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Background: Brassica napus is an important oilseed crop cultivated worldwide. During domestication and breeding
of B. napus, flowering time has been a target of selection because of its substantial impact on yield. Here we use
double digest restriction-site associated DNA sequencing (ddRAD) to investigate the genetic basis of flowering in B.
napus. An F», mapping population was derived from a cross between an early-flowering spring type and a late-

Results: Flowering time in the mapping population differed by up to 25 days between individuals. High genotype
error rates persisted after initial quality controls, as suggested by a genotype discordance of ~ 12% between
biological sequencing replicates. After genotype error correction, a linkage map spanning 3981.31 cM and
compromising 14,630 single nucleotide polymorphisms (SNPs) was constructed. A quantitative trait locus (QTL) on
chromosome C2 was detected, covering eight flowering time genes including FLC.

Conclusions: These findings demonstrate the effectiveness of the ddRAD approach to sample the B. napus
genome. Our results also suggest that ddRAD genotype error rates can be higher than expected in F, populations.
Quality filtering and genotype correction and imputation can substantially reduce these error rates and allow
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Background

Genotyping-by-sequencing (GBS) is a powerful tool for
high-throughput discovery of genetic polymorphisms in
crops [1-5]. GBS comprises a range of library prepar-
ation and sequencing approaches that differ in their
costs, methodical biases and the type and amount of
data produced [1, 6]. Restriction site-associated DNA
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sequencing (RAD) is a GBS method that can be used to
cost-effectively calibrate the number and coverage of ge-
notyped loci and single nucleotide polymorphisms
(SNPs) by varying the enzymes used and the sequencing
depth. A recent comparative analysis of single enzyme
RAD and two enzyme double digest RAD (ddRAD) used
a range of enzyme combinations in different plants and
suggested that the enzyme combination of Hinfl and
HpyCH4IV was promising for maximising genome
coverage breadth across a range of species [7]. Like other
GBS approaches, ddRAD is prone to missing data and
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undercalling of heterozygous genotypes [5], but imputation
and correction methods can help produce high quality ge-
notypes. Imputation and correction approaches used in
crops include the hidden Markov model based LB-Impute
[8] and FSFHap [9], the sliding window based Genotype-
Corrector [10] and simple heuristic approaches [11].

GBS has been used for marker discovery, linkage map-
ping and QTL analysis in a range of crops [12—14], in-
cluding the important oilseed crop Brassica napus. Over
20 high density linkage maps have been generated for B.
napus using RNA sequencing [15], the Brassica 60K
genotyping array [16, 17] and ddRAD sequencing [18].
Combined with phenotypic data, these linkage maps
provide a powerful basis for identification of genes
underlying agronomic traits, which can then be intro-
duced into crop germplasm [19, 20]. Crop vyield in B.
napus is strongly dependent on flowering time, making
this trait a key breeding target. Flowering time genetic
pathways have been elucidated in Arabidopsis and most
flowering time genes are known to be conserved be-
tween Arabidopsis and B. napus [21-23]. On this basis,
many QTL and associated SNPs for flowering time have
been detected in B. napus [24-31]. However, despite
progress in understanding the genetic underpinnings of
B. napus flowering time, a substantial proportion of
flowering time variation remains to be explained.

There are three B. napus oilseed rape (OSR) growth
types with considerable variation in flowering time:
spring, semi-winter and winter. Spring OSR and semi-
winter OSR have a low requirement for vernalization to
flower and are early-flowering, whilst winter OSR has a
strong vernalization requirement and is late-flowering.
In B. napus breeding, the flowering traits of spring OSR
decrease its generation time compared to winter OSR,
allowing more rapid breeding cycles. Reducing
vernalization requirements in winter OSR by introducing
spring OSR alleles would be one approach to allow
breeders to accelerate winter OSR breeding. In addition,
B. napus hybrids are generally higher yielding than open
pollinated varieties due to heterosis [32, 33]. If flowering
time can be efficiently managed, heterosis could be
exploited from hybridization of spring OSR and winter
OSR. Identifying flowering time loci that distinguish
spring OSR and winter OSR therefore has important
breeding applications. Here, to identify these loci, we
crossed a spring OSR and a winter OSR to generate an
F, mapping population. We genotyped the progeny and
parental lines using ddRAD sequencing. Finally, we con-
structed a high-density linkage map and carried out
QTL analysis of flowering time and the related trait bud-
ding time. We present candidate regions for flowering
time and budding time and discuss the use of error-
prone ddRAD genotyping in heterozygous breeding
populations.
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Results

Pre-processing and aligning sequencing reads

A single individual (sample ID: 146) was excluded from
further analysis as it had fewer than one million reads
after trimming. In the remaining 206 samples (consisting
of 199 F, progenies, 4 replicates of BnSOSR and 3 repli-
cates of BnWOSR), a mean of 13.14 million raw paired
sequences were generated per sample. A mean of 56.2%
of reads were uniquely aligned with high quality. The
mean coverage depth at covered bases was 9.41 x and
the mean coverage breadth of the genome was 18.03%.

SNP filtering and genotype correction

A total of 4,841,931 biallelic SNPs were identified in the
mapping population and parental individuals. For further
analysis, the seven parental individuals were excluded
from the SNP set. Filtering by individual missingness,
genotype depth, minor allele frequency (MAF), and
genotype missingness reduced the number of SNPs to
124,804. Of the 199 progeny, 192 were retained after fil-
tering individuals with high genotype missingness. Of
the 124,804 SNPs, 50,856 did not have a heterozygous
genotype in any parental individual. The SNPs with het-
erozygous genotypes in the parental individuals may be
caused by mismapping or remaining heterozygosity in
the parental genomes and were therefore excluded. Next,
removing 16,647 SNPs that were monomorphic between
parents and 5957 that showed segregation distortion
(p <0.01), generated a set of 28,252 SNPs. Segregation
distorted SNPs were distributed relatively evenly across
chromosomes, with noticeable hotspots at the ends of
chromosomes Al and C5 (Fig. S1). Genotype-Corrector
quality control removed 13,509 further SNPs after filter-
ing homozygous SNPs located within heterozygous re-
gions. A total of 4.94% of genotypes were corrected
using Genotype-Corrector and 94.76% of missing geno-
types were imputed (Fig. 1). The most frequent genotype
corrections were B to AB (29.56%) and A to AB
(23.48%).

In the parental replicate individuals, analysis of pair-
wise genotype concordance identified a mean genotype
discordance of 12.28% (Fig. 1). Discordance between
homozygous genotypes (A vs. B) was rare, with conflicts
between homozygous and heterozygous genotypes (A vs.
AB, B vs. AB) making up 97.51% of genotype
discordance.

Linkage mapping

A linkage map spanning 3981.31cM and comprising
14,630 markers was constructed using ASMap with the
corrected and imputed markers (Fig. 2 and Table SI).
The A genome map was 2147.15 cM with 8587 markers
and the C genome map was 1834.16 cM with 6043
markers. The highest mean marker density was found on
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Fig. 1 Genotyping errors and correction process. a Mean pairwise genotype concordance between replicate individuals for the parental lines. The
bars for the category ‘missing’ include all genotype pairs where at least one pair had a missing genotype call. Genotypes shown are BnSOSR as
‘A, Bh WOSR as ‘B" and heterozygous as ‘AB’. b Comparison of corrected and uncorrected genotypes. An example of genotype correction and

imputation using 200 SNPs on chromosome A3 is given for six representative individuals denoted as I-VI (samples
Genotypes are encoded in three colours (A: red; B: green; AB: blue) and missing markers are shown in white

1,100, 102, 103, 104, and 105).

chromosome A10, with 48.0 markers per Mb. Mean
marker density per Mb was higher on the A genome
(28.33) than the C genome (12.19). A supplementary
map was constructed using uncorrected markers, which
showed a high inflation of genetic distances with a total
map length over 30,000 cM (Fig. S2). Compared to six
published genetic maps that were generated with differ-
ent approaches, the corrected genetic map still showed
some indications of inflation (Table S2).

The correlation between genetic and physical map
order provides information about the consistency be-
tween the genetic map and the reference genome. The
mean Spearman’s rank correlation for marker order per
chromosome was 1.0 (Table 1). Several minor inconsist-
encies in marker order were observed (Fig. S3). All chro-
mosomes showed mean correlations over 0.98. Mean
individual crossover frequency per chromosome was
2.79.

QTL mapping

BnSOSR flowered 20 days earlier (range: 10 to 28) and
went to bud 17 days earlier (range: 12 to 20) on average
than winter type BnWOSR (Table S3). In the F, pro-
geny, flowering times were distributed within the paren-
tal range (Fig. 3). A single significant (p<0.05)
overlapping QTL region for the traits flowering time and
budding time was detected on chromosome C2 (Fig. 3).
The physical region of the QTL spanned 20.57 Mb for
flowering time and 0.77 Mb for time to bud (Table S4).

The flowering time QTL contained 8 flowering time ho-
mologs including FLC (Table S5), and the budding time
QTL contained no known flowering time homologs.
Carrying the BnWOSR allele at the QTL peak SNP led
to an increase in the days to bud and flower (Fig. S4).
The percentage of phenotypic variance explained for the
identified QTL was 9.08% for flowering time and 8.08%
for budding time. Suggestive LOD peaks are also notice-
able on A2, A3 and C9.

Low coverage whole genome sequencing of 16 early-
flowering and 19 late-flowering F, individuals detected
137,696 variants on chromosome C2. The mean cover-
age of candidate gene exons was 1.20 x (early-flowering)
and 1.04 x (late-flowering) (Table S6). No segregating
non-synonymous substitutions in candidate gene coding
sequences were observed (Table S5), but three candidate
segregating intergenic variants within 1 kb of a candidate
gene were found (Table S7).

Discussion

Optimising genotyping-by-sequencing strategies
Genotyping with ddRAD was effective at generating a
set of 14,630 high-quality SNPs for linkage and QTL
mapping. The findings of this study can help calibrate
the number of sequencing reads and genomic loci re-
quired for a range of research goals in B. napus and re-
lated species. For GBS, researchers often aim to
optimize the genome coverage by controlling the ratio of
reads sequenced to the number of loci generated. Here,
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the expected maximum genome coverage breadth based
on in silico digestion with the enzymes HpyCH4IV and
Hinfl was 24.6%. However, the observed mean genome
coverage breadth was lower at 18.03%. An even greater
inconsistency was reported when using HpyCH4IV and
Hinfl in Arabidopsis and Glycine max, where the ex-
pected genome coverage breadth was 29.4 and 23.1% but
the observed experimental values were 4.45 and 3.33%
respectively [7]. The inconsistency has been explained as
a product of fragment size selection bias, redundant in
silico loci, and insufficient sequencing reads [7]. In the
B. napus population used here, the most important fac-
tor determining coverage was the amount of sequencing
reads available for each sample. Indeed, 24 samples with
high sequencing effort showed genome coverage breadth
greater than the expected 24.6% up to a maximum value
of 36.68%. This is particularly surprising, as coverage
was calculated based only on reads aligned with high
quality, which is expected to substantially reduce cover-
age breadth. These findings suggest that, at least in B.
napus, igCoverage can underestimate the maximum
achievable genome coverage breadth.

The high genome coverage breadth achieved using Hpy-
CHA4IV and Hinfl indicates that these enzymes are well
suited for high-density sampling of genome-wide diversity
in B. napus. However, when sequencing effort is uneven be-
tween samples, high genome coverage breadth can increase
genotype missingness through allele dropout. If a locus is
not sequenced in enough individual samples (here the cut
off was 50%) at sufficient depth, it is removed during SNP

calling or SNP filtering and becomes a missing genotype
call. High levels of missingness are a common characteristic
of reduced representation sequencing [3] and can limit the
usefulness of genotype data in studies where genotype im-
putation is not possible [34]. Nevertheless, as shown in this
study, by combining imputation with a high-density sam-
pling of the genome, the limitations of genotype missing-
ness in a mapping population can be overcome.

Linkage mapping

The correlation of physical and genetic maps was high,
indicating that the map is accurate and collinear with
the reference genome. Similarly, collinear maps with
only minor inconsistencies were also found by earlier
linkage mapping studies in B. napus [18, 35]. The link-
age map constructed here was on average 2 x larger in
cM compared to six published B. napus linkage maps
generated using different approaches with relatively
similar marker densities [15, 17, 18, 35-37]. Although
our mapping population is derived from two highly di-
vergent parental lines and may enable us to sample more
crossovers than other studies, some residual genotype
errors or segregation distortion is expected to lead to
some map inflation. In contrast to our study, which re-
lied on an F, population, five of the compared studies
used recombinant inbred lines or doubled haploid popu-
lations, which will likely suffer fewer genotyping errors
due to their inherent lack of heterozygous alleles. Using
a genotyping array, which is less error-prone than
ddRAD genotyping, in a B. napus F, population also led
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Table 1 Summary of the genetic map. Spearman’s rank
correlation (rho) was calculated for the genetic marker positions
and the physical marker positions on the reference genome

Chr Length (Mb) Length (cM) Number of markers rho
Al 31.16 24240 740 0.98
A2 31.34 212.85 630 1.00
A3 39.49 300.82 1581 1.00
A4 2331 197.72 748 1.00
A5 286 22892 892 1.00
A6 319 243.03 729 1.00
A7 289 194.30 954 1.00
A8 21.74 109.17 365 1.00
A9 46.72 223.68 990 1.00
A10 19.96 194.26 958 0.99
1 4795 172.18 739 1.00
Q2 58.66 195.33 832 0.99
C3 71.85 276.37 900 1.00
4 61.04 235.26 861 0.99
5 52.72 21941 483 1.00
€3 4461 141.83 504 1.00
7 525 168.96 612 1.00
c8 46.29 195.51 569 1.00
c9 60.21 22931 543 1.00
Total 798.95 3981.31 14,630 -

to a smaller genetic map of roughly half the size [17].
This suggests that ddRAD genotyping errors, and not
the population type, are the main reason for the genetic
map inflation. Nevertheless, the high-density and accur-
acy of the linkage map presented here suggest that it is
useful for localizing QTL.

Flowering time QTL on chromosome C2

Flowering time QTL in B. napus are mostly found in re-
gions syntenic with Arabidopsis chromosome 5 on B.
napus chromosomes A2, A3, A9, A10, C2 and C3 [22].
Here, we identified a single significant locus for flower-
ing time and budding time on C2. These two phenotypes
were significantly correlated and could be linked to a
likely shared QTL that explained ~ 9% of variance. This
modest amount of variance explained is typical for traits
that are controlled by many loci spread over multiple
chromosomes, with each making minor contributions to
the phenotypic effect. Additionally, the size of the QTL
region (LOD confidence interval) differed for flowering
time and budding time. The size of the QTL region is
important, as it reflects the level of mapping resolution
that was achieved. In F, mapping populations, the confi-
dence interval of a QTL can be large (> 1 Mb), and these
populations often represent the starting point for fine-
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mapping of candidate genes. In this study we used the
recommended LOD threshold of 1.5 units for 95% cover-
age of the confidence interval [38]. However, the width
of the confidence interval depends on how steep the
QTL peak is, which can depend on a range of factors in-
cluding marker density [39, 40].

The QTL is physically close to a locus identified in an
earlier study, which found that the 60 K array SNP Bn-
scaff 18507_1-p889927 was associated with a QTL on
C2 at position 33,936,984 on v81 (position on Darmor
v41: 26,548,393) explaining 6.36% of flowering time vari-
ation [28]. However, the QTL LOD peaks identified here
are distant from this location. Among the known flower-
ing time genes on C2, FT [41], FLC [42] and FY [43]
may have particularly substantial effects. FT has been
implicated in B. napus flowering time divergence [30,
44] and FLC has been found to explain ~ 23% of flower-
ing time variation in B. napus [45]. FY is a suppressor of
the transcription factor FLC [43, 46], but is distant from
the QTL region identified in this study. The FT homo-
logs on C2 are 1-3 Mb outside of the QTL region and
are expressed at low levels in all ecotypes tested [47],
which suggests FT may also not be the candidate gene.
None of the candidate flowering time genes showed
nonsynonymous or synonymous substitutions segregat-
ing with flowering time, indicating that regulatory
changes may underlie the detected QTL. FLC and SRRI
are located within the QTL region and were found to
have variants within 1kb of their coding sequence that
may segregate between early-flowering and late-
flowering F, individuals. By further studying differential
expression of the candidate genes, it may be possible to
determine whether FLC, SRRI or another gene is driving
differences in flowering time. Overall, the F, experimen-
tal design presented here is only the start of the discov-
ery process because lack of recombination between
closely linked regions can hinder high-resolution map-
ping. Our results show one significant QTL and add-
itional suggestive regions of interest. It is likely that
several of these loci would need to be transferred into
the desired genetic background to exploit heterosis be-
tween spring and winter varieties.

Genotype errors and correction

We detected high pairwise genotype discordance within
the duplicate parental samples. Because genotype errors
in either of the compared duplicate samples can lead to
discordance, the genotype error rate can be roughly esti-
mated as half of the discordance (~6%). In line with
GBS results in a rice F, population [11], most errors can
be attributed to undercalling of heterozygous alleles
(97.51%). The parental lines are homozygous, though re-
sidual heterozygosity and mismapping can lead to het-
erozygous allele calls. The true error rate in the progeny
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is therefore likely higher than in the parents, because F,
populations contain an expected 50% heterozygous
alleles.

Calling heterozygous SNPs accurately requires depths
substantially higher than those required for calling
homozygous SNPs [48, 49]. The moderate sequencing
depths used in this study (9.41x) may thus lead to infla-
tion of sequencing noise and insufficient allele sampling,
which can result in undercalling of heterozygous alleles
[50]. The percentage of errors attributed to undercalling
of heterozygotes may even be an underestimate, as

errors between apparently homozygous alleles may be
caused by conflicting erroneous genotype calls of a het-
erozygous allele.

The genotype error rates found here are higher than
error rates reported in the literature, even for heterozy-
gous populations. For example, Malmberg et al. (2018a)
analysed a heterozygous B. mapus panel with different
skim sequencing coverages and filtered genotype calls
using a minimum read depth of 5. The authors found
error rates of 2.1% error at 2 x sequencing coverage and
4.2% error at 1 x sequencing coverage [50]. Similarly, an
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error rate of 3% was found using GBS in a bovine popu-
lation with a minimum read depth of 5 [51]. In a ddRAD
genotyping study using a mapping population of cichlid
fishes, an investigation of genotype errors found error
rates of 4.41% at 8 x coverage [52]. This suggests that
GBS can lead to higher genotype error rates than ex-
pected in samples such as F, mapping populations.

A substantial effect of genotype errors on linkage map-
ping was found. Cumulative inflation of linkage map
length is often caused by genotype errors that introduce
spurious double recombination events into the map [53].
In addition, high levels of missing data and markers with
segregation distortion may also affect the mapping dis-
tance as these alter the calculated recombination rate
[54]. It has been estimated that every 1% error rate in a
marker adds approximately two cM to the linkage map
[55]. Linkage map inflation has been previously reported
for GBS data in wheat [53, 54] and rice [11]. In one of
the studies on wheat, errors inflated the linkage map by
up to 11 times [53]. In a linkage and QTL mapping
study of B. rapa based on SNPs derived from GBS, high
error rates (19.6%) were found and the resulting A gen-
ome linkage map was inflated, spanning 4802.52 cM
[56].

Linkage and QTL mapping in major crops are com-
monly carried out using highly accurate commercial
genotyping arrays such as the Illumina Infinium Brassica
60 K array [57]. Genotyping arrays may introduce sam-
pling bias because they only genotype previously known
SNPs. An advantage of GBS over genotyping arrays is
that regions missing from the reference genome can be
genotyped and used for linkage mapping. However,
genotyping arrays have the important advantages of
more accurate calling of heterozygous genotypes and
low missing data. Although genotype arrays also produce
errors that frequently involve heterozygous sites, the
error rates are likely lower at 1-2% [58, 59]. Our results
suggest that in heterozygous populations, genotyping ar-
rays will generate markers with substantially higher ac-
curacy than GBS. Here, to increase genotype accuracy
for GBS data, genotype correction was applied. We find
that genotype correction substantially decreased genetic
map inflation, underlining the value of a correction step
in heterozygous populations analysed using GBS at low
to moderate sequencing coverage.

Conclusions

We report a QTL on chromosome C2 for flowering time
and budding time in a B. napus winter type x spring type
cross. This QTL and the additional suggestive loci can
be fine-mapped and backcrossed into the parental var-
ieties to facilitate flowering time control in hybrid spring
type x winter type varieties. An optimised combination
of enzymes was also identified using in silico analysis,
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and the resulting number of empirical ddRAD loci and
SNPs demonstrate the effectiveness of the enzyme com-
bination Hinfl and HpyCH4IV. In addition, we show
that ddRAD generates high levels of genotype errors that
can impact linkage map construction. By filtering SNPs
and applying genotype imputation and correction an ac-
curate map could be constructed, allowing effective QTL
analysis of flowering time. Further investigation of the
loci controlling flowering time and maturation will allow
B. napus breeders to better exploit variation in winter
and spring types.

Methods

Plant material and phenotyping

Plant materials were provided by BASF (Ghent). No for-
mal identification was required for this cultivated plant
material. The mapping population resulted from a cross
between an early-flowering spring line (BnSOSR) and a
late-flowering winter line (BnWOSR) carried out by
BASE. The F, population consisting of 200 individuals as
well as 4 BnSOSR and 3 BnWOSR parental replicates
was sown directly into 10x10x15 c¢cm pots in a phytotron
at the University of Western Australia, Perth, in 2017.
The F, population was investigated based on single
plants. Temperature was maintained between 18 and
22°C. To ensure flowering occurred, vernalization was
initiated 63 days after sowing and plants were moved to
a controlled environment chamber with a constant
temperature of 4 °C and an 8-h light period. Plants were
watered twice a week by hand. After approximately 6
weeks, and a total of 108 days after sowing, the plants
were returned to the phytotron. This 6 week
vernalization period is sufficiently long to ensure that
variation in flowering time in the F, population is not
driven by variation in vernalization response [60, 61].
Each pot was provided with a dripper and connected to
the irrigation system. Plants were watered twice a day
for 1 min. A total of 125 ml of fertilizer with micro min-
erals was provided by hand every 2 weeks. The time of
first floral buds appearing and the date of first flower
opening were recorded. All plants were grown until seed
set. To investigate whether phenotype data were nor-
mally distributed, Shapiro-Wilke’s tests were carried and
histograms plotted using ggpubr 0.2.1 [62].

Restriction enzyme selection and digestion

DNA fragmentation was carried out by simultaneous di-
gestion using two restriction enzymes. Suitable restric-
tion enzyme pairs, that created sticky or overhanging
ends, were selected based on their reaction buffer and
incubation temperature compatibility to allow simultan-
eous digestion. The software IgCoverage 1.0 [7] was used
to carry out in silico digestion of the B. napus genome
(Darmor-bzh v8.1 [63];) using these enzyme pairs. The
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number of fragments within the 100—-600 bp size range
with different ends (LengthDeFrag100-600), as well as
the expected percentage of genome coverage breadth
generated by the selected 26 restriction enzyme pairs,
were then compared. Out of the 26 suitable enzyme
pairs selected, 18 pairs showed coverage breadth > 20%
(Table S8). The enzyme pair Hinfl and HpyCH4IV (New
England Biolabs, Ipswich, USA) was selected based on
the number of fragments, genome coverage, availability
and cost per sample. This pair was predicted to generate
840,663 fragments with different ends within the 100-
600 bp range, which covered 24.6% of the genome. The
suitability of the selected restriction enzyme pair was
confirmed by digesting 400 ng of genomic DNA using 5
Units of each restriction enzyme and NEB CutSmart™
buffer (10x) (New England Biolabs (NEB), Ipswich,
USA). The reaction was incubated for 4 h at 37°C and
the results were visualised using the LabChip GX Touch
24 (PerkinElmer, Waltham, USA).

Adapter design

Adapters for the ddRAD protocol were designed based
on the adapters and indexed primers used by Peterson
et al. (2012). Barcoded adapters were modified to create
a complementary overhang for the HpyCHA4IV restric-
tion enzyme, while the common adapter was altered to
create a complementary overhang for the frequent-
cutter Hinfl. The adapters were assembled by annealing
10 uM forward and reverse strand oligos as described in
Peterson et al. (2012). The adapter concentrations to be
used in the ligation step for the barcoded and common
adapters were determined using the molarity calculator
described by Peterson et al. (2012). The average distance
between the restriction sites required for the calculation
was calculated using the estimated in silico digestion re-
sults obtained using the IgCoverage package.

Sequencing library preparation

Genomic DNA was extracted from leaf material using
the DNeasy Plant Mini Kit (QIAGEN, Hilden, Germany)
according to the manufacturer’s protocol. DNA concen-
trations were quantified using the broad range Qubit 3.0
Fluorometric assay (Invitrogen, Carlsbad, USA), while
DNA quality was assessed with the LabChip GX Touch
24 (PerkinElmer, Waltham, USA). Modified versions of
the Peterson et al. (2012) and Clark et al. (2014) proto-
cols were used to construct the ddRAD libraries. The ex-
tracted gDNA was normalised at 50 ng/pL and 200 ng of
DNA of each sample was digested in a 20 pL reaction
volume containing restriction enzyme/s and recom-
mended buffer. Digestion for the preparation of the
ddRAD libraries was carried out using HpyCH41V (5 U)
and Hinfl (5U) in NEB CutSmart™ buffer. The reaction
was incubated at 37 °C for 4 h.
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The digested DNA was ligated respectively to the
unique barcoded and common adapters using T4 DNA
ligase (Thermo Invitrogen, Carlsbad, USA). An 18 pL
master mix containing ligation buffer, 200 U of T4 ligase
and the common adapter was prepared and added dir-
ectly to the 20 puL digest reaction, after which the indi-
vidual barcoded adapters were added. The reaction was
incubated at 22 °C for 2 h, followed by 65 °C for 20 min,
then cooled to 4°C at a ramp rate of 2°C per 90s. To
accommodate variation in DNA concentration and qual-
ity the samples were not pooled after ligation but indi-
vidually purified and double size selected to enable
enrichment of fragments between 250 and 800 bp. The
total volume of the samples was adjusted to 100 uL by
adding 60 pL of nuclease free water. Double size selec-
tion was carried out by adding 50 pL of a 1:4 (0.5X) mix-
ture of AMPure XP Beads (Beckman Coulter, Brea,
USA) to PEG buffer (20% PEG w/v, 2.5 M NaCl) to re-
move fragments >800bp. The supernatant was trans-
ferred to 20 pL of a 1:1 (0.7X) Ampure XP bead to PEG
buffer mixture to collect fragments > 250 bp. The beads
were washed using 80% ethanol and the fragments
eluted in 30 puL nuclease free water.

A 10 pL aliquot of the size selected DNA was used for
PCR amplification. A 40 uL master mix of Phusion Hot-
Start High-Fidelity Master Mix Polymerase (Thermo
Fisher Scientific, Walthan, USA) and the Forward
(0.5uM) and Reverse primers (0.5uM) was prepared.
Samples were amplified at 98 °C for 2 min, followed by
15 cycles of 98°C for 155, 62°C for 30s, 72°C for 30s,
and a final extension for 5 min at 72 °C. Amplified librar-
ies were cleaned using 1.5X Ampure XP Beads to sample
volume to remove primer dimers. The resulting library
DNA concentrations were determined using the High
Sensitivity (HS) Qubit 3.0 Fluoro metric assay. Library
quality and fragment size distribution were visualised
using the LabChip GX Touch 24. Equimolar amounts of
the prepared libraries were pooled and loaded on a 1.5%
agarose gel to enrich and select fragments between 300
and 700 bp. The DNA was recovered using the QIA-
quick Gel Extraction Kit (QIAGEN, Hilden, Germany).
The final library concentration, quality and size distribu-
tion were assessed again and adjusted to 20nM DNA
using 10nM Tris Buffer (pH 8.5, 0.1% Tween 20, 10
nM). The final libraries were sent to the KCCG Core fa-
cility at the Garvan Institute for Medical Research for
paired end sequencing on the HiSeq X Ten platform.

To help detect potentially causal variants contributing
to flowering time in the F, population, the 16 individuals
that flowered in less than 127 days and the 19 individuals
that flowered after over 137 days were sequenced at low
coverage (Table S9). Genomic DNA for low coverage
whole genome sequencing was extracted as described
above. Sequencing libraries were prepared using the



Scheben et al. BMC Plant Biology (2020) 20:546

[lumina TruSeq® Nano DNA Library Prep kit based on
the guidelines provided by the manufacturer. Equimolar
amounts of uniquely indexed libraries were pooled and
send for paired end sequencing on the HiSeq 2500 plat-
form at the Australian Genome Research Facility.

Adapter trimming and quality trimming

The Illumina bcl2fastq 2.20.0.422 pipeline [64] was used
to convert base call files to FASTQ format. Paired-end
ddRAD sequencing reads were demultiplexed using
sabre 1.0 [65] with a single mismatch allowed. Raw
FASTQ files were trimmed of adapter sequences and
low quality bases with Trimmomatic 0.36 [66]. For
adapter trimming, a maximum mismatch score of 2 was
used for the adapter sequence, together with a palin-
drome clip score threshold of 30 and a simple clip score
threshold of 10. Low quality bases with a Phred+ 33
score below 3 were trimmed from the start and end of
the read. Sliding window trimming was carried out using
a 4-base wide window, trimming the bases when the
average quality per base was below 15. The Illumina
TruSeq3-PE adapter list provided with Trimmomatic
was used for adapter trimming. All reads with fewer
than 36 bases after trimming were discarded. Reads that
were unpaired after trimming were also discarded. Fol-
lowing read pre-processing, the untrimmed and trimmed
reads were analysed using the diagnostic tool fastQC
[67]. The results of fastQC for each sample were then
aggregated and summarised using multiQC [68]. The
multiQC report was used to verify that adapters had
been removed and read quality was high.

Aligning sequencing reads

Trimmed reads were mapped using BWA 0.7.17 with
the BWA-MEM algorithm [69] to the B. napus Darmor-
bzh v8.1 assembly [63] using default parameters. After
alignment, SAM files were converted to BAM format
using SAMtools 1.8 [70]. Unmapped reads, supplemen-
tary alignments and reads with a mapping quality below
20 were discarded. This filter removes multi-mapping
reads, which commonly occur in B. napus due to the
homeologous regions of its polyploid genome. The
mapping results were analysed using SAMtools stats
and mosdepth 0.2.3 [71]. The number of ddRAD loci
were calculated from mosdepth per-base output using
BEDTools 2.26.0 [72] to merge neighboring loci
within 100 bp.

Calling single nucleotide variants

Variants were called using GATK 3.6 [73]. First, BAM
alignments were indexed using SAMtools, then Haploty-
peCaller was used to call SNPs for each individual sam-
ple. Genotyping was carried out using GATK
GenotypeGVCEF using default setting with auto index
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creation and locking when reading rods disabled. Results
per chromosome were merged using GATK CatVariants.
Variants were filtered using VCFtools 0.1.15 [74]. Indels
and multiallelic SNPs were excluded (—-remove-indels
--max-alleles 2 --min-alleles 2). Before filtering SNPs, in-
dividuals with >0.9 missing genotypes were removed.
To reduce the rate of heterozygous alleles incorrectly
called as homozygous alleles due to insufficient read
depth, genotypes with a depth<5 (--minDP 5) were
set to missing. SNPs were discarded if they displayed
a minor allele frequency <0.05 (—-maf 0.05) or when
genotypes were not present in >80% of all individuals
(—-max-missing 0.8). Genotype discordance was calcu-
lated with snpEff 4.3t [75] using the duplicate sam-
ples for the parents (spring type BnSOSR with n =4,
winter type BnWOSR with # =3) with pairwise com-
parisons of genotypes for SNPs passing the above fil-
ters. Heterozygosity per individual was calculated
using VCFtools.

The parentage assignment and filtering of distorted
SNPs was carried out using the custom script vcf2gt.py
[76], which uses cyvcf2 0.8.0 [77] to parse VCF files. A
chi-square test implemented in scipy 1.2.0 [78] was car-
ried out to identify and discard SNPs with significant
segregation distortion (p <0.01) based on the expected
F, segregation ratio of 1:2:1. Further filtering removed
SNPs that were heterozygous in at least one of the par-
ents or that were not polymorphic between the parents.
The script also converted the SNPs in VCF format to a
genotype matrix in AB format (A: homozygous allele
from Parent 1; B: homozygous allele from Parent 2; AB:
heterozygous allele; —: missing allele).

Genotypes were imputed and corrected using
Genotype-Corrector 1.0 [10], which is well-suited for F,
populations with moderate to low genotype missingness
like the one analysed here. This software uses the order
of SNPs on the genome reference and a sliding-window
approach to impute and correct genotypes based on
neighboring genotypes in F, populations. Before correc-
tion, up to eight consecutive homozygous SNPs within
150 bp genomic intervals in heterozygous regions were
binned into a single SNP with Genotype-Corrector qc_
hetero. This helps prevent miscorrection of heterozygous
genotypes to homozygous genotypes when using the
sliding window approach. With the 20% missing SNPs
used here, the expected accuracy of Genotype-Corrector
is >95%, based on empirical testing in crop mapping
populations [10].

Linkage mapping

Linkage mapping was carried out using the MSTMap al-
gorithm [79] implemented in the R package ASMap
[80]. The sum of recombination events objective func-
tion was used to find the optimal sequence of loci, and
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the p-value threshold for clustering markers into linkage
groups was set to le” >*> based on evaluation of a range
of values from le '* to le”*°. The kosambi distance
function was used to estimate genetic distances between
SNPs, and rare recombination events were treated as er-
rors (detectBadData = True). Linkage groups were
assigned chromosome names based on marker positions
on the reference genome. Small linkage groups that did
not represent an entire chromosome, were merged with
chromosomal linkage groups and genetic distances recal-
culated if an unambiguous assignment was possible
using physical marker positions. Linkage groups with <7
markers were discarded. The estimated pairwise recom-
bination fractions between markers were calculated
using the rqtl function plotRF [38]. Recombination frac-
tions were used to identify outlier markers that are not
in LD with neighboring markers and to manually correct
marker order using physical marker positions. A total of
95 outlier markers were removed from further analysis.
To ascertain the quality of the genetic map, the correl-
ation between marker order on the genetic map and the
reference genome was calculated using a Spearman’s
rank correlation test in R. Crossover frequency was esti-
mated using the rqtl function locateXO and a custom
python script crossover.py [76].

QTL mapping

QTL mapping was conducted with rqtl scanone using a
single QTL model and the non-parametric model for
flowering and budding time because these traits did not
follow a normal distribution. Genome-wide significance
thresholds for logarithm of the odds scores (LOD) were
estimated using a permutation test with 1000 iterations
[81]. The 1.5-LOD drop interval of each QTL position
was estimated using rqtl lodint. The percentage of vari-
ance explained for each QTL was calculated using rqtl
fitqtl with Haley-Knott regression. The custom inter-
active R script used for QTL mapping in Rstudio 1.1.456
[82] was based on the rqtl manual [38].

Identification of flowering time genes

A total of 306 Arabidopsis flowering time (FT) genes
from the FLOweRing Interactive Database [83] was
downloaded from The Arabidopsis Information Re-
source [84]. These genes include homologs of the known
B. napus flowering time genes. BLAST+2.2.29 [85, 86]
analysis of the FT genes against the reference genome
was carried out to find gene homologs using a cut-off of
le ® (following [87]). Overlapping hits were merged
using BEDtools. The gene names in the v81 annotation
[63] were identified using BEDtools to obtain gene anno-
tations overlapping the BLAST alignments.
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Variant analysis in early-flowering and late-flowering F,
individuals with low coverage whole genome sequencing
Reads were aligned and variants called using the ap-
proach described above for the ddRAD sequencing data.
To help detect potentially causal variants, less stringent
VCFtools filters were applied to exclude only variants
with high missingness or low minor allele counts
(—-max-missing 0.25 --mac 5). To detect candidate vari-
ants that were segregating between the late-flowering
and the early-flowering samples, we used a simple set of
thresholds. First, we required four or more genotype
calls for each of the two groups. Secondly, we required
over 70% of the genotype calls within each group to be
consistent. Finally, the consensus genotype calls had to
differ between groups.
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Additional file 1: Table S1. Linkage map constructed using ASMap
with corrected and imputed ddRAD markers derived from an BnSOSR x
BNWOSR F, population. Table S2. Mean markers and linkage map sizes
across maps generated in this study. Abbreviations: doubled haploid
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identified using genome-wide single QTL scans for budding time (B) and
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Table S7. Summary of intergenic variants impacting candidate genes
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LengthDeFrag: total length in bases of different end fragments; De-
Frag100-600: total number of different end fragments between 100 bases
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and 600 bases. Table $9. Phenotype data for flowering time and bud-
ding time in the mapping population and parents. Table $10. Sample
list for the 194 progeny and 7 parental individuals used in this study.

Additional file 2: Fig. S1. Segregation distorted loci across all
chromosomes. The significance threshold (p > 0.01) is shown as a red
dotted line. Fig. S2. Comparison of linkage group sizes in an uncorrected
genetic map and a corrected genetic map. Corrected linkage groups are
aligned centrally to uncorrected groups. Fig. $3. Physical (x-axis) and
genetic (y-axis) marker positions on all chromosomes in Mb and cM
respectively. Spearmans’s rank correlation test result shown in the top left
corner of each plot. Fig. S4. Effect plot for the budding time (left) and
flowering time (right) QTL on C2 at positions 4,673,904 and 4,655,461
respectively. The ‘AA” genotype is BnSOSR and the ‘BB’ genotype is
BNnWOSR.
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