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Abstract   16 

Assessment of replicate quality is an important process for any shotgun proteomics experiment. 17 

One fundamental question in proteomics data analysis is whether any specific replicates in a set 18 

of analyses are biasing the downstream comparative quantitation. In this paper, we present an 19 

experimental method to address such a concern. PeptideMind uses a series of clustering Machine 20 

Learning algorithms to assess outliers when comparing proteomics data from two states with six 21 

replicates each. The program is a JVM native application written in the Kotlin language with 22 

Python sub-process calls to scikit-learn. By permuting the six data replicates provided into four 23 

hundred triplet non redundant pairwise comparisons, PeptideMind determines if any one 24 

replicate is biasing the downstream quantitation of the states. In addition, PeptideMind 25 

generates useful visual representations of the spread of the significance measures, allowing 26 

researchers a rapid, effective way to monitor the quality of those identified proteins found to be 27 

differentially expressed between sample states.  28 

Keywords:  29 

Classification, data quality, data validation, false discovery, kotlin, label-free shotgun proteomics, 30 

machine learning, protein quantitation, spectral counting, statistics.  31 
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Required Metadata  34 

 35 

Current code version 36 

 37 

Table 1 – Code metadata (mandatory) 38 

Nr Code metadata description  Please fill in this column  

C1 Current code version V1.0.1 

C2 Permanent link to code/repository 
used of this code version 

www.bitbucket.org/peptidewitch/peptidemind 

C3 Code Ocean compute capsule N/A 

C4 Legal Code License MIT 

C5 Code versioning system used git 

C6 Software code languages, tools, and 
services used 

Kotlin, Gradle, Python 

C7 Compilation requirements, 
operating environments & 
dependencies 

Gradle, python packages listed in requirements.txt 

C8 If available Link to developer 
documentation/manual 

www.bitbucket.org/peptidewitch/peptidemind  

C9 Support email for questions david.handler@students.mq.edu.au 

 39 

Note - Sample data used to generate the figures in this manuscript can be downloaded from  40 

https://bitbucket.org/peptidewitch/peptidemind/downloads  41 
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1. Motivation and Significance 42 

Proteomics is the large-scale study of expressed proteins in biological systems, where the 43 

researcher undertakes analysis of biological networks that underpin cellular processes. In 44 

addition, there is a large data science component whereby raw data from a mass spectrometer 45 

has to be matched against known protein and peptide sequences before downstream analysis 46 

can occur. Making sense of all the requirements of a proteomics experiment can be a challenge; 47 

one such challenge is ensuring the validity of biological information drawn from quantitative 48 

comparisons of protein expression between test states. For example, if we have a cancer cell line 49 

dosed with a new synthetic drug, how can we effectively say that protein expression profiles 50 

generated from our treated cell state differ from those of our control cell state? There are several 51 

factors to consider, including experimental design, the process of identification of proteins, and 52 

the quantitation of proteins between these two states. Much attention has been paid to 53 

downstream forms of biological validation such as Western blotting (using an antibody to show 54 

qualitative differences between specific proteins) and parallel reaction monitoring (an 55 

orthogonal targetted mass spectrometry based method) as means to confirm an increase or 56 

decrease in protein expression between states [1]. However, there is also much to be gained 57 

from applying a more rigorous set of statistical or analytical tools prior to laboratory follow-up 58 

experiments. As Kall and colleagues describe in their seminal paper on the Percolator software 59 

[2], the application of smart methods to discriminate good quality from poor quality data can 60 

greatly improve the quality of the dataset, which can clarify any downstream quantitation 61 

performed using the data in question. 62 

Over the past two decades, researchers have leveraged the power of machine learning 63 

algorithms (MLAs) in order to assist with shotgun proteomics data analysis. Classification 64 

algorithms are a natural fit for determining biomarker identity from state comparison 65 

experiments [3], while support vector machines have been utilised in a semi-trained fashion to 66 

help determine false discoveries in peptide to spectrum matching [2]. Machine learning 67 

algorithms have also been used to aid with peptide to spectrum matching, for example in the 68 

application of decision trees to utilise ion fragmentation patterns for peptide identification [4]. 69 
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Recently, with the advent of easier implementation of MLAs via python packages such as 70 

Python’s scikit-learn, more proteomics researchers are choosing to enhance their data analysis 71 

with MLAs [5]. 72 

When it comes to their application, MLAs are by no means a silver bullet that allows a researcher 73 

to exclusively target critical insights. Not every problem can be solved by running data through 74 

Support Vector Machines or Generalised Linear Models, and not every dataset is suited to, for 75 

example, Random Forest Classification. Sometimes a simple Decision Tree can suffice. There is 76 

also the consideration of training sample sizes – the oft-quoted adage of ‘the more data, the 77 

better’ makes no a priori assertion regarding the quality of the data, and it may well be the case 78 

that smaller, more accurate data pools are better to train against [6]. Shotgun proteomics 79 

datasets, then, are an interesting dataset to work with, given their relatively small size compared 80 

with transcriptomics and genomics, as well as their proportion of valuable biological information 81 

relative to their noise level, or junk data. Unlike binary sentiment/natural language analysis (like 82 

understanding if a movie review is positive or negative by word choice alone), or qualitative 83 

categorisation (such as movie ratings), proteomics data is a mixture of noise and overlapping 84 

signal. A deep learning approach to six replicates of two states may not provide a clear insight 85 

into the relationship between these two states, whereas a more simple classifier-based approach 86 

could potentially offer insights as to the quality of the comparisons being made. 87 

In this report, we introduce PeptideMind, a Kotlin/Python hybrid program that utilises a cohort 88 

of classifier MLAs to analyse replicate quality from proteomic peptide to spectrum matching 89 

search engine outputs. Following on from the same-same architecture that our lab group has 90 

developed [7], PeptideMind will take six replicates of control and treatment protein ID data and 91 

conduct multiplexed non-redundant analysis on the protein identifications (IDs). The output of 92 

the PeptideMind process is a series of graphics by which the researcher can assess overall 93 

replicate quality and check for outliers, as well as focus on specific protein identifications of 94 

interest and analyse the spread of difference in expression levels, thus assisting the researcher 95 

in providing a confident measure of statistical validation. 96 
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2. Software Description 97 

PeptideMind has two components. The first is a Kotlin/Java environment that can be replicated 98 

through use of the Gradle file included within the repository. Working with a development 99 

environment such as IntelliJ by Jetbrain should handle the installation automatically; manual 100 

installation can be achieved with other environments. Regardless, Gradle is mandatory. Secondly, 101 

PeptideMind requires a version of python to be installed on the user system. Currently, 102 

PeptideMind defaults to a specific version of Python installed on the Path (a future update will 103 

allow users to point to a virtualenv such as pipenv). This python environment should have the 104 

packages installed from the requirements.txt file in the PeptideMind source directory. 105 

The software is comprised of a single GUI page made with TornadoFX, as shown in Figure 1. Users 106 

follow the control flow from left to right hand side of the page, selecting the following elements: 107 

1. The folder location for the control state data 108 

2. The folder location for the treatment state data 109 

3. The type of peptide to spectrum matching search engine used 110 

4. The type of MLAs to use for analysis (at least 1 must be selected) 111 

5. The scope by which the analysis is conducted on the whole dataset 112 

6. Whether any proteins of interest should be targetted. If users input a specific text 113 

identifier (in the same format as their PSM engine from step 3) the resulting analysis 114 

will only focus on these identifiers to the exclusion of all others. 115 

7. A folder location for the output data, and 116 

8. A ‘start’ button 117 

The resulting output will be contained within the folder specified in Step 7. Users must separate 118 

their control and treatment states data into separate folders and name their replicates according 119 

to the following structure: %name-R%replicate_number. For example, statin-R1, statin-R2, etc, 120 

for the control state. Both states must have exactly six replicates each. 121 

PeptideMind outputs four broad categories of results. 122 
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1. A series of excel files containing the common protein identifiers found across all six 123 

replicates for both states, including their Student’s T-Test significance values at both the 124 

spectral counting level and the exponential logarithmic normalised spectral abundance 125 

factor (NSAF) level [8,9]. 126 

2. Isolation Forests for each common ID displaying the aforementioned significance 127 

measures along the X and Y axis. 128 

3. A MultiLabel deviation plot, where each replicate is shown against a middle line value of 129 

0.5. This plot is designed to give users, at a glance, some idea of which replicates in which 130 

state are contributing to up- or down-regulation of significant proteins. 131 

4. A ‘Mega Isolation’ Forest comprising an aggregate spread of protein significance 132 

measures along all four hundred combinations. 133 

A more in-depth explanation of the processes of PeptideMind and how it arrives at the end 134 

results is provided below.  135 

Result category 1: .csv outputs 136 

PeptideMind begins with two sets of sextuplicate results from proteomics peptide to spectrum 137 

matching search engines, currently including Proteome Discoverer [10], Meta Morpheus [11] and 138 

X!Tandem [12]. Broadly speaking, what the PeptideMind program aims to do is to produce an 139 

internal measure of inter-replicate variability, and display the spread of protein expression level 140 

variance, for the user to determine if subsequent differential analysis is worthwhile. To achieve 141 

this aim, the program begins by sorting the six replicates of the control and six replicates of the 142 

treatment state into sub-experiments for analysis, as shown in Figure 2. A pair of states with six 143 

replicates apiece can be split into two sets of three in four hundred non-redundant pairs. These 144 

pairs of three by three comparisons each constitute their own analysis. This pairwise combination 145 

undergoes a round of data filtering by Minimum Spectral Counting [13,14] before being subjected 146 

to two different types of Student T-Tests – one based on the spectral count of each protein, and 147 

the other based on natural log NSAF values. Any protein identifier that is considered significantly 148 

differentially expressed is recorded. This analysis is then repeated by shuffling new combinations 149 
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of paired triplets between state one and state. Next, a list of proteins common to all four hundred 150 

triplet comparisons is produced, and the significance value from the two types of T-Tests are 151 

matched to the protein identifier. We then consider this data our training set for the machine 152 

learning algorithms. Data from this process is stored in .csv outputs for the user to examine for 153 

their own interest.  154 

Result category 2: isolation forests for common protein identifiers between the states 155 

Next, each of the common IDs from the four hundred tests is subjected to an individual Isolation 156 

Forest algorithm. The results from students T-Tests on lnNSAF and spectral count data are plotted 157 

in two dimensions, with the background color-gradient coded to correspond to the spread of 158 

significance results within the data as determined by an Isolation Forest algorithm. The results 159 

from all four hundred test combinations are shown as black dots, while a single yellow dot 160 

corresponds to the significance measure of the protein from the original 6 by 6 replicate test 161 

conducted. This serves as an anchor for the results: most researchers would only see this single 162 

measure of significance, but now, graphically, we have a way of determining the spread of 163 

significance measures in a manner that is intuitive and visually informative. 164 

Result category 3: multi-MLA analysis of replicate contribution to significance measures.  165 

Another useful measure of inter-replicate variability comes from a blind assignment of protein 166 

identifiers with regards to their corresponding differentiation levels from replicate values as 167 

determined by four separate multi-classifier algorithms selected by the user in Step 4 of the 168 

workflow described earlier. The results are displayed as a histogram plot which indicates the 169 

relative contribution of each replicate towards the quantitative differences of all protein 170 

identifiers shared between the states. Each data point is the average value found from the 171 

selected MLAs. What the machine learning consensus network here achieves is a blind 172 

assignment of protein identifiers to replicates, thus allowing the researcher to see if any one 173 

replicate in particular is consistently contributing more weight to differential analysis. 174 
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3. Illustrative Examples 175 

To provide illustrative examples, we analysed data from two ongoing studies in our laboratory. 176 

The first study involved proteomic analysis of Eucalytpus grandis leaf tissue, with six replicates 177 

corresponding to young healthy leaf tissue set and six replicates from old senescent leaf tissue. 178 

Proteomic data was acquired using the X!Tandem algorithm for peptide to spectrum matching. 179 

The second study involved proteomic analysis of two different laboratory yeast strains 180 

designated CCC and CCB, with proteomic data acquired using the Meta Morpheus algorithm for 181 

peptide to spectrum matching. 182 

The individual Isolation Forests for data generated by the program for each shared protein 183 

identifier are shown in Figure 3 for two selected proteins from the Eucalyptus experiment: K1C9 184 

is a human keratin protein present at variable levels as a result of sample handling contamination; 185 

XP_010027978.1 is a serine hydroxymethyltransferase metabolic protein. In Figure 3a the protein 186 

ID significance shows a wide spread of results for the K1C9 protein across the different 187 

comparisons, while Figure 3b shows a very tightly correlated spread of protein ID significance for 188 

the metabolic protein. This can be viewed as a form of statistical validation; if a protein ID of 189 

interest displays a spread of significance similar to Figure 3b, rather than Figure 3a, then we can 190 

say with confidence that this result is more likely to be significant and less influenced by inter-191 

replicate noise. 192 

Figure 4 shows the histogram plots of the average output values found from the selected MLAs, 193 

for both the Eucalyptus data set and the yeast data set. In Figure 4a, for the Eucalyptus data, 194 

there is clearly significant variation between the replicates. In the data from young leaf tissue 195 

(replicates R1-R6), replicates 1 and 4 contribute relatively less to the differentially regulated 196 

protein identifiers, whereas replicates 2 and 6 are overrepresented. In the data from old leaf 197 

tissue (replicates R7 to R12), replicate 8 contributes more weight to protein differentiation than 198 

replicates 10 and 12. Replicate 4, in particular, may not be truly representative of the proteome 199 

state given the relative disparity observed.  In contrast, the histogram shown in Figure 4b for the 200 

yeast data indicates that all 12 replicates are internally consistent, and all contributed relatively 201 

equally to the observed differences in protein expression. 202 
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The red dotted line in the histograms represents an ideal result – if we are to assume that all of 203 

the replicates hold equal analysis weight in the course of the experiment, then every replicate 204 

should fall on the dotted line and report the same result for every one of the 400 triplet 205 

combinations. In reality this is not the case, as some replicates have higher numbers of specific 206 

proteins relative to their state cohort. This chart is a visual indicator of how biased our results 207 

are, in terms of which replicates are over- or under-represented in their contribution to protein 208 

significance spreads. A more even histogram indicates high quality replicates and low levels of 209 

variable noise, whereas a histogram more reminiscent of a city skyline may indicate significant 210 

problems in the reproducibility of the data. 211 

4. Impact 212 

 213 

PeptideMind provides user with clear visual metrics concerning the validity of their downstream 214 

quantitation profiles, by highlighting the spread of variance for every protein identifier and every 215 

replicate within the total system. At a glance, the proteomicist can understand which, if any, of 216 

their replicates are biasing the downstream results. As such, we consider PeptideMind to be a 217 

useful first step in the process of data validation prior to subsequent experiments. Consider the 218 

XP_010027979.1 metabolic protein from Figure 3b. If an additional analysis or experiment 219 

determined this protein was biologically significant within our system, we would also be able to 220 

point to this Isolation Forest result as an indicator of statistical significance that falls within 221 

expected parameters. Conversely, we would consider the K1C9 protein in Figure 3a as showing 222 

too much variance for realistic application of statistical measures of significance. Biological 223 

conclusions that rely on such a protein would be considered putative until further orthogonal 224 

validation experiments were performed.   225 

 226 

At present, PeptideMind is not intended as a replacement for orthogonal protein validation 227 

experiments such as Western blotting, Parallel reaction monitoring, or other orthogonal mass 228 

spectrometry experiments. Rather, PeptideMind should serve as another tool in the proteomics 229 

toolbox which can be used to provide extra rigour for results, and demonstrate the validity of 230 

underlying quantitation without the need for additional experiments. The biggest hurdle with the 231 
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design of this program, however, is in the requirement for two states to have six replicates each. 232 

As replicate costs can be burdensome, PeptideMind is recommended for experiments in the 233 

discovery phase where tissue can be sourced relatively cheaply. In so doing, the researcher can 234 

accumulate a solid set of data backed up by PeptideMind, and the judicial use of other statistical 235 

measures, to narrow down their list of protein identifiers for further analysis. 236 

PeptideMind is still in development phase, and there is much room for improvement. Some 237 

future additions may include: 238 

1. Extra permutation potential when 7, 8, 9 or more replicates are specified per state 239 

2. Additional MLAs incorporated into the replicate bias analysis 240 

3. The incorporation of a python virtual environment for cleaner code production 241 

4. Better real-time feedback to the user to update what stage the program has reached. 242 

We hope that PeptideMind may serve as the inspiration for future experimentation and software 243 

development that leverages the power of permutations with MLAs for better, more specifically 244 

tailored analysis of differentially expressed proteins in proteomics experiments. 245 

 246 

5. Conclusions 247 

In this report, we have demonstrated the capabilities of the PeptideMind software in providing 248 

a valuable tool of statistical validation for data analysis pipelines in shotgun proteomics 249 

experiments. Leveraging the power of MLAs with permutation analysis, PeptideMind is capable 250 

of generating simple yet powerful graphical metrics whereby the user can assess the quality of 251 

their replicates, differential expression profiles, and resulting quantitation. In the future, we hope 252 

to expand the capability of the platform to incorporate further improvements and additional 253 

features. 254 
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 304 

Figure Legends 305 

 306 

Figure 1: Graphical User Interface which allows interaction with the PeptideMind software. 307 

Figure 2: schematic diagram illustrating the replica permutation processing employed by 308 

PeptideMind. 309 

Figure 3: Isolation Forests generated by PeptideMind for two selected proteins from an 310 

experiment comparing the proteome of young and old eucalyptus leaves. (A) K1C9, a human 311 

keratin protein present at variable levels, (B) XP_010027978.1, a serine 312 

hydroxymethyltransferase metabolic protein. 313 

Figure 4: Histograms of the average output values found from the MLAs used by PeptideMind. 314 

(A) data from an experiment comparing the proteome of young (replicates R1-R6) and old 315 

(replicates R7-R12) eucalyptus leaves, (B) data from an experiment comparing the proteome of 316 

two laboratory yeast strains known as CCB (replicates R1-R6) and CCC (replicates R7-R12). 317 

  318 
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Figure 1 322 

 323 

 324 

Figure 1: Graphical User Interface which allows interaction with the PeptideMind software. 325 

  326 

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 21, 2020. ; https://doi.org/10.1101/2020.08.20.260455doi: bioRxiv preprint 

https://doi.org/10.1101/2020.08.20.260455
http://creativecommons.org/licenses/by-nc/4.0/


15 
 

 327 

Figure 2 328 

 329 

 330 

Figure 2: schematic diagram illustrating the replica permutation processing employed by 331 

PeptideMind. 332 
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Figure 3a (left) and 3b (right) 334 

 335 

Figure 3: Isolation Forests generated by PeptideMind for two selected proteins from an 336 

experiment comparing the proteome of young and old eucalyptus leaves. (A) K1C9, a human 337 

keratin protein present at variable levels, (B) XP_010027978.1, a serine 338 

hydroxymethyltransferase metabolic protein. 339 

 340 
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Figure 4a 343 

 344 
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Figure 4b 346 

 347 

 348 

Figure 4: Histograms of the average output values found from the MLAs used by PeptideMind. 349 

(A) data from an experiment comparing the proteome of young (replicates R1-R6) and old 350 

(replicates R7-R12) eucalyptus leaves, (B) data from an experiment comparing the proteome of 351 

two laboratory yeast strains known as CCB (replicates R1-R6) and CCC (replicates R7-R12). 352 
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