiomatised using a set of clauses which we established
in [1] and [2]. We analyze situations in which we can perform such tasks in a hierarchical way,
relying on existing mechanisms for symbol elimination in T0. This is for instance possible if
the base theory T0 allows quantifier elimination. We discuss possibilities of extending such
methods to situations in which the base theory does not allow quantifier elimination but
has a model completion which does (or, in some cases, has a co-theory in which symbol
elimination is possible). We discuss the way these results can be used e.g. for abduction,
interpolant generation (cf. e.g. [1], [2]), and invariant strengthening [3].

References
1 V. Sofronie-Stokkermans. On Interpolation and Symbol Elimination in Theory Extensions

N. Olivetti and A. Tiwari (eds), Automated Reasoning – 8th International Joint Conference,
IJCAR 2016, LNCS 9706, pages 273–289, Springer (2016)

2 V. Sofronie-Stokkermans. On Interpolation and Symbol Elimination in Theory Extensions.
Logical Methods in Computer Science 14(3) (2018)

3 D. Peuter and V. Sofronie-Stokkermans. On Invariant Synthesis for Parametric Systems.
In: Fontaine P (ed.), Automated Deduction – CADE 27 – 27th International Conference
on Automated Deduction, LNCS 11716, pages 385–405, Springer (2019).

3.30 Saturation Theorem Proving: From Inference Rules to Provers
Uwe Waldmann (MPI für Informatik – Saarbrücken, DE)

License Creative Commons BY 3.0 Unported license
© Uwe Waldmann

Joint work of Uwe Waldmann, Jasmin Blanchette, Simon Robillard, Sophie Tourret

One of the indispensable operations of realistic saturation theorem provers is (backward
and forward) deletion of subsumed formulas. In presentations of proof calculi, however,
subsumption deletion is usually discussed only informally, and in the rare cases where there is
a formal exposition, it is typically clumsy. The main reason for this is the fact that the well-
known equivalence of dynamic and static refutational completeness holds only for derivations
where all deleted formulas are redundant, but using a standard notion of redundancy, a
clause C does not make an instance Cσ redundant.

We are working on a generic framework for formal refutational completeness proofs
of abstract provers that implement saturation proof calculi. The framework relies on a
modular extension of lifted redundancy criteria, which in the end permits not only to cover
subsumption deletion, but to model entire prover architectures in such a way that the
static refutational completeness of a calculus immediately implies the dynamic refutational
completeness of, say, an Otter loop or Discount loop prover implementing the calculus.

A formal proof in Isabelle is currently under development.

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/

Carsten Fuhs, Philipp Rümmer, Renate Schmidt, and Cesare Tinelli 43

3.31 Loop Detection by Logically Constrained Rewriting
Sarah Winkler (University of Verona, IT)

License Creative Commons BY 3.0 Unported license
© Sarah Winkler

Joint work of Naoki Nishida, Sarah Winkler
Main reference Naoki Nishida, Sarah Winkler: “Loop Detection by Logically Constrained Term Rewriting”, in

Proc. of the Verified Software. Theories, Tools, and Experiments – 10th International Conference,
VSTTE 2018, Oxford, UK, July 18-19, 2018, Revised Selected Papers, Lecture Notes in Computer
Science, Vol. 11294, pp. 309–321, Springer, 2018.

URL http://dx.doi.org/10.1007/978-3-030-03592-1_18

Logically constrained rewrite systems (LCTRSs) constitute a very general rewriting formalism
that captures simplfication processes in various domains, as well as computation in imperative
programs. In both of these contexts, nontermination is a critical source of errors. This talk
discusses loop criteria for LCTRSs that are implemented in the tool Ctrl. The usefulness of
these criteria is illustrated by applications in four domains: checking (a) LLVM peephole
optimizations as well as (b) simplification rules of SMT solvers for potential loops, (c)
detecting looping executions of C programs, and (d) establishing nontermination of integer
transition systems.

19371

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://dx.doi.org/10.1007/978-3-030-03592-1_18
http://dx.doi.org/10.1007/978-3-030-03592-1_18
http://dx.doi.org/10.1007/978-3-030-03592-1_18
http://dx.doi.org/10.1007/978-3-030-03592-1_18
http://dx.doi.org/10.1007/978-3-030-03592-1_18

44 19371 – Deduction Beyond Satisfiability

Participants
Alexander Bentkamp

Free University Amsterdam, NL
Nikolaj S. Bjørner

Microsoft Research –
GRedmond, US

Maria Paola Bonacina
Università degli Studi di
Verona, IT

Florent Capelli
INRIA Lille, FR

Warren Del-Pinto
University of Manchester, GB

Rayna Dimitrova
University of Leicester, GB

Pascal Fontaine
LORIA & INRIA – Nancy, FR

Florian Frohn
MPI für Informatik –
Saarbrücken, DE

Carsten Fuhs
Birkbeck, University of
London, GB

Jürgen Giesl
RWTH Aachen, DE

Alberto Griggio
Bruno Kessler Foundation –
Trento, IT

Arie Gurfinkel
University of Waterloo, CA

Reiner Hähnle
TU Darmstadt, DE

Matthias Heizmann
Universität Freiburg, DE

Benjamin Kaminski
RWTH Aachen, DE

Laura Kovács
TU Wien, AT

Quang Loc Le
Teesside University –
Middlesbrough, GB

Alexander Leitsch
TU Wien, AT

Anthony W. Lin
TU Kaiserslautern, DE

Joao Marques-Silva
Federal University –
Toulouse, FR

David Monniaux
VERIMAG – Grenoble, FR

Alexander Nadel
Intel Israel – Haifa, IL

Claudia Nalon
University of Brasilia, BR

Naoki Nishida
Nagoya University, JP

Quoc Sang Phan
Synopsys Inc. –
Mountain View, US

Ruzica Piskac
Yale University – New Haven, US

Albert Rubio
Complutense University of
Madrid, ES

Philipp Rümmer
Uppsala University, SE

Andrey Rybalchenko
Microsoft Research –
Cambridge, GB

Renate Schmidt
University of Manchester, GB

Martina Seidl
Johannes Kepler Universität
Linz, AT

Viorica Sofronie-Stokkermans
Universität Koblenz-Landau, DE

Sorin Stratulat
University of Lorraine –
Metz, FR

Andrzej Szalas
University of Warsaw, PL

Tachio Terauchi
Waseda University – Tokyo, JP

Cesare Tinelli
University of Iowa –
Iowa City, US

Sophie Tourret
MPI für Informatik –
Saarbrücken, DE

Andrei Voronkov
University of Manchester, GB &
EasyChair

Uwe Waldmann
MPI für Informatik –
Saarbrücken, DE

Christoph Weidenbach
MPI für Informatik –
Saarbrücken, DE

Thomas Wies
New York University, US

Sarah Winkler
University of Verona, IT

	Executive Summary Carsten Fuhs, Philipp Rümmer, Renate Schmidt, and Cesare Tinelli
	Table of Contents
	Overview of Talks
	Safe Decomposition of Startup Requirements: Verification and Synthesis Alberto Griggio
	Proof Checking in Zipperposition Alexander Bentkamp
	Guiding High-Performance SAT Solvers with Unsat-Core Predictions Nikolaj S. Bjørner
	Proof reconstruction in conflict-driven satisfiability Maria Paola Bonacina
	Tractable QBF and model counting via Knowledge Compilation Florent Capelli
	Forgetting-Based Abductive Reasoning and Inductive Learning in Ontologies Warren Del-Pinto
	Proofs in SMT Pascal Fontaine
	Loop Acceleration for Under-Approximating Program Analysis Florian Frohn
	From Derivational Complexity to Runtime Complexity of Term Rewriting Carsten Fuhs
	Decision Procedures Beyond Satisfiability Jürgen Giesl
	Spacer on Jupyter Arie Gurfinkel
	Abstract Execution Reiner Hähnle
	Reasoning about Expected Runtimes of Probabilistic Programs (and Quantitative Separation Logic) Benjamin Kaminski
	Algorithmic Proof Analysis by CERES Alexander Leitsch
	Efficient SAT-Based Reasoning Beyond NP Joao Marques Silva
	Correct-by-Decision Solving and Applications Alexander Nadel
	A Resolution-Based Calculus for Preferential Logics Claudia Nalon
	Logically Constrained Rewriting over Bit Vectors Naoki Nishida
	Using SMT solvers to reason about firewalls Ruzica Piskac
	Inductive Inference with Recursion Analysis in Separation Logic Quang Loc Le
	Probabilistic Symbolic Execution using Separation Logic Quoc-Sang Phan
	Code commutation Albert Rubio
	Bit-Vector Interpolation and Quantifier Elimination by Lazy Reduction Philipp Rümmer
	Forgetting for Computing Snap-Shots of Ontologies: Progress and Challenges Renate Schmidt
	Efficient Validation of FOLID Cyclic Induction Reasoning Sorin Stratulat
	Rule-Based Nonmonotonic Reasoning with Probabilities Andrzej Szalas
	A Fixpoint Logic and Dependent Effects for Temporal Property Verification Tachio Terauchi
	Abduction in DL by translation to FOL Sophie Tourret and Christoph Weidenbach
	On Hierarchical Symbol Elimination and Applications Viorica Sofronie-Stokkermans
	Saturation Theorem Proving: From Inference Rules to Provers Uwe Waldmann
	Loop Detection by Logically Constrained Rewriting Sarah Winkler

	Participants

