
Parameter Optimization for Real-World ENSO Forecast in an
Intermediate Coupled Model

YUCHU ZHAO

Department of Atmospheric and Oceanic Sciences, Peking University, Beijing, China

ZHENGYU LIU

Atmospheric Science Program, Department of Geography, The Ohio State University, Columbus, Ohio, and

Department of Atmospheric and Oceanic Sciences, Peking University, Beijing, China

FEI ZHENG

Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing, China

YISHUAI JIN

Department of Atmospheric and Oceanic Sciences, Peking University, Beijing, China

(Manuscript received 4 June 2018, in final form 10 January 2019)

ABSTRACT

We performed parameter estimation in the Zebiak–Cane model for the real-world scenario using the ap-

proach of ensemble Kalman filter (EnKF) data assimilation and the observational data of sea surface temper-

ature and wind stress analyses. With real-world data assimilation in the coupled model, our study shows that

model parameters converge toward stable values. Furthermore, the new parameters improve the real-world

ENSO prediction skill, with the skill improved most by the parameter of the highest climate sensitivity (gam2),

which controls the strength of anomalous upwelling advection term in the SST equation. The improved prediction

skill is found to be contributedmainly by the improvement in themodel dynamics, and second by the improvement

in the initial field. Finally, geographic-dependent parameter optimization further improves the prediction skill

across all the regions. Our study suggests that parameter optimization using ensemble data assimilation may

provide an effective strategy to improve climate models and their real-world climate predictions in the future.

1. Introduction

Recent studies have shown that data assimilation may

be used for improving weather and climate models by

estimating model parameters with the observational

data. Most of these studies, however, have been per-

formed in the perfect model scenario (Aksoy et al.

2006a; Tong and Xue 2008a,b; Wu et al. 2012; Zhang

et al. 2012). These studies show that model parameters

can indeed converge toward the truth values, even in

coupled general circulation models (CGCM; Liu et al.

2014; Li et al. 2018). With improved parameters, model

bias can be reduced (Tong and Xue 2008a,b) and the

prediction skill can be improved (Wu et al. 2012; Zhang

et al. 2012).

Since our ultimate objective of making weather and

climate models is for the study of the real world, it is

essential to explore parameter estimation with observa-

tional data. So far, however, there have been few studies

on the parameter estimation for the real world. In gen-

eral, parameter estimation with observational data poses

further challenges. First, models inevitably have de-

ficiencies and biases compared with the real world

(Zheng and Zhu 2016). Second, for the real-world sce-

nario, it is not even clear if most of themodel parameters

have the ‘‘truth’’ values. Third, for some parameters that

do have optimal, it is not clear if the optimal values

would be state-dependent and therefore are no longer
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temporally constant (Hansen andPenland 2007). Indeed,

for the real-world scenario, since the true value of a pa-

rameter is unknown, it becomes sometimes unclear how

to judge if a parameter achieves the ‘‘optimal’’ value. An

optimal parameter can be judged on its effect in im-

proving the model simulation and model biases, it can

also be judged on its effect on the improvement of the

real-world prediction. In the few examples available,

Menemenlis et al. (2005) and Toyoda et al. (2015) per-

formed parameter estimation in OGCMs with Green’s

function method and suggested that the optimized pa-

rameters can improve the model simulation. Hu et al.

(2010) performed simultaneous state and parameter es-

timation in a weather model and suggested that the op-

timized parameters are able to improve the model

forecast skill for real-world weather events. In a simpli-

fied intermediate coupled model (ICM), Kondrashov

et al. (2008) performed parameter estimation with ob-

servational data and suggested that the optimized pa-

rameters improve the model simulation such that the

simulation tracks the observations better.

Here, different form previous studies, we study pa-

rameter estimation with real-world observations in an

ICMwith the focus on the model prediction skill. We will

use the Zebiak–Cane model (Zebiak and Cane 1987) in

its latest version LDEO5 (Chen et al. 2004). Our study

shows that, for real-world observations, key model pa-

rameters converge to new optimal values and the opti-

mized parameters can improve the ENSO forecast skill

significantly. The paper is organized as follows. Section 2

briefly describes the model and the method of parameter

estimation. Section 3 shows the estimation results and the

prediction skill in the ZC model. Section 4 discusses

further issues related to the postprocessing process of the

forecast and the effect of estimating spatially varying

parameters. A summary is given in section 5.

2. Model and method

a. Model description

We use the well-known intermediate coupled ocean–

atmospheremodel Zebiak–Cane (ZC)model (Zebiak and

Cane 1987) in its latest version, Lamont–Doherty

Earth Observatory, version 5 (LDEO5; Chen et al.

2004). The model has been shown to be able to predict

all prominent El Niño events in the 1857–2003 period

successfully, with lead times up to 2 years (Chen et al.

2004). The atmospheric model is built on the steady-state,

linear shallow water equations, with the atmospheric

circulation driven by a heating anomaly associated with

moisture convergence and SST anomaly (SSTa). The

ocean model is built on the reduced gravity model, and

the ocean currents are generated initially by the observed

monthly wind field, and then driven by the wind stress

anomaly of the atmosphere model. There is also an

equation for the SSTa (appendix A), which depends on

the heat flux exchange between the surface and sub-

surface waters as well as the surface heat flux and

advection. The model ocean domain is the tropical

Pacific Ocean region (28.758S–28.758N, 1248E–808W).

The atmosphere and SSTa have a resolution of

5.6258 (longitude) 3 28 (latitude), while the ocean dy-

namics have a resolution of 28 (longitude)3 0.58 (latitude).
Compared to the original ZC model, the LDEO5

model has an additional bias-correction module, which

significantly improves the forecast skill for the real

world. The bias-correction method is based on the re-

gression of model errors with model state variables in

a reduced space of empirical orthogonal functions and

TABLE 1. The parameters for estimation.

Parameter Physical meaning Default value

gam1 Strength of mean upwelling

advection term in SST

equation

0.75

gam2 Strength of anomalous upwelling

advection term in SST

equation

0.75

tda1 Amplitude of subsurface

temperature anomaly for

positive h perturbations

28

tda2 Amplitude of subsurface

temperature anomaly for

negative h perturbations

240

tdb1 Affect the nonlinearity of

subsurface temperature

anomaly for 1h perturbations

1.25

tdb2 Affect the nonlinearity of

subsurface temperature

anomaly for 2h perturbations

3

FIG. 1. Model sensitivity for six parameters. For each parameter,

the sensitivity is obtained by perturbing the parameter by 10% of

its default value at the initial time in a 100-member ensemble run

and force the models for 1 year; then the 3-month (blue), 6-month

(red), and 12-month (green) mean standard deviation of SST is

used to represent the sensitivities.
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is applied at every time step of the forecast (Chen

et al. 2000).

b. Method and observation data

We use the ensemble Kalman filter (EnKF) for data

assimilation (Evensen 1994; Zheng et al. 2006). The pa-

rameters are estimated by augmenting the state variables

with model parameters in a simultaneous estimation of

both the state and model parameters (Anderson 2001).

Similar results are also obtained when we use the

ensemble adjustment Kalman filter (EAKF) method

(Anderson 2001; not shown). The details of the EnKF

scheme and parameter estimation scheme are in appendix

B. Briefly, here, for each experiment, parameter esti-

mation is carried out after a spinup period in which only

the state variables are updated until the model state

ensembles are constrained by observation sufficiently

(Zhang et al. 2012). We use an ensemble size of 100 and

perform the data assimilation and parameter estimation

at the last time step of each month. We have tested as-

similation periods from 1 to 3 months and the result is

insensitive to the length of the assimilation. To avoid the

accumulation of sampling error during the update pro-

cess, we use a spatial updating method (Aksoy et al.

2006a) that transforms a globally uniform parameter to a

two-dimensional field and update it grid-by-grid using

localization. A covariance localization (Gaspari and

Cohn 1999) is applied to both the state and model pa-

rameters within the area of 3 longitude grids and 7 lat-

itude grids. To avoid the loss of ensemble spread, a

conditional covariance inflation (CCI) technique (Aksoy

et al. 2006b) is also applied in the parameter estimation

such that the ensemble spread is maintained above a

prescribed threshold. The observational data are the

monthly analyses of HadISST and Florida State Univer-

sity (FSU) wind stress (Goldenberg and O’Brien 1981)

both in the period of 1980–2000. All observations are first

interpolated to the model grid point before assimilation.

The observed data are regarded as the ‘‘truth,’’ and the

‘‘observations’’ used in data assimilation and parameter

estimation systems are constructed by the addition of a

Gaussian white noise onto the truth (Lu et al. 2017). In

our study, model SSTa and wind stress anomaly are cor-

rected by all observations within the localization distance

of the cross covariance (Gaspari and Cohn 1999). An

additive inflation technique is also used for model state

(Hamill and Whitaker 2005). Model parameters are es-

timated with the observed SST anomaly only. The errors

of the SSTa and the wind stress anomaly in the ob-

servation are assumed independent and have the

scales of 0.1 K (Karspeck and Anderson 2007) and

0.1m s21, respectively. In all of our study shown

FIG. 2. (a) Parameter estimation of gam2. The ensemble size is 100. The observations are the monthly SST

anomaly. The red solid line is the temporal evolution of the ensemble mean of gam2, and the red dashed lines are

the one standard deviation of its ensemble spread. (b) Niño-3.4 SSTa and (c) RMSE of Niño-3.4 SSTa analysis in

No-PE and Single-PE experiments. (d)As in (c), but for the period of 1981–2000 (remove the first year without data

assimilation).
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below, parameter estimation is made using the ob-

servation of 1980–2000 and the climate prediction is

made for the SSTa in 1982–2000. We have tested

other periods of the observations and our results re-

main largely unchanged.

3. Parameter estimation and prediction skill in ZC
model

a. Parameters in ZC model

We first study the parameter estimation in the original

ZC model such that there is no bias correction in the

forecast. Six parameters in the SST equation are updated

in our study (Table 1, appendix A). These parameters

control the upwelling and subsurface temperature in the

ocean and are therefore important for the simulation of

SSTa and atmospheric circulation. Different parameters

have different impacts on the model simulation, sug-

gesting that different parameters have different model

sensitivities. In our study, the model sensitivity is evalu-

ated by perturbing a parameter with 10% of its default

value and then calculate the 1 year mean standard de-

viation of SSTa after the perturbation. Our sensitivity

experiments show that the final results are not sensitive to

the initial perturbation magnitude. In addition, all the

parameter estimation experiments below have been first

carried out in the perfect model scenario. In all the per-

fect model experiments, all the parameters converge

FIG. 3. ZC model prediction skill of the Niño-3.4 index in the period of 1982–2000

with the lead time up to 12 months. The blue line is the skill of model forecast ensemble

mean with default parameter value. The red line is the skill of model forecast ensemble

mean after single-parameter estimation for gam2. The shading is the one standard de-

viation of spread. The black line is the skill of persistence prediction. (a) ACC and

(b) RMSE.
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toward the truth values. The challenge is therefore if they

converge for real-world observation.

b. Single-parameter estimation

Our model sensitivity experiments for the six pa-

rameters above show that the most sensitive parameter

is gam2 (Fig. 1), which controls the strength of anom-

alous upwelling advection term in the SST equation

(appendix A) and in turn upwelling feedback in the

coupled model. We therefore first perform single-

parameter estimation (PE) for gam2 (Fig. 2). The pa-

rameter is updated every month for 20 years. It is seen

that the parameter converges to a constant after

2 years. The optimized parameter value is calculated as

the average of the last 10 years, which is 0.582 in

this case. It should be pointed out that the conver-

gence to a constant is not an obvious result for real-

world parameter estimation. As pointed out by Hansen

and Penland (2007), for the case of real-world assimila-

tion, a model parameter may not even have a truth value,

or it may not converge to a constant because the model

parameter may depend heavily on state variables. Fur-

thermore, Figs. 2c and 2d show a reduction of the SST

error in the analysis of Single-PE (red) compared with

No-PE (blue).

Here, the optimized parameter will be evaluated in

terms of the ensemble forecast skill. Specifically, we will

compare the climate predictions between the model

with the default parameter value (i.e., the model with no

parameter estimation, hereafter No-PE experiment)

and the model with the optimized parameter value

(Single-PE experiment). Without further specification,

we will use the Niño-3.4 SST anomaly as the index for

comparison. All conclusions remain qualitatively un-

changed if the forecasted SSTa averaged over the entire

model region is used (not shown). The forecast skill is

evaluated using both the anomaly correlation coefficient

(ACC) and the root-mean-square error (RMSE) of the

forecasted ensemble mean against the observation of

1980–2000. Figure 3 shows the prediction skills of lead

times up to 12 months for Niño-3.4 SST anomaly in for

the ensemble mean forecast (solid line) and the en-

semble spread (one standard deviation in shading). It is

seen that the model with the optimized parameter im-

proves the forecast skill over the model with the default

parameter, in both the ACC and RMSE (Figs. 3a,b, red

vs blue solid lines). Indeed, the improvement, which is

small in the initial month, becomes significant afterward

2 months of forecast lead time. This occurs because the

initial forecast depends mostly on the initial field, while

the influence of the parameter becomes dominant at

longer lead times (Zhu and Navon 1999). Furthermore,

the accuracy of forecast is also improved with the opti-

mized parameter, which can be seen in the reduced

FIG. 4. Prediction error in the Niño-3.4 region for the period of 1982–2000 for the model with the default pa-

rameter gam2 (blue) and optimized parameter (red) (a) at the initial time and (b) the difference between Single-PE

and No-PE, (c) at lead time of 6 months, and (d) the difference between Single-PE and No-PE. The solid is the

ensemble mean and the shading is the one standard deviation of the spread.
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forecast skill uncertainty (shading in Fig. 3). This result

demonstrates that the single-parameter estimation of

the parameter gam2 can improve the prediction of this

model for the real-world scenario. As a reference, the

forecasts in both models beat the persistence forecast

of the SST anomaly after;5 months (Figs. 3a,b, black

solid). The poor initial forecast of the model com-

pared with the persistence is due to the error in the

initial SSTa field. The model ocean initial state is

obtained using the observed wind stress forcing in the

coupled model (Chen et al. 2004) and therefore the

initial SSTa differs from the observation. The persistence

forecast, which is performed as SSTa(t) 5 SSTa(0),

however, uses the observation SSTa itself as the fore-

cast and is therefore ‘‘perfect’’ at the initial time

(ACC 5 1, RMSE 5 0) because the SSTa observation

itself is used here for the evaluation of the forecast

skill.

The forecast skill is increased because the model of

optimized parameter improves both the initial field and

the model itself. The ensemble initial state is obtained

by forcing the coupled model with perturbed observa-

tional wind stress from 1970 to 2000 (Chen et al. 2004)

and in this process, parameters can influence the ob-

tained initial field. The model itself represents the

model dynamics and the characteristics of model simu-

lation, such as persistence, amplitude, and autocorrela-

tion. The improvement of the initial field can be seen in

the forecast skill at lead time 0 together with the error of

the Niño-3.4 SST anomaly (Fig. 4). In our model pre-

diction here, the ensemble initial field is obtained by the

model with the default parameter for No-PE (Chen et al.

2004), and by the model with the optimized parameter

for the Single-PE. A comparison of the errors of the two

initial fields shows a clear reduction in the latter model,

mainly in the period of 1992–2000 (Figs. 4a,b). Further

error reduction can be seen in the forecast error at larger

lead times, for example, at month 6 (Figs. 4c,d), which

shows an error reduction in the whole period and is large

in the period of 1992–2000.

The improvement on the model can be seen in the

seasonal persistence or the seasonal autocorrelation

FIG. 5. Seasonal autocorrelation function from lag month 1 to 11

for theNiño-3.4 index in the (a) observation, (b) themodel with the

default parameter, and (c) themodel with the optimized parameter

gam2. The pattern correlation with observation is 0.85 (Single-PE)

and 0.62 (No-PE).

FIG. 6. Power spectrum density (PSD) of Niño-3.4 index. This

PSD is obtained from the autocorrelation function. More spe-

cifically, we first calculate the autocorrelation function of the

SST time series, and then apply the discrete Fourier trans-

formation to derive the power spectrum density. The black line is

the observation, the blue line is the model with the default pa-

rameter value, and the red line is the model with the optimized

parameter value.
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function. Figure 5 shows the seasonal persistencemap for

the observation (Fig. 5a), No-PE (Fig. 5b). and Single-

PE (Fig. 5c). It is seen that the persistence of No-PE

fails to capture some major features of the observa-

tion, such as the sharp spring persistence barrier

(Torrence and Webster 1998). This deficiency is im-

proved with the optimized parameter. Indeed, the

spatial correlation of the persistence map with the

observation is improved substantially from 0.62 in No-

PE to 0.85 in Single-PE. In addition, the optimized

gam2 also seems to improve the intensity of the sim-

ulated ENSO somewhat. As seen in the power spec-

trum (Fig. 6), ENSO magnitude in No-PE is too large

compared with the observation, and this excessive

magnitude is reduced by the optimized parameter in

Single-PE because of a smaller gam2, which reduces

the upwelling response to wind stress, and in turn the

upwelling positive feedback

To investigate the effects of the improvement of the

initial field and the model itself on forecast skill sepa-

rately, we performed two more experiments. In one ex-

periment, the forecast initial field is the same as in No-PE

but the forecast is made with the model of the optimized

parameter (as in Single-PE; named SPE-Ctrlini; Figs. 7a,

c, dashed line). In the other experiment, the forecast

initial field is the same as in Single-PE but the forecast

is made with the model of the default parameter (as in

No-PE; named SPE-Ctrlpara; Figs. 7b,d, dashed line).

The forecast skill of SPE-Ctrlini starts the same as that in

No-PE, as expected, and then becomes close to Single-PE

after 3 months (Figs. 7a,c). To the contrary, the forecast

skill of SPE-Ctrlpara starts the same as that in Single-PE

and then becomes close to No-PE after 3 months. This

indicates that the impact of the optimized parameter on

model dynamics contributes more to the model forecast

skill, compared to that on initial field.

We have also performed single-parameter estimations

on the other five parameters individually. The results are

qualitatively similar. That is, in each case, the parameter

converges to a new value. The new parameter improves

the forecast skill in both ACC and RMSE. Quantita-

tively, however, the improvement of the forecast is

smaller than that for gam2, consistent with their model

sensitivities in Fig. 1.

It will be interesting to explore the physical mecha-

nism that enables each optimized parameter to im-

prove the model and the forecast. This understanding

would involve extensive sensitivity experiments and

analysis and therefore will be left for future studies.

Here, we note that some features of the improvement

are reasonable, physically. For example, the optimized

gam2 is smaller than the default by ;20%. A smaller

FIG. 7. As in Fig. 3, but only for the ensemble means. Additionally, we also plot two sensitivity experiments:

(a),(c) SPE-Ctrlini (red dash), in which the forecast is made using the optimized parameter, but the No-PE initial

field; (b),(d) SPE-Ctrlpara (red dash), in which the forecast is made using the default parameter but the initial field

from the Single-PE.
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gam2 leads to a weaker Ekman upwelling feedback, a

weaker coupled feedback and, eventually, a weaker

ENSO. This is consistent with the reduction of the

ENSO amplitude. The improved seasonal cycle of the

feedback may also contribute to the improvement of

the spring persistence barrier here (e.g., Torrence and

Webster 1998; Liu et al. 2019).

c. Multiple-parameter estimation

We now extend the parameter estimation from a

single parameter to multiple parameters. We will esti-

mate all the six parameters in Table 1 simultaneously.

Figure 8 shows that all the parameters converge to

constants in several years. The convergence value

for each parameter is similar to that in the single-

parameter estimation experiment. For example, the

gam2 parameter starts from the default value of ;0.75

and converges toward;0.58, almost the same as that in

the single-parameter estimation (Fig. 2). This suggests

that the parameter convergence is robust and rather

independent of each other.

The model after multiparameter optimization

(Multi-PE) shows some further improvements of the

forecast skill over the best single-parameter case of

gam2. This can be seen in the prediction of Niño-3.4
SST anomaly as in the single-parameter case (Fig. 9).

The forecast skill of Multi-PE is improved over the

gam2 optimization forecast both in ACC and RMSE

(cyan line). The improvement is consistent with single-

parameter estimation experiments for other parame-

ters (not shown).

Finally, similar to the Single-PE case, the improve-

ment of the forecast skill is contributed by both the

initial field and the model itself. As in the Single-PE

case, two experiments MPE-Ctrlini and MPE-Ctrlpara

are also performed to investigate the separate impacts

of the initial field and model itself on the forecast skill

(Fig. 10). Again, similar to the case of single-parameter

estimation, the MPE-Ctrlini starts with the same skill

as No-PE, but then becomes close to Multi-PE

(Figs. 10a,c); the MPE-Ctrlpara starts with the same skill

as Multi-PE, but then becomes close to No-PE; therefore,

FIG. 8. Multiple-parameter estimation of the six parameters. The ensemble size is 100. The observations are the

monthly SST anomaly. The red solid line is the temporal evolution of the ensemble mean of each parameter, and

the red dashed lines are the one standard deviation of its ensemble spread: (a) gam1, (b) gam2, (c) tda1, (d) tda2,

(e) tdb1, and (f) tdb2.
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the impact of optimized parameters on model itself

is more important than that on initial field for the

forecast.

4. Parameter estimation and prediction skill in
LDEO5

a. Single- and multiple-parameter estimation

The original ZC model discussed in section 3 has a low

prediction skill. For example, after 6 months, the forecast

ACC is reduced to below ;0.5 and the RMSE is in-

creased to ;18C. This climate forecast skill in the ZC

model is improved significantly in the LDEO5, which

consists of the ZC model and an additional bias-

correction module. The latter improves the forecast

skill significantly with an interactive statistical correction

at every time step. This correction is based on the re-

gression between the leading empirical orthogonal func-

tions (EOFs) of the model errors and the leading

multivariate EOFs of the model states (Chen et al. 2004).

As such, for example, at month 6, the forecast ACC is

increased to ;0.75 (Fig. 11a, blue) and the RMSE is re-

duced about a half to ;0.668C (Fig. 11b, blue).

To investigate the parameter estimation scheme in the

model with the bias-correction module, we perform two

types of experiments. In the first type of experiments, we

perform the parameter estimation in the model without

bias correction as in section 3 and evaluate the optimized

parameters by the forecast with the bias-correction

module. The results show that both the single and

FIG. 9. Model prediction skill of Niño-3.4 index in 1982–2000 with different lead time in the

multiple-parameter estimation case. The blue line is the skill of model prediction with the

default parameter values. The red line is the skill of model prediction after single-parameter

estimation. The cyan line is the skill of model prediction after multiple parameter estimation.

The shading is the one standard deviation of spread. (a) ACC and (b) RMSE.
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multiple parameter estimation can also improve the

forecast skills in this case. Figure 11 compares the

forecast skills using the default parameter (blue) with

those using the optimized parameter gam2 (red) and the

optimized multiple parameters (cyan), all with the bias

correction in each forecast model. Similar to the forecast

without bias correction in section 3, after single (multi-

ple) parameter estimation, the forecast skill is increased

over the default model in both ACC and RMSE. In

addition, there is a further improvement of multipa-

rameter case over the single-parameter case. In the

other type of experiments, we regard the bias-correction

module as a component of themodel, that is, we perform

the parameter estimation with the state ensembles after

the bias correction and evaluate the optimized param-

eters by the forecast also with the bias-correction mod-

ule. The results are very similar to the former case (not

shown). Therefore, the improved forecast skills after

parameter optimization seem to be robust regardless of

the bias correction.

b. Geographic-dependent parameter optimization

Although the optimized parameters improve the fore-

cast skill over most of the eastern and central Pacific, the

forecast skill is not increased clearly over the region of the

western Pacific warm pool. This can be seen in Fig. 12 in

the forecast skill of the Niño-4 SST anomaly (Fig. 12).

(This can also been seen more clearly in the spatial pat-

tern of the forecast skill in the tropical Pacific at lead time

of 6 months later in Figs. 15 a,b). It is seen that after

multiparameter optimization, the Niño-4 forecast skill is

lower than the default model in ACC and RMSE, with a

lower ACC and higher RMSE. The possible cause of this

poor forecast in the warm pool region is that the warm

pool SSTa variability is much weaker than that in the

central and eastern Pacific, and the upwelling mechanism

controlled by the parameters is also much stronger in the

eastern Pacific. This will lead to larger sensitivities in the

central and eastern Pacific; as such, the parameter opti-

mization is likely effective mainly on the SSTa in this

region. This is confirmed in the spatial map of the pa-

rameter sensitivities in Fig. 13. The sensitivities of all

parameters are large in the eastern Pacific and small in

the Niño-4 region. Therefore, if the parameters are basin

averaged during estimation, the optimized parameters

will not be appropriate for the Niño-4 region.

As a strategy to account for the spatially varying pa-

rameter sensitivity across different regions, we performed

FIG. 10. As in Fig. 9, but only for the ensemblemeans. Additionally, we also plot two sensitivity experiments: (a),

(c) MPE-Ctrlini (cyan dash), in which the forecast is made using the optimized parameters, but the No-PE initial

field; (b),(d) MPE-Ctrlpara (cyan dash), in which the forecast is made using the default parameters, but the initial

field from the Multi-PE.
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geographic-dependent parameter optimization (GPO),

in which the optimized parameter values are estimated

different in different regions (Wu et al. 2012). The pa-

rameters are now allowed to vary zonally, and the zonal

variation of the estimated parameter is derived as the

average of the last 10 years ensemble mean at each

longitude, as shown in Fig. 14 (blue lines). The opti-

mized parameters show a significant difference in the

western Pacific from the eastern Pacific. The spatially

varying parameters lead to a much enhanced prediction

skill in the western Pacific overMulti-PE case (yellow in

Fig. 12), while maintaining the forecast skill increase

in the eastern and central Pacific comparable with that

in the model with the spatially uniform parameter esti-

mation discussed in section 4a. This can be seen more

clearly in comparison of the SSTa forecast skills im-

provement over No-PE in the equatorial Pacific at

lead-time 6 months in Fig. 15. The forecast skill in the

uniform parameter case of Multi-PE is decreased in

the western Pacific, opposite to the rest of the ocean

(Figs. 15a,b). However, with GPO this decrease of

forecast skill in the western Pacific is reduced in in

ACC, and even diminishes in RMSE (Figs. 15c,d),

while the forecast skill in the Eastern Pacific still in-

creases. The improvement of the GPO over Multi-PE

is mainly in the western Pacific (Figs. 15e,f). Therefore,

FIG. 11. Prediction skill in the LDOE5 model (ZC model with a bias correction module)

of the Niño-3.4 index in the period of 1982–2000 with different lead time in the multiple

parameter estimation case. The blue line is the skill of model prediction with the de-

fault parameter values. The red line is the skill of the model prediction after the single-

parameter estimation of gam2. The cyan line is the skill of model prediction after multiple

parameter estimation. The shading is the one standard deviation for spread. (a) ACC and

(b) RMSE.
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the geographic-dependent parameter optimization

can improve the forecast in the whole basin. The spatial

variation of the estimated parameters may not be

completely a mathematical overfitting. Indeed, there

is no reason that these parameters have to be ex-

actly spatially uniform. Therefore, the geographically

dependent parameter optimization may provide a

strategy to estimate the spatial structure of these

parameters.

5. Summary

We performed parameter estimation on the ZC

model for the real-world scenario using the data

assimilation method of EnKF. Model parameters

are estimated with model state variables simulta-

neously, using observational data, and the effect of

parameter optimization is evaluated in terms of

the ensemble forecast skill of real-world ENSO.

Both single-parameter and multiparameter experi-

ments are performed. In both cases, the parameters

converge to new parameter values. The optimized

parameters improve the real word ENSO prediction

significantly, regardless of the bias-correction pro-

cess. The largest improvement is contributed by the

parameter of the largest climate sensitivity. The

forecast skill is improved by the improvements in

both the initial field and the model itself. A gener-

alization to allow for the spatial variation of the es-

timated parameter further improves the forecast

skill over the western Pacific SSTa as well as in the

central and eastern Pacific.

To our knowledge, this work is the first parameter

estimation work in a coupled climate model for the

real-world scenario. Given the challenges in the im-

provement of coupled climate models in general, our

work suggests that parameter estimation using data

assimilation may provide an effective approach to

improve climate models and climate prediction in the

future. Much further study however is needed in the

future for the optimization of parameters in coupled

climate models. For example, EnKF is an appropriate

FIG. 12. Model prediction skill of Niño-4 index in 1982–2000 with different lead time in

GPO case. The blue line is the skill of model simulation with the default parameter values.

The cyan line is the skill of model prediction after multiple parameter estimation. The yellow

line is the skill of model prediction after GPO. The shading is the one standard deviation of

spread. (a) ACC and (b) RMSE.
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method only for the case of Gaussian hypothesis and

linear observation operator (such as in our study).

Therefore, other methods such as particle filtering

(PF) can also be performed as a ‘‘gold standard’’ of

the results, and the GIGG–EnKF method (Bishop

2016) can also be tested when the observational er-

ror is nonnormal. Furthermore, the choice of the 6

parameters selected here is somewhat ad hoc. There

are more parameters in the model. A future question

is therefore how to select the optimal set of param-

eters for optimization. This will be studied in the

future.
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APPENDIX A

The SST Equation of the Zebiak–Cane Model and
Parameters

The SST equation and parameters of the model are

shown below:

›T

›t
52u

1
� =(T1T)2u

1
� =T

2 [gam13HF(w)1 gam23GF(w1w)]

3
T2Te

H
2 gam23GF(w1w)3T

z
2aT , (A1)

T
e
5

(
tda13 ftanh[tdb13 (h1 h)]2tanh(tdb13h)g , h. 0
tda23 ftanh[tdb23 (h2 h)]2tanh(tdb23h)g , h, 0

. (A2)

FIG. 13. One-year mean spatial sensitivity distribution of six parameters: (a) gam1, (b) gam2, (c) tda1, (d) tda2,

(e) tdb1, and (f) tdb2.
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Here, Tz is the prescribed mean vertical temperature

gradient, Te is the entrainment temperature, and h is

the prescribed mean upper-layer depth.

Here,

HF(w)

�
w , w. 0

0 w, 0
, (A3)

GF(w1w)5

8>>><
>>>:

0, w1w, 0, w, 0

w1w , w1w. 0, w, 0

2w , w1w, 0, w. 0

w , w1w. 0, w. 0

. (A4)

APPENDIX B

Data Assimilation and Parameter Estimation Schemes

a. Data assimilation (DA) scheme

On every assimilation step (the last time step of each

month), read in the observational data (SSTa, UV wind

stress), which are interpolated to the model grid. Obtain

the observation ensemble by adding Gaussian random

numbers with zero mean and standard deviation of 0.1K

and 0.1m s21 to the observation data. Perform state in-

flation (Hamill and Whitaker 2005), and on each ob-

servational grid, update themodel variables by Eq. (B1).

Integrate the model until next assimilation step.

b. Parameter estimation scheme

Step 1: Perturb the parameters by adding Gaussian

random numbers (ensemble number is 100) to the

default parameter values. The Gaussian random

numbers have the mean of zero and the standard

deviation as 20% of the default parameter values.

Step 2: Perturb the initial model SST anomaly by

Gaussian random numbers with mean of zero and

standard deviation of 0.1K and integrate the model

with the ensemble parameters for 1 year, until the

ensemble spread of variables to be stable.

Step 3: Perform data assimilation described in Eq. (B1)

until the model reach the quasi-equilibrium state,

which is defined as the model state constrained

FIG. 14. GPO result of six parameters: (a) gam1, (b) gam2, (c) tda1, (d) tda2, (e) tdb1, and (f) tdb2. The horizontal

axis is longitude. The ensemble size is 100. The value (blue line) is the average of the last 10 years ensemble mean.

The dashed line is the default value.
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enough by the observations and the model errors

become stable. We choose 2 years for this period.

After this period, on every assimilation step,

perform data assimilation and then perform pa-

rameter estimation by Eq. (B4). After all the

observations are applied to all the estimated

parameters, average the parameters of the whole

basin for each ensemble member. Check the

spread of the parameter ensembles and do in-

flation by Eq. (B3).

Step 4: Integrate the model with the updated param-

eter ensembles until next assimilation step.

1) STATE ASSIMILATION

Dx
n,i
5w3

cov(xbn, y
b
k)

sk2
yb 1sk2

yo

Dyok,i ,

Dyok,i 5 yok,i 2 ybk,i ,

xan,i 5 xbn,i 1Dx
n,i
. (B1)

Here n represents the nth assimilation grid and k rep-

resents the kth observational grid, which goes by k 5 1,

2, . . . from the first observational grid to the end. Pa-

rameter Dyok,i is the innovation on kth observational grid

of ith ensemble member, which is the difference be-

tween the observation and background of variable y.

Parameters xbn, y
b
k are the model state ensemble of x on

assimilation grid and model-estimated ensemble of

variable y on observational grid. Parameters sk2
yb and sk2

yo

are the variance of model-estimated ensemble of y and

observation ensemble on observational grid. Parameters

xan,i and xbn,i are the analysis and background of model

state on assimilation grid. Parameter w is the covariance

FIG. 15. The comparison of forecast skills at lead 6 months. (a) ACC and (b) RMSE of Multi-PE minus No-PE.

(c) ACC and (d) RMSE of GPO minus No-PE. (e) ACC and (f) RMSE of GPO minus Multi-PE.
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localization factor obtained by the fifth-order function

(Gaspari and Cohn 1999):

w5

8>>>>>><
>>>>>>:

2
z5

4
1

z4

2
1

5z3

8
2

5z2

3
1 1, 0# z# 1

z5

12
2

z4

2
1

5z3

8
1

5z2

3
2 5z1 42

2

3z
， 1# z# 2

0 z$ 2

.

Here, z 5 D/D0, D is the distance between the ob-

servational grid and the assimilation grid, and D0 is

the prescribed ‘‘influence radius,’’ which is 1500 km in

our study.

2) INFLATION METHOD

An additive inflation technique will be applied to the

state:

x
i
5 x

i
1h

i
(B2)

h
i
5 s[x(tr)2x] .

Here tr is a randomly time from the time series of the

model free run, x is the mean climatological state, and s

is a scaling factor which equals to 0.25 here.

We inflate the parameters by a conditional covariance

inflation. That is, when the parameter ensemble spread

is below a threshold value, we inflate the spread back to

this value:

b
i
5b1

a

s
b

3 (b
i
2b) . (B3)

Here bi is the ith member of parameter ensemble, b is

the ensemble mean, a is the threshold value, and sb is

the standard deviation of the parameter ensemble.

3) PARAMETER ESTIMATION

Db
n,i
5w3

cov(bb
n, y

b
k)

sk2
yb 1sk2

yo

Dyok,i (B4)

ba
n,i 5bb

n,i 1Db
n,i
.

Here n represents the nth assimilation grid and k

represents the kth observational grid, which goes by

k5 1, 2, . . . from the first observational grid to the end.

Parameter Dyok,i is the innovation on kth observational

grid of ith ensemble member. Parameters bb
n, y

b
k are

the parameter ensemble on assimilation grid and model-

estimated ensemble of variable y on observational grid.

Parameters sk2
yb and sk2

yo are the variance of model-

estimated ensemble of y and observation ensemble on

observational grid.
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