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Nomenclature

The following nomenclature introduces the most significant symbols and abbreviations
used in this work. Local notations and extension, such as subscripts and superscripts to
distinguish symbols of the same type, are explained where introduced in the text. Vectors
and vector fields are typeset in bold with small letters (v ) and second-order tensor fields are
typeset in bold with capital letters (K ). Units are given if applicable and unambiguous.

Abbreviations

BBB blood-brain barrier

DSC-MRI dynamic susceptibility contrast MRI

ECM extra-cellular matrix

MRI magnetic resonance imaging

MR magnetic resonance

MS multiple sclerosis

PDE partial differential equation

RBC red blood cell / erythrocyte

REV representative elementary volume

Coordinate system

r,θ, z radial, angular, axial coordinate in a cylindrical coordinate system

e1,e2,e3 unit normal vectors forming a basis of a coordinate system

s local coordinate for the parametrization of lines

x position in Cartesian coordinates

x1, x2, x3 coordinates in a Cartesian coordinate systems, comp. of x

Discretization framework

FK ,σ discrete flux from cell K over face σ

K cell

L (neighboring) other cell
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Λh discrete embedded domain

nK ,σ center unit outer normal vector on face σ ⊂ ∂ K

Ωh discrete bulk domain

σ cell face

Continuum mechanics

A cross-sectional area m2

cp,s specific heat capacity of the solid phase Jkg−1 K−1

CF Forchheimer coefficient -

Cλ friction coefficient -

ccα molar concentration of component c in phase α molm−3

δBL thickness of the boundary layer m

d diameter m

Dcα binary diffusion coeff. of comp. c and the main comp. of phase α m2 s−1

Dcα,e effective binary diffusion coefficient m2 s−1

Dω effective diffusive wall conductivity ms−1

g gravitational acceleration ms−2

g gravitational vector field ms−2

H cπ Henry coefficient for the dissolution of comp. c in comp. π Pa

hα specific enthalpy of phase α Jkg−1

K intrinsic permeability tensor m2

k intrinsic isotropic permeability m2

kax axial root conductivity m4 Pa−1 s−1

krα relative permeability of phase α -

krad radial root conductivity ms−1 Pa−1

λα thermal conductivity of phase α Wm−1 K−1

λe effective thermal conductivity Wm−1 K−1

Lp filtration coefficient mPa−1 s−1

M c molar mass of component c kgmol−1
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Mα average molar mass of phase α kgmol−1

µ dynamic viscosity Pas

µα dynamic viscosity of phase α Pas

n unit normal vector -

π osmotic or oncotic pressure Pa

p pressure Pa

pα phase pressure of phase α Pa

pc capillary pressure Pa

Pe Péclet number -

P cross-sectional tube perimeter m

φ porosity -

pcα partial pressure of component c in phase α Pa

pcsat saturation vapor pressure of component c Pa

qm mass source kgs−1 m−3

q̂m mass (line) source in a tube kgs−1 m−1
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Abstract

Flow in vascularized biological tissue, root water uptake, or flow around injection or
extraction wells can be modeled by coupled mixed-dimensional PDE systems. Conceptually,
such systems can be described as porous media with embedded tubular transport networks.
We describe numerical methods for the simulation of such systems. The compartments are
spatially discretized by non-matching computational grids: a three-dimensional mesh for the
porous medium domain, and a geometrically embedded mesh of connected line segments
for the network domain. A generalized abstract form of mixed-dimension embedded models
is presented which summarizes several existing methods. A particularity of solutions to
mixed-dimensional PDEs with dimensional gap two (0D-2D or 1D-3D) is the occurrence
of singularities where the network center-lines intersect the porous domain. We introduce
a new numerical scheme which removes these singularities by smoothing kernels, and
exhibits improved convergence behavior and accuracy for coarse grid resolutions. The
method is developed for isotropic, as well as anisotropic porous media. Furthermore, a
new mixed-dimension embedded model for tissue perfusion and NMR signal generation is
presented. Detailed perfusion simulations on the capillary scale are shown to reproduce
image contrast of clinical (organ-scale) MRI data from multiple sclerosis patients. Similar
modeling techniques and methods are then used to simulate root water uptake. For the
implementation of such applications, a common software framework is developed by use of
the open-source simulator DuMux. The framework allows the implementation of coupled
mixed- and equidimensional models in a unified way, using software abstractions. Possible
framework applications go beyond the methods presented in this work.
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Deutsche Zusammenfassung

Poröse Medien weisen durch ihren kleinskaligen, stark gewundenen Porenraum große
Fließwiderstände auf. In einigen biologischen und technischen Anwendungen ermöglichen
eingebettete hohle Netzwerkstrukturen effizienten Massen- und Energietransport. Zum
Beispiel besteht das Herz-Kreislauf-System zum größten Teil aus einem Netzwerk an Blut-
gefäßen, welches Funktionalgewebe mit Flüssigkeit, Nährstoffen, Sauerstoff und anderen
lebensnotwendigen Substanzen versorgt und von metabolischen Abfallprodukten befreit.
Die kleinsten Blutgefäße (Kapillaren) bilden ein dichtes Netwerk welches Transportwege
minimiert. Durch den hierarischen Netzwerkaufbau können Gewebe und Zellen gleich-
mäßig und effizient versorgt werden. Pflanzen weisen ganz ähnliche Strukturen auf. Ein
hierarchisches Wurzelsystem ermöglicht den Pflanzen Wasser aus selbst trockensten Böden
aufzunehmen oder zu verteilen. Moderne Bohrtechniken ermöglichen die Bohrung von
Netzwerksystem aus Brunnen in extrem undurchlässigen geologischen Formationen wie Öl-
schiefer. Solche Bohrlöcher werden zur Öl- und Gasförderung, aber auch für geothermische
Energieerzeugung und Energiespeicherung im Untergrund eingesetzt.

Mathematische Modelle fluidmechanischer Prozesse und deren Rolle in biologischen Ge-
weben sind wichtig, um die Gewebestruktur zu verstehen. Zum Beispiel ist es im Kapill-
arbett schwer Experimente im lebenden Organismus durchzuführen, ohne die natürliche
Umgebung zu stören. Oft sind Experimente ethisch nicht vertretbar. Nichtinvasive Bildge-
bungsverfahren, wie die Magnetresonanztomograghie (MRT), können die Mikrostruktur
des Gewebes und der Blutgefäße nicht auflösen. Interessanterweise sind jedoch die Signale,
die in der MRT gemessen werden, direkt von der Gewebestruktur und -durchströmung
beeinflusst. Solche Effekte können in Simulationen und durch mathematische Modelle
analysiert werden. Darum entwicklen wir in dieser Arbeit ein MRT Modell, das auf Pro-
zessen der Kapillarskala beruht, aber Bildpunkte aus klinischen Daten auf der MRT-Skala
reproduzieren kann. Mittelfristig könnte die Analysen durch solche Modelle zur besseren
Interpretierbarkeit solcher Bildgebungsverfahren führen.

Effiziente numerische Simulation solcher System basieren auf Modellreduktionstechniken.
Diese sind notwendig, da die Netzwerke oft aus zahlreichen Segmenten bestehen. Die
Durchströmung der Netzwerke kann oft hinreichend genau durch querschnittsgemittelte
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Größen beschrieben werden. Dies bedeuted eine Modellreduktion um zwei Raumdimen-
sionen. Strömungen im porösen Medium weisen jedoch dreidimensionale Strukturen auf.
Die resultierenden gekoppelten partiellen Differentialgleichungen werden of als gemischt-
bzw. hybrid-dimensional bezeichnet. Zur numerische Berechnung von Lösungen solcher
Gleichungssysteme, sind spezielle nicht-lokale Methoden notwendig. Diese Arbeit gibt
einen Überblick über solche Methoden.

Insgesamt leistet diese Dissertation ein Beitrag zur Beschreibung und zum Verständnis
hybrid-dimensionaler Modelle von porösen Medien mit eingebetteten Netzwerken. Die
Arbeit umfasst die mathematische Modellierung und die Diskussion numerischer Methoden
anhand von drei Anwendungen: Durchströmung von biologischem Gewebe, Wasseraufnah-
me durch Wurzeln und Brunnenmodellierung. Die Modellgebiete für diese Anwendungen
bestehen hauptsächlich aus zwei Teilen: Einem porösen Medium, welches diskret durch
ein dreidimensionales Rechengitter dargestellt wird und ein eingebettetes Netzwerk von
geraden Liniensegmenten, die geometrisch nicht zwingend mit den dreidimensionalen Git-
terzellen übereinstimmen. In jedem Gebiet werden zunächst unabhängig Bilanzgleichungen
formuliert, die dann über geeignete Bedingungen gekoppelt werden. Wir präsentieren einen
generalisierten, abstrakten Ansatz für die konsistente Beschreibung solcher System, der
mehrere existierende Methoden beinhaltet. Eine Besonderheit von Lösungen solch hybrid-
dimensionaler gekoppelter Gleichungssysteme (0D-2D oder 1D-3D) sind Singularitäten
an den Schnittpunkten der Gebiete. In dieser Arbeit entwickeln wir eine neue numerische
Methode, die diese Singularitäten durch Glättungskernel kontrolliert und zu besserem
Konvergenzverhalten und erhöhter Präzision auf groben Rechengittern führt. Die Methode
wird für sowohl für isotrope als auch anisotrope poröse Medien entwickelt. In der zweiten
Hälfte der Arbeit werden hybrid-dimensionale Modelle für die Nachbearbeitung von klini-
schen MRT Daten und die Modellierung der Wasseraufnahme von Wurzeln angewendet.
Außerdem wird ein abstraktes Softwareframework entwickelt, das es erlaubt, die beschrie-
benen Modelle vereinheitlicht zu programmieren. Das entwickelte Framework erlaubt auch
Simulation von allgemeineren gekoppelten Simulationen, außerhalb des Rahmens der in
dieser Arbeit behandelten Problemenklassen.
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1 Introduction

Porous media often exhibit high flow resistance due to narrow and tortuous pore structures.
In several biological and technical applications, embedded hollow network structures en-
hance transport of mass or energy through such media. For example, the cardiovascular
system comprises a network of blood vessels which supplies functional tissue with fluids,
nutrients, oxygen and other substances, and clears metabolic waste products. The smallest
blood vessels (capillaries) form a dense network to minimize transport pathways through
the extra-cellular space—a porous structure. By hierarchical organization of the network,
tissue and cells can be supplied evenly and efficiently with vital substances. Similarly, plants
form hierarchical root systems to extract and distribute water in the vadose zone. Modern
drilling techniques allow creating networks of wells inside ultra-low-permeable geological
layers, such as shale for oil as gas production, as well as for geothermal energy production
and subsurface energy storage. In all mentioned applications, the exchange of mass and
energy between the network system and the supplied porous structure is essential for fluid
transport through the porous system.

Mathematical models of the fluid-mechanical processes and their role in biological porous
media with embedded transport networks are essential to understand the functional concepts
behind their design. In particular for the microvasculature, in-vivo experiments are difficult
to conduct without disturbing the natural environment and are often ethically not justifiable.
Moreover, for non-invasive imaging techniques such as magnetic resonance imaging (MRI),
image resolutions are insufficient to resolve the microvasculature. However, the signal
measured in MRI scanners is directly affected by the tissue microstructure and perfusion.
Such effects can be analyzed in-silico using mathematical models, which may ultimately
lead to the improvement or better interpretability of such methods. Therefore, we develop
a mathematical model based on processes on the capillary scale which can reproduce MRI
signals from clinical data on the organ scale (see Chapter 9).

Efficient numerical simulations require model reduction techniques since the number of
segments in a network can get very large. The network flow can usually be described by cross-
section averaged quantities, which reduces the model spatially by two dimensions. However,
flow patterns in the embedding porous medium are usually three-dimensional. The resulting
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coupled partial differential equation systems can be described as mixed-dimensional. In
the numerical approximation of solutions to such equations, non-standard and non-local
methods arise. This work gives an overview over such methods. Moreover, several existing
methods are summarized in a common mathematical framework. A new method for the
numerical approximation of mass exchange between porous media and embedded networks
is presented in Chapters 7 and 8.

This dissertation is a contribution to the description and understanding of mixed-dimension
embedded models, covering mathematical modeling as well as numerical methods at the
example of three applications: biological tissue perfusion, root water uptake, and well
modeling. In the remaining part of this introduction, Sections 1.2 to 1.3 discuss the three
applications individually and briefly summarize the state-of-the-art modeling techniques
for each application domain. The content of Sections 1.2 to 1.3 is based on Koch et al.
(2018b, 2020d,c). Section 1.4 outlines the mixed-dimension embedded model concept used
in this work for the mathematical description of all systems. Section 1.5 concludes with a
structural overview of the rest of this work.

1.1 Biological tissue perfusion models

Figure 1.1 – Tissue perfusion. Left, capillary cross-section with red blood cell and surrounding
tissue, transmission electron microscopy image (license: public domain), Middle, rendering of
segmented blood vessel network sample from mouse cortex, from data by Blinder et al. (2013). Right,
simulation of NMR signal in a small capillary network using DuMux, see Chapter 9.

Due to the large number of vessels in the microvasculature (see Fig. 1.1), fully three-
dimensionally resolved computational models are only feasible for small tissue samples.
A class of simplified models uses homogenization techniques to obtain a porous medium,
including both the extra-vascular space and the vascular system in the homogenization
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process (Chapman et al., 2008; Shipley and Chapman, 2010; Penta et al., 2015; Schröder
et al., 2018; Ehlers and Wagner, 2015; Wagner and Ehlers, 2010; Wagner et al., 2018; Roose
and Swartz, 2012). However, such models are difficult to parameterize and often neglect the
hierarchical nature of the vascular network. The latter shortcoming is addressed by Michler
et al. (2013) and Hyde et al. (2013) by using a hierarchical multi-continuum porous medium
model. A further improvement are hybrid models, for which only the microvasculature is
homogenized and larger vessels, such as the pial and the major penetrating vessels in the
brain cortex, are discretely resolved with one-dimensional models (El-Bouri and Payne,
2015; Peyrounette et al., 2018; Shipley et al., 2019; El-Bouri and Payne, 2018; Vidotto et al.,
2019). The referenced models neglect the effect of the extra-vascular compartment, which is
included in a recent study by Vidotto et al. (2019). The study compares a hybrid model to a
mixed-dimension model with discretely resolved microvasculature. However it shows that
it remains difficult to parameterize continuum models to reproduce the flow characteristics
estimated with a discrete vascular graph model.

Another approach considers stationary solutions for homogeneous extra-vascular com-
partments. The pressure or concentration maps in the extra-vascular compartment are
approximated by an analytical solution obtained by the superposition of point sources along
the vascular graph (Beard and Bassingthwaighte, 2001; Secomb et al., 1993, 2004; Sun and
Wu, 2013; Goldman, 2008). The method, introduced by Hsu and Secomb (1989) as the
Green’s function method for the study of oxygen transport (Secomb et al., 2000, 2004), has
been recently adapted to study tumor perfusion (Robert et al., 2016; d’Esposito et al., 2018;
Sweeney et al., 2019). These models cannot capture transient effects.

Herein, we consider a class of models, for which the microvasculature is represented by a
network of vessel segments embedded in the extra-vascular space. The flow in the vessels is
modeled by partial differential equations (PDEs) with spatial dimension one, whereas the
extra-vascular space is modeled as a homogenized porous medium described by PDEs with
spatial dimension three. The PDEs are coupled via source terms. The three-dimensional
domain and the one-dimensional domain are independently discretized by computational
grids. Such embedded mixed-dimension models have been used to study the proliferation
of cancer drugs (D’Angelo, 2007; Cattaneo and Zunino, 2014), nano particle transport for
hyperthermia therapy (Nabil et al., 2015), oxygen transport (Fang et al., 2008; Reichold
et al., 2009; Linninger et al., 2013), and contrast agent perfusion (Holter et al., 2019). These
methods allow to efficiently describe flow and transport in vascularized tissues. Another
advantage of such methods, is the description of growing networks without re-meshing.
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This is of particular interest for modeling angiogenesis (Secomb et al., 2013), which is, for
example, an important factor of tumor growth (Hanahan and Weinberg, 2011).

In this work, we discuss a new consistent mixed-dimension embedded method which
allows to approximate the fluid exchange rates between the vascular and the extra-vascular
space more accurately for coarse grid resolutions. Furthermore, we use mixed-dimension
embedded methods to develop a sub-voxel brain tissue perfusion model to simulate perfusion
MRI (magnetic resonance imaging) experiments in-silico. The model is compared with
clinical MRI data from multiple sclerosis patients.

1.2 Root-soil interaction in the vadose zone∗

Figure 1.2 – Root water uptake. Left, lilium root cross-section (license: public domain), Middle,
unearthed young root system (license: CC0). Right, simulation of root water uptake using DuMux,
see Chapter 10.

Natural vegetation as well as cultivated crops play an important role in the global water
budget, above and below the surface. Therefore, understanding transpiration from vegetation
is essential and has to be considered in land-atmosphere models used in climatology and
hydrology. The interactions of water and plants need to be analyzed on a broad range of
temporal and spatial scales (Fatichi et al., 2016), one of them focusing on the interaction of the
root system of a single plant with the surrounding soil. Mathematical models and simulation
of the relevant processes can help with the fundamental understanding of the plants’ reactions
to their environment, how plant roots contribute to soil water distribution and flow, adapt to
drought, or how they are influenced by soil water contamination or salinization (Shani and

*This introductory section is based on Koch, Heck, Schröder, Class, and Helmig (2018b).
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Ben-Gal, 2005). Although in-situ monitoring methods of the physical processes at the soil-
root interface are continuously improved, measurements remain difficult (Zarebanadkouki
et al., 2013).

Mathematical models of coupled soil-root systems have been developed to study the transfer
processes between the soil and the root systems. Such models can also help to analyze and
interpret measurements, and support the design of future experimental setups. Challenges
include large differences in spatial and temporal scales and the combination of physical,
chemical and biological processes in a single model. Existing soil-root models range from
single root segment models (Roose and Schnepf, 2008) for local soil-root interface studies,
crop models used to predict yields (Malézieux et al., 2009), models with empirical root
uptake functions (Somma et al., 1998), to plant-scale models (Javaux et al., 2008) using an
explicit description of the three-dimensional root system and root system growth. Dunbabin
et al. (2013) recently compiled a detailed overview of plant-scale models. This kind of model
is also the focus in this work. Plant-scale models include an explicit description of one
or more plant root system architectures embedded in the surrounding soil. The root
system (see Fig. 1.2) is usually represented by a network of discrete cylindrical segments,
while physical quantities, such as water pressure, are averaged over the cross-section of the
cylinder (Clausnitzer and Hopmans, 1994; Doussan et al., 1998). This simplification of the
root system architecture increases the computational efficiency in comparison with a three-
dimensional resolution of the processes in the roots. As a consequence, the mathematical
model is reduced to a PDE system formulated on the center-lines of a tubular network
domain. The root network is geometrically embedded into the three-dimensional soil
domain (a porous medium). The explicit geometrical description of the root system inside
the soil allows modeling transfer processes at the soil-root interface, as well as a natural
description of sap and nutrient transport within the root system.

Many algorithms have been developed to model soil-root interaction and root architecture.
We only mention here a selection that features three-dimensional root architecture models
including at least some interaction with the soil: Diggle (1988); Clausnitzer and Hopmans
(1994); Lynch et al. (1997); Pagès et al. (2004); Javaux et al. (2008); Leitner et al. (2010);
Schneider et al. (2010); Postma et al. (2017). However, these model are either restricted to
the Richards flow model or more simplified soil flow models, or lack the description of soil
flow and transport entirely, and are restricted to specific models for the description of xylem
flow and water and nutrient uptake, see Dunbabin et al. (2013) for a review. The numerical
schemes of the available models are not generally locally mass-conservative which can be an



6 1 Introduction

issue if quantification of tracers and root water uptake is of interest. Only one of the models
mentioned by Dunbabin et al. (2013) is publicly available under an open-source license. The
root system architecture model SimRoot (Lynch et al., 1997) has been recently extended by
a hydrology module, and is now available under an open-source license (Postma et al., 2017).
Although such models have been developed since the late 1980s, the literature focusing on
the numerical aspects of such models is surprisingly sparse. To the best of our knowledge,
the only studies focusing on the effects of grid refinement are by Schröder et al. (2008,
2009a). Schröder et al. (2008) compare numerical solutions to an analytical approximation
in a simplified setting and conclude that fine grid resolutions are necessary to yield accurate
results. Furthermore, they note in their introduction that their numerical model, which
is state-of-the-art in the root-soil modeling community (Dunbabin et al., 2013), does not
behave well when refining the soil grid.

In this work, we propose a simulation framework with strong emphasis on a consistent
and generalized formulation of the fluid mechanical processes. The interaction between
root and soil is described by a mathematically sound mixed-dimension embedded model.
The interaction between different transport processes in the vadose zone is investigated by
numerical experiments in Chapter 10.

1.3 Well modeling in geological formations

The accurate description of the flow around wells is essential for various engineering applica-
tions, as for example reservoir simulation, geothermal energy production or energy storage,
where injection or extraction processes strongly influence the flow behavior. In the majority
of models, the well geometry is not explicitly resolved in the mesh but instead modeled
as a line source with given extraction or injection rate. However, this simplified approach
introduces singularities, meaning that the logarithmic solution profiles are undefined at
the center-line of the well. This leads to a significant deviation between numerical and
analytical solution in the near-well region. For a better approximation, locally refined
meshes around the wells are needed, which however deteriorate efficiency and are therefore
often not suitable for field-scale simulations, especially when multiple wells are present.

A common approach is the use of well-index-based well models. Such well models aim
to find a relation between well rate, bottom hole pressure and numerically calculated
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pressure (well-block pressure) for each cell (grid-block) that contains the well. In reservoir
engineering such a relation is denoted as well index. The first theoretical derivation of a
well index for two-dimensional structured uniform grids with isotropic permeability has
been presented by Peaceman (1978). A discussion of possible extensions and generalization
to other discretization schemes can be found in the review by Chen and Zhang (2009), with
the restriction of two-dimensional grids. An extension to three-dimensional slanted wells is
presented in Alvestad et al. (1994); Aavatsmark and Klausen (2003). Babu and Odeh (1989);
Babu et al. (1991); Wolfsteiner et al. (2003) use Green’s functions for the computation of
well indices. Hales (1997); Gjerde et al. (2019) use a singularity subtraction method to
obtain smooth solutions in the near-well region.

Dogan (2011) discusses coupled models of one-dimensional tube flowwith three-dimensional
porous medium flow in terms of a dual-continuum model. The tube center-lines conform
with the edges of the computational grid of the three-dimensional domain. The mass ex-
change between the two compartments is modeled by linear mass transfer function derived
from a dual-continuum approach although the network domain is discretely represented and
not homogenized as to obtain a continuum on a coarser scale. This means that models de-
rived for different scales are coupled. Furthermore, the transfer coefficient is scale-dependent.
Surprisingly, Dogan (2011) assesses in a numerical test that his numerical method is very ro-
bust with respect to grid refinement and concludes that 1D-3D mixed-dimension approaches
are less grid sensitive than 2D-3Dmixed-dimension approaches (for example discrete fracture
models). We question his conclusion. Due to the dimensional gap of two, pressure solutions
in 1D-3D mixed-dimension flow problems exhibit large and nonlinearly increasing gradients
in vicinity of the tubes, even for single phase flow problems. Typical errors of the pressure
solution observed in grid convergence studies against analytical solutions are relatively
low even for coarse 3D grid resolutions in comparison with the fracture aperture for the
2D-3D case (Ahmed et al., 2015; Gläser et al., 2017a). For the 1D-3D case, similar error
magnitudes can only be obtained by using 3D grid resolutions in the order of the tube radius
and smaller (D’Angelo, 2007; Köppl et al., 2016, 2018); see also Chapter 7 in this work.

In Cerroni et al. (2019), well modeling is (to the best of our knowledge) first discussed
in terms of fully coupled PDE systems of one-dimensional PDEs for the well flow, and
three-dimensional PDEs for describing the flow in the embedding rock. However, due to
the employed numerical method they require fine grids for the rock domain. In this work,
we contribute to the development of more accurate well models by presenting an embedded
mixed-dimension method for porous media with anisotropic permeability tensor fields,
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which achieves a higher accuracy in modeling the flow field in some distance to the well for
coarse grid resolutions than conventional approaches.

1.4 Modeling concept

All introduced applications make use of the same modeling concept. They have in common
that tubular network systems supply fluids to, or extract fluids from an embedding porous
domain. Specifically, in the first application, the porous domain is the biological soft tissue
which is supplied with fluids, nutrients, and oxygen by a hierarchical network of blood
vessels. In the second applications water and nutrients are extracted from (or redistributed
in) the top layer of the soil by a network of roots. In the last application, water, fracking fluid,
or oil is injected to or produced from the rock matrix in a geological formation, or from an
aquifer. The network tube radius is small in comparison with the domain size. This allows
using model reduction techniques which render conservation equations in the network
domain one-dimensional in space. Due to these similarities, we treat these applications in
a common mathematical and numerical framework. In particular, we want to emphasize
that although the individual chapters in this work mostly focus on a single application,
the presented concepts, methods and results are directly relevant for the respective other
applications.

The numerical implementation ofmixed-dimensionmethods is rather difficult in comparison
with standard methods. For the sake of improved software sustainability, faster prototyping
of newmethods, and flexibility with respect to the considered physical processes, we develop
an open-source software framework dedicated to problems such as the implementation
of mixed-dimension embedded models. The software framework goes even further, and
discusses mixed-dimension embedded models as a sub-class of coupled problems of different
physical processes, on possibly different spatial domains, discretized with possibly different
numerical methods.

1.5 Overview and structure

In Chapter 2, we briefly introduce the common concept and terminology for modeling
flow and transport in porous media. In the following Chapters 3 to 5, we derive math-
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ematical models for three different fluid-mechanical problems. In Chapter 3, we derive
a fluid-mechanical model for drug proliferation in brain tissue including flow in the mi-
crovasculature and the extra-vascular extra-cellular space. Chapter 4 presents a model for
thermo-fluid-mechanical processes in the vadose zone including root water uptake, solute
transport, plant transpiration and soil evaporation. Finally, in Chapter 5 we discuss mathe-
matical models used for well modeling in the petroleum industry, for geothermal energy
systems, or groundwater wells. The chapters emphasize how the same modeling concept
emerges for all three applications, such that they can be treated in a common mathematical
and numerical framework. We discuss state-of-the-art techniques in relation to the presented
model, and investigate the most important modeling assumptions to arrive at the presented
models. A general framework and the corresponding terminology to describe embedded
mixed-dimension problems of tubular networks in porous media is presented in Chapter 6.
In Chapter 7, we present a new numerical method for embedded mixed-dimension problems
using distributed sources on the example of the simulation of tissue perfusion. The method
is extended for porous media with anisotropic permeability in Chapter 8, for the example
of well modeling in the context of single phase flow in porous media. In Chapter 9, a mixed-
dimensional model is used to develop a sub-voxel tissue perfusion model for the analysis of
perfusion MRI data. The resulting model is compared to clinical MRI data. In Chapter 10,
we present simulations of root water uptake and root growth in unsaturated soil. Chapter 11
discusses implementation aspects of the presented models. Finally, summary and outlook
are presented in Chapter 12.





2 Flow and transport in porous media

This chapter briefly introduces some basic concepts and terminology for modeling flow
and transport in porous media. Porous media are materials with an internal pore structure,
such as sponges, soil, rocks, or biological tissue. Herein, we describe flow through porous
media using continuum theory (Bear, 2013). The physical processes are not described on
the scale of the individual pores and grains of the soil but rather in terms of continuum-scale
quantities, volume fractions, using mixture theory (Truesdell, 1984). The relevant scale is
defined by the size of a representative elementary volume (REV), which is the minimal
volume for which characteristic macro-scale quantities are representative of a much larger
volume of a porous medium (Hill, 1963). The REV size can range from micrometers (e.g.
for biological tissues) to millimeters (e.g. for sand) to kilometers (e.g. for a fractured rock
system). For a porous medium sample with total volume V , we define the porosity

φ=
Vp

V
, 0<φ< 1, (2.1)

where Vp is the total pore volume (or void volume) of the sample. We neglect mechanical
deformation of the matrix (the solid skeleton), as well as swelling, dissolution, and precip-
itation processes, so that the porosity is usually constant over time, but may be spatially
varying. The pore space is filled by one or more fluid phases. The saturation of a phase α is
defined by

Sα =
Vα

Vp

, with
∑

α

Sα = 1, (2.2)

where Vα denotes the volume occupied by the phase α in the given sample.

In the following, we consider systems with a maximum of two fluid phases occupying the
pore space. The interface between two phases is normally curved, since one phase usually
has a lower contact angle (wetting phase) when wetting the matrix than the other phase
(non-wetting phase). Due to low fluid velocities in porous media, a common assumption is
that of local thermodynamic equilibrium, see for example Class et al. (2002). In equilibrium,
there is a pressure difference between two fluid phases called capillary pressure

pc = pn− pw, (2.3)
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where pn and pw are the pressures of the non-wetting and the wetting phase fluid, respectively.
The capillary pressure between two fluids in a narrow tube can be described by the Young-
Laplace equation depending on the contact angle, surface tension, and the radius of the tube.
On the continuum scale, capillary pressure is usually formulated as a function of the wetting
fluid saturation with empirically determined parameters. A common parametrization for
two-phase systems in soils is the Van Genuchten model (Van Genuchten, 1980)

Swe = [1+(αvg pc)
n
vg]−m

vg , m
vg
= 1− 1

n
vg

, Swe =
Sw− Swr

1− Swr− Snr
(2.4)

where α
vg

and n
vg

are empirical shape parameters depending on soil properties, such as the
grain size distribution. The residual saturation, Sαr, is an empirical parameter describing a
saturation threshold below which the phase α is immobile, and Swe is the effective wetting
saturation. In the soil sciences, Eq. (2.4) is usually formulated in terms of the water
content θ :=φSw, the residual water content θr :=φSwr, and the water content at saturation,
θsat :=φ.

The fluid flow through the rigid matrix is characterized by the filter velocity*

vα =−
krα

µα
K (∇pα−ραg ) (2.5)

for each phase α (Helmig, 1997), where µα is the dynamic viscosity, ρα the density, and
pα the fluid pressure of phase α. The intrinsic permeability tensor field K is a friction
coefficient of the solid matrix, and g the gravitational field. The dimensionless relative
permeability krα describes the apparent reduction in permeability for one phase due to
the presence of other phases. It is commonly modeled by an empirical relationship. For
instance, for the Van Genuchten–Mualem model for two-phase flow (Van Genuchten, 1980;
Mualem, 1976; Luckner et al., 1989),

krw = (Swe)
l
vg

�

1−
�

1− S
1

m
vg

we

�m
vg

�2

, krn = (1− Swe)
l
vg

�

1− S
1

m
vg

we

�2m
vg

. (2.6)

The pore-connectivity parameter l
vg

is commonly chosen as 0.5 due to Mualem (1976)
(the parameter has the symbol n in the original paper), who showed good agreement for
a wide range of soils. Sometimes, l

vg
is used as additional empirical fitting parameter, e.g.

by Wösten et al. (2001). For single-phase flow of phase α, krα = 1 and Sα = 1.

*also “seepage velocity” or “Darcy velocity”, due to Darcy (1856)
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A fluid phase can consist of several components, c. For multi-component systems, diffusion
is often an important transport process. For components with low concentrations (solute)
dissolved in a phase mostly consisting of a single main component (solvent), diffusion fluxes
can be described by Fick’s law with binary diffusion coefficients, Dcα . In a multi-phase
porous medium system modeled on the continuum scale, the effective diffusion coefficients
are lower than diffusion coefficients in pure fluids due to the tortuous nature of the pore
network and the local phase distribution. An effective diffusion coefficient can be estimated
by (Bear, 2013)

Dcα,e = τSαφDcα , (2.7)

where τ is the tortuosity of the pore space.

Moreover, the phases may be considered miscible, that is that components of one phase
can dissolve in another phase. In local thermodynamic equilibrium, all components in a
given small control volume have equal chemical activity. Hence, the phase composition in
this control volume can be computed from pressure and temperature (Class, 2007) and the
constraint

∑

c
xcα = 1, (2.8)

where xcα denotes the mole fraction of component c in phase α. For example, in a water-air
system c ∈ {w,a}, α ∈ {l,g}, the equilibrium mole fraction of water in the gas phase g can
be computed with Dalton’s law, and assuming that water vapor is in equilibrium with liquid
water,

xw
g =

pw
sat

pg
, (2.9)

where pw
sat = pw

sat(T ) is the saturation vapor pressure of water. The mole fraction of air in
the liquid phase l can be approximated with Henry’s law

xa
l =

pa
g

H a
w

, (2.10)

with the partial air pressure pa
g = xa

g pg, and the Henry coefficient for the dissolution of air
in water H a

w =H a
w(T ), see e.g. Helmig (1997).

For non-isothermal systems, we need to describe heat conduction. Again, we use the
assumption of local thermodynamic equilibrium. This means that a single temperature
is assigned to all fluid phases and the solid matrix within a small control volume. Heat
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conduction is then described with an effective thermal conductivity λe, depending on the
local volume fractions and the thermal conductivities of all fluid phases and the solid phase.
A suitable model for estimating the effective thermal conductivity is, for instance, given
by Somerton et al. (1974)

λe = λdry+
p

Sw
�

λwet−λdry
�

, (2.11a)

λwet := λ(1−φ)s λφw , (2.11b)

λdry := λ(1−φ)s λφn , (2.11c)

where λs is the thermal conductivity of the solid matrix and λα, α ∈ {w, n}, the thermal
conductivity of the wetting and non-wetting fluid phases, respectively. The geometric mean
in Eqs. (2.11b) and (2.11c) is suggested by Somerton (1992) due to a good match with
experimental data.

For a more detailed description on modeling multi-phase flow and transport in porous
media, we refer to Helmig (1997) and Class (2007).



3 Modeling tissue perfusion∗

In the following chapter, we describe the brain tissue perfusion model used in this work
in the context of perfusion magnetic resonance imaging (MRI). Many of the presented
concepts and assumptions also apply for other vascularized tissues. Of particular interest is
the exchange of substances over the endothelium, which takes place primarily in the smallest
blood vessel, the capillaries, characterized by diameters (in humans) of about 5 to 10 µm.

The tissue is decomposed into two domains. The vascular compartment comprises blood
vessels, including the capillary lumen, the endothelial surface layer, the basement mem-
brane, and blood. The extra-vascular compartment includes cells, the extra-cellular matrix
(ECM), and the interstitial fluid. The compartments communicate by the exchange of
substances over the capillary wall (transmural exchange). In the following three sections, the
modeling assumptions are discussed separately for both compartments and the transmural
exchange. These sub-domain models are then combined, to obtain a mixed-dimension tissue
perfusion model. The model reduction process from a three-dimensional vessel model to a
one-dimensional vessel model including transmural exchange is summarized schematically
in Fig. 3.1.

endothelial cell

red blood cell
endothelial tight junction

basement
membrane

pericyte

Figure 3.1 –Modeling of blood flow in capillaries by step-wise abstraction andmodel reduction.
The capillary is modeled as a leaky tube, with a selectively permeable membrane wall. The wall
is reduced to a two-dimensional surface. Finally, the three-dimensional flow model is reduced to a
one-dimensional cross-section averaged flow model. For the anatomical structure of continuous and
other capillary types, see e.g. Junqueira et al. (2002).

*This chapter is based on Koch, Flemisch, Helmig, Wiest, and Obrist (2020a).
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3.1 Blood flow and drug transport in capillaries

Blood plasma can be modeled as an incompressible Newtonian fluid and its flow through
the vessel lumen is described by the Navier-Stokes equations, similar to water flow through
a pipe,

ρ
�

∂ v
∂ t
+∇ ·

�

vvT �
�

= 2µ∇ ·D (v)−∇p +ρg , (3.1a)

∇ · v = 0, (3.1b)

where v denotes fluid velocity, ρ fluid density, µ fluid viscosity, p fluid pressure, and
D (v) = 1

2 (∇v +∇T v) is the symmetric velocity gradient. The gravitational vector field is
denoted by g . For small vessels, we assume that there is no significant vessel dilation due to
pressure fluctuations. Blood flow is predominantly laminar, especially within the smaller
vessels. Typical Reynolds numbers in capillaries are as small as

Re=
ρvcdc

µ
≈ 0.002 to 0.006, (3.2)

cf. Formaggia et al. (2009), where vc denotes a characteristic velocity, and dc a characteristic
vessel diameter. Flow velocities in capillaries are on the order of than 1 mms−1 (Quarteroni
and Formaggia, 2004). For creeping flow (Re� 1), the non-linear inertial term on the
left-hand side can be neglected. We neglect gravitational forces due to the small spatial scale
of interest. The Womersley number relates pulsatile flow frequency to viscous effects and
can be estimated for capillaries by

Wo= dc

�

ωρ

µ

�
1
2

≈ 0.004 to 0.011, (3.3)

where ω ≈ 1 Hz is the heartbeat frequency. Therefore, we assume a quasi-stationary flow
regime. Under these conditions, Eq. (3.1) can be simplified to the stationary incompressible
Stokes equations

−2µ∇ ·D (v)+∇p = 0, (3.4a)

∇ · v = 0. (3.4b)
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As radial velocities in long vessels (compared to their radius) are negligibly small in com-
parison with the axial velocities, the three-dimensional Stokes equations can be further
simplified to a one-dimensional description by introducing a cross-section-averaged pressure
and assuming a specific axial velocity profile (Formaggia et al., 2003), so that

∂ (ρAvv)
∂ s

=− ∂
∂ s

�

ρ
Av r 2

v

2(2+ γ )µ
∂ pv
∂ s

�

=−q̂m, (3.5)

with the equivalent vessel radius rv, the vessel cross-section area Av =πr 2
v , the mean velocity

v , the cross-section averaged pressure pv, and the local axial coordinate s . The rate of mass
exchange with the extra-vascular compartment is denoted by q̂m (units of kgs−1 m). A model
for q̂m is discussed in Section 3.2. The shape parameter γ parameterizes the assumed axial
velocity profile,

v ·nz =
1
γ
(2+ γ )

�

1−
�

r
rv

�γ�

v, (3.6)

where nz denotes a normalized vector in local axial direction. A parabolic profile is obtained
for γ = 2. Higher values yield plug flow velocity profiles (flat in tube center, large gradients
at the wall). Modeling blood flow by models using one-dimensional descriptions is very
common (also for larger vessels and pulsatile flow) due to the large reduction in model
complexity (cf. Olufsen et al., 2000; Sherwin et al., 2003; Formaggia et al., 2003, 2009;
Blanco et al., 2015; Köppl, 2015; Perdikaris et al., 2016; Quarteroni et al., 2017). For many
situations one-dimensional models have shown to accurately describe physiological flow
characteristics.

Until here, we only considered blood plasma or blood as a single continuum phase. However,
blood is a mixture of several components. Most prominently, it consists of red blood cells
(RBC), white blood cells, blood platelets, plasma and plasma proteins (Formaggia et al.,
2009). The shear stress behavior of the mixture is usually considered non-Newtonian (Misra
et al., 1993). RBCs are typically non-uniformly distributed in blood vessels and affect the
local flow resistance. Several well-known effects influencing the local RBC distribution
are the Fåhraeus effect, the Fåhraeus-Lindqvist effect, and the phase-separation effect at
diverging bifurcations (Schmid, 2017). For capillaries with diameters below 10 µm, RBCs
(∅ 6.2 to 8.2 µm (Turgeon, 2005) in humans) can only move in single file flow through the
lumen. To pass through the smallest vessels, RBCs need to deform (Fung and Zweifach,
1971; Popel and Johnson, 2005). In this work, we consider empirical relations describing
the influence of the local RBC distribution in terms of an effective viscosity µB in Pas, due
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to Pries et al. (1996),

µB = 0.001 ·
�

220 · exp (−2.6rv)− 2.44 · exp
�

−0.06 · (2rv)
0.645�+ 3.2

�

, (3.7)

where we followed Guibert et al. (2012), Linninger et al. (2013), and Gagnon et al. (2015) and
assume a constant tube hematocrit of 0.45 for all vessels. The effective or apparent viscosity
µB replaces µ in Eq. (3.5). Guibert et al. (2010) suggest that the variance of tube hematocrit
is of little importance when analyzing flow through larger networks. For completeness,
we mention that recent works considering the tracking of individual RBCs (Obrist et al.,
2010; Schmid et al., 2015) suggest that the variability of the local RBC concentration has
important regulatory effects on the flow field in microvascular networks (Schmid et al.,
2017). Recent continuum model approaches consider temporally constant but spatially
varying hematocrit depending on the network topology (Lorthois et al., 2011; Possenti
et al., 2019). In this work, we do not consider the phase-separation effect at bifurcations by
means of bifurcations rules (Fung, 1973; Pries et al., 1989).

Blood flow models are usually derived at the example of single straight or curved vessel
segments. However, in a vessel network, vessels branch and join. We apply Eq. (3.5)
for every segment and at such vessel bifurcations, we enforce continuity of pressure and
conservation of mass to couple the equations of multiple segments.

The transport of a drug, such as a contrast agent, can be described by an advection-diffusion
equation. Again, by integration of the three-dimensional equations over the vessel cross-
section, the model can be reduced to a one-dimensional equation for the cross-section-
averaged molar concentration cv (Formaggia et al., 2003),

∂ (Avccv )
∂ t

+
∂

∂ s

�

Avωvccv −AvDcB
∂ ccv
∂ s

�

=−
q̂cm
M c

, (3.8)

where M c is the molar mass of the contrast agent, v is the mean velocity introduced
in Eq. (3.5), and DcB the binary diffusion coefficient of the contrast agent in blood. The
exchange with the extra-vascular compartment is modeled by the flux q̂cm (units of kgs−1 m)
as discussed in Section 3.2. The shape factor ω > 0 reflects the variation of axial velocity
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profiles in vessel cross-sections (Formaggia et al., 2003),

ω =
1

Av

∫ 2π

0

∫ rv

0
χ (r )φ(r )r drdθ, (3.9)

with
1

Av

∫ 2π

0

∫ rv

0
f (r )r drdθ= 1 for f ∈ {χ ,φ}, (3.10)

where χ (r ),φ(r ) are the dimensionless velocity profile and the dimensionless concentration
profile, respectively. As it has been observed that small nano particles are likely to be
distributed evenly in the capillary lumen (Lee et al., 2013), we choose ω = 1. Typical Péclet
numbers for small nano particle transport in capillaries are in the range of

Pe=
vdc

DcB
≈ 1 to 50, (3.11)

such that advective transport is usually slightly more important than diffusive transport.
For instance, for the contrast agent Gadobutrol at body temperature, DcB can be estimated
by means of the Stokes-Einstein radius, rhy = 0.9nm (Guthausen et al., 2015), as

DcB ≈
kBT

6πµP rhy
≈ 1.9 · 10−10 m2 s−1, (3.12)

where µP = 1.32Pas (Pedersen et al., 2014) denotes the blood plasma viscosity, T the
temperature in K, and kB the Boltzmann constant.

3.2 Transmural fluid exchange

The wall of continuous capillaries consists of an endothelial surface layer, a basal membrane,
and a layer of charged proteins, called glycocalyx (Sugihara-Seki and Fu, 2005). Mass ex-
change can occur passively through the endothelial tight junctions, or through trans-cellular
pathways. Here, we consider only transport by advection and diffusion, following (For-
maggia et al., 2009). Given a blood vessel volume fraction of 3 %, an average thickness
of the endothelial surface layer of 1 µm (Pries and Kuebler, 2006), and an average vessel
radius of 10 µm, the volume fraction of the capillary wall is less than 1 % of the tissue
volume. The capillary wall can be conceptually reduced to a two-dimensional interface,
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denoted by Γ , separating the vascular from the extra-vascular compartment. Note that this
results in a pressure jump across Γ , which is inversely proportional to wall permeability
and wall thickness. In the following, the subscripts v and t are used to distinguish between
quantities in the vascular and the extra-vascular compartment. According to Starling’s
hypothesis (Starling, 1896; Kedem and Katchalsky, 1958), the transmural flux of a fluid is
proportional to the sum of the hydraulic and the colloid osmotic pressure gradient between
capillary lumen and interstitial space

q̂m = ρILpPv [(pv− p t)−σ(πv−πt)] , (3.13)

where Lp is the filtration coefficient, with units of mPa−1 s−1, ρI the density of interstitial
fluid, Pv = 2πrv is the perimeter of a vessel cross-section,

p t =
1
Pv

∫ 2π

0
pt

�

�

�

�

rv

rv dθ (3.14)

is the average hydraulic pressure on the perimeter of a vessel cross-section, πv, πt, denote
the osmotic pressure in capillary lumen and interstitial space (averaged on the perimeter
of a vessel cross-section), respectively, and 0≤ σ ≤ 1 is the osmotic reflection coefficient.
It is close to 1 for macro-molecules and close to 0 for micro-molecules (Jain, 1987). The
difference in osmotic pressure results from large plasma proteins in the blood stream (such
as albumin), and effectively draws fluid into the vessels. Herein, we approximate the osmotic
pressures as constants, so that ∆π = πv−πt = 2633Pa (Levick, 1991). Furthermore, we
choose σ = 1.

The filtration coefficient in Starling’s law can also be interpreted in terms of a porous medium
model of the membrane (Quarteroni and Formaggia, 2004). However, it is questionable
whether an REV really exists because of its small dimensions (Baber, 2014). Considering only
normal flow across the membrane, the filtration coefficient can be analogously described as

Lp =
Kω

µIdω
, (3.15)

where Kω is the intrinsic permeability (in normal direction, m2) of the membrane, dω the
membrane thickness and µI the interstitial fluid viscosity.
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A drug, such as a contrast agent, may be transported by advection and molecular diffusion.
Some molecules might be transported across the capillary wall by active transport mecha-
nisms. These effects are hard to quantify and not considered here. Instead, we assume that
such processes depend on the concentration difference between vessel lumen and interstitial
space and can be modeled by an increased diffusion coefficient. The conceptual reduction
of the vessel wall to a surface leads to a concentration jump across the vessel wall, which is
inversely proportional to diffusive wall conductivity and wall thickness. The transmural
transport can be described as

q̂cm =DωM cPv(c
c
v − cct )+

q̂m

ρI
(1−σc)M

cccup ∀c, (3.16)

due to Kedem and Katchalsky (1958), where Dω is the effective diffusive wall conductivity,
with units of ms−1,

cct =
1
Pv

∫ 2π

0
cct

�

�

�

�

rv

rv dθ (3.17)

is the average contrast agent mole fraction on the perimeter of a vessel cross-section,

ccup =







ccv if q̂m ≤ 0

cct if q̂m > 0
(3.18)

denotes the concentration in upwind direction, and 0 ≤ σc ≤ 1 denotes the solvent-drag
reflection coefficient. For a small contrast agent molecule and especially for cases where
endothelial tight junctions are damaged (e.g. in inflamed lesion tissue due to multiple
sclerosis), we set σc = 0, neglecting reflection. Determining Dω from MRI data is the major
objective of the investigations presented in Chapter 9.

3.3 Extra-vascular compartment

The extra-vascular compartment is modeled as a porous medium with a rigid solid skele-
ton, consisting of cells, fibers, and extra-cellular matrix. Flow of a single fluid phase, the
interstitial fluid, through a porous medium can be described by Darcy’s law (Darcy, 1856)

ρI∇ · v =−
ρI

µI
∇ · (K∇pt) = q , (3.19)
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where ρI,µI are density and viscosity of the interstitial fluid, v is the filter velocity, K is
the intrinsic permeability of the extra-vascular compartment, and q (kgs−1 m3) denotes the
mass exchange with the vascular compartment. For a more detailed description of porous
media models for biological soft tissue, we refer to Ehlers and Blum (2002); Wagner and
Ehlers (2010); Ehlers and Wagner (2015).

The transport of substances, c, is modeled by advection-diffusion equations,

φ
∂ cct
∂ t
+∇ · (vcct −Dce∇cct ) =

qcm
M c

, (3.20)

where φ denotes the porosity of the extra-vascular space, Dce is the effective diffusion
coefficient, and qcm (kgs−1 m3) is the mass exchange with the vascular compartment. We
assume that the interstitial space in the extracellular matrix, with pore throat diameters
of around 50 nm (Syková and Nicholson, 2008), still allows for a viscous flow regime.
Following the literature for tortuosity and porosity values (Syková and Nicholson, 2008),
we choose τ = 0.4 and φ= 0.2, and estimate the effective diffusion coefficient with Eq. (2.7).

3.4 Mixed-dimension tissue perfusion model

The mass balance equations, Eqs. (3.5), (3.8), (3.19) and (3.20), are coupled by Eqs. (3.13)
and (3.16), where Eqs. (3.19) and (3.20) are described in the three-dimensional extra-vascular
domain Ω, and Eqs. (3.5) and (3.8) are associated with the one-dimensional vascular domain
Λ. Mass leaving the vascular compartment has to enter the extra-vascular compartment and
vice versa. To enforce this constraint, we introduce the coupling conditions

∫

Ω

q̂mΦΛdx =
∫

Λ

q̂mds , and
∫

Ω

q̂cmΦΛdx =
∫

Λ

q̂cmds , (3.21)
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with the kernel function ΦΛ which will be motivated and defined in Chapter 6. Then, the
coupled fluid-mechanical model of tissue perfusion is to find pt and pv such that

− ∂
∂ s

�

ρB

µB

Av rv
2

2(2+ γ )
∂ pv
∂ s

�

=−q̂m in Λ,

−∇ ·
�

ρI

µI
K∇pt

�

= q̂mΦΛ in Ω, (3.22)

ρILpPv [(pv− p t)−σ(πv−πt)] = q̂m.

Then find ct and cv such that

∂ (Avccv )
∂ t

+
∂

∂ s

�

Avvccv −AvDcB
∂ ccv
∂ s

�

=−
q̂cm
M c

in Λ,

φ
∂ cct
∂ t
+∇ · (vcct −De∇cct ) =

q̂cm
M c
ΦΛ in Ω, (3.23)

DωM cPv(c
c
v − cct )+

q̂m

ρI
(1−σc)M

cccup = q̂cm,

subject to appropriate boundary conditions on the boundaries, ∂ Λ and ∂ Ω, of the vascular
and the extra-vascular domains, Λ and Ω.





4 Modeling root-soil interaction∗

This chapter introduces the modeling concepts and assumptions to model non-isothermal,
miscible two-phase, two-component subsurface flow in the vadose zone including embedded
root systems. Furthermore, we discuss how root growth and water uptake can be simulated
simultaneously in a coupledmodel with improved numerical properties compared to existing
growth algorithms, concerning mass conservation.

Looking at the processes in the unsaturated soil (vadose zone) around a plant’s root system,
we can identify typical processes involving flow and transport of water and nutrients. An
overview is schematically presented in Fig. 4.1. Important processes involving the root
system architecture are root water uptake, xylem flow and transport of minerals, and root
growth. For the water management in the upper layer of the soil, root water uptake is a
driver for water movement. However, there are competing driving forces like gravity, soil
water evaporation into the atmosphere and water precipitation during rainfall events or
irrigation.

(f)

(a)

(b)

(d)

(c)

(e)

Figure 4.1 – Typical processes in the vadose zone. (a) flow and transport in unsaturated soil
(see Section 4.1), (b) xylem flow and transport (see Section 4.2), (c) root water uptake (see Section 4.3),
(d) transpiration (see Section 4.5), (e) root growth (see Section 4.7), (f) soil evaporation, water
precipitation (see Section 4.6). Figure from Koch et al. (2018b).

We conceptually decompose the vadose zone into two domains. The root compartment
consists of all embedded root systems and the soil compartment comprises the embedding

*This chapter is based on Koch, Heck, Schröder, Class, and Helmig (2018b).
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porous soil matrix. The compartments communicate by the exchange of substances over
the root wall (transmural exchange). To model soil evaporation, an additional compartment
(atmosphere) comprises a free-flow layer of air in the atmosphere just above the soil surface.

4.1 Flow and transport in unsaturated soil

The unsaturated soil (excluding roots) can be described as a two-(fluid)-phase, multi-
component, non-isothermal porous media system, with a liquid phase (subscript l) and a
gaseous phase (subscript g) that are partly miscible, and the components water (superscript
w) and air (superscript a). The governing equations of such a system are given by the con-
servation equations for mass, energy, and momentum, with the definitions and assumptions
made in Chapter 2,

∂

∂ t

�

∑

α

φSαccα

�

+∇ ·
�

∑

α

�

ccαvα−Dce,α∇ccα
�

�

=
∑

α

qcα
M c

, ∀c ∈ {w,a}, (4.1a)

∂

∂ t

�

∑

α

(φραuαSα)+ (1−φ)ρscp,sT
�

+∇ ·
�

∑

α

(ραhαvα)−λe∇T
�

= qh, (4.1b)

where the momentum balance is given by the definition of the filter velocity vα in Eq. (2.5)
for each phase α ∈ {l,g}. In Eq. (4.1a), ccα = ρm,αxcα is the molar concentration of compo-
nent c in phase α, with the molar density of the phase ρm,α and the mole fraction xcα of
component c in phase α, and M c is the molar mass of c. In Eq. (4.1b), uα denotes the
internal energy of phase α, hα its enthalpy, T is the temperature, cp,s is the specific heat
capacity, ρs is the density of the solid matrix, λe is the effective heat conductivity introduced
in Eq. (2.11), and qh summarizes all external energy sources. We assume binary diffusion
with one molecule of water replacing one pseudo-molecule of air, so that e.g. Dw

e,l is identical
to Da

e,l, and thus Dw
e,l∇cwl =−Da

e,l∇c al , using Eq. (2.8).

Using the definitions from Chapter 2, Eq. (4.1) and Eq. (2.5) can be formulated in the
primary variables pw, Sg, and T . Unfortunately, the constitutive equations for computing
the phase composition are no longer applicable in case the two-phase system reduces to
one-phase flow in parts of the domain. We use the primary variable switching concept
as described by Class et al. (2002). For single phase liquid flow, the primary variables are
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switched to pw, xa
l , and T , while for single phase gas flow, the primary variables are switched

to pw, xw
g , and T . We note that the switching model is based on the practical assumption

that the capillary pressure saturation curve, Eq. (2.4), is regularized for low water saturation
so that pw is finite, even if the liquid phase vanishes.

For most situations in the vadose zone, we can exploit the fact that the viscosity of the gas
phase µg is much smaller than the viscosity of the liquid phase. Therefore, the gas phase
can be assumed infinitely mobile, mg = krgµg

−1→∞, where mα denotes the mobility of
phase α. Furthermore, the dissolution of air in water is often neglected. As a consequence,
the pressure of air inside the soil pores is constant and equivalent to the atmospheric pressure,
and the conservation equations need to be computed for the water phase only. The resulting
liquid phase mass balance replaces Eq. (4.1a),

∂ (φSlρl)
∂ t

−∇ ·
�

ρl
krl

µl
K (∇pl−ρwg )

�

= qw
l . (4.2)

It still contains the influence of air in the storage term and the constitutive relationship
for the relative permeability krl, given by Eq. (2.6). Assuming an incompressible liquid
phase (ρl = const.) and a constant water viscosity µl, this model is known as the Richards
equation, due to Richards (1931).

The Richards equation is the most commonly applied model in the unsaturated zone.
However, the model’s applicability is limited if one of the assumptions is violated or the
application has a focus on air flow, e.g. volatile components transported in air (Szymkiewicz,
2013). For example, when soil dries by evaporation, water vapor transport in the pore
space is particularly important as soon as a dry zone established inside the porous medium.
Szymkiewicz (2013) lists several cases where the Richards equation inaccurately describes
the problem, even when the focus is on water flow. The mobility ratio mg/ml can become
small for small air saturation as the relative permeability krg decreases, while krl is high.
This violates the Richards assumption of infinite mobility and introduces significant er-
rors (Forsyth, 1988). Szymkiewicz (2013) mentions that the Richards equation produces
inaccurate results, if obstacles (e.g. highly water saturated layer) hinder the air contact with
the atmosphere. All three cases may occur in applications with root systems in the vadose
zone.

We can describe the transport of components other than the main components (water and
air) in the soil by additional advection-diffusion-reaction equations. In combination with the



28 4 Modeling root-soil interaction

Richards equation it is usually assumed that the component only exists in the liquid phase.
As an extension of the Richards equation, water vapor in the air phase can be described
by an additional diffusion equation and assuming a negligible gas phase velocity vg → 0
and local thermodynamic equilibrium, see for example (Vanderborght et al., 2017). This
formulation is often considered when describing evaporation from soil, also see Section 4.6.

4.2 Flow and transport in the root xylem

Roots have two different tube systems, the xylem transporting the liquid xylem sap, and
the phloem transporting nutrients. These are surrounded by a cell layer called the cortex.
The surface of a root usually contains root hairs, which have been suggested to enhance
fluid transport into the roots (Libault et al., 2010). A schematic drawing of the anatomy
of a dicot† root cross-section is shown in Fig. 4.2. Water (or xylem sap) flows through the

possible water path

root hair

xylem

phloem

cortex

endodermis

epidermis

pericycle

Figure 4.2 – Cross-sectional anatomy of a dicot root. Schematic representation. Water from the
soil has to penetrate the epidermis, and flow through the interstitial space of the cortex to end up in
the xylem. The xylem transports the water upwards.

root xylem, a bundle of tubes composed of cell walls. According to the cohesion-tension
theory (Tyree, 1997), the driving force for xylem flow is the pressure gradient caused by the
transpiration in the stomata of the leaves.

The single-phase flow of the liquid in each tube can be described by Poiseuille’s law. Homog-
enization leads to a Darcy’s law analogy (bundle-of-tubes model) for xylem flow (Doussan

†short for dicotyledon, a group of flowering plants, such as the lupin investigated in this work
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et al., 1998), with the axial conductivity kax in m4 Pa−1 s−1,

∂ (ρlArφr)
∂ t

+
∂ (ρlArv)
∂ s

=−q̂ , v =−
kax

Ar

�

∂ p
∂ s
+ρl g

∂ x3

∂ s

�

(4.3)

wherein Ar = 2πrr is the root cross-sectional area with the equivalent radius rr, and φr =
VxV

−1 is the root porosity, where Vx is the xylem volume in a sample of size V . The vertical
coordinate of a Cartesian coordinate system with coordinates xi is denoted by x3. The axial
root conductivity kax is a parameter obtained from measurements and changes with root
age (Steudle and Peterson, 1998), root radius (Vercambre et al., 2002), or environmental
conditions (Lovisolo and Schubert, 1998).

The transport of, for example, minerals in the xylem sap can be modeled by one or more
additional advection-diffusion-reaction equations. Such an equation is derived by integrating
the three-dimensional equations over a cross-section of a segment, and introducing a cross-
section-averaged molar concentration cc,

∂ (Arφrc
c)

∂ t
+
∂

∂ s

�

Arvcc−ArD
c
e
∂ cc

∂ s

�

=−
q̂c

M c
, (4.4)

where Dce is effective diffusion coefficient, and q̂c a source term.

To the end of modeling a hierarchical network of root segments, the segment equations
have to be coupled at branching points by appropriate coupling conditions, cf. Chapter 3.
We enforce continuity of pressure and mole fractions at the junctions.

4.3 Root water uptake (transmural exchange)

At the soil–root interface, water and solutes are exchanged between the root system and the
embedding soil. Water flow from soil into the root is mainly driven by pressure differences
between the soil close to the root and the pressure inside the roots (Steudle and Peterson,
1998), and can be described by

q̂ = PrkΓ krad

�

pw,r− pw,s

�

ρl, (4.5)
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where Pr = 2πrr is cross-section perimeter, and krad in ms−1 Pa−1 denotes the radial conduc-
tivity, an effective parameter including effects of all possible transport paths through outer
root layers to the xylem tubes. A possible water pathway is shown in Fig. 4.2. Finally,

pw,s =
1
Sr

∫ 2π

0
pw,s

�

�

�

�

rr

rr dθ (4.6)

denotes the average water pressure in the surrounding soil evaluated on the root surface and
pw,r the fluid pressure in the xylem.

In addition to Steudle and Peterson (1998), we introduce kΓ , to account for the reduction in
water mobility in the drying soil around the root. Assuming that the entire root surface is
always in contact with water, the upper limit for kΓ is 1, which is mostly assumed in the
literature (Steudle and Peterson, 1998; Doussan et al., 1998; Javaux et al., 2008). In Koch et al.
(2020a), we choose kΓ as krl if the root is taking up water, so that when the residual liquid
saturation Sl r of the soil around the root is approached, the relative permeability tends to
zero, with the effect that the root segment cannot take up water anymore. The approach as
based on the idea that the water mobility is limited by the upstream mobility. This approach
corresponds to the lower limit and likely underestimates the radial conductivity. Schröder
et al. (2009b) study grid refinement and conclude that the root water uptake locally dries
out the vicinity of the root (rhizosphere), thus limiting water mobility. Schröder et al.
(2009a) suggest including an additional analytical model for the conductivity drop in the
rhizosphere. Mai et al. (2019) solve additional one-dimensional radial-symmetric problems
in the rhizosphere to simulate nutrient uptake. Another approach is obtained by choosing
kΓ =φSw, which models a partially wet root surface. The choice of kΓ may affect the locality
of the water uptake and the soil water pressure distribution. We note that modeling the
full physiological response to drought and the resulting reduction of the transpiration rate,
hydraulic conductivities in stem and leaves, and wilting (Bartlett et al., 2016), are beyond
the scope of this work.

If component transport is considered, for example, to describe the root uptake of nutrients,
salts, pesticides or fertilizers, the uptake mechanisms are specific to the considered solute
molecule. Concentration gradients, solubility, and plant type further influence the trans-
mural transfer. Varying demand of nutrients by the plant alters active uptake rates. Solute
uptake may be described by a Michaelis-Menten-type kinetic (e.g. Buysse et al., 1996) or by
an advection-diffusion model for solutes transported passively with water.
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During day-time, the pressure difference between the soil and the root system ∆p = pw,r−
pw,s is usually negative, resulting in a positive source at the root subsystem and a negative
source (sink) at the soil subsystem. In this case, water is transferred from the soil into the
root. During night-time or during local water scarcity this flux can also be negative. The
root gives back water to the soil, an effect known as hydraulic redistribution (or hydraulic
lift, however redistribution can be observed in any direction) (Richards and Caldwell, 1987;
Smart et al., 2005). Hydraulic redistribution is a phenomenon seen in many plant species
and hydraulic regimes. For further information, we refer to Caldwell and Richards (1989);
Caldwell et al. (1998); Neumann and Cardon (2012); Manoli et al. (2017).

4.4 Mixed-dimension root water uptake model

Finally, we summarize the presented root and soil models in a single coupled PDE system.
For brevity, the coupled PDE is only presented for water uptake and the Richards soil
model. Nutrient uptake, as well as uptake for the two-phase soil model can be formulated
analogously. We denote the soil domain as Ω and the root network center-lines as Λ. The
coupling conditions, based on conservation of mass, read

∫

Ω

q̂ΦΛdx =
∫

Λ

q̂ds , (4.7)

with the kernel function ΦΛ which will be properly introduced in Chapter 6. The root
water uptake model can be formulated as follows. Find pw,s and pw,r such that

∂ (Arφrρw)
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−∇ ·
�

ρwkax
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��

=−q̂ in Λ, (4.8a)
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�

= q̂ΦΛ in Ω, (4.8b)

PrkΓ krad(pw,r− pw,s) = q̂ , (4.8c)

subject to appropriate boundary conditions. For the root, the uptake is already considered
by Eq. (4.5), so that at root tips, we formally assume no-flow boundaries. Suitable boundary
conditions for the root collar are discussed in Section 4.5, and boundary conditions at the
top of the soil are discussed in Section 4.6.
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4.5 Transpiration

Transpiration occurs due to the difference in vapor pressure in the stomata of the leaves
and the atmosphere and is the driving force of root water uptake and sap flow (cohesion-
tension theory). Rates depend on wind speed and temperature of the atmosphere as well
as net radiation receipt of the leaves, which triggers stomata opening to take up carbon
dioxide (Bierhuizen and Slatyer, 1965; Jarvis and McNaughton, 1986) and increases water
losses due to evaporation. During night-time, the stomata usually close which leads to a
decline in transpiration, although night-time transpiration has been observed in several
species to be up to 10 % of day-time transpiration (Snyder et al., 2003).

Transpiration rates are typically imposed as Neumann boundary conditions at the root
collar (Javaux et al., 2008; Clausnitzer and Hopmans, 1994). It is possible to simulate diurnal
variations of the transpiration rate as a time-dependent Neumann boundary condition. In
experimental setups, transpiration rates can often be measured. As noted by Javaux et al.
(2008), such imposed flux conditions can lead to water stress, when the plant is not able to
extract enough water from the soil to meet the transpirational demand. Following Javaux
et al. (2008), we switch to a Dirichlet condition enforcing the permanent wilting point
pressure ( pw =−1.4MPa) after this pressure is reached at the root collar. This boundary
condition assumes that the root collar pressure is kept constant by stomatal response of
the plant to water stress. The transpiration rate subsequently decreases. We switch back
to prescribing a transpiration rate if the transpiration rate predicted with the Dirichlet
boundary condition would exceed the transpiration rate predicted by the usual diurnal
cycle.

For growing root systems, we follow Clausnitzer and Hopmans (1994) and estimate the
transpiration rate as a function of the root volume, Vroot, with the following ratios,

ρr =
mr

Vr
, ϕr :s =

mr

msh
, ϕAL:s =

AL

msh
, ϕrT :AL

=
rT

AL

, (4.9)

with the root (mass) density, ρr, the ratio ϕr :s between the root biomass, mr (below the
surface) and the shoot biomass, msh (above the surface), the ratio ϕAL:s between leaf area,
AL, and shoot biomass, and the ratio ϕrT :AL

between the transpiration rate, rT , and the leaf
area, respectively. These ratios are generally varying over time and through environmental
factors, and can be estimated by experimental measurements, or literature values for a



4.6 Evaporation from soil 33

given plant species. Clausnitzer and Hopmans (1994) estimate ρr = 750kgm−3, ϕr :s = 0.5,
ϕAL:s = 20m2 kg−1, ϕrT :AL

= 2.78 · 10−8 m3 s−1 m−2. For instance, for a root mass of 10 g this
results in a transpiration rate of rT = ρrVrϕAL:sϕrT :AL

ϕ−1
r :s ≈ 1gd−1.

4.6 Evaporation from soil

Evaporation is a process driven by the difference in water vapor pressure in the soil and the
atmosphere. Using the standard Richards model, it is not possible to describe evaporation
consistently, as water vapor transport is not accounted for. As noted in Section 4.1, it is
possible to adapt the Richards equation to account for additional diffusive vapor transport
in the air phase (Vanderborght et al., 2017). However, we will focus on the description of
evaporation using a full two-phase two-component model where vapor transport is inher-
ently considered and does not require additional model constraints. Consistent approaches
to model soil evaporation are, to our knowledge, mostly neglected in state-of-the-art root
architecture models, although soil evaporation plays a crucial role in soil-root-atmosphere
interactions. For the description of evaporation, we can distinguish two distinct stages. In
the atmosphere-driven stage I, the liquid water phase is continuously connected to the soil
surface where water evaporates at the interface to the atmosphere. Stage II evaporation
begins with the successive disconnection of the liquid water phase from the surface. The
evaporation front sinks into the porous soil medium and the evaporation rate is limited by
vapor diffusion in the porous medium resulting in much lower evaporation rates than in
stage I. This phenomenon is described in various works, for example by Scherer (1990),
or Lehmann et al. (2008).

There are different approaches to model interactions between free flow and porous medium
flow. One approach is to use a two-domain model with a sharp interface separating the
domains (Vanderborght et al., 2017; Mosthaf et al., 2011; Fetzer et al., 2016). The two
domains are coupled at the interface. Coupling conditions need to be formulated for balance
of mass, momentum and energy. In this section, a simplified version is described where no
free flow equation system is explicitly solved.

Turbulent free flow leads to the formation of a viscous sub-layer, referred to as boundary layer.
Assuming that the evaporation rate is mainly influenced by water vapor diffusion through
that boundary layer (Haghighi et al., 2013), the coupling conditions can be simplified by
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neglecting the momentum transfer between the porous medium and the free flow domain.
Moreover, heat conduction is assumed to dominate the energy transfer (Fetzer et al., 2016).
Assuming that the boundary layer mole fraction of water vapor in the gas phase, xw,BL

g , the
boundary layer thickness, δBL, and the boundary layer temperature, T BL, are constant, the
evaporation model reduces to a Robin-type boundary condition for the soil domain. The
evaporation rate driven by diffusion is calculated as in Mosthaf et al. (2014); Fetzer et al.
(2016). The mass flux of the water component at the interface can be computed as

f w =Dw
g ρnMw

xw,BL
g − xw,Γ

g

δBL
, (4.10)

with xw,Γ
g denoting the mole fraction of the water component in the gas phase at the interface

(here: the top of the soil), and Dw
g being the binary diffusion coefficient of water in the gas

phase.

When assuming chemical equilibrium, the mole fraction of water in the gas phase can
be computed using Raoult’s law. However, it is known that for very dry soil and thus
high capillary pressure, stronger adhesion of water to the solid matrix reduces evaporation
and shifts the liquid-vapor equilibrium in favor of the liquid phase. This relationship
between the capillary pressure and the water vapor pressure pw

n is expressed by the Kelvin
equation (Edlefsen and Anderson, 1943),

pw
g = pw

sat exp
�

−
pcM

w

ρlRT

�

, (4.11)

whereR is the universal gas constant.

The heat flux, fh, due to heat conduction driven by the temperature differences of the soil
surface and the boundary layer are accounted for by Fourier’s law inside the boundary layer,

fh = λg
T BL−T Γ

δBL
, (4.12)

where λg denotes the thermal conductivity of the gas phase, and T Γ the soil surface temper-
ature. The boundary layer model can be extended to include velocity-dependent boundary
layer thickness or surface roughness. For further information on the theory of boundary lay-
ers and evaporation processes, we refer to the works of Fetzer et al. (2017) and Vanderborght
et al. (2017).
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4.7 Root growth

For some applications (evaluating agricultural irrigation plans, soil stabilization by plant
roots) it is important to focus closely on the water management in the soil during root
growth. Root growth depends on soil properties (Hewitt, 2004; Jakobsen and Dexter,
1987; Dunbabin et al., 2011) and root water uptake on the root architecture (Tron et al.,
2015; Lynch, 1995). Models of root growth, with explicit description of the root system
architecture, coupled with root water uptake and subsurface nutrient transport processes
are important to analyze the interaction of the evolving root system with the embedding
soil. Various algorithms have been developed for the description of root growth (Diggle,
1988; Clausnitzer and Hopmans, 1994; Lynch et al., 1997; Pagès et al., 2004), see Dunbabin
et al. (2013) for an overview .

We herein want to discuss some details of modeling root growth and water flow simultane-
ously, on the example of the RootBox algorithm (Leitner et al., 2010; Leitner and Schnepf,
2016; Schnepf et al., 2018), an algorithm based on a recursively applied branch growth
procedure; cf. L-systems, e.g. Prusinkiewicz (2004). The root extends with a certain growth
rate. The direction has a random component emulating a finite number of possibilities
for growth paths in the porous soil. The cost function of a certain direction choice is
modeled by a so-called tropism. Tropisms usually result from external stimuli like grav-
ity (gravitropism), soil water content (hydrotropism) or the plant’s tendency to continue
growing in an already established direction (exotropism). When reaching a certain length,
root branches create daughter branches and the same growth procedure is applied to those
branches. The algorithm results in hierarchical tree structures and can simulate growth of
different plant species. To this end, all parameters assigned to branches are stochastically
distributed parameters following experimental observations (Leitner et al., 2010).

The aspect of local mass conservation is usually overlooked in the current root growth
literature. In addition to locally mass conservative discretization methods for the governing
equations, growing root systems introduce mass into the system. On the one hand, this is
the biomass of a new root segment that reduces the soil pore space, effectively reducing the
soil porosity. Due to the discrete description of the root network, the volume fraction taken
up by the root segments contained in a discrete soil cell can be easily computed by dividing
the root volume in that cell by the cell volume. On the other hand, new pore space gets
created in the form of the root xylem that needs to be filled with water. This is accounted
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for in the xylem flow balance’s storage term. Looking at the Reynolds transport theorem
for the change of water mass in the root, mw,root,

d mw,root

d t
=
∂

∂ t

∫

KΛ(t )
φrρw dV +

∫

∂ KΛ(t )
ρw(vr ·n)dA, (4.13)

for a growing control volume KΛ(t ), e.g. at the root tip, where vr denotes the fluid velocity
relative to the moving control volume boundary ∂ KΛ(t ), we see that the storage integral
is not constant in time. Assuming that a newly growing root segment is instantaneously
filled with water during the growth, we can replace the relative velocity on the root segment
boundary with the fluid velocity vr ≈ v. Using a finite difference approximation of the
time derivative yields

∂

∂ t

∫

KΛ(t )
φrρα dV ≈

[Vφrρα]k+1− [Vφrρα]k
tk+1− tk

, (4.14)

i.e. the control volume size V = |KΛ| has to be evaluated at the next ( tk+1) and current time
discretization point ( tk ), effectively increasing the storage term by a contribution from the
volume change.

Another issue concerns the discrete approximation of continuous growth. For small time
steps tiny root segments may occur during growth that can cause ill-conditioned linear
systems. For large time step sizes, root growth algorithms seek a uniform discrete represen-
tation of the created root segments and branches by a maximum segment length. This is
necessary to achieve realistically-looking root architectures with smooth root progression.
However, if the branching point positions are determined by a random process at the
creation of the branch, such as for example for RootBox, respecting these positions can lead
to small discrete root segments. For small time step sizes, the RootBox algorithm ignores
tiny segments which leads to discontinuous growth in time. The branch would not grow in
one time step and then, for example, grow twice as much in the following time step. These
small elements can be avoided by allowing to move the vertex of existing elements at the
root tip in order to increase the segment’s length instead of creating a new small segment.
This leads to a better distribution of element sizes with small elements only occurring at
the tip of a growing branch. Such considerations have been made in the latest version of
CRootBox (Schnepf et al., 2018). Moreover, this allows segments to continuously grow and
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thus avoids additional mass balance errors destabilizing the numerical scheme. However,
the volume change due to the movement of vertices has to be accounted for, see Eq. (4.14).
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This chapter briefly discusses the mathematical modeling of injection or extraction wells
in subsurface hydraulic or petroleum reservoirs, in terms of mixed-dimension embedded
models. First, we derive a more general model for a coupled flow problem where the well
is represented by its one-dimensional center-line embedded in a three-dimensional porous
rock matrix. Then, we discuss typical simplifications of reservoir engineering models. In
this work, we restrict ourselves to single-phase flow. Some typical application scenarios
with wells are shown schematically in Fig. 5.1. Typical bore hole diameters are in the
range of 50 cm (towards the surface) to 10 cm (towards the tip). The target geological layer
formations are ten to hundreds of meters in height and often kilometers in lateral extent.
The depth of the target layers varies depending on the application from several meters for
near surface groundwater extraction to several kilometers for some geothermal systems or
petroleum extraction.

Figure 5.1 – Schematic and idealized representation of two types of wells. On the left, a horizon-
tally drilled injection well for a fracking operation. The perforated, permeable segment is shown by
the dotted lines. On the right, components of a ground water extraction well in a confined aquifer. A
submersed pump extracts water from the bore hole. The bore hole is permeable inside the confined
aquifer, covered by a screen and surrounded by a layer of gravel. The schematic representations are
not to scale.

We conceptually decompose the subsurface into two domains. The well compartment
includes the well and the possible casing or other technical structures, and the rock matrix
compartment is the embedding porous soil matrix. The bore hole surface is only permeable
in designated segments, where fluid is exchanged with the rock matrix, and otherwise sealed.

*Sections 5.2 and 5.3 are based on Koch, Helmig, and Schneider (2020c), c© 2020 Elsevier Inc.
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5.1 Flow in the rock matrix

The mass balance for single-phase fluid flow through a rock matrix is given by

∂ (φρ)
∂ t

+ρ∇ · v = q , (5.1)

where the filter velocity v can be modeled by Darcy’s law, see Eq. (2.5). For higher Reynolds
numbers that can occur in the near-well region in oil or gas production (Ewing et al.,
1999), or for geothermal wells (Zhang and Xing, 2012), inertial forces cannot be entirely
neglected. Then, for isotropic porous media, K = kI , Darcy’s law is often substituted by
the Forchheimer equation (Forchheimer, 1901; Ruth and Ma, 1992; Whitaker, 1996)

v =− k
µ
(∇p −ρg )+

ρ
p

k
µCF

‖v‖v, (5.2)

with the coefficient CF , often chosen as CF = 0.55 (Nield and Bejan, 2013). The nonlinear
Forchheimer correction accounts for the increase in friction between matrix and fluid for
high velocities. Adaptions for anisotropic media have been suggested (Wang et al., 1999).
However, there is currently no commonly accepted approach for anisotropic media. For low
flow velocities, the Forchheimer equation reduces to Eq. (2.5). In this work, we consider
anisotropic media and restrict ourselves to the Darcy flow regime, that is low Reynolds
numbers on the pore scale, Rep = ρvcdp,cµ

−1 � 1, with the characteristic pore throat
diameter dp,c.

5.2 Flow in the well

Single-phase flow through a tube can be modeled by the Navier-Stokes equations. For fully
developed laminar flow of an incompressible fluid through a straight tube segment with
impermeable wall, the model can be reduced to a one-dimensional mass balance equation,

∂ (ρAωv)
∂ s

=− ∂
∂ s

�

ρAω r 2
ω

8µ

�

∂ pω
∂ s
+ρg

∂ x3

∂ s

��

= 0, (5.3)

whereAω =πr 2
ω is the area of a well cross-section, and the expression for the velocity v is also

known as Hagen-Poiseuille equation. By introducing the friction coefficient Cλ =
64µ

2rωvρ =
64
Re ,
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the expression for v can be reformulated to the Darcy-Weisbach equation (Brown, 2003)

∂ pω
∂ s
+ρg

∂ x3

∂ s
=−

Cλv2

4rω
. (5.4)

For the turbulent flow regime, the friction coefficient Cλ can be empirically determined or
estimated. For instance, for hydraulically smooth tubes, the Blasius correlation estimates
Cλ ≈

0.316
4pRe

(Massey and Ward-Smith, 2005). Turbulent flow occurs in wells with high flow
rates.

For modeling of injection and extraction scenarios, we assume that the pressure drop along
the permeable well segment towards the end of the well bore hole is negligible in comparison
with the pressure drop in the rock matrix, see Section 6.2.3. Consequently, if either the
bottom hole pressure (the pressure in the permeable end segment of the bore hole), or
the injection rate is known, no additional equation has to be solved in the well. However,
Eq. (5.3) provides a relation to estimate the bottom hole pressure if, for instance, only the
well pressure close to the surface is known.

5.3 Fluid exchange with the rock matrix

If the well bore has a permeable casing, the flow over this casing can be estimated by Darcy’s
law

q̂ = 2πrω
ρkc

µ

(pω− p)
dc

, (5.5)

where kc is an estimate of the intrinsic permeability of the casing, dc the casing thickness,
and

p =
1

2π

∫ 2π

0
p
�

�

�

�

rω

dθ (5.6)

is the average soil matrix pressure evaluated at the well-matrix interface. In the absence
of a casing, or if it can be assumed that pressure drop across the casing is negligible (high
permeability), we assume that the flow field is radially symmetric in a small neighborhood
of the well (distance δ = rω + ε from center-line). In the following, we consider a long
straight well borehole segment. Let pδ denote the average pressure at distance δ from the
well center-line. Furthermore, we assume constant fluid density, viscosity, and an isotropic
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permeability, k, close to the well. Then, in the rockmatrix, the fluid pressure for rω < r <δ
is described by the analytical solution

p(r ) =−
µ

kρ
q̂

2π
ln r +C , (5.7)

where q̂ in kgs−1 m−1 is the exchange flux with the matrix for a well cross-section with
radius rω. The constant C is determined by the well pressure, pω,

pω = p(rω) =−
µ

kρ
q

2π
ln rω+C ⇒C = pω+

µ

kρ
q

2π
ln rω,

so that
p(r ) = pω−

µ

kρ
q

2π
ln
�

r
rω

�

. (5.8)

Consequently, the fluid exchange flux can be expressed in terms of pω and pδ as

q̂ = 2πrω
ρk
µ

(pω− pδ)

rω ln
�

δ
rω

� . (5.9)

In a dedicated chapter, Chapter 8, an analytical solution and a well model for a rock matrix
with anisotropic permeability is derived.

5.4 Well index and Peaceman well model

Figure 5.2 – Setting for the derivation of a Peaceman well model. The continuous domain, on
the left, shows the location of the well center-line Λ in a rock matrix domainΩwith height uniform L.
The well is injecting a fluid with a mass flow rate of Q into Ω. The domain is discretely approximated
by Ωh (on the right). A pressure degree of freedom is located at the centroid of each cell. The cell
KΩ contains the well. Its pressure value is denoted by p0.
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In particular for petroleum engineering applications, commercial codes typically use well-
index based well models (ECLIPSE, 2014; IMEX, 2014) to numerically compute injection
and extraction rates for given bottom hole well pressures. Such models are briefly described
in the following. To this end, the well is reduced to its center-line Λ. The rock matrix
domain is denoted by Ω. The rock matrix domain is discretized by the mesh Ωh with
hexahedral cells KΩ ∈Ωh . The well index provides a relation between the discrete pressure
values, given at the degrees of freedom where the well intersects the computational grid,
and the actual well pressure. As an example, the degrees of freedom for a 5-point finite
difference stencil are shown in Fig. 5.2. With the symbols introduced in Fig. 5.2, the well
index is defined as (Aavatsmark and Klausen, 2003)

WIKΩ
=

µQKΩ

ρ (pω− p0)
, (5.10)

where QKΩ
= q̂LKΩ

is the mass flow rate in kgs−1 into the discrete matrix domain cell KΩ,
which is often called well block, and LKΩ

the length of the well segment contained in KΩ.
The first well-index-based model for isotropic permeabilities and structured rectangular
grids in two dimensions is derived by Peaceman (1978). Peaceman (1983) derives a more
accurate well model for anisotropic diagonal permeability tensors and two-dimensional
non-cubic but structured rectangular grids, for the 5-point finite difference stencil (shown
in Fig. 5.2), yielding the following well index

WIKΩ
= 2πLKΩ
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where ∆x1 and ∆x2 are the horizontal dimensions of the cell containing the well, γ the
Euler–Mascheroni constant, and k11 and k22 are the diagonal entries of the permeability
tensor K . Well indices for various other discretization schemes have since been developed.
An overview is given by Chen and Zhang (2009).

The Peaceman model has several known limitations. Its derivation only applies to K-
orthogonal structured grids, where the well is oriented along one of the grid axes, and
perfectly horizontally centered within a vertical column of computational cells KΩ. Further-
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more, the derivation is specific to cell-centered finite difference schemes with 5-point stencil.
Moreover, computational cells may have to be significantly larger than the well radius
(depending on the degree of anisotropy) for optimal accuracy. However, if all assumptions
are satisfied, the Peaceman model yields a very accurate approximation of the source term.
The Peaceman model has been generalized for slanted wells with arbitrary orientation in
R3, for example in (Alvestad et al., 1994). Such extensions usually constitute a reasonable
directional weighting of the original Peaceman model but are not directly derived from
the mathematical analysis of the underlying problem (Aavatsmark and Klausen, 2003).
For a given well direction ψ= [ψ1,ψ2,ψ3]

T and a discretization cell KΩ with dimensions
∆x1,∆x2,∆x3, to obtain the generalized well model due to Alvestad et al. (1994), reformu-
lated for cell-centered finite volume schemes in (Aavatsmark and Klausen, 2003), replace
k =

p

k11k22 in Eq. (5.11) by

k = (ψ2
1k22k33+ψ

2
2k11k33+ψ

2
3k11k22)

1
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Alvestad’s formula reduces to Eq. (5.11), if ψ is aligned with a coordinate axis.



6 Mixed-dimension embedded

methods and applications∗

The following chapter introduces the main modeling concept used and analyzed throughout
this work, alongside with the considered applications and their particularities. Formally,
we analyze porous structures, containing one or more embedded transport networks which
supply substances to, or extract substances from the embedding structure, using fluid-
mechanical or thermodynamic transport mechanisms. The transport networks commonly
consist of tubular segments with bifurcations, joints, and possibly loops. As the common
defining feature, the radial dimension of these segments is small in comparison with the
relevant domain size.

We attempt to introduce a consistent framework and terminology for the description of a
class of similar numerical methods. Embedded in a porous domainΩ, is a network of tubular
segments (connected at joints / bifurcations) described by the network of center-lines Λ and
a radius field rv defined on Λ, where the center-line is parameterized by s . Furthermore,
we introduce a segment-local cylindrical coordinate system with axial, angular and radial
coordinates z, θ, r . A small example of such a network is shown in Fig. 6.1. With these
definitions, a simple mixed-dimension flow problem in terms of the fluid pressure p is given
by

−πr 2
v

kv

µc

∂ 2 pv
∂ s 2

=−q̂ in Λ, (6.1a)

−
km

µc
∇ ·∇pm = q̂δΛ in Ω, (6.1b)

and suitable boundary conditions on ∂ Ω and ∂ Λ, where kv, km, are the characteristic
intrinsic permeabilities of the tube and the porous medium, respectively,µc is a characteristic
viscosity, and q̂ (m3 s−1 m−1) is a source function modeling fluid exchange. To distinguish the
pressure in the different compartments, we use different subscripts, although it is physically
the same quantity. The line source function q̂(s) couples Eqs. (6.1a) and (6.1b). Equation

*The introductory section is based on Koch, Schneider, Helmig, and Jenny (2020d), c© 2020 Elsevier Inc.
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Figure 6.1 – Bifurcating tubular network—schematic representation. The network with center-
line Λ is embedded in the porous domain Ω. A segment-local cylindrical coordinate system is shown
with the coordinates z , θ, r , as well as a Cartesian coordinate system for R3 with the coordinates x1,
x2, x3. The tube radius at any segment cross-section is denoted by rv. Reprinted with permission
from Koch et al. (2020d), c© 2020 Elsevier Inc.

systems similar to Eq. (6.1) can be used to describe the transport of molecules or energy
in similar systems. We call the PDEs mixed-dimensional (in space) because Eq. (6.1a) is
a one-dimensional equation, parameterized in space by the scalar s , whereas Eq. (6.1b)
is a three-dimensional equation with spatial dependence on a position x ∈ Ω ⊂ R3. We
call PDE systems like Eq. (6.1), mixed-dimension embedded systems, since the network
domain is geometrically embedded into the porous medium. Although the two PDEs can
be mathematically separated in an abstract sense, and are commonly discretized in space
using two independent non-conforming computational grids, this geometrical embedding
is important when seeking a mathematically and physically consistent description of the
coupling term q̂ .

The right-hand-side of Eq. (6.1b) contains the Dirac delta distribution which restricts the
source term q̂ to the tube center-line for the three-dimensional flow problem (cf. Cattaneo
and Zunino, 2014; D’Angelo, 2007), and has the properties

∞
∫

0

2π
∫

0

δΛ rdθdr = 1 and
∫

Ω

f δΛdx =
∫

Λ

f ds , (6.2)

for some function f . The source term q̂ usually depends both on the pressure in the tube
and the pressure in the porous medium. In order for Eq. (6.1) to be mathematically sound,
the function q̂ has to be defined on the tube center-line. However, in the physical space, the
tubes of the embedded network have a finite volume. This apparent inconsistency led to
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the development of several methods of describing fluid exchange between the tubes and the
porous compartment. A possible formulation for q̂ is given by

q̂ =
kω
µcdω

2πrv(pv− pm), with pm =
1

2π

2π
∫

0

pm

�

�

�

�

rv

dθ, (6.3)

where pm is the average fluid pressure in the porous domain on the perimeter of a given tube
cross-section with radius rv, kω is the characteristic intrinsic permeability of a membrane
separating network and porous compartment, and dω the membrane thickness.

The line source formulation, that is Eq. (6.1) and Eq. (6.3), has been derived and discussed
byD’Angelo (2007). The derivation is based on scaling the tube radius to the zero limit under
the constraint of flux equality. Unfortunately, solutions to Eq. (6.1) exhibit a singularity
of pm at r = 0 (tube center-line), which is both nonphysical and challenging for numerical
methods. D’Angelo (2012) proves convergence of standard finite element methods in
weighted norms for the line source problem. Köppl et al. (2016) show optimal convergence
rates up to a log-factor in classical but local norms excluding a small neighborhood around
the singularity. It is argued that the solution is only physically meaningful for r > rv.
However, numerical experiments with standard finite element methods show that optimal
convergence rates can only be achieved, if the cell size hΩ of the grid discretizing Ω, is in the
order of magnitude of the tube radius rv and smaller.

Secomb et al. (2004) use Green’s functions to solve a system of equations similar to Eq. (6.1)
semi-analytically. The authors exploit the superposition property of the Laplace operator.
The tube network is represented by a collection of point sources along the tube center-lines.
The solution in Ω is constructed by adding up the contributions of all point sources and a
harmonic correction function to satisfy the boundary conditions. However, due to global
interaction of those contributions, the numerical solution of the point source strengths
results in dense system matrices. Note that in this method the three-dimensional equations
are only solved by analytical solutions which makes the method less flexible with respect to
arbitrary boundary conditions and domain shapes, and unsuitable for transient problems,
nonlinear problems, or problems with heterogeneous material parameters. Gjerde et al.
(2019) narrow the support of the line source contributions by a smooth cut-off function and
the correction function is numerically approximated. This yields sparse system matrices.
The method is also known as subtraction method from the field of electroencephalography
(EEG) source reconstruction (Engwer et al., 2017). A local version of such methods has been
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well-studied in petroleum engineering and is known as the Peaceman well model (Peaceman,
1983; Chen and Zhang, 2009) in its simplest form. However, local approximations are
difficult to construct for arbitrarily oriented wells (Wolfsteiner et al., 2003; Aavatsmark
and Klausen, 2003). Moreover, these well models can only be derived in a discrete setting,
see Chapter 5. Similar approaches have been used, for example, to reconstruct the pressure
profiles around roots (Schröder et al., 2009a; Beudez et al., 2013; Mai et al., 2019). For these
methods it is generally not possible to show grid convergence for arbitrary grids, boundary
conditions, or orientations of the network segments.

A different approach is taken by Köppl et al. (2018). Instead of using line sources, the
exchange term between network and embedding medium is distributed on the actual surface
of the cylindrical tubes, thus increasing the dimension of the source term by one. As a
consequence, the singularity is replaced by a smoother continuation of the pressure function
for r < rv, leading to better numerical properties. However, good approximations of the
exchange flux q̂ still requires very fine grid resolutions.

In this work, we generalize Eq. (6.1), such that several methods can be described in the same
mathematical framework. To this end, we consider the generalized problem

−πr 2
v

kv

µc

∂ 2 p
∂ s 2

=−q̂ in Λ, (6.4a)

−∇ ·
�

km

µc
∇p

�

= q̂ΦΛ in Ω, (6.4b)

q̂ =
kω
µc rω

2πrv(pv− pm,0)Ξ, (6.4c)

whereΦΛ is defined in terms of non-negative local kernel functionsΦΛ,i (s) that distribute q̂(s)
over a small radially-symmetric tubular support region, S (ΦΛ,i ), with radius %(s), around
a tube segment i , such that ΦΛ,i = 0 outside the support region (compact support). The
flux q̂ in Eq. (6.3) is now formulated in terms of the extra-vascular pressure pm,0, evaluated
at the tube center-line. The function Ξ= Ξ(%(s),Φ(s), · · · ) is a flux scaling factor depending
on the support radius, and the chosen kernel function. We choose kernel functions ΦΛ,i (s)
in the plane perpendicular to segment i in the form

ΦΛ,i (s ,%) = %−2ϕ(r%−1) with

2π
∫

0

%(s)
∫

0

ΦΛ,i r drdθ= 1 ∀s , (6.5)
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where the function ϕ is a positive symmetric mollifier (Friedrichs, 1944, 1953) defined on a
disc perpendicular to the tube segment.

It can be shown that for %→ 0, such ΦΛ,i converge to the Dirac delta distribution for every
position s , in the sense of distributions (Dang and Ehrhardt, 2012). Therefore, if the flux
scaling factor is chosen as

Ξ=
(pv− pm)
(pv− pm,0)

, (6.6)

and the kernel is chosen as ΦΛ = δΛ, Eq. (6.4) is equal to Eq. (6.1) and Eq. (6.3). Moreover,
with the kernel function properties introduced above, in the limit of %→ 0, Eq. (6.4) is
equal to Eq. (6.1) and Eq. (6.3) as well. The formulation of Köppl et al. (2018) is obtained
by choosing kernel functions that are P−1

v = (2πrv)
−1 on the tube cross-section perimeter,

and zero elsewhere. Hence, the mixed-dimension embedded formulations presented by
D’Angelo (2007); Köppl et al. (2018) are special cases of this generalized formulation.
A similar formulation to Eq. (6.4) is introduced by Karvounis and Jenny (2016) for an
embedded discrete fracture model (2D-3D), but the properties of the given kernel functions
are not further analyzed or numerically exploited.

Beyond the existing methods by D’Angelo (2007) and Köppl et al. (2018), the generalized
formulation gives rise to a newmixed-dimension embedded method with distributed sources
if the kernel function is chosen such that the fluid exchanged with the network domain is
distributed over a small three-dimensional volume in the vicinity of the tubes. This method
is introduced and analyzed in Chapter 7 and the different mixed-dimension embedded
methods are compared in several numerical experiments.

Summary The different methods for describing and solving mixed-dimension problems
with embedded tubular network can be categorized by two criteria:

• the type of distribution of the exchange source term ( q̂ ) in the porous domain (line,
surface, volume),

• the type of evaluation and/or reconstruction of variables of the porous domain
problem needed to evaluate the source term.

Figure 6.2 is an attempt to visualize different mixed-dimension methods in a schematic
representation. Method (a) represents a rather naive approach. The source term is distributed
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source distributiontube evaluation / reconstructionporous domain

a b c d e

Figure 6.2 –Mixed-dimension coupling methods. Schematic representation of different numerical
coupling methods for modeling porous domains with embedded tubular networks. The methods
are distinguished by the type of source distribution in the 3D domain, and the type of 3D variable
evaluation for the source term computation. (a) line source, reconstruction based on center-line
quantity; (b) line source, reconstruction based on average operator; (c) area/surface source, recon-
struction based on average operator; (d) line source, reconstruction based on a local model in the
neighborhood of the tube; (e) volume source, reconstruction based on center-line quantity.

on a line (line source) and the variables are evaluated on the tube center-line. This method
does not lead to mathematically sound equations for systems like Eq. (6.1), as the solutions
of the three-dimensional problem exhibit a singularity on the center-line (due to the line
source). Hence, the primary variable cannot be evaluated on the center-line. However,
in a discrete setting and when the three-dimensional discretization length is much larger
than the tube radius, this method is equal to the other methods. Method (b) represents the
method of D’Angelo (2007), where the source term is distributed as a line source while its
variables are evaluated as the average on the tube surface, leading to well-posed problems for
systems like Eq. (6.1). For method (c), the source term is distributed on the tube surface
(surface source) while the variables are evaluated as for (b), cf. Köppl et al. (2018). In a
variation of method (c), the one-dimensional solution is projected onto the tube surface
and the source term can be evaluated by integration over the tube surface. By effectively
increasing the dimension of the source term by one, the solution is regularized and does not
exhibit singularities. However, the solution may still exhibit kinks on the tube interface,
see e.g. Section 7.3.3. Method (d) represents a class of approaches which evaluate the
variables of the three-dimensional problem in some distance to the tubes, and reconstruct
the variables on the tube surface by means of analytical or numerical approximations of the
equations in the near-surface region. The Peaceman well model also falls in this category,
where the numerical well-block pressure is measured and related with a local analytical
solution to the well-bore pressure. Mai et al. (2019) solve local one-dimensional radially-
symmetric problems numerically to obtain the source term. For method (e), the source
term is distributed over a volume (volume source). Consequently, the local solution inside



6.1 Generalized mixed-dimension embedded problem 51

this volume is regularized. The variables for computing the source term can be evaluated,
for example, on the tube center-line. In order to recover the exact value of the variable
on the tube surface, a reconstruction step is necessary. Methods of type (e) are developed
in Chapters 7 and 8.

Finally, we note that to the best of our knowledge, all existing methods are derived for tube
segments without bifurcations. How to rigorously analyze and how to formulate mixed-
dimension models for coupling processes at the interface of the tubes at bifurcations (under
consideration of the bifurcation geometry) is an open research question. Unfortunately,
solving this problem is beyond the scope of this work. Nevertheless, all mentioned methods
have also been applied to networks with bifurcations. As no analytical solutions exist for
such problems, the error which different schemes introduce at bifurcations is currently
unknown. Yet, we know that a difference at bifurcations between the different methods
exists, as observed in Section 7.3.4 and Section 7.3.5 in this work.

6.1 Generalized mixed-dimension embedded problem

Independent of the application, we can formulate a generalized conservation problem for
the type of mixed-dimension embedded systems considered in this work. The coupled
mixed-dimensional PDEs are of the general form

∂ ĉ(u)
∂ t

+
∂ f (u)
∂ s

= q̂E(u)− q̂(u, w) in Λ, (6.7a)

∂ c(w)
∂ t

+∇ ·F (w) = qE(w)+ q̂(u, w)ΦΛ in Ω, (6.7b)

where ĉ(u) and c(w) are the respective conserved quantities, f (u) and F (w) are flux func-
tions, and q̂E(u) and qE(w) are external sources, given in terms of the primary variables
u = u(s , t ) and w = w(x , t ). Equations (6.7a) and (6.7b) are coupled via the source
terms q̂(u, w). All mixed-dimension PDE systems introduced in the previous chapters,
namely Eqs. (3.22) and (3.23) for the tissue perfusion problem, Eq. (4.8) for the root water
uptake problem, and Eqs. (2.5), (5.3) and (5.9) for well modeling, fit into this generalized
form. Table 6.1 exemplarily shows the generalized coupled mixed-dimension form for the
tissue perfusion problem presented in Chapter 3. In the general case, the flux function F is
a second-order tensor field and all other quantities defined in Eq. (6.7) are first-order tensor
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Table 6.1 –Tissue perfusion problem in generalized form. Representation of Eqs. (3.22) and (3.23)
in the generalized coupled mixed-dimension form→ Eq. (6.7). Some quantities are written as matrix-
vector products to avoid duplication. The external sources q̂E and qE are zero.
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fields. In the case of one primary variable, for example, for the single-phase well model
of Chapter 5, the balance equations, Eq. (6.7), reduce to scalar conservation equations.

In the following chapters, in particular in Chapters 7 and 8 which focus on method develop-
ment, some terms in Eq. (6.7) are not considered. We want to contribute a discussion of
several fundamental aspects of mixed-dimension methods for embedded tubular network
systems, however, not all aspects can be discussed or analyzed in the scope of this work. For
example, the analysis of transient, non-linear problems in the mixed-dimensional context is
yet to be better understood. This has to be taken in account, in particular, for the interpre-
tation of results for the root water uptake model. Nevertheless, the analysis of simplified
problem can help to better understand more complex problems.

6.2 Dimensional analysis

In Chapters 3 to 5, we derived models for three different applications. The same numerical
methods can be used to perform numerical simulations with these models. While the model
equations are mathematically similar, the model parameters describe different materials and
processes. To get a better idea of how the flow processes in both subdomains interact and
how this interaction differs for the different applications, we perform a dimensional analysis
for simplified problems. To this end, we choose a pressure scale P such that p∗ = pP−1

is dimensionless. We introduce two characteristic length scales: the characteristic axial
length scale of the tubes, lv, and the characteristic length scale of the porous domain, lm.
Furthermore, we introduce the dimensionless gradients ∇∗ = l−1

m ∇ and ∂ /∂ s ∗ = l−1
v ∂ /∂ s ,

and the dimensionless kernel function Φ∗Λ =π
−1 l−2

r ΦΛ.
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6.2.1 Tissue perfusion

The dimensional analysis is performed on the stationary mixed-dimensional one-phase flow
problem given by Eq. (6.4). A dimensionless form of Eq. (6.4) is given by

−Θv
∂ 2 p∗

∂ s ∗2
=−q̂∗ in Λ, (6.8a)

−∇∗ · (Θm∇
∗ p∗) = q̂∗Φ∗Λ in Ω, (6.8b)

q̂∗ =Θω∆p∗, (6.8c)

with the dimensionless pressure jump across the membrane ∆p∗ = (p∗v − p∗m,0)Ξ and the
dimensionless groups

Θv =
kv

l 2
v

, Θm =
km

l 2
m

, Θω = 2
kω

rvdω
. (6.9)

In the following, we estimate values for these dimensionless groups. Generally, a ratio of
two of these dimensionless numbers close to 1 means that the processes described by them
are similarly important. For example, a ratio Θv/Θω � 1 indicates that the transmural
exchange has little influence on the flow field in the tubes. On the other hand, a ratio
Θv/Θω � 1 would mean that the flow field in the tube is dominated by the transmural
exchange.

We choose the porous length scale as the mean distance between capillaries estimated as
lm ≈ 50µm (rodent cerebral cortex, from Lücker (2017)), and the axial length scale as a mean
capillary length, lv ≈ 300µm (rodent cerebral cortex, from Sakadzic et al. (2014)). We esti-
mate the mean capillary radius as rv ≈ 3µm, which gives kv = r 2

v /8= 1.125 · 10−12 m2. The
tissue permeability is estimated as km ≈ 8 · 10−18 m2 (Baxter and Jain, 1989). The membrane
thickness is given by the thickness of the endothelium, dω ≈ 0.6µm (Bertossi et al., 1997).
Finally, kω is given by kω = Lpµcdω, where we choose µc ≈ 2 · 10−3 Pas, and the filtration
coefficient ranges from 1 · 10−12 mPa−1 s−1 (continuous capillaries) to 1 · 10−9 mPa−1 s−1 (fen-
estrated capillaries) (Baber, 2014). Baxter and Jain (1989) suggest Lp = 2.7 · 10−12 mPa−1 s for
normal subcutaneous and Lp = 2.1 · 10−11 mPa−1 s for tumor tissue. Therefore, we obtain
Θv ≈ 1.25 · 10−5, Θω ≈ 7 · 10−10 to 7 · 10−7, and Θm ≈ 3 · 10−9. Consequently, the system
is dominated by the flow in the vascular compartment (cf. Cattaneo and Zunino, 2014).
Furthermore, the transmural exchange has only little influence on the vascular flow field



54 6 Mixed-dimension embedded methods and applications

(Θv/Θω� 1). Considerable influence is only expected for fenestrated capillaries, or if the
endothelium is degenerated or diseased (high Lp ). On the other hand, the flow field in the
extra-vascular space is largely affected or dominated by the transmural exchange. These
results coincide with the common understanding that the microvasculature is the driving
factor for fluid movement in most tissues. By analyzing a simplified problem with a single
capillary embedded in a tissue cylinder, see Appendix A.1, we estimate that the pressure
drop across the vascular wall is of similar order of magnitude than the radial pressure drop
in the tissue cylinder. Only for very permeable vascular walls (high Lp ), the extra-vascular
compartment becomes limiting for transmural fluid transport. Furthermore, we can esti-
mate that due to the logarithmic nature of the pressure profile around the capillaries, flow
velocities in the interstitial space are almost 20 times larger at the vessel surface than in a
distance of lm = 50µm to the vessel center-line.

6.2.2 Root water uptake

For the analysis of the root-soil system, we consider the dimensionless Richards equation in
the soil domain. To this end, we choose a time scale T such that t ∗ = tT −1 is dimensionless.
Assuming that the change of water saturation in the domain is dominated by the root
water uptake (neglecting gravity, no irrigation, closed planting container), we choose T
proportional to the root water uptake rate, T =µcP

−1Θ−1
ω , where the dimensionless group

Θω is defined as in Eq. (6.9). Then, a dimensionless form of Eq. (4.8) is given by

−Θv
∂ 2 p∗

∂ s ∗2
=−q̂∗ in Λ, (6.10a)

Θωφ
∂ Sl
∂ t ∗
−∇∗ · (krl(Sl)Θm∇

∗ p∗) = q̂∗Φ∗Λ in Ω, (6.10b)

q̂∗ =Θω∆p∗, (6.10c)

where water saturation, Sl, soil porosity, φ, and relative permeability, krl, are dimensionless
by definition, and all other quantities are defined analogously to Eq. (6.4).

The analysis for root systems depends on the root system age, the analyzed species, and the
soil water distribution. In the following, we consider a young lupin root system, as used in the
simulations in Chapter 10. We estimate the mean root length of the tap root by the rooting
depth, so that lv ≈ 10cm. For lateral roots, we choose lv ≈ 5cm. Assuming a single plant
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growing in a lab-scale cylindrical rizotron, we choose its radius as the relevant porous scale,
lm ≈ 5cm. For the 8-day-old lupin root system shown in Fig. 6.3, the root-length-weighted
mean radius is rv = 0.68mm for the entire root system, rv = 0.95mm for the tap root and
rv = 0.58mm for laterals. With the characteristic viscosity µc = 1 · 10−3 Pas (water at 20 ◦C),
the characteristic permeabilities are given by kv = kaxµcπ

−1 r−2
v , km = k, kω = kradµcdω.

The root hydraulic conductivities kax and krad depend on root age (Steudle and Peterson,
1998), root radius (Vercambre et al., 2002), and environmental conditions (Lovisolo and
Schubert, 1998). For this analysis, we choose the age-dependent root hydraulic conductivities
given in Fig. 6.3. The relative and intrinsic permeabilities largely vary with soil type and
water saturation, see Fig. 6.4. To estimate the characteristic permeability kv, we choose an

0 5 10 15
root age in days

0.0

0.5

1.0

1.5

2.0

k a
x i

n 
m

4 P
a

1 s
1

1e 16
tap root
laterals

0 5 10 15
root age in days

1

2

3

4

5

k r
ad

 in
 m

Pa
1 s

1

1e 12
tap root
laterals

Figure 6.3 –Root conductivities for a lupin root system. Left andmiddle, age-dependent hydraulic
root conductivities from Schnepf et al. (2020). Right, 8-day-old lupin root system reconstructed
from MRI data (courtesy of M. Landl, FZ Jülich). The root segment radius is visualized to scale.
The rooting depth is about 10 cm.

average age of 4d to determine kax and krad. Then for the tap root, we obtain Θv ≈ 3.5 · 10−12

and Θω = 2.5 · 10−12, and for lateral roots, we compute Θv ≈ 3.8 · 10−13 and Θω = 1.3 · 10−11.
Therefore, the estimated relevant time scale for flow processes in the soil is in the order of
hours.

ForΘm, we obtainΘm ≈ 5.0 · 10−9 for Sand1, Θm ≈ 2.5 · 10−10 for Loam, andΘm ≈ 5.0 · 10−11

for Clay, using the soil types shown in Fig. 6.4. The values of Θm are rather high in
comparison with the other dimensionless groups. However, they still need to be multiplied
with the relative permeability, cf. Eq. (6.10b), which strongly and nonlinearly scales with the
soil water saturation. The usual water flow path in the context of root water uptake starts in
the soil, goes over the root cortex into the xylem, and then upwards in the hierarchical root
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Figure 6.4 – Relative permeabilities for different soil types. Van Genuchten-Mualem model with
parameters for Sand1, Loam, Clay from Vanderborght et al. (2005), Sand2 from Koch et al. (2018b).

tree. Hence, for a small value of krlΘm ( in comparison withΘω andΘv), we would expect the
soil resistance to be limiting for root water uptake, while for a high value, we would expect
either the root cortex or the root xylem to be limiting. Given the relative permeability
curves in Fig. 6.4, it is evident that even for moderately low soil water saturation, values for
krl are 1 · 10−2 and lower. Comparing this with the values estimated for the dimensionless
groups given above, we conclude that the soil permeability is limiting root water uptake for
dry soils. For very wet soils (Sl > 0.9), either the resistance of the root cortex or the root
xylem (especially for young lateral roots) seems to limit water uptake. We note at this point
that is has been suggested that in the presence of mucilage (a gel-like substance exerted by
some roots) soil water saturation values close to roots may be significantly altered towards
higher values (Carminati et al., 2010). Herein, mucilage is not considered. However, there is
also experimental evidence of high local water saturation gradients close to the root for dry
soils (Garrigues et al., 2006). There is a range of system states (mid-range water saturation)
for which it is still unclear which compartment limits root water uptake (Beudez et al.,
2013).

The pressure drop along the root in comparison with the pressure drop across the root
cortex is analyzed in Appendix A.2. We can show that the ratio of these pressure drops can
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be estimated by the ratio 0.5ΘωΘ
−1
v . Using the values estimated above, 0.5ΘωΘ

−1
v ≈ 0.7 for

the tap root, and 0.5ΘωΘ
−1
v ≈ 0.01. for lateral roots. Thus, the expected pressure differences

along the root are expected to be similar to the cortex pressure drop for the tap root, while
the longitudinal root resistance dominates the pressure drop for lateral roots.

6.2.3 Well modeling

Instead of discussing well segments with permeable wall, we neglect anywell casing, assuming
that its permeability is much higher than than that of the rock matrix. We assume that the
well bore surface is impermeable everywhere, except for some segment located at the end
of the well bore hole, where the fluid transfer into the matrix happens. We analyze the
same dimensionless groups Θv = kv l−2

v (for well bore) and Θm = km l−2
m (for rock matrix), as

defined above for the other applications. The well permeability is typically in the order of
kv = r 2

ω/8≈ 1 · 10−3 m2 (assuming a well bore radius of 10 cm), while the order of the matrix
permeability ranges from km ≈ 1 · 10−12 to 1 · 10−15 m2 for sandstone (Doyen, 1988) down
to a range of km ≈ 1 · 10−17 to 1 · 10−23 m2 in clay and shale formations (Neuzil, 1994). We
estimate that typical lateral length scales of the rock formations or aquifers are in the order
of lm ≈ 100 to 1000 m, while the permeable section of the well is in the order of lv ≈ 10
to 100 m, and the total well length can be up to 5000m for some geological formations.
Therefore, we obtain Θv ≈ 1 · 10−9 to 1 · 10−5 , Θm ≈ 1 · 10−29 to 1 · 10−16 . Hence, injection
and extraction are limited by low rock matrix permeabilities. Furthermore, we conclude
that a good assumption is that of a spatially constant well pressure in the permeable segment.
We note that in this work we restrict ourselves to the analysis of rather simple models of
the fluid flow around wells. We only consider single fluid phase systems, while in many
applications, for example in petroleum engineering, two-phase flow occurs. The fluid is
considered incompressible, so that we cannot describe the injection of gases, such as for
example for energy storage systems or CO2 sequestration scenarios. Only isothermal systems
are modeled, and the rock matrix does not change properties (e.g. fracking). Consequently,
the analysis of well modeling in Chapter 8 is focused on the numerical aspect of the mixed-
dimensional coupling. Again, we believe that the analysis of simpler systems may also lead
to a better understanding of more complex models.
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6.2.4 Conclusion

After introducing the particularities of the different applications, we conclude with a
comparison of different characteristic features of the described systems.

Network structure An important difference between the three applications is the structure
of the (hierarchical) network. While the network is a closed circuit for the cardiovascular
system which contains diverging and converging bifurcations as well as loops, the network
for the roots resemble a tree structure where the smallest roots end in the form of root tips
and root sprout from a single stem at the root collar. Likewise, wells consist of either single
bore holes or tree-like branching structures with amain duct that may branch out into several
channels inside the subsurface which end in the target rock formation. Hence, for roots and
wells, a fluid particle has a flow path with a clear direction through all compartments, from
the porous medium, across a membrane, through the network structure (or in opposite
direction for injection wells). Therefore, the flow resistance is expected to be dominated
by the compartment with the highest resistance. For the cardiovascular system, particles
may stay within the vascular network, and only some particles cross the capillary wall in
a selected organ. These differences may be explained with different functional purposes.
The well system is designed to inject or extract fluid with minimal additional friction from
or into a formation, while minimizing drilling costs. This explains relatively few network
segments with high permeability. The root system is designed to transport water upwards
withstanding large pressure gradients. The cardiovascular system is designed to supply a
large volume of tissue with fluid and nutrients as evenly as possible.

Driving force While the well and the cardiovascular system are driven by an active pump-
ing unit, root water uptake is assumed to be passive. The evaporation of water in the leaf
stomata is the main driving force for the fluid transport in the system. This could explain
why roots are significantly less permeable than blood vessels or wells. Thin structures are
required to make use of capillary, cohesive and adhesive forces for the upward transport of
water against gravity (cohesion-tension theory, see Tyree (1997)). Despite these differences,
the driving force in all systems is firstly exerted on the system through the network structure,
while the embedding porous medium takes a passive role.
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Porous medium All described systems have in common that the embedded networks
enable fast transport, and act as channels for fluid flow through porous media with otherwise
low permeability. This means that the network structure and its interaction with the
embedding porous medium is essential for the modeling of flow problems in these systems.

Localized flow patterns Because the network structures are thin and the porous media
have low permeability, flow patterns in the porous structure will exhibit strong nonlinear
local features in the vicinity of the network tubes. Near-field pressures follow a logarithmic
profile with increasing gradients towards the tubes. Likewise, flow velocities increase towards
the tubes. We also note (without proving it here) that the locality of this effect is much
stronger than for the case of embedded planar networks such as fracture networks in rocks.
This is because the embedded tube structures are thin with respect to two dimensions, while
fractures or other planar interfaces are thin with respect to only one dimension.

Localized flow patterns turn out to be the most challenging aspect for the design of numerical
methods approximating flow and transport processes in such systems. Therefore, the
subsequent chapters of this work focus not only on using mixed-dimension methods for the
described applications, but also on the development of suitable numerical methods.





7 A new method for the simulation of

tissue perfusion∗

In this chapter, a new numerical method for mixed-dimension embedded problems with
tubular network inclusions is introduced, analyzed and tested with several numerical exam-
ples. The method is derived in Section 7.1. The discrete equations are discussed in Section 7.2.
Finally, the method is numerically analyzed in Section 7.3, and compared with existing
methods for increasingly complex scenarios.

7.1 Mixed-dimension problem with distributed sources

Flow in a given brain tissue sample can be described by the coupled system of partial
differential equations presented in Eq. (3.22), (cf. Cattaneo and Zunino, 2014; D’Angelo,
2007). In this chapter, we consider the set of equations

− ∂
∂ s

�

ρB
Av r 2

v

8µB

∂ pv
∂ s

�

=−q̂m in Λ, (7.1a)

−∇ ·
�

ρI

µI
k∇pt

�

= q̂mΦΛ in Ω, (7.1b)

q̂m = ρILpPv(pv− pt,0)Ξ, (7.1c)

formulated in terms of effective pressures, pα = p̃α−πα, α ∈ {v, t}, where p̃α denotes the
hydraulic pressure and πα the colloid osmotic pressure introduced in Section 3.2. Equa-
tion (7.1) differs from Eq. (3.22) only in the source term, which is now formulated in terms
of pt,0, the extra-vascular pressure evaluated on the vessel center-line. The flux scaling factor
Ξ is given by Eq. (6.6).

We introduce the method of distributed sources by choosing cylindrical, radially-symmetric
kernel functions, ΦΛ,i (%), with finite support radius %, for each straight vessel segment i in a
network of vessels. We recall that this is in contrast to the method introduced by D’Angelo

*This chapter is based on Koch, Schneider, Helmig, and Jenny (2020d), c© 2020 Elsevier Inc.
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(2007), where the kernel functions are chosen as the Dirac delta distribution (line source), or
the method introduced by Köppl et al. (2018) (surface source), where the kernel function is
chosen as a constant on the surface of the vessel ( r = rv) and zero everywhere else. Moreover,
these methods require computing pt,W, the mean pressure on a given vessel cross-section
perimeter, see Eq. (6.3), numerically. For non-zero support, %> 0, smooth kernel functions
regularize the pressure solution in the kernel support region. Hence, solutions to Eq. (7.1),
unlike solutions to Eq. (6.1), have no singularities at the vessel center-line. To evaluate the
function q̂m, the pressure pt can thus be evaluated on the vessel center-line. The pressure
at the location of the vessel center-line is denoted by pt,0. In the following section, we
show that for a single straight vessel, we can replace the definition for Ξ, Eq. (6.6), by an
equivalent formula, independent of the pressure. This allows us to compute the same q̂m as
for the line source method or the surface source method as a function of pt,0 instead of pt,W.
Section 7.1.2 discusses the choice of the kernel support region radius, %, and Section 7.1.3
the case of multiple vessels.

7.1.1 Flux scaling factor Ξ (single straight vessel)

Figure 7.1 – Pressure solution near vessel. Location of different pressures in radial distance to the
vessel center-line for the case of extravasation. The solution to the line source problem approaches∞
for r → 0, while the regularized solution has the finite value pt,0 at r = 0. Reprinted with permission
from Koch et al. (2020d), c© 2020 Elsevier Inc.
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The scaling factor Ξ can be analytically derived in terms of the kernel support radius % and
the constraint Eq. (6.6) under some assumptions. First, let us consider a single straight and
long vessel. Looking at a cross-sectional plane cutting through this vessel (see Fig. 7.1), we
assume that the flow field in a small neighborhood around the vessel is strictly radial. Now,
let us exemplarily consider the following radial kernel function

Φconst(r ) =







1
π%2 r ≤ %,

0 r >%.
(7.2)

The flux outside the kernel support region, r >%, is identical to the flux of the formulation
with line sources, as the same total mass is injected in both formulations, if the flux scaling
factor Ξ is chosen as in Eq. (6.6). Under the given assumption, and using a coordinate
transformation to local cylindrical coordinates, Eq. (7.1b) is transformed to

− 1
r
∂
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∂ pt
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=
µI
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q̂mΦ

const(r ). (7.3)

The pressure outside the kernel support region admits the following solution

pt(r ) = pt,W−
q̂mµI

2πρIk
ln
�

r
rv

�

, r >%, (7.4)

derived from the fundamental solution of the Laplace equation (Evans, 2010). We note that
the mean pressure on the vessel surface, pt,W, is equal to the pressure evaluated at r = rv, if
%≤ rv. To derive the pressure solution inside the kernel support, we apply Leibniz’s rule
to Eq. (7.3)

∂ pt
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=− 1

r

r
∫

0

µI

ρIk
q̂mΦ

const(r ′)r ′dr ′, (7.5)

and integrating once more yields

pt(r ) =−
q̂mµI

2πρIk
r 2

2%2
+C0, r ≤ %. (7.6)

It is easy to verify that for r = %, Eqs. (7.4) and (7.6) have equal derivatives which ensures flux
continuity. The integration constant C0 is determined such that the pressure is continuous
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at r = %, yielding

pt(r ) =
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(7.7)

This function is shown qualitatively in Fig. 7.1. To derive a suitable Ξ, let us first evaluate
Eq. (7.7) at r = 0, so that pt,W is expressed in terms of pt,0,

pt,0 = pt,W−
Lp rvµI

k
(pv− pt,0)Ξ
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− 1
2
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, (7.8)

where q̂m was replaced by inserting Eq. (7.1c). It directly follows from Eqs. (6.6) and (7.8)
that the flux scaling factor can be expressed independently of the pressure,
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(for Φconst). (7.10)

The flux factor has a very similar structure, when derived for other kernel functions. For
instance, for the cubic kernel function

Φcubic(r ) =
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we obtain
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and
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The kernel function in Eq. (7.11) distributes mass with spatially varying weights. The
corresponding local pressure solution will be closer to the line source solution than the
solution with the constant kernel function, Eq. (7.2). In the following, we choose Eq. (7.2)
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since it simplifies numerical integration of the kernel functions over discrete grid cells,
see Section 7.2.4.

The dimensionless group Θ = rvLpµIk
−1 is the ratio of the hydraulic conductivity of

the vessel wall to the hydraulic conductivity of the extra-vascular space. If the filtration
coefficient Lp is low relative to k, the regularized pressure profile is rather flat, so that the
difference between pt,rv and pt,0 is low. This is reflected in a flux scaling factor close to 1. If
the filtration coefficient is elevated, for example, when the blood-brain barrier is impaired
in a tumor, Θ can be larger than 1, hence Ξ may significantly defer from 1. Comparing
Eqs. (7.10) and (7.13), we observe that a kernel function with higher weights towards the
vessel center-line tends to result in a Ξ further away from 1.

7.1.2 Kernel support radius %

Considering that the physically meaningful part of the pressure solution is actually given
for r ≥ rv, if %< rv, our formulation gives identical solutions (for r ≥ rv) to the methods
by D’Angelo (2007) and Köppl et al. (2018). However, the smoothness of the solution for
r < rv can be controlled by the choice of kernel functions. For %> rv, the physical pressure
solution pt is altered. The source term, as well as pv, remain the same for the derived Ξ. For
%> rv, the action of the coupling term on pt is effectively distributed over an artificially
enlarged vessel volume.

7.1.3 Multiple vessels

In the capillary bed, vessels form a dense network. The vessel diameters are small, such that
average distances between vessels are about one order of magnitude larger than the radii,
and the vessel volume fraction is in the range of 2 to 5 %. In the following, we present our
considerations for choosing Ξ in such a network.

To this end, let us consider a setup of N parallel long vessels with given boundary conditions,
such that the resulting pressure solution in each plane, P⊂R3, perpendicular to the vessel, is
equal to the two-dimensional problem on that plane (the in-plane solutions are independent
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of the solution in any parallel plane). Due to the linearity of the Laplace operator the
solution can be split into contributions by the individual vessels (superposition principle),

pt(x) =
N
∑

i=1

pt,i (x), (7.14)

where ri := ||x i − x ||2 is defined as the distance between a point x ∈ P and the center x i of
the vessel i . The source term contributions of the individual vessels are denoted by q̂m,i . It
is important to note that q̂m,i is a function of pt rather than pt,i ,

q̂m,i = 2πrv,iρILp(pv− pt(x i ))Ξi , (7.15)

so that the partial solutions pt,i are not independent of each other. Each partial solution,
pt,i , assumes the same form as Eq. (7.7). Furthermore, pt,i is a harmonic function, satisfying
the Laplace equation ∇·∇pt,i = 0, for ri >%i . Assuming that the kernel support regions of
two neighboring vessels do not overlap, we observe that
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dθ=: pt, j ,Wi
=: C j ,i (7.16)

using the mean value property of harmonic functions (Axler et al., 1992, p.4f), where
pt, j ,Wi

is defined as the mean of pt, j over the cross-sectional vessel surface of vessel i . From
Eqs. (7.14) and (7.16) follows that
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This allows us to derive the flux scaling factors Ξi analogously to the single vessel case (cf.
Eqs. (7.8) and (7.10)),
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In Section 7.3.3, we construct an analytical solution with multiple parallel vessels using
these observations. The same observations hold for non-uniform boundary conditions, for
which the solution can be decomposed into contributions by the vessels and a harmonic
correction function which is chosen such that the boundary conditions are satisfied.

Unfortunately, the derivation using the mean value property of harmonic functions is no
longer valid for arbitrarily-oriented vessels. In a fully three-dimensional setup, the mean
value property concerns the integral over a sphere, while in our model we are integrating
over the boundary of a circular cross-section. However, numerical experiments have shown
that using an unmodified flux scaling factor does not introduce a significant modeling error.
A possible explanation is that at a large enough distance to the neighboring vessels, the
integral over the circular cross-section is expected to be very close to the integral over
a sphere with the same radius and center point, given that the pressure gradient decays
with r−1

i . Moreover, realistic segmented vessel networks contain vessel bifurcations and
may contain bends with sharp angles. In the vicinity of such features, the kernel support
regions of two connected vessels may overlap. In such a case the correct flux scaling factor
is not easily determined. However, we herein still employ the flux scaling factor shown
in Eq. (7.10), assuming that possible errors are small, only occur in the close vicinity of such
features and that the influence on the global solution is negligible in realistic applications.
These assumptions and the corresponding modeling errors are investigated in a numerical
experiment in Section 7.3.5.

7.2 Discretization

We discretize Eq. (7.1) using a cell-centered finite volume method with two-point flux
approximation. To this end, Ω and Λ are decomposed into two independent meshes Ωh

and Λh consisting of control volumes KΩ ∈Ωh and KΛ ∈Λh . Herein, KΩ are chosen to be
hexahedra and KΛ are line segments. Furthermore, the control volume boundary, ∂ K , can
be split into a finite number of faces σ ⊂ ∂ K , such that each σ =K ∩ L, for a neighboring
control volume L. Integrating Eq. (7.1b) over a control volume KΩ and applying the Gauss
divergence theorem to the left-hand side yields

−
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∂ KΩ
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KΩ

q̂mΦΛ dx, (7.20)
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S(ΦΓ) ∩KΩ

Γ=KΩ ∩KΛ

S(ΦΛ)
KΩ

Figure 7.2 – Visualization of the discretization. The domains Ω and Λ (left) are represented by a
set of control volumes KΩ ∈Ωh and KΛ ∈Λh (middle). The red area shows a tube with a radius rv
around the vessel center-line. The orange area visualizes the kernel support S (ΦΛh

) of the kernel
functions ΦΛh

in the middle, and on the right, the kernel support associated with the intersection
Γ intersected with a control volume KΩ. In this example, the kernel functions with cylindrical
support, are chosen to have radii % > rv. Reprinted with permission from Koch et al. (2020d),
c© 2020 Elsevier Inc.

where nKΩ,σ is the unit outward-pointing normal on face σ ⊂ ∂ KΩ. The exact fluxes are
approximated by numerical fluxes

FKΩ,σ ≈−
∫

σ

�

ρI

µI
k∇pt

�

·nKΩ,σdA. (7.21)

Let I be the set of intersections Γ = KΩ ∩KΛ. Furthermore, let ΦΓ ∈ ΦΛ denote a kernel
function with the support S (ΦΓ ) associated with Γ . The discrete source term is computed
as

∫

KΩ

q̂mΦΛ dx ≈QKΩ
:=
∑

Γ∈I
QΓ

1
|Γ |

∫

KΩ∩S (ΦΓ )
ΦΓ dx, (7.22)

where QΓ is the numerical approximation of the source term integrated over the intersection
Γ ,

QΓ ≈
∫

Γ

ρILpPv(pv− pt,0)Ξds . (7.23)

Hence, Eq. (7.20) can be reformulated as

∑

σ⊂∂ KΩ

FKΩ,σ =QKΩ
, ∀KΩ ∈Ωh . (7.24)

The discretization of the domains Ω and Λ are visualized in Fig. 7.2, including an illustration
of the kernel support region.
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We mention that due to the approximation of the vessel segments as cylindrical tubes around
the center-line, segments may overlap, in particular, at bifurcations and bends with sharp
angles. To the knowledge of the authors, the resulting discretization errors are neglected
throughout the present literature. This is a fair assumption, given that these overlaps are
small and the corresponding discretization error is expected to be small in comparison with
errors resulting from the vessel network segmentation.

7.2.1 Numerical fluxes FKΩ,σ

We compute the numerical fluxes using a two-point flux approximation,

FKΩ,σ =
tKΩ,σ tLΩ,σ

tKΩ,σ + tLΩ,σ

(pKΩ
− pLΩ

) (7.25)

for two neighboring control volumes K and L, with the pressure degrees of freedom pKΩ

and pLΩ
associated with these control volumes, and with the transmissibilities

tKΩ,σ = |σ |
ρIk
µI

dKΩ,σ ·nKΩ,σ

||dKΩ,σ ||2
, (7.26)

where dKΩ,σ = xσ − xKΩ
is a vector from the center of the control volume KΩ to the center

of the face σ , and |σ | denotes the area of face σ .

7.2.2 Numerical fluxes FKΛ,σ

Analogously to the derivation above, a discrete representation of Eq. (7.1a) is given by

∑

σ⊂∂ KΛ

FKΛ,σ =QKΛ
, ∀KΛ ∈Λh , (7.27)

with
FKΛ,σ = tKΛ,σ (pKΛ

− pσ ), QKΛ
=

∑

Γ∈KΛ∩Ωh

QΓ , (7.28)
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where pσ denotes the pressure at xσ , and the transmissibilities are defined analogously to
Eq. (7.26),

tKΛ,σ = |σ |
πr 4

v,KρB

8µB

dKΛ,σ ·nKΛ,σ

||dKΛ,σ ||2
, (7.29)

with rv,K denoting the vessel radius of control volume K . Since Λh consists of a network
of segments KΛ, it occurs that a face σ has more than two neighboring cells, i.e. a set of
neighboring cellsKσ ⊂ Λh . At such bifurcation faces, we enforce flux conservation, just
like for faces with exactly two neighbors,

∑

KΛ∈Kσ

FKΛ,σ = 0. (7.30)

Inserting Eq. (7.28) into Eq. (7.30) yields

pσ =

∑

KΛ∈Kσ
tKΛ,σ pKΛ

∑

KΛ∈Kσ
tKΛ,σ

, (7.31)

so that the face unknown in Eq. (7.28) can be replaced by an expression in terms of control
volume unknowns pKΛ

.

7.2.3 Numerical source term QΓ

In the following, we consider three different methods: the method proposed by D’Angelo
(2007) using line sources (ls), the method suggested by Köppl et al. (2018) using cylinder
surface sources (css), and the above introduced method with distributed volume sources (ds).
The methods can be distinguished by the choice of kernel functions, and the approximation
of QΓ . For the ls and css method, we are looking for the discrete approximation

Qls,css
Γ ≈

∫

Γ

ρILpPv



pv−
1

2πrv

∫

∂ Drv (s)
pt dθ



 ds , (7.32)
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where ∂ Drv
(s) is the boundary of a disc at position s , perpendicular to the intersection

segment Γ with radius rv. We compute

Qls,css
Γ ≈

∫

Γ

ρILpPv



pv−
1

2πrv

∑

IK∈I∂ Drv

|IK |pKΩ



 ds , (7.33)

where I∂ Drv
is the set of intersections IK = ∂ Drv

(s) ∩ KΩ, KΩ ∈ Ωh , and the integral is
approximated by a Gaussian quadrature rule. For the method ds, we seek

Qds

Γ ≈
∫

Γ

ρILpPv

�

pv− pt,0(s)
�

Ξds . (7.34)

The center-line pressure pt,0(s) could be approximated by the pressure pKΩ
in the control

volume KΩ containing Γ . However, this approximation is poor, if KΩ is not significantly
smaller than the vessel radius rv. Assuming radial flux in a small neighborhood of Γ , we can
reformulate Eq. (7.34) as

Qds

Γ ≈
∫

Γ

ρILpPv

�

pv− pt,0(s)
�

Ξds =
∫

Γ

ρILpPv

�

pv− pt,δ(s)
�

Ξδ ds , (7.35)

where pt,δ is evaluated at some distance δ ≥ 0 to the vessel center-line, and Ξδ is a modified
flux scaling factor, ensuring equality. Now, pKΩ

may better approximate pt,δ than pt,0, for a
certain δ. As pKΩ

is commonly defined as the mean pressure in the control volume KΩ, we
choose δ as the mean distance of Γ to the control volume KΩ,

δ =
1
|KΩ|

∫

KΩ

min
x ′∈Γ
||x − x ′||2 dx. (7.36)

The corresponding Ξδ is computed using the analytical derivations in Section 7.1.1, and is
dependent on the kernel functions. Choosing Φconst yields

Ξδ(Φ
const) =

�

1+
rvLpµI

k

�

δ2

2%2
+ ln

�

%

rv

�

− 1
2

��−1

for δ ≤ %, (7.37)

so that
Qds

Γ = ρILpPv

�

pKΛ
− pKΩ

�

Ξδ . (7.38)
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Denoting the maximum size of all control volumes KΩ by hΩ, note that for hΩ→ 0 =⇒
δ→ 0, and pt,δ→ pt,0, so that Eq. (7.34) is recovered. For δ >%, a better approximation,
independent of the chosen kernel function, can be derived from the analytical solution for
r >%, Eq. (7.7), yielding

Ξδ =
�

1+
rvLpµI

k
ln
�

δ

rv

��−1

for δ >%. (7.39)

We note that replacing Ξ by Ξδ is a sensible flux correction for the methods ls and css, too.
However, herein, we do not modify q̂m for these methods and implement them as described
by D’Angelo (2007) and Köppl et al. (2018), respectively.

7.2.4 Kernel integration

Figure 7.3 – Kernel integration. Left, integration points and volume elements in top view. Almost
equally-sized integration volumes after the idea presented in Beckers and Beckers (2012). Right, the
cylindrical integration domain, i.e. the kernel support S (ΦΓ ), partitioned into volume elements.

The kernel integral in Eq. (7.22)

IΦ,KΩ
:=
∫

KΩ∩S (ΦΓ )
ΦΓ dx, (7.40)

is hard to approximate with standard quadrature rules, since KΩ ∩S (ΦΓ ) is difficult to
compute. However, the integral over the entire support S (ΦΓ ) is known exactly. Hence,
the problem can be reformulated as distributing the whole integral over the control volumes
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KΩ weighted with the respective support volume fractions. To this end, we create nΓ points
x i ∈S (ΦΓ ) with associated volume elements Vi of similar size and shape, so that

IΦ,KΩ
≈

nΓ
∑

i=1,x i∈KΩ

ViΦΓ (x i ),
nΓ
∑

i=1

Vi = |S (ΦΓ )|. (7.41)

An example for such integration points and associated volume elements is shown in Fig. 7.3.

7.3 Numerical experiments

All three introduced numerical methods (denoted by the superscripts ls, css, and ds) are
considered for solving Eq. (7.1). The methods yield different solutions for pt and r < rv
(ls, css), or r < % (ds), due to the difference in the kernel function and the numerical
approximation of Ξ. However, the solutions for pv and q̂m are directly comparable. We
denote the different pressure solutions in Ω by pMt , M ∈ {ls,css,ds}. We analyze these
methods with different vessel configurations in a series of numerical experiments. In
Section 7.3.2, we consider a single straight vessel. The numerical methods are investigated
in terms of the ratio of grid resolution to vessel radius, comparing with analytical solutions.
In Section 7.3.3, we construct an analytical solution for three parallel vessels, and show that
the optimal flux scaling factor Ξ is independent of perturbations caused by neighboring
vessels. For each numerical experiment, the setup is described and the results are presented
and discussed.

7.3.1 Implementation and linear solver

The linear equation system resulting from the discretization of Eq. (7.1) is solved using a left-
preconditioned stabilized bi-conjugate gradient method with block-diagonal preconditioner
based on an incomplete LU-factorization, see Section 11.4. All methods use the same solver.
We did not observe significant differences in the solver performance with respect to the
employed methods. This suggests that the number of grid cells is a suitable indicator to
compare the computational efficiency of the methods. However, a rigorous analysis of the
solver performance is beyond the scope of this work.
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7.3.2 Single vessel

Figure 7.4 – Numerical solution pds

t for rv = 0.03 and %= rv. The grid resolution in the extra-
vascular domain is 80× 80× 80, so that h = 0.025. The vascular pressure solution pv is projected on
a tube with radius rv. Reprinted with permission from Koch et al. (2020d), c© 2020 Elsevier Inc.

Let us consider a slightly simplified problem, adapted from D’Angelo (2007),

− ∂
∂ s

�

kv
∂ pv
∂ s

�

=−q̂m in Λ, (7.42a)

−∇2 pt = q̂mΦΛ in Ω, (7.42b)

q̂m =β(pv− pt,0)Ξ, (7.42c)

with the domains Ω= [−1,1]× [−1,1]× [−1,1] and Λ= {0}× {0}× [0,1], i.e the vessel
center-line coincides with the x3-axis. By choosing the parameters as

kv = 1+ x3+
1
2

x3
2, β=

2π
2π+ ln rv

,
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the pressure solutions,

pv,e = 1+ x3, (7.43a)

pls

t,e =−
1+ x3

2π
ln r, (7.43b)

pcss

t,e =







− 1+x3
2π ln rv r ≤ rv,

− 1+x3
2π ln r r > rv,

(7.43c)

pds

t,e =







− 1+x3
2π

�

r 2

2%2 + ln
�

%
rv

�

− 1
2

�

r ≤ %,

− 1+x3
2π ln r r >%,

(7.43d)

with r =
p

x1
2+ x2

2, solve Eq. (7.42) given the boundary conditions

pv = 1 on ∂ Λ∩{x3 = 0},

pv = 2 on ∂ Λ∩{x3 = 1},

∇pt ·n=−
1

2π
ln r on ∂ Ω∩{x3 = 1}, (7.44)

∇pt ·n=
1

2π
ln r on ∂ Ω∩{x3 = 0},

pt =−
1+ x3

2π
ln r on ∂ Ω \ {x3 = 0, x3 = 1},

where n is the outward-pointing unit normal vector on the boundary ∂ Ω of the domain
Ω. From the analytical pressure solutions follows that q̂m,e = 1+ x3 is the analytical source
term.

The pressure discretization errors are computed in the normalized discrete norm

||pt− pt,e||2 :=

�

∑

Ωh
|KΩ|(pKΩ,e− pKΩ

)2
�1/2

∑

Ωh
|KΩ|

, (7.45)

where pKΩ
, pKΩ,e denote numerical and exact pressure evaluated at the center of a control

volume KΩ and |KΩ| its volume. The error for pv in Λh is computed analogously. The error
in the source term q̂m is computed as

||q − qe ||2 =

�

∑

Λh
|KΛ|(qKΛ,e− qKΛ

)2
�1/2

∑

Λh
|KΛ|

, (7.46)
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where
qKΛ,e =

∫

KΛ

q̂m,e ds and qKΛ
=
∫

KΛ

q̂m ds . (7.47)

Themaximum control volume size, h, is given by the maximum edge length in both domains.
We choose the edge length so that h = hΩ = hΛ.

The numerical solutions pds

t , pv, for rv = 0.03 and %= rv, are exemplarily shown in Fig. 7.4.
The discretization error and the convergence rates are computed for pt, pv, and q . Fig. 7.5
shows the discretization errors for rv = 0.1, %= rv and Φconst. It can be seen that ds is the
only method with second-order convergence for pt in the given norm. The error in pt
cannot directly be compared, since it is computed with respect to the respective analytical
solution corresponding to the chosen method, which differ for r <%. However, all methods
are expected to converge to the same analytical solution for pv and q . It is evident from the
error plots of pv and q that ds shows the lowest discretization error of all three methods.
Furthermore, for the presented numerical experiment ds achieves convergence rates in q
of approx. 2.5, while ls,css show convergence rates of approx. 2. We conclude that the
increased discretization error for ls and css in pt, influences the approximation of pv, q ,
and is likely due to the insufficient approximation of pt,W. Fig. 7.6 shows the discretization
errors for rv = 0.05, %= rv and Φconst. The first two error measurements show the situation
h >%. If the discretization length h is larger than the kernel radius %, the three methods
do not differ in the representation of the source term. However, for the ds method, we
introduced a source term correction by an adjusted flux scaling factor dependent on the
discrete distance δ, see Eq. (7.37), which is proportional to h. This adjustment significantly
reduces the error for all quantities for r > rv. Note that the results for the ds method
without source term correction have been omitted in Fig. 7.6 for clarity. The source term
correction factor for r > rv, can also be applied for the other methods (ls and css), although
its motivated by the new formulation of the perfusion problem in Eq. (7.1).
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Figure 7.5 – Discretization errors in pt, pv, and q̂m ( rv = 0.1). Shown are different methods
ls, css, for ds, with vessel radius rv = 0.1, and kernel support radius %= rv (only ds). The exact
solution pt,e is the analytical solution pls

t (x), pcss

t (x), or pds

t (x), corresponding to the respective
method. The black lines are curves with slopes of 1.5, 2, and 2.5 for comparison. Reprinted with
permission from Koch et al. (2020d), c© 2020 Elsevier Inc.
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Figure 7.6 – Discretization errors in pt, pv, and q̂m ( rv = 0.05). Shown are different methods
ls, css, and ds, for vessel radius rv = 0.05, and kernel support radius %= rv (only ds). The exact
solution pt,e is the analytical solution pls

t (x), pcss

t (x), or pds

t (x), corresponding to the respective
method. Reprinted with permission from Koch et al. (2020d), c© 2020 Elsevier Inc.
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7.3.3 Multiple parallel vessels

Figure 7.7 –Numerical solution of hydraulic pressure p̃ds

t . Pressure is relative to p̃atm = 1 · 105 Pa.
The kernel support radius is %= 2rv, and rv = rv,1 = rv,2 = rv,3 = 4µm. The grid resolution in the
extra-vascular domain is 320× 160, so that h = 0.625 · 10−6 µm. Reprinted with permission from
Koch et al. (2020d), c© 2020 Elsevier Inc.

In the next experiment, we consider three parallel vessels, from which two are emitting fluid
(arterial side), and one vessel is absorbing fluid (venous side). We assume constant pressures
in the vessels, p̃v,1 = p̃v,3 = 3400Pa, p̃v,2 = 2300Pa, which renders the problem effectively
two-dimensional. Then, exploiting the linearity of the Laplace operator, we can construct a
solution of Eq. (7.1b) with line sources using the superposition principle, i.e.,

pls

t (x) =
3
∑

i=1

pt,i =
3
∑

i=1

−
µIq̂m,i

2πkρI
ln ri , ri = ||x i − x ||2, (7.48)

where x i is the position of the center-line of vessel i , and x = [x1, x2, x3]
T a point in Ω.

Recall that q̂m,i = ρILp2πrv,i (pv,i− pt,Wi
) is a linear function in the arguments pv,i and pt,Wi

,
and

pt,Wi
=

1
2π

2π
∫

0

pls

t

�

�

�

�

rv,i

dθ, (7.49)
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is the mean pressure on the surface of vessel i . Thus, using the mean value property of
harmonic functions yields

pt,Wi
=

3
∑

j=1
j 6=i

�

−
µIq̂m, j

2πkρI
ln ri j

�

−
µIq̂m,i

2πkρI
ln rv,i , (7.50)

where ri j denotes the Euclidean distance of the center-lines of vessels i and j and rv,i

the radius of vessel i . Eq. (7.50) constitutes a system of three linear equations with the
unknowns pt,W1

, pt,W2
, pt,W3

. As the analytical solution of Eq. (7.50) results in a rather
lengthy expression, we compute pt,Wi

numerically. Using the parameter values, r12 = r23 =
40µm, r12 = 80µm, rv,1 = rv,2 = rv,3 = 4µm, Lp = 1 · 10−9 mPa−1 s, k = 8.3 · 10−18 m2,
µI = 1.339 · 10−3 Pas, ρI = 1030kgm−3, πt = 666Pa, πv = 3300Pa, σ = 1.0, cf. Koch et al.
(2020a), we obtain p̃t,W1

= p̃t,W3
≈ 587.29Pa, and p̃t,W2

≈ −89.350Pa. Recall that pt/v =
p̃t/v−πt/v. We compute the analytical solution for a domainΩ= [−100,100]×[−50,50]µm
with x1 = [−40,0]T µm, x2 = [0,0]T µm, x3 = [40,0]T µm.

We recall that the solution with line sources is equal to the solution with distributed sources
outside the kernel support radius. Furthermore, the superposition principle equally applies
for the distributed source model so that, for instance, for the kernel function Φconst,

pds

t (x) =



















3
∑

i=1
−µI q̂m,i

2πkρI
ln ri ri >%i ,

3
∑

j=1
j 6=i

−µI q̂m, j

2πkρI
ln r j −

µI q̂m,i

2πkρI

h

r 2
i

2%2
i
+ ln%i −

1
2

i

ri ≤ %i ,
(7.51)

is a solution to Eq. (7.1), given that the kernel support regions of the vessels do not overlap.
For the cssmethod the solution is given by a linear continuation of the pressure for ri ≤ rv,i ,
cf. Köppl et al. (2018),

pcss

t (x) =



















3
∑

i=1
−µI q̂m,i

2πkρI
ln ri ri > rv,i ,

3
∑

j=1
j 6=i

−µI q̂m, j

2πkρI
ln r j −

µI q̂m,i

2πkρI
ln rv,i ri ≤ rv,i .

(7.52)

The analytical solutions pls

t (x), pcss

t (x), pds

t (x) along the x1-axis are shown in Fig. 7.8. The
numerical solution p̃ds

t = pds

t −πt, for % = 2rv, is exemplarily shown in Fig. 7.7. The
discretization errors with respect to the analytical solutions for pMt and q are shown in



80 7 A new method for the simulation of tissue perfusion

100 75 50 25 0 25 50 75 100
x in m

200

0

200

400

600

800

p t
 in

 P
a

LS
CSS
DS
analytical (LS)
analytical (CSS)
analytical (DS)

Figure 7.8 – Analytical and numerical solutions for three methods. Analytical solutions (black
lines) pls

t (x), pcss

t (x), and pds

t (x), and the corresponding numerical solutions (colored markers)
obtained with a grid resolution of 160× 80. The solution for ds uses a kernel support radius of
%= rv. The middle peak corresponds to the fluid-absorbing vessel, whereas the left and the right
peak correspond to the fluid-emitting vessels. Reprinted with permission from Koch et al. (2020d),
c© 2020 Elsevier Inc.

Fig. 7.9. As for the numerical experiment with a single vessel, method ds shows the lowest
error for the multi-vessel experiment. Additionally, it can be seen that the flux-scaling for
r >% significantly improves the approximation of q , although the analytical solution is no
longer strictly radial around the individual vessels.

In a second experiment, the grid resolution is fixed to h = 1.25µm. Then, the kernel support
radius is step-wise increased starting from %= rv, for all vessels. The discretization errors
for q are shown in Fig. 7.10. Recall that the distances r12 = r23 = 40µm, such that the
kernel support region for two neighboring vessels start intersecting for % > 5rv, and the
kernel support region includes the location of the center-line of the neighboring vessel for
%> 10rv. It can be seen that with increasing kernel radius the approximation of the source
term improves significantly. Comparing Fig. 7.10 and Fig. 7.9 it seems that an increase of
the kernel support radius has the same effect as increasing the grid resolution. An increase
of the kernel support area by a factor of 2 reduces the discretization error by a factor of
2. However, note that the pressure solution is increasingly regularized and thus deviates
from the physically sensible solution. If the kernel support radius is chosen too large, the
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Figure 7.9 – Discretization errors in pt and q̂m. Shown for the different methods ls, css, and ds

with kernel support radius %= rv (only ds). Reprinted with permission from Koch et al. (2020d),
c© 2020 Elsevier Inc.
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Figure 7.10 –Discretization errors for different kernel support radii. The annotated values show
the ratio of the kernel support radii to the vessel radii %/rv. The black line has a slope of 2 and is
shown for reference. Reprinted with permission from Koch et al. (2020d), c© 2020 Elsevier Inc.

regularization affects neighboring vessels, such that the error in the source term increases
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again. The results suggest that the variable kernel support region, to some extent, decouples
the source term approximation error from the 3D grid resolution.

7.3.4 Multiple arbitrarily-oriented vessel

In this experiment, we consider multiple arbitrarily-oriented vessels embedded in a cubic
extra-vascular domain, for which no analytical solution is given. Recall that for such a system,
the methods ls, css and ds do not generally give the same solutions, but the differences
are expected to be small. In order to isolate differences stemming from the different source
models from other sources of error, the vessels do not bifurcate and are constructed in a way
that they intersect the 3D domain boundary perpendicularly. The computational domain is
shown in Fig. 7.11. Two arterial (fluid-emitting) and two venous (fluid absorbing) capillaries
are embedded in a cubic extra-vascular domain with dimensions 100 µm× 100 µm× 100 µm.
For each vessel, one end is chosen as inflow and the other as outflow boundaries. On the

Figure 7.11 –Computational domain—multiple arbitrarily-oriented vessels. The vessel segments
are shown as cylinders scaled with the respective vessel radius. The vessel segment color corresponds
to the relative hydraulic vessel pressure p̃v. The cubic extra-vascular domain has the dimensions
100 µm× 100 µm× 100 µm. Reprinted with permission from Koch et al. (2020d), c© 2020 Else-
vier Inc.
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inflow boundary of vessel i , a constant inflow rate, qv,i ,in = ρBπr 2
v,i vi is enforced, where

rv,i is the inflow segment radius and vi the inflow velocity. On outflow boundaries, we fix
the pressure, p̃v,i ,out. The data for the geometry of the vessel and boundary conditions is
given in Table A.1 in Appendix A.3. The remaining model parameters are chosen as in
the previous multiple vessel experiment. The boundaries of the extra-vascular domain are
considered symmetry boundaries, hence ∂ pt

∂ n = 0 on ∂ Ω.

We produce a reference solution using the css method, with hΩ = 0.625µm, hΛ = 0.5µm.
The source term q̂m is computed for every cell K ∈ Λh , resulting in a source vector qref.
Then, the corresponding source term, q , for hΛ = 0.5µm, is computed for different hΩ using
the methods css, ls, and ds with different kernel radii %/rv,i = 1,3, and 5. Furthermore,
we compute the total mass flux, qout, emitted by the arterial vessels, as the sum of all fluxes
leaving the vessel domain into the extra-vascular domain. The results are shown in Fig. 7.12.
First, it can be seen that with a coarse grid, the difference in the source term computed
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Figure 7.12 – Differences in source term with respect to the reference solution. Left, the total
mass flux emitted by the arterial vessel qout for the different methods (css, ls, and ds) with grid
refinement. Right, the difference in the source term between the different methods with grid
refinement with respect to the reference solution (css). Reprinted with permission from Koch et al.
(2020d), c© 2020 Elsevier Inc.

by the different schemes is quite large (≈ 10% relative to the reference solution). Notably,
the lowest difference with respect to the reference solution at coarse resolutions is achieved
by the ds with the largest kernel support region. With grid refinement these differences
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decrease to less than 1 %. However, it can be seen that the curve flattens for the ds methods
with larger kernel for fine grid resolutions. The results suggest that the difference cannot
be reduced to much less than 1 %. At the given grid resolutions, such a behavior is not
observed yet for the ds with the smallest kernel support.

We conclude that the flattening of the error curve for the ds methods with larger kernel is
rather caused by overlapping kernels of neighboring vessels as well as at bends. This effect,
which is further investigated in the next numerical example, is minimized for the smallest
kernel support. From the fact, that the kernel curve still suggests convergence until a very
fine grid resolution leads us to the conclusion that the error caused by the approximation of
the flux scaling factor Ξ (as discussed in Section 7.1.3) is much smaller. In perspective of
the rather big uncertainties stemming from vessel segmentation and modeling error, the
difference of 1 % between the different methods present in Fig. 7.12 will most certainly
be acceptable in practical simulations. Furthermore, the observations in this experiment
support our results from the previous experiment that for coarser mesh resolutions it is
better to choose a larger kernel support, if a good approximation of the source term q̂m is
important.

7.3.5 Vessel network

In the last numerical experiment, we consider a network of capillaries extracted from the
superficial cortex of a rat brain (Motti et al., 1986; Secomb et al., 2000). Inlets and outlets
are annotated in the data set. For the inlets, velocity estimates based on the vessel radius
are given by Secomb et al. (2000), and herein enforced as Neumann boundary conditions.
The vessel radii are in the range of 2 to 4.5 µm. Dirichlet boundary conditions enforce
pv,out = 1.025 · 105 Pa at the outlets. The extra-vascular domain Ω is given by a rectangular
box, 200µm× 210µm× 190µm. All boundaries ∂ Ω are considered symmetry boundaries,
∂ pt
∂ n = 0 on ∂ Ω. The network boundaries are extended by 30 µm segments with perpendicular
intersections on ∂ Ω. This adjustment to the network structure is chosen to better match
the assumption of symmetry boundaries in the extra-vascular domain. Vessels intersecting
the boundary at acute angles lead to non-physical, non-radial flows around the vessel end at
symmetry boundaries on ∂ Ω.

A reference solution is computed using the cssmethodwith hΩ = 1.3125µm and hΛ = 0.5µm.
The network geometry and the pv reference solution are shown in Fig. 7.13. The source
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Figure 7.13 – Vessel network from the superficial cortex of a rat brain. Data from Motti et al.
(1986); Secomb et al. (2000). The vessel segments are shown as cylinders scaled with the respective
vessel radius. The vessel segment color corresponds to the relative hydraulic vessel pressure p̃v. The
cubic extra-vascular domain has the dimensions 200µm× 210µm× 190µm. The kernel support
volume for %i = 3rv,i is visualized in opaque gray. Reprinted with permission from Koch et al.
(2020d), c© 2020 Elsevier Inc.

term, q , for hΛ = 0.5µm, is computed for different hΩ using the methods css, ls, and ds

with different kernel radii %/rv,i = 1,3, and 5. As in the previous example, we compute
the total mass flux, qout. The results are shown in Fig. 7.14. Firstly, it can be seen that all
methods agree well for the total mass flux on the finest grid with maximum differences of
about 2 %. Secondly, it is evident that the ds approximates qout much better for coarser
grids, and the approximation gets better with larger kernel support. The ds method with a
kernel support radius %i = 5rv,i very closely approximates qout for the coarsest grid, where
hΩ is about five times the radius of the largest vessel. If the difference is measured in the
relative 2-norm, ∆q = ||q − qref||2/||qref||2, we observe slightly larger differences. On the
one hand, this is due to differences along vessels oscillating around zero, i.e., due to terms
that cancel when computing qout, but not for∆q . On the other hand,∆q emphasizes larger
differences stronger.

The locality of the difference is visualized in Fig. 7.15, where we computed the absolute
local differences of source terms q̂m,i between the ls and ds methods (%/rv,i = 1) and the
reference solution (with css) for every vessel cell KΛ. The largest differences can be observed
in the neighborhood of bifurcations and sharp bends. This difference can be explained
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Figure 7.14 –Differences to reference solution—network with bifurcations. Left, the total mass
flux emitted by the arterial vessel qout for the different methods (css, ls, and ds) with grid refinement.
Center, the relative difference in the 2-norm of the source term for the different methods and grid
refinement, with respect to the reference solution (css). Right, the relative difference in the 2-norm
of the source term, excluding all cells KΛ that are closer than 10 µm to a vessel bifurcation. Reprinted
with permission from Koch et al. (2020d), c© 2020 Elsevier Inc.

Figure 7.15 – Local distribution of differences in the source term. Shown for the ls and ds

methods in comparison with the css method. Vessel segments visualized as tubes with a constant
radius. The largest differences between the methods can be seen in the neighborhood of bifurcations
and sharp bends. Reprinted with permission from Koch et al. (2020d), c© 2020 Elsevier Inc.
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by the fact that the vessels are discretely represented as cylindrical tubes and no explicit
intersection geometry is assumed for such features. To the best of our knowledge, there
is currently no mixed-dimension embedded method available that considers particular
bifurcation geometries. For the ls method this means that at such features the mean surface
pressure pt,W contains contributions from the non-physical part of the pressure solution
( r < rv) of the neighboring vessels, leading to an overestimation of pt,W. This defect is
improved in the css method, where, due to the linear continuation of the solution for
r < rv, the value of pt,W is closer to the actual pressure on the vessel wall surface. For the
ds method, the approximation of pt,W is based on an analytical reconstruction from the
center-line pressure pt,0. However, at bifurcations the kernel support of the neighboring
vessels overlap, which leads to imprecision in the approximation of Ξ. Fig. 7.14 shows that
these effects lead to differences of 3 to 4 % in ∆q between the methods. Furthermore, it
is shown that if the source contributions in the vicinity of bifurcations (KΛ closer than
10 µm) are excluded from the norm, the differences decrease to 2 to 3 %. This shows that
the differences are rather local to the bifurcation neighborhood. Finally, while it cannot be
concluded which method is best for the fine grid solutions, we again observe that the ds
method, especially the variants with larger kernel support, better approximate the fine scale
solution for large hΩ (coarse grid). In fact, the difference to the fine scale solution (obtained
with the css method) for the coarsest grid (hΩ = 21µm) is 10 % for the ds method with
%i = 5rv,i , while it is 30 % for the ls and css methods.

7.4 Summary and conclusion

We presented a new method for modeling tissue perfusion using a mixed-dimension embed-
ded method with distributed sources. The most prominent difference to existing schemes
is that the source term, coupling the vascular and the extra-vascular domains, is spatially
distributed using kernel functions. The mean pressure on the vessel surface is not explicitly
computed but locally reconstructed from the pressure at the vessel center-line using an
analytically derived scaling factor. We showed in four numerical experiments that the result
obtained with the new method match well with the results obtained with existing methods.
It was consistently shown in the experiments that the new method converges with a higher
rate for the source term q̂m and the vessel pressure pv due to an increased regularity in the
extra-vascular pressure pt. Furthermore, in all experiments the new method provided better
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approximations of the source term q̂m for coarse extra-vascular grids. In a test with a realistic
vessel network from the rat cortex, using the new method resulted in a three-fold reduction
of the error in the source term for coarse grids in comparison to state-of-the-art methods
with respect to a reference solution computed on a fine grid.

In four numerical experiments the new method was compared to existing methods. To this
end, all methods have been implemented in the open source software framework DuMux.
The implementation effort and computational costs (at the same grid resolution) of the new
method are comparable with existing methods. However, our results suggest that the new
methods can be considered computationally more efficient, since a good approximation of
the source term is already achieved at lower grid resolutions.

The results in this paper suggest that the new method provides the best source term approx-
imations, if the source is distributed over a volume larger than the vessel itself. In such a
case the pressure solution in the extra-vascular space is regularized and thus may deviate
from the physical solution. In turn, the regularized extra-vascular pressure results in better
approximations of source term and vessel pressure. A good approximation of the fluid
exchange between vascular and extra-vascular compartments is crucial in many applications
involving transmural transport processes such as the estimation of contrast agent leakage
from the brain microvasculature in multiple sclerosis. A regularized extra-vascular pressure
may be acceptable in cases where it is more interesting how much of a substance leaves
the vascular system rather than its accurate distribution in the extra-vascular space. Fur-
thermore, it is always acceptable to choose the distribution volume similar to the size of
the coarsest neighboring extra-vascular discretization cell. In such a case, a possible error
in the extra-vascular pressure is masked by other discretization errors. Nevertheless, the
description of the source term and thus the vessel pressure may still be improved significantly
by a better reconstruction of the mean vessel surface pressure.

The last numerical experiment revealed that the largest differences between the different
mixed-dimension embedded methods occur in the vicinity of bifurcations. This is due to an
imprecise description of bifurcation geometries in the discrete setting. In order to evaluate
methods with respect to the error at bifurcations, and to develop improved descriptions of
the flow around bifurcations, a comparison with methods with spatially resolved interfaces
is necessary. However, our results suggest that discretization errors around bifurcations
only affect small parts of the entire system, such that the current models might be sufficient
approximations for most applications.
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Finally, due to the improved accuracy at coarse grid resolutions, we consider the newmethod
an important step towards simulations of larger vessel networks, where fine grid resolutions
in the extra-vascular space may get computationally prohibitively expensive.

The code to reproduce the simulations in this chapter can be found at https://git.iws.
uni-stuttgart.de/dumux-pub/Koch2019b.

https://git.iws.uni-stuttgart.de/dumux-pub/Koch2019b
https://git.iws.uni-stuttgart.de/dumux-pub/Koch2019b




8 A new well model using distributed

sources∗

In this chapter, a new approach for obtaining a more accurate source term for a given well
bottom hole pressure is presented. The new model is, in contrast to most of the existing
methods, independent of the discretization scheme and can be used for general unstructured
grids. Additionally, the presented method is not restricted to diagonal tensors and thus
works for general anisotropic permeabilities. In Section 8.1, we derive a well model, initially
for isotropic porous media, for which the fluid mass injected by a well is distributed over a
small neighborhood around the well, using kernel functions. The derivation follows the
idea presented in Chapter 7. However we herein discuss the case without membrane or
casing. The model yields a pressure solution without singularity, from which the source
term can be reconstructed using a relation found with the analytical solution for the case of
an infinite well in an infinite medium. The model generalizes to more complex problems
due to the superposition principle valid for the Laplace operator. In Section 8.2, the model is
generalized to porous media with general anisotropic permeabilities, based on an analytical
solution constructed in Section 8.2.1 using a series of coordinate transformations. We
show that the general model reduces to the model derived in Section 8.1 for isotropic
permeabilities. After describing the spatial discretization in Section 8.3, the new well model
is analyzed with several numerical experiments in Section 8.4. The results indicate that
the model is consistent for different anisotropy ratios, robust with respect to rotations of
the well relative to the computational grid, and to rotations of an anisotropic permeability
tensor. A comparison with a Peaceman-type well model in a setup with a K-orthogonal grid
and an embedded slanted well suggests that the new model more accurately approximates
the fluid exchange between well and rock matrix.

*This chapter is based on Koch, Helmig, and Schneider (2020c), c© 2020 Elsevier Inc.
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8.1 The distributed source method for isotropic media

First, we derive a well model with distributed source for porous media with isotropic
permeability tensor, without well casing. Stationary single-phase flow around a well with
radius rω, in an isotropic porous medium with permeability k, can be described by Eq. (5.1).
For a given well pressure pω, the source term describing the mass exchange between well
and embedding porous rock matrix is given by Eq. (5.9). We choose the compact radially
symmetric kernel function given in Eq. (7.2), which has a finite support radius % and
regularizes the pressure solution for r ≤ %. Furthermore, %≤ δ, where δ > rω is the radius
of the well-neighborhood region as introduced in Section 5.3 and shown in Fig. 8.1. The
matrix fluid pressure, p, for r <ρ can be obtained by integration of Eq. (5.1). We obtain

p(r ) =







pω−
µ
kρ

q
2π

�

r 2

2%2 + ln
�

%
rω

�

− 1
2

�

r ≤ %,

pω−
µ
kρ

q
2π ln

�

r
rω

�

r >%,
(8.1)

cf. Eq. (7.7), where pω is the average pressure on the well-matrix interface for a given well
cross-section, defined analogously to pm,W in Eq. (6.3). Figure 8.1 graphically explains the

Figure 8.1 – Near-well pressure solution. Schematic representation of the introduced symbols for
an infiltration scenario in an isotropic porous medium. An infinite well with radius rω, center-line
Λ with local cylindrical coordinate system (r,θ, s) is embedded in the porous domain Ω. The kernel
function with radius % regularizes the pressure solution which can then be evaluated at r = 0:
p(r = 0) = p0. Reprinted with permission from Koch et al. (2020c), c© 2020 Elsevier Inc.

most important symbols used in this section. As the regularized pressure can be evaluated
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at the well center-line we can reformulate Eq. (5.9) as

q = 2π
ρk
µ
(pω− p0)Ξ, with Ξ=

(pω− pδ)
(pω− p0)

1

ln
�

δ
rω

� (8.2)

where Ξ is the flux scaling factor introduced in Chapter 7. The flux scaling factor can be
expressed independent of the pressure. To this end, Eq. (8.1) is evaluated at r = 0, so that
pω is expressed in terms of p0,

p0 =−(pω− p0)Ξ
�

ln
�

%

rω

�

− 1
2

�

+ pω, (8.3)

where q was replaced by inserting Eq. (8.2). It directly follows from Eq. (8.3) that
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. (8.4)

Comparing Eq. (8.4) with Eq. (7.10), we note that in the absence of a casing, the flux scaling
parameter is purely geometric and does not contain additional model parameters such as
wall permeability or fluid viscosity.

8.2 Extension to anisotropic media

In the following section, the developed well model is extended to porous media with
anisotropic permeability. In Section 8.2.1, we derive an analytical solution for one-phase
flow around an infinitely long cylindrical well embedded in an infinite porous domain in R3.
This derivation motivates the choice of a suitable kernel function for anisotropic problems,
presented in Section 8.2.2.

8.2.1 Analytical solution

In the following section, we derive an analytical solution for one-phase flow around an
infinite cylindrical (possibly slanted) well Γ with radius rω in an infinite porous domain
Ω̂ = R3 \ Γ with anisotropic, homogeneous permeability. We assume, without loss of
generality, that the well axis passes through the origin of the Cartesian coordinate system,
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and denote by ψ a unit vector parallel to the well signifying the well orientation. We seek
an analytical expression for the hydraulic pressure p such that

−∇ ·
�

ρ

µ
K∇p

�

= 0 in Ω̂, (8.5)

for a constant well pressure pω in Pa and some specific pumping rate q in kgs−1 m−1 given
on ∂ Γ . The total mass flow over the boundary of a well segment of length L is thus given
by Q = qL. K is a positive definite and symmetric, second-order tensor field. Hence,
K can be decomposed such that K = QDQT , where D = diag(λ1,λ2,λ3) is a diagonal
matrix composed of the eigenvalues λi of K , Q = [νK ,1|νK ,2|νK ,3] is a rotation matrix with
the corresponding eigenvectors as columns, and AT denotes the transposed of a matrix A.
Further useful properties derived from the decomposition are det(K) = λ1λ2λ3, where det(A)
denotes the determinant of A, and K n =QΛnQT , where D r = diag(λr

1 ,λr
2 ,λr

3 ), r ∈R.

It is well known that the anisotropic one-phase flow problem can be transformed to an
isotropic problem using a coordinate transformation (Aavatsmark and Klausen, 2003; Fitts,
2006; Aavatsmark, 2016; Peaceman, 1983; Bear and Dagan, 1965)

U :R3→R3, x 7→ u = S̃ x , (8.6)

with the stretching matrix S̃ = k1/2
iso K−1/2, where kiso is an arbitrary scalar constant, that we

choose as kiso = det(K)−1/3 (cf. Aavatsmark and Klausen, 2003), rendering the transformation
isochoric. The transformation u = S̃ x deforms the well cylinder such that a cross-section
orthogonal to the transformed well direction is elliptical. The solution to the isotropic
problem in the transformed coordinates u is identical on two parallel planes perpendicular to
the transformed (normalized) well direction, ψ′ = S̃ψ||S̃ψ||−1. This motivates the rotation
of the coordinate system such that the first and second axis are aligned with the major and
minor axis of the well-bore ellipse and third axis is aligned with ψ′. The desired rotation is
given by

V :R3→R3, u 7→ v = R̃u, (8.7)

where R̃ is the corresponding rotation matrix. The derivation of V is conducted in detail
in Appendix A.4.

We now have to solve a two-dimensional isotropic Laplace problem with boundary condi-
tions prescribed on an ellipse. To this end, we note that the transformation of a harmonic
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function f (a function satisfying Laplace’s equation ∇·∇f = 0) with a conformal (angle-
preserving) mapping yields another harmonic function (Nehari, 1975), see Appendix A.7.
Using a Joukowsky transformation, a conformal mapping well-known from aerodynam-
ics (Joukowsky, 1910), the isotropic problem with a well with elliptic cross-sections, can be
transformed to an isotropic problem with circular cross-sections (Fitts, 2006). Transforming
into the complex plane (parameterizing the well-bore ellipse plane)

Z :R3→C, v 7→ z = Z̃v = [1, i , 0]v = v1+ i v2, (8.8)

the (inverse) Joukowsky transformation

T :C→C, z 7→ w = z +
Æ

z − f
Æ

z + f , f =
p

a2− b 2 (8.9)

transforms elliptic isobars into circular isobars, where a and b , a ≥ b , are the major and
minor axis of the well-bore ellipse, as derived in Appendix A.4. In particular, the well-
bore ellipse (where p = pω ) is mapped onto a circle with radius r◦ = a + b . Finally, in
the new coordinate system, we find the (now) radially symmetric analytical solution to
problem Eq. (8.5)

p(w) = pω−
µ

ρkiso

q̂
2π

ln
�

|w|
r◦

�

ζ , q̂ = qζ = q
ab
r 2
ω

, (8.10)

where the source scaling factor ζ is necessary to recover the original source q on ∂ Γ . This
can be derived from simple geometric considerations as shown in Appendix A.8. Every
w corresponding to some x ∈ Ω̂ in original coordinates is obtained by using all above-
mentioned transformations after each other as follows

w = T (Z(V (U (x)))) = T (Z̃ R̃S̃ x). (8.11)

In summary, we can find a closed-form analytical solution in a transformed coordinate
system. The transformation is composed of four steps. First, U stretches the domain
rendering the problem isotropic and a circular well-bore cross-section turns into an ellipse.
Second, V rotates into the principal axes of the well-bore ellipse. Third, Z projects onto the
complex plane. And finally, T is a conformal mapping transforming the well-bore ellipse
into a circular cross-section while preserving divergence-free velocity fields.
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A solution for a slanted well (30° with respect to vertical axis) and anisotropic permeability
tensor

KA=









1 0 0

0 5 4

0 4 5









1 · 10−10 m2 (8.12)

is exemplarily visualized in Fig. 8.2.

Figure 8.2 –Analytic pressure solution for a slanted well. Well radius is rω = 0.1m, well pressure
pω = 5.0 · 105 Pa, total mass injection rate Qω = 115.47kgs−1, and permeability is anisotropic (KA).
The top view is oriented in well direction and shows pressure contour surfaces highlighting their
elliptical shape. Reprinted with permission from Koch et al. (2020c), c© 2020 Elsevier Inc.

8.2.2 A kernel function for anisotropic media

Instead of excluding the well domain Γ from Ω=R3 and modeling infiltration or extraction
by a flux boundary condition, we will now model the action of the well on the flow field
by a spatially distributed source term, as presented for the isotropic problem,

−∇ ·
�

ρ

µ
K∇p

�

= qζ ΦΛ in Ω. (8.13)

From the above derivations, we know that solving Eq. (8.13) in w-coordinates is straight-
forward. Hence, we choose kernel functions in w-coordinates and then transform to
x-coordinates so that the pressure solution satisfies Eq. (8.13). Motivated by the properties
of the Joukowsky transform, as analyzed in more detail in Appendix A.6, we choose a
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local kernel that is constant on the annulus with inner radius f <%i ≤ r◦ and outer radius
%o > r◦,

ΦA(w) =


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1

π(%2
o−%2

i )
%i ≤ |w| ≤ %o,

0 elsewhere.
(8.14)

In w-coordinates, we can find a solution to the problem

−∇w · ∇w p = q̂
µ

ρkiso
ΦA in Ωw = T (Z(V (U (Ω)))), (8.15)

for a given constant well pressure pω, q̂ = qζ and constant density and viscosity. By means
of integration (cf. Chapter 7), we get

p(w) =
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where ξ 2 = %2
o −%2

i . This shows that outside the kernel support region ( |w| > %o), we
obtain the exact analytical solution derived in Section 8.2.1. Moreover, the source term can
be reformulated,

q̂ = 2π
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where p0 := p(|w| = 0) = p(|w| = %i) is the fluid pressure evaluated on the well center-
line. Note that for f = 0 and %i = f = 0, the isotropic solution with for a circular
constant kernel (Eqs. (8.1) and (8.4)) is obtained. From the transformation of the Laplace
operator, Eq. (A.22), we see that the problem

−∇z · ∇z p = q̂
µ

ρkiso
ΦAΦJ in Ωz = Z(V (U (Ω))), (8.18)

with altered kernel function ΦΛ = ΦAΦJ is equivalent to Eq. (8.15).

The transformation T −1 changes the shape of the kernel support S (ΦA) from an annulus
to an ellipse EΦ,v . Inverting Z extrudes the solution along the well center-line, and inverting
the rotation and stretch described by V and U results in a kernel support region in the shape
of an elliptic cylinder. Moreover, each ellipse EΦ,v with normal vector e3 is transformed
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Figure 8.3 – Visualization of the coordinate transformation v = V (U (x)) = R̃S̃ x . The ellipse
Ev is orthogonal to the well direction ψ′ which is equal to e3 = [0,0,1]T in v -coordinates. Reprinted
with permission from Koch et al. (2020c), c© 2020 Elsevier Inc.

to an ellipse EΦ,x(s), that is the intersection of the elliptic cylinder with a plane with the
normal vector nEx

= S̃ R̃T e3, centered at s on the well center-line. The transformation and
the normal vector nEx

are visualized in Fig. 8.3. We note that if none of the principal axes
of the permeability tensor are aligned with the well direction, nEx

is not parallel to the well
direction ψ in x-coordinates. The integral of the right-hand side of Eq. (8.13) for a well
segment Λi with length Li is equal to the integral over the kernel support S (ΦΛ,i ) which
has the shape of the elliptic cylinder given by

E :=
⋃

0≤s≤Li

EΦ,x(s). (8.19)
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Using q̂ = qζ , and exploiting that kiso was chosen such that det(R̃S̃) = 1, it can be shown
that

∫

E

q̂ΦΛ,idx =
∫

V (U (E))

q̂ΦΛ,idv =

L̂i
∫

0

∫

EΦ,v ( ŝ)

q̂ΦΛdÂd ŝ = q̂ L̂i = qLi , (8.20)

where ŝ ∈ [0, L̂i] is a local coordinate along the transformed well direction, and the last
equality is proven in Appendix A.9. This is the desired property of the kernel function for
the anisotropic case corresponding to Eq. (6.5).

8.3 Numerical method

Ex

KΩ

Λ

KΩ ∩ Λ S(ΦΛ,KΩ∩Λ)

ψ

nEx

Figure 8.4 – Visualization of the discretization process. The domain Ω is represented by a set
of control volumes KΩ ∈Ωh . The well center-line Λ with direction ψ intersects with a KΩ shown
in green. The gray parallelogram is a 2D-projection of the elliptic cylinder that is the part of the
kernel support S (ΦΛ) associated with KΩ ∩Λ. Reprinted with permission from Koch et al. (2020c),
c© 2020 Elsevier Inc.

We discretize Eq. (8.13) using a cell-centered finite volume method with multi-point flux
approximation (MPFA) (Aavatsmark, 2002). In contrast to the two-point flux approximation
(TPFA) used in Chapter 7, MPFA is designed to be consistent for computational grids which
are not aligned with the principle directions of the permeability tensor (Schneider, 2018).
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The domain Ω is decomposed into control volumes KΩ ∈Ωh such that the computational
mesh Ωh is a discrete representation of Ω. Furthermore, each control volume boundary,
∂ KΩ, can be split into a finite number of faces σ ⊂ ∂ KΩ, such that σ = KΩ ∩ LΩ, with LΩ
denoting a neighboring control volume. Integrating Eq. (8.13) over a control volume KΩ
and applying the Gauss divergence theorem on the left-hand side yields

−
∫

∂ KΩ

�

ρ

µ
K∇p

�

·nKΩ,σ dA=
∫

KΩ

q̂ΦΛ dx, (8.21)

where nKΩ,σ is the unit outward-pointing normal on face σ ⊂ ∂ KΩ. The exact fluxes are
approximated by numerical fluxes

FKΩ,σ ≈−
∫

σ

�

ρ

µ
K∇p

�

·nKΩ,σ , (8.22)

which are computed using the MPFA-O method described in (Aavatsmark, 2002). The
discrete source term is computed as

QKΩ
≈
∫

KΩ

q̂ΦΛ dx, QKΩ
=

QI
|I |

∫

KΩ∩S (ΦΛ,I )
ΦΛ dx, (8.23)

where QI is a numerical approximation of the source term integral over the intersection
I =KΩ ∩Λ,

QI = |I |2π
ρkiso

µ
(pω− p0)Ξ, (8.24)

and S (ΦΛ,I ) is the kernel support associated with I as depicted in Fig. 8.4. In summary,
the discrete form of Eq. (8.21) is

∑

σ⊂∂ KΩ

FKΩ,σ =QKΩ
, KΩ ∈Ωh . (8.25)

We note that due to the dependency of QI on p0, the proposed method is non-local in the
sense that non-neighbor cells MΩ ∈Ωh (where MΩ ∩KΩ is the empty set or a single point)
may have an associated degree of freedom that depends on the degree of freedom of KΩ.
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8.3.1 Kernel integration

The kernel integral in Eq. (8.23)

IΦ,KΩ
:=
∫

KΩ∩S (ΦΛ,I )
ΦΛ dx, (8.26)

is not easily approximated with a quadrature rule, since the intersection KΩ ∩S (ΦΛ,I ),
that is the intersection of an elliptic cylinder with, for example, a hexahedron is difficult
to compute. However, we use the same idea as in Chapter 7, and remark that the integral
over the entire support S (ΦΛ,I ) is known exactly; see Eq. (8.20). Hence, the integration
problem can be reformulated as the distribution of the known integral over all intersected
control volumes KΩ weighted with the respective support volume fractions.

8.4 Numerical experiments and discussion

We present numerical experiments using the presented method in different setups. All
experiments are conducted with constant fluid density ρ = 1000kgm−3 and viscosity
µ = 1 · 10−3 Pas. The well pressure is constant, pω = 1 · 106 Pa, and the well radius is
rω = 0.1m if not specified otherwise. The permeability tensor is given as

K(γ1,γ2) = R1(γ1)R2(γ2)KαRT
2 (γ2)R

T
1 (γ1), Kα =


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

1 0 0

0 1 0

0 0 α









1 · 10−12 m2, (8.27)

where

R1(γ1) =


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(8.28)

are rotation matrices rotating vectors about e1, e2 by the rotation angle γ1, γ2, respectively,
and α is a given dimensionless k-anisotropy ratio α = k33k−1

11 = k33k−1
22 . The domain

Ω0 = [−100,100]× [−100,100]× [−50,150] m3 is split in two regions, Ω= [−100,100]×
[−100,100]× [0,100] m3 and ΩD = Ω0 \Ω. The well center-line Λ is given by the line
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through the origin and ψ = R1(β1)R2(β2)e3, where R1, R2 are given in Eq. (8.28) and
β1, β2, are rotation angles. The analytical solution for all cases is given in Eq. (8.16),
q = 1kgs−1 m−1, and L= |Λ∩Ω| (in m). For all setups the inner kernel radius is chosen as
%i = f , as defined in Eq. (8.9). In all of ΩD and on the boundary ∂ Ω the analytical solution
is enforced by Dirichlet constraints, modeling the infinite well. The computational mesh
Ωh is a structured grid composed of regular hexahedra KΩ. Furthermore, we define two
error measures.

Ep =
1
pω





1
|Ωh |

∑

KΩ∈Ωh

|KΩ|
�

pe,xKΩ
− pKΩ

�2





1
2

(8.29)

is the relative discrete L2-norm of the pressure, where pe,xKΩ
is the exact pressure evaluated

at the cell centroid xKΩ
and pKΩ

the discrete numerical cell pressure, and

Eq =
1
q
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1
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|I |
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1
2

(8.30)

is the relative discrete L2-norm of the source term, where |I |= |KΩ ∩Λ| is the length of
the intersection of cell KΩ and the well center-line Λ, QI is the discrete source term given
in Eq. (8.24). All setups are implemented in DuMux (Flemisch et al., 2011; Koch et al.,
2020b), an open-source porous media simulator based on Dune (Bastian et al., 2008b,a).

8.4.1 Grid convergence for different anisotropy ratios

In the first numerical experiment grid convergence is investigated for different anisotropy
ratios α. To this end, hmax :=maxKΩ∈Ωh

hKΩ
, where hKΩ

is defined as the maximum distance
between two vertices of the cell KΩ. Starting at a grid resolution for Ωh of 20× 20×10 cells
(hmax = 10

p
3 m), the grid is refined uniformly. Figure 8.5 shows the errors Ep and Eq for

different grid resolutions and values of α, for β1 =β2 = 20◦ and γ1 = γ2 =−20◦, so that K
is a full tensor and none of the principal axis of K is aligned with the well direction. For
all α, the method shows second order convergence for the pressure in the given norm, as
expected for the MPFA-Omethod (Schneider et al., 2018) (super convergence at cell centers).
The source term q is a linear function of the pressure p and also exhibits second order
convergence. We note that the errors for different α are not directly comparable since the
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Figure 8.5 – Grid convergence for different anisotropy ratios. The relative discrete L2-norm
of pressure Ep and source Eq for different anisotropy ratios α. None of the principal axis of the
permeability tensor is aligned with the slanted well axis ψ or any of the grid axes. Reprinted with
permission from Koch et al. (2020c), c© 2020 Elsevier Inc.

analytical solution for p changes with α, although q is constant. However, the convergence
rates are shown to be independent of α with increasing grid resolution. The convergence
rates for Eq (slope of the lines in Fig. 8.5) are presented in Table A.2 in Appendix A.10. It
can be seen that rates for large grid cells and large α are slightly smaller. This is because the
kernel support is still under-resolved by the computational grid. For example, for α= 100,
the kernel ellipse in x-coordinates has major and minor axis of ax ≈ 55.9m, bx ≈ 5.6m,
respectively, while hmax ≈ 17.32m for the lowest grid resolution.

8.4.2 Influence of the outer kernel radius %o

In Chapter 7, it is suggested that increasing the kernel support region (increasing %o), has a
similar effect on Eq as refining the grid. However, the pressure solution is then regularized
in a larger region, so that there is a trade-off between the accuracy of the source term and the
accuracy of the pressure field with respect to the unmodified problem (%o→ %i,ΦΛ→ δΛ).
However, every discrete cell KΩ can be also interpreted as a kernel support region, such that
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Figure 8.6 –Grid convergence for different kernel support radii. The source error Eq for different
kernel supports and the same 20×20×10 computational grid (hmax ≈ 17.32m). On the left, the case
where %o is only slightly larger than rω. On the right, the case %o� rω. Reprinted with permission
from Koch et al. (2020c), c© 2020 Elsevier Inc.

the choice of ΦΛ enables us to better control the discretization error as soon as S (ΦΛ,I )
becomes larger than KΩ.

As shown in (Peaceman, 1983) and Fig. A.2, isobars become circular, in the transformed
domain U (Ω), with increasing distance to the well. Therefore, a reasonable simplification
is ΦJ ≈ 4 if %o� rω. This is completely analogous to the assumption of circular isobars
in (Peaceman, 1983), where an estimate of the error introduced by the assumptions is given
for the two-dimensional case.

In the following numerical experiment, we step-wise increase the kernel radius %o, for the
same 20× 20× 10 grid. This is done once for the case where %o� rω, and for the case for
which %o is only slightly larger than rω. Furthermore, β1 =β2 = 20◦ and γ1 = γ2 =−20◦.
The results are shown in Fig. 8.6. First, it can be seen that doubling %o leads to a 4-times
smaller error Eq . This can be explained by the fact that the larger the kernel, the more
grid cells resolve the kernel support, and the better is the approximation of p0. Moreover,
Fig. 8.6 suggests that for %o� rω the simplification of the kernel function (ΦJ ≈ 4) is not
visible in Eq , while for kernel radii slightly smaller than the well radius, the simplification
increases Eq by an order of magnitude in comparison to the case using the exact kernel
function as derived in Section 8.2.2. The results show that the presented method is also
applicable in cases where the grid resolution is very close to the well radius. An adaption of
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the presented method for other applications, such as the simulation of flow in vascularized
tissue, where such ratios of vessel radius to cell size are typical, is therefore well-conceivable.

8.4.3 Robustness with respect to rotation

In the following numerical experiment, we use a single computational mesh with a given
resolution for Ωh : 20× 20× 10. First, the well direction is fixed, and the permeability
tensor is rotated by varying γ1 and γ2. Then the permeability tensor is fixed and the well
is rotated by varying β1 and β2. The results are shown in Fig. 8.7. It can be seen that the

60 40 20 0 20 40 60
2 in degree

0.0000

0.0025

0.0050

0.0075

0.0100

0.0125

0.0150

0.0175

0.0200
Eq for different  (K angle)

1 = 60
1 = 40
1 = 20
1 = 0

1 = 20
1 = 40
1 = 60

30 20 10 0 10 20 30
2 in degree

0.0000

0.0025

0.0050

0.0075

0.0100

0.0125

0.0150

0.0175

0.0200
Eq for different  (well angle)

1 = 30
1 = 20
1 = 10
1 = 0

1 = 10
1 = 20
1 = 30

Figure 8.7 – Source error for different K and well orientations. Left – Source error Eq for
rotations of the permeability tensor. Right – Eq for different well orientations. Reprinted with
permission from Koch et al. (2020c), c© 2020 Elsevier Inc.

presented well model is rather robust with respect to rotations. Possible effects influencing
the approximation error Eq , include the different quality of the kernel integral for different
angles with respect to the grid axes, and differences in the flux approximation quality of
the MPFA-O method depending on the face co-normal dKΩ,σ =KnKΩ,σ . Additionally, for
different well angles the number and size of intersections KΩ ∩Λ can have an influence on
the discrete error.
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8.4.4 Comparison with a Peaceman-type well model

The Peacemanmodel has been introduced in Chapter 5, as well as its generalization to slanted
wells with arbitrary orientation due to Alvestad et al. (1994) (subsequently referred to as pm
well model). In Section 5.4, we describe the limitations of the pm well model. The herein
presented model has none of the mentioned limitations. In particular, the presented model
is valid for arbitrary positive definite and symmetric permeability tensors, unstructured
grids, and is independent of the discretization scheme. Moreover, the presented model is
consistent with grid refinement, and we show grid convergence in the numerical experiments
in Section 8.4.1. However, the Peaceman-type models are cell-local, thus computationally
cheaper and easier to implement.

The limitations of the Peaceman well models make it difficult to fairly compare it with
our new model. For cases for which all assumptions of Peaceman are valid, our numerical
studies (not shown here) suggest that the Peaceman well model is generally superior to the
presented model with distributed sources. This is because it takes the analytical solution as
well as the spatial discretization method into account. For cases where some assumptions
are violated, for example off-center wells or slanted wells, it is difficult to construct cases
where the analytical solution is readily constructed but does not feature a singularity on
the boundary. Our preliminary numerical studies for such cases (for example the slanted
well case in Section 8.4.1 without rotation of the permeability tensor) show large deviations
(> 10% error in total source term) from the analytical solution for the pm well model.
However, these errors may be distorted by errors made in the discrete approximation of
the singular boundary condition, where the well intersects the boundary. Finally, for the
general case of unstructured grids, simplex grids, and full permeability tenors it is unclear
how to apply the original Peaceman model. However, we know that the presented method
is consistent (at least for a single straight well), and thus, the numerical solution converges
to the exact solution with grid refinement. Therefore, we expect that the numerical solution
on a very fine grid using the distributed source model is a reasonable reference solution.

We compare our model to the pm well model in a numerical experiment. The computational
domain Ω= [−50,50]× [−100,100]× [0,100] m3 contains a slanted straight well Λ with
end points at xΛ,1 = [−20,−50,25]T m, xΛ,2 = [20,50,75]T m. The permeability tensor
is a diagonal tensor K(γ1,γ2), with γ1 = 0◦,γ2 = 90◦,α = 0.1. The structured cube grid
Ωh is successively, uniformly refined starting with 10 × 20 × 10 cells (hmax ≈ 17.32m).
The well radius is rω = 0.1m (∆x/rω = 200 for the coarsest grid). The kernel support
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region (chosen as %o/rω = 100) only extends over few cells in the coarsest grid, so that
the regularization effect is minimized. On the boundary ∂ Ω, we specify Neumann no-
flow boundary conditions, that is (K∇p) · n = 0, except for the planes perpendicular to
the x1-axis, where the Dirichlet boundary condition pD(x2 = −100) = 1 · 105 Pa, pD(x2 =
100) = 3 · 105 Pa are enforced. The reference solution is computed with 160× 320× 160
cells (hmax ≈ 1.08m). The computational domain with pressure iso-surfaces of the reference
solution are shown in Fig. 8.8. In Fig. 8.9, the relative integral source error

Figure 8.8 – Reference solution – comparison with Peaceman-type well model. The well is
visualized with a 10-fold increased radius. A selection of pressure iso-surfaces of the reference
solution are shown with reduced opacity. The domain extent is given in units of m. Reprinted with
permission from Koch et al. (2020c), c© 2020 Elsevier Inc.

EQ =
|Q −Qref|
|Qref|

, Q =
∑

KΩ∈Ωh

QKΩ
, (8.31)

with respect to the reference solution Qref is shown for grids with different refinement. In a
variant of the distributed source model (ds), the extent of the kernel support is adapted to
the grid size. This is to keep the regularization effect of the kernel function minimal in order
to get, in addition to a good approximation of the source term, a better approximation of
the pressure solution close to the well. For %o/rω = 100, the extent of the kernel ellipse EΦ,x

is given by its major and minor axes, 16.12m and 12.54m. For the reference solution this
extent is kept constant with grid refinement. While this ensures a very good approximation
of the source term, the pressure solution is regularized in a larger neighborhood of the well.
In the variant, the kernel support is adapted proportional to hmax, so that for the finest grid
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shown in Fig. 8.9 (80×160×80 cells, hmax ≈ 2.17m), the EΦ,x major and minor axes measure
2.01m and 1.57m. It is evident that the numerical solution for the distributed source model
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Figure 8.9 – Differences between pm and ds model. Comparison of the relative integral source
error between a Peaceman-type model (pm) and the new model (ds) for various grid refinements.
The error is computed with respect to a reference solution Qref. Both axes are logarithmic. Reprinted
with permission from Koch et al. (2020c), c© 2020 Elsevier Inc.

converges to the reference solution. More importantly, the relative error is small (< 0.5%)
even for the coarsest grid. In comparison, the difference to the Peaceman-type model is large
(> 5%). In particular, the error grows with grid refinement (to > 8%), signifying that the
generalization of Peaceman’s model to arbitrarily-oriented wells is not consistent. The result
is comparable with the observations in (Aavatsmark and Klausen, 2003, Table 2), where
Alvestad’s well indices are compared to a new numerically computed well index, and it is
shown that the difference between those two well indices grow, the higher the rω/∆x ratio.
In the variant of the ds model, the error in the source term with respect to the reference
solution also grows with larger rω/∆x ratio. However, the error is consistently smaller (by
a factor > 3) than for the pm well model. Figure 8.10 shows the numerical pressure solutions
along the x1 and the x2-axis, for the reference grid resolution. It can be clearly seen that
for the reference solution (ds) the pressure solution is regularized. For the variant of ds,
the regularization is minimized, however in the far field the solution matches the reference
solution better than the pm well model, which is due to the better approximation of the
source term (see Fig. 8.9). We also note that the regularized solution leads to an altered
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Figure 8.10 – Numerical pressure solutions. Plotted along the x1 and the x2-axis for a Peaceman-
type model (pm) and the new model (ds) for a grid resolution of 160× 320× 160 cells. Reprinted
with permission from Koch et al. (2020c), c© 2020 Elsevier Inc.

solution in the near-field of the well but to a better approximation of the source term and
thus the far field pressure (outside the kernel support), whereas the poor approximation of
the source term in the pm method leads to a globally poor pressure solution.

8.5 Summary

A new well model was presented for which the mass exchange between a well and an
embedding porous medium is modeled with a source term spatially distributed by a local
kernel function. In the spirit of well-index-based well models the source term for a well
with given bottom hole pressure is computed based on the numerical pressure in cells
intersecting the well. However, the presented derivation of the new model is independent
of the discretization method and the type of computational grid. The new model was
shown to be consistent in a numerical experiment and exhibited grid convergence with the
expected rates. In the same experiment it is shown that the absolute error with respect to an
analytical solution is relatively small, even for coarse computational grids and small kernel
support. It was shown, that the error in the source term can be decreased by increasing the
region over which the source term is distributed. However, coincidentally, the pressure
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profile close to the well (inside the kernel support) becomes increasingly regularized. A
comparison with a Peaceman-type well model generalized for arbitrarily oriented wells,
suggested that even if the region is chosen to be very small (only covering the neighboring
cells of cells with well intersection), thus minimizing the regularization effect, the source
term can be approximated with good accuracy (< 2 % error with respect to a reference
solution), whereas the Peaceman-type well model for the same case showed larger differences
(> 8 %) which also had a negative global effect on the pressure solution. The example
showed that the new model gives the choice between a more accurate representation of the
near-well pressure and a more accurate representation of the source term. Additionally, it
was shown that if the source term is accurately approximated, the far-field pressure (outside
kernel support) is equally well-approximated while the regularization of the pressure profile
only happens locally in the well neighborhood. On the other hand, a bad approximation of
the source term leads to global errors in the pressure profile. Finally, the new model was
shown to be robust with respect to well rotation, as well as robust with respect to rotations
of the anisotropic permeability tensor.

In this work, the well model derivation is restricted to one-phase flow and possible modifica-
tions for multi-phase flow are yet to be explored. An extension of the well model for wells
with casing is easily conceivable, combining the findings with the derivations presented
in Chapter 7. Moreover, the herein presented cases considered a given constant bottom hole
pressure. However, the presented model may be extended to the coupled 1D-3D case where
the well pressure solves an additional one-dimensional partial differential equation in the
well domain. Finally, using the superposition principle, which equally applies for the case
of anisotropic permeabilities, the presented well model is also expected to provide good
approximations when multiple wells are present in the domain.

The code to reproduce the simulations in this chapter can be found at https://git.iws.
uni-stuttgart.de/dumux-pub/Koch2019c.

https://git.iws.uni-stuttgart.de/dumux-pub/Koch2019c
https://git.iws.uni-stuttgart.de/dumux-pub/Koch2019c


9 A multi-scale sub-voxel perfusion

model for perfusion MRI∗

This chapter presents an embedded mixed-dimension sub-voxel perfusion model to estimate
diffusive capillary wall conductivity in multiple sclerosis lesions from perfusion MRI data.

Multiple sclerosis (MS) is characterized by a cascade of inflammatory reactions that result
in the formation of acute demyelinating lesions (MS plaques). Acute lesions are associated
with an impaired blood-brain barrier (BBB) (Kermode et al., 1990). In healthy brain tissue,
the tight junctions between endothelial cells forming the blood vessel walls, are an efficient
barrier for most molecules in the brain capillaries. In active MS lesions tight junctions have
been found to be damaged or open (Plumb et al., 2002). Due to an auto-immune reaction,
immunological cells can pass the BBB and attack the myelin sheath covering the electrical
pulse conducting axons, leading to dysfunctions of the central nervous system (Minagar
and Alexander, 2003). Magnetic resonance (MR) enhancement, using contrast agents such
as Gadolinium-based molecules, corresponds to areas of inflammation and contrast agent
leakage into the extra-vascular space. Furthermore, it is related to the histologic age of the
plaques (Absinta et al., 2015). Advanced imaging techniques, such as perfusion MR imaging
(perfusion MRI), aim at the characterization of the temporal evolution of enhancing lesion
formation in relapsing-remitting MS (Verma et al., 2017). Perfusion MRI is sensitive to
inflammatory activity and can depict active lesions previous to Gadolinium enhancement
and even after its disappearance (Wuerfel et al., 2004). Furthermore, it has been shown that
perfusion in lesions is highly dynamic and related to the activity and temporal evolution of
the lesions (Ge et al., 2005; Ingrisch et al., 2012). Cross-sectional studies in normal appearing
white matter (NAWM) have also demonstrated abnormal perfusion behavior in patients with
MS compared with healthy controls (for review, see Lapointe et al. (2018)). To examine MS
lesions in-vivo, magnetic resonance (MR) contrast enhancing agents, typically Gadolinium-
based molecules, can be administered to patients. While the contrast agent cannot pass the
capillary wall in normal brain tissue, it leaks into the extra-vascular, extra-cellular space in
MS lesions with impaired BBB, altering the tissue’s magnetic response (Forslin et al., 2017).

*This chapter is based on Koch, Flemisch, Helmig, Wiest, and Obrist (2020a).
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This effect is used to characterize lesions in a perfusion MR sequence known as dynamic
susceptibility contrast MRI (DSC-MRI) (Verma et al., 2013, 2017).

Dynamic susceptibility contrast MRI (DSC-MRI) has proven to be informative when
assessing the integrity of the BBB (Calamante, 2010; Shiroishi et al., 2015). In a typical
DSC-MRI study, contrast agent is administered intravenously (bolus injection) and whole
brain MR image sequences are recorded with a repetition time of about two seconds over
a few minutes (Shiroishi et al., 2015). Normal appearing white matter is distinguished
from inflammatory plaques by image contrast and differences in intensity-time curves.
Using adequate post-processing techniques, qualitative assessment of leakage coefficients
allows identifying contrast-enhancing lesions in an automated way (Boxerman et al., 2006).
Although today, perfusion MRI is not considered a standard procedure in the neuro-imaging
workup of MS, it enables a classification of lesions according to parenchymal leakage of an
MR contrast agent due to differences in perfusion behavior (Verma et al., 2013). Perfusion
imaging, both DSC and dynamic contrast enhanced (DCE), may provide information
about the leakiness of the tissue under investigation. In this work, we investigate DSC-MRI.
However, the extension of the method to DCE-MRI is conceivable.

Figure 9.1 – Signal intensity-time curves for lesion and NAWM tissue. Lesion tissue (red) and
NAWM tissue curves (blue) and the respective sampling locations in the brain. Signal values are
normalized to pre-contrast signal. Data obtained by gradient echo - echo planar imaging (GRE-EPI),
at magnetic field strength 3 T, repetition time TR = 1400ms, echo time TE = 29ms, flip angle
α= 90°, voxel size 1.8×1.8×5 mm, and an image resolution of 256×256 pixels per slice. Reprinted
from Koch et al. (2020a).

For the interpretation of images obtained in a DSC-MRI study, the gray scale image sequence
is post-processed to provide indicators within regions of interest to the radiologist. Two
typical signal intensity-time curves from the brain white matter, with the characteristic first
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pass signal dip, are shown in Fig. 9.1. Mathematical models (forward model) for contrast
agent perfusion in the brain tissue can help to understand the underlying reasons for a
particular intensity-time curve of a voxel, by identifying and analyzing the model parameters
which are able to reproduce the MRI data. This process is also known as solving the inverse
problem. To this end, the model parameters are tuned by using parameter estimation
techniques. Forward models are typically based on a two-compartment pharmacokinetic
tracer model and are parameterized by a small number of parameters (Sourbron and Buckley,
2013, 2012; Heye et al., 2016) and simple ordinary differential balance equations. A routinely
used state-of-the-art post-processing procedure and model is described by Boxerman et al.
(2006). Such models have to reflect two processes: (1) the perfusion process governed
mainly by bio-fluid-mechanical principles, and (2) the physical process of nuclear magnetic
resonance (NMR) exploited to acquire the MR image. There have been many suggestions
for improving the modeling of the latter process (Kiselev, 2001; Pathak et al., 2008; Quarles
et al., 2009; Semmineh et al., 2014). Kiselev and Novikov (2002); Kiselev (2005) show that
the local, sub-voxel tissue structure has a significant effect on the NMR signal. However, all
previous studies, including the recent study by Semmineh et al. (2014), rely on state-of-the-art
two-compartment models for the perfusion process providing only average concentrations
in two tissue compartments within a voxel.

To overcome the limitations of two-compartment models, we present a perfusion model
on a sub-voxel scale, including the capillary network structure. Fully, three-dimensionally
resolved fluid-mechanical models of brain tissue perfusion imply prohibitively complex and
computationally expensive simulations due to the large number of vessels, their non-trivial
geometrical embedding, and the complex geometry of the extra-vascular, extra-cellular
space (Syková and Nicholson, 2008). To reduce complexity, we use a mixed-dimension
embedded model description.

The fluid-mechanical model is coupled to an NMR signal model. We propose that the
local distribution of the contrast agent and resulting local susceptibility effects obtained
by a sub-voxel scale model may better explain the NMR signal response of the tissue. The
application of this new perfusion model is demonstrated for the example of MS lesions.

In the following, we refer to the sub-voxel spatial scale, ranging from a few micrometers
to several hundreds of micrometers, as meso-scale. We call the scale below the meso-scale,
which includes the molecular scale, micro-scale, and refer to the scale above as macro-scale.
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9.1 Flow and transport model and model parameters

We use the flow and transport model described in Chapter 3, in particular Eqs. (3.22)
and (3.23). We assume constant density and viscosity, ρI = 1030kgm−3, µI = 1.32Pas,
given that contrast agent concentrations in the extra-vascular compartment are even smaller
than in the blood stream, and we consider perfusion an isothermal process. Furthermore,
we choose an isotropic intrinsic permeability k = 8.3 · 10−18 m2 (Baxter and Jain, 1989)
for the extra-vascular compartment. We consider the Gadolinium-based contrast agent
Gadobutrol. It is assumed that Gadobutrol will not enter cells, and its effective diffusion
coefficient in the extra-vascular domain is De ≈ 1.5 · 10−11 m2 s−1, cf. Eqs. (2.7) and (3.12).

In a perfusion MRI (magnetic resonance imaging) sequence, Gadobutrol is administered
intravenously in solution, typically with a concentration of 1 mol l−1. Gadobutrol has the
chemical formula C18H31GdN4O9, corresponding to a molar mass of M c = 604.715gmol−1

(PubChem, 2018). In high concentrations, Gadobutrol has a significant influence on fluid
density and viscosity. However, the concentrations arriving in the brain tissue sample are
strongly diluted by diffusion and dispersion along the tortuous path through the vascular
network, so that the influence on blood density and viscosity can be neglected in this work.

The vascular model is based on a small network of capillaries from the superficial cortex of
the rat (Motti et al., 1986; Secomb et al., 2000), which we consider a sufficient approximation
of the actual capillary network geometry for type of model analysis presented in this work.
The network has the dimensions 150µm× 160µm× 140µm, and is shown in Fig. 7.13 (the
network used here is slightly smaller because it does not use artificial vessel extensions).
The location of inflow and outflow boundaries are given in this data set. For the inflow
boundaries, Secomb et al. (2000) provide velocity estimates based on the vessel radius, which
are applied as Neumann boundary conditions. The inflow velocities range from 0.5 to
3.5 mms−1, depending on the vessel radius. At the outflow boundaries, we enforce Dirichlet
boundary conditions for the pressure, pv,out = 1.025 · 105 Pa. The vessel radii are constant
for each segment defined in the grid but vary from segment to segment.

The domain initially contains no contrast agent. During the perfusion MR study, 10 ml
contrast agent (0.1 mmol per kg body weight) is administered intravenously as a solution
at 5 mls−1 and a concentration of 1 mol l−1. The injected fluid thus forms a sharp bolus.
However, the bolus disperses significantly before it reaches the brain capillaries. Therefore,
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the concentration inflow profile to the capillary network has to be estimated from the
parameters of the bolus injection. To this end, we use an ansatz from Quarles et al. (2009)

cv,in(t ) = at−2
p t e−t/tp+b

�

1− e−t/tp
�

, (9.1)

which describes a concentration profile starting at cv,in(0) = 0molm−3 and approaching an
equilibrium concentration b (molm−3, contrast agent is equally distributed in the whole
body blood volume), with a single peak after the arrival of the bolus. The parameters
a (molsm−3) and tp (s) are shape parameters of the capillary input function, and can be
interpreted as the scaling parameter for the area under the curve, and the time to peak,
respectively, in the absence of re-circulation (b = 0). The parameter values are patient-
specific and also depend on the location in the brain. Values for a, b , and tp are discussed
below, in the context of parameter estimation.

At the inflow boundary, contrast agent influx is enforced by a Neumann boundary condi-
tion. At the outflow boundary, the normal mole fraction gradient is set to zero and the
advective component flux is computed by a first-order upwind scheme. For the extra-cellular
compartment, we enforce symmetry boundary conditions everywhere, assuming that the
modeled domain is surrounded by domains with similar properties.

Our fluidmodel stands in contrast to the often employed two-compartment kinetic modeling
approaches, because it resolves meso-scale flow phenomena. Furthermore, it is based on
parameters with a clear physical interpretation.

9.2 NMR signal model

A model linking concentration fields with the NMR signal response is required to connect
the results of the fluid mechanical model to clinical MRI data. To this end, we develop
a model of NMR on the meso-scale. In the following, we describe a gradient echo, echo
planar sequence (GRE-EPI) commonly used in DSC-MRI. This fast imaging technique
allows acquisition of an entire brain image stack in less than two seconds. Thus, after
the injection of a contrast agent, a time series of such images can be acquired, where the
characteristic signal-time curve for every voxel is dependent on the evolution of the contrast
agent concentration distribution on the meso-scale.
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During MRI acquisition, the brain tissue is exposed to a strong magnetic field, B0, that
induces oriented magnetic dipole moments of the hydrogen nuclei in the tissue. The
magnetic moments originate from the hydrogen nuclei spin. The magnetization can be
viewed as a vector field, M , describing the magnetic moment per unit volume. The GRE-EPI
sequence starts with a radio frequency (RF) pulse, which reorients the magnetic moments
in the tissue sample, with the flip angle α to the main magnetic field B0. The RF pulse causes
the magnetic moments to precess, rotating around the axis aligned with B0, with the Larmor
frequency of the hydrogen nuclei. The Larmor frequency is a function of the magnetic
field magnitude and the gyromagnetic ratio of the hydrogen nuclei, ω = −γ |B|. Energy
dissipation relaxes the magnetization into the initial state aligned with B0, eventually.

This relaxation process can be split into two processes, longitudinal and transversal relaxation.
Longitudinal or T1 relaxation, describes how the magnetization recovers its component in
direction of B0. It can be described by

Mz =Mz0(1− e−t/T1), (9.2)

where the subscript z denotes the projection of M in the direction of B0. The material
constant T1, determines the time scale of the longitudinal relaxation. Transversal or T ∗2
relaxation, describes the decay of the transversal magnetization component Mxy , i.e. the
projection of the net magnetization vector into the plane perpendicular to B0. The decay is a
result of dephasing. Every precessing dipole also induces small magnetic fields that affect the
precession frequencies of other dipoles. Thus, the magnetic moments dephase, decreasing
the net transversal magnetization. This effect is known as T2 relaxation (without asterisk).
Furthermore, local static inhomogeneities of the magnetic field B0 within a tissue voxel
cause dephasing as well. Gadolinium-based contrast agents are para-magnetic substances
that additionally cause local magnetic fields accelerating the dephasing process, leading to
a shortening of T ∗2 . The sinusoidal evolution of the Mxy magnetization, also called free
induction decay, induces a current in the MR coils and is effectively what is detected as MR
signal. The amplitude of Mxy for a voxel right after the RF pulse can be described by

Mxy =Mxy0 e−t/T ∗2 . (9.3)

The time constant of the decay, T ∗2 , includes all aforementioned effects. Eqs. (9.2) and (9.3)
are a simplified solution of the Bloch equations (Bloch, 1946) for the signal evolution
following the RF pulse, neglecting the effect of slice selection, phase and frequency encoding
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gradients in the GRE-EPI sequence. According to Quarles et al. (2009), the GRE-EPI voxel
signal during a DSC-MRI perfusion sequence can be modeled as

S(t ) =
S0

�

1− e−TR/T1(c(x,t ))
�

e−TE/T ∗2 (c(x,t )) · sin(α)
1− e−TR/T1(c(x,t )) ·cos(α)

, (9.4)

where the repetition time TR, is the time between two RF pulses, and the effective echo time,
TE, is the time between RF pulse and signal readout. The base signal S0 > 0 depends, i.a., on
tissue proton density and the MR scanner hardware. In the following, we look only at the
normalized signal Sn(t ) = S(t )S−1

pre, where Spre is the signal before the contrast agent bolus
arrives in the tissue sample. The pre-contrast signal, Spre, contains all constant factors in
Eq. (9.4), including S0. It follows from Eq. (9.4) that a shortening of T ∗2 results in a decrease
of NMR signal strength, while a shortening of T1 results in signal enhancement.

The following two sections introduce themodels for the relaxation rates R1(cv, ct) = T −1
1 (cv, ct)

and R∗2(cv, ct) = T ∗−1
2 (cv, ct), which are both functions of the contrast agent concentrations

cv and ct computed by the fluid-mechanical model. Semmineh et al. (2014) developed a
model including an artificial microstructure using a combination of a finite perturbator
method (Pathak et al., 2008) and a finite-difference solution of the Bloch-Torrey equations.
However, their model is coupled to a two-compartment tracer perfusion model, only pro-
viding voxel-averaged concentrations. In contrast, the presented perfusion model computes
the sub-voxel distribution of the contrast agent concentration. We follow Quarles et al.
(2009), to develop a model considering the spatial and temporal distribution of the contrast
agent.

Transversal relaxation The transversal relaxation rate, R∗2, depends on the complex local
microstructure of the tissue (Kiselev and Novikov, 2002) and is altered by the presence
of the contrast agent. We are only interested in the signal change relative to the baseline.
Hence, the relaxation rate can be split in a static pre-contrast contribution, R∗2,pre, and a time-
dependent contribution depending on the contrast agent concentration. The pre-contrast
transversal relaxation rate R∗2,pre can be measured with dedicated MR sequences. However,
for the data set used in this work, such measurements are unavailable, so that R∗2,pre has to
be estimated from literature values or inferred from available data.

In general, the relaxation rate for a sub-voxel control volume is described by contributions
of three compartments, the vascular compartment (v), the extra-cellular, extra-vascular
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space (t), and the cellular compartment (s), weighted by their volume fractions, φv, φt,
φs (Quarles et al., 2009),

R∗2 =φvR
∗
2,v+φtR

∗
2,t+φsR

∗
2,s. (9.5)

According to Kiselev (2005), the rate in each compartment β ∈ {v, t, s}, comprises contribu-
tions on three spatial scales

R∗2,β =R∗2,β,micro+R∗2,β,meso+R∗2,β,macro. (9.6)

The rate R∗2,β,macro describes effects of static local inhomogeneities of the magnetic field
B0, which are time-independent. Since the static effects do not depend on the contrast
agent concentration, they are included in the pre-contrast relaxation rate, R∗2,pre. The rate
R∗2,β,micro depends on the local chemical composition. The effects are independent of the
pulse sequence. Gadolinium-based contrast agent molecules increase the relaxation rate,
which can be described by a linear relationship (Kiselev, 2005),

R∗2,β,micro = r2cβ+R∗2,β,pre,micro, (9.7)

where r2 is the molar relaxivity, and cβ the local molar contrast agent concentration in
compartmentβ. Themolar T2 relaxivity, r2, of Gadobutrol at 3 T and 37 ◦C is approximately
3.9m3 mol−1 s (Rohrer et al., 2005). Here, we assume that the contrast agent cannot enter
the cells, cs = 0, hence R∗2,s,micro = 0. The term R∗2,β,meso stems from a meso-scale effect. The
magnetic field perturbations induced by the difference in magnetic susceptibility in the blood
vessel and the extra-vascular space, increase the relaxation rate of the extra-vascular space in
proximity of a blood vessel. The generated magnetic field perturbations are several orders
of magnitude smaller than B0. Furthermore, the influence decays rapidly with distance
to the vessel surface. Therefore, we consider each segment of the vessel network to cause
a perturbation independent of the other segments. The increase in R∗2 for a given tissue
sample caused by mesoscopic magnetic field perturbation will then be the superposition of
all n segment perturbations

R∗2,t,meso = cB
n
∑

i=0

ϕi |ecv− ect|i , (9.8)
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where |ecv− ect| is the difference of the average vessel surface concentrations, given by the
average over the entire vessel surface contained in this sample. The factor cB ≥ 0 is an ad-hoc
parameter, scaling the strength of these perturbations. The proportionality factor ϕi models
the decay of the influence of the with distance from the vessel wall. We set ϕi = rv

2/r 2,
assuming a quadratic decay, where r is the distance to the vessel center line and rv the
radius of the vessel segment. The susceptibility contrast likewise increases the transversal
relaxation rate, which we model by

R∗2,v,meso = cB|ecv− ect|. (9.9)

The same effect occurs at the cell surfaces, induced by the difference inmagnetic susceptibility
between interstitial space and cells. Note that we consider cells not to be invaded by contrast
agent. We include this effect by adding a term to Eq. (9.8),

R∗2,t,meso = cB
n
∑

i=0

ϕi |ecv− ect|i +cT|ect,s|, (9.10)

and to the relaxation rate of the cell compartment,

R∗2,s,meso = cT|ect,s|, (9.11)

where cT ≥ 0 is a second ad-hoc parameter, determining the strength of these perturbations,
and ect,s is the average molar concentration on all cell surfaces contained in a tissue sample.
Furthermore, we assume that there is no direct interface between the cells and the vascular
compartment. Combining Eqs. (9.5), (9.7) and (9.9) to (9.11), we obtain a formulation
for the transversal relaxation rate dependent on the concentration fields and the volume
fractions of the three compartments:

R∗2 =R∗2,pre+ r2(φvcv+φtct)+φv(cB|ecv− ect|)

+φt(cB
n
∑

i=0

ϕi |ecv− ect|i +cT|ect,s |)

+φs(cT|ect,s|). (9.12)

Longitudinal relaxation Similar to T ∗2 , the contrast agent also shortens T1. However, the
effects occur merely on the micro-scale. Thus, we can model the relaxation rate R1 = 1/T1
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of the tissue sample by
R1 = r1(φvcv+φtct)+R1,pre, (9.13)

where we implicitly assumed that contrast agent does not enter cells, cs(x , t ) = 0. The molar
T1 relaxivity, r1, of Gadobutrol at 3 T and 37 ◦C is approximately 3.2m3 mol−1 s (Rohrer
et al., 2005). The pre-contrast longitudinal relaxation rate R1,pre can be measured. However,
for the given data set in this work such measurements are unavailable, so that R1,pre has to
be estimated from literature values or inferred from available data.

Voxel signal The relaxation rates, R∗2 and R1, Eqs. (9.12) and (9.13), are computed for
each control volume (cell) in the three-dimensional domain Ω. The volume fraction of the
vascular domain, φv, is computed by integrating over the volume of all vessels within a
control volume and dividing this number by the volume of the control volume. The average
values ect,s and ect are approximated by the discrete cell values. The average ecv is computed
by intersecting the vessel center-line mesh with the mesh discretizing Ω and attributing the
surface of the intersecting vessels to the intersected control volume. A local NMR signal can
then be computed for each control volume by using Eq. (9.4). The voxel signal is determined
by the volume average of all control volume signals. To this end, we assume that the size of
our domain is large enough to be representative for an entire voxel, which is commonly
about 10 to 20 times larger in diameter than the given domain.

9.3 Numerical treatment

The equations of the fluid flow equation system (Eq. (3.22)), and the contrast agent transport
system (Eq. (3.23)), are discretized with a cell-centered finite volume method with a two-
point flux approximation in space, and an implicit Eulermethod in time. The two systems are
only coupled in one direction, such that Eq. (3.23) depends on the pressure field computed
in Eq. (3.22), but Eq. (3.22) can be solved independently of Eq. (3.23). Furthermore,
Eq. (3.22) is stationary, so that the pressure field only has to be computed once per perfusion
experiment. The linear equation systems resulting from the discretization of Eqs. (3.22)
and (3.23) are solved as described in Chapter 11. We assume that the influence of the
sub-voxel contrast agent evolution during a single image acquisition on the NMR signal is
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negligible, and thus, Eq. (9.4) is solved as a post-processing step after each time step of the
perfusion model.

The model converges in time and space to a reference solution computed on a very fine
grid and a very small time step size. The convergence study is described in detail in Ap-
pendix A.11. As a result of the convergence study, we choose our computational grids such
that the largest grid cell does not exceed 8µm. This results in a run-time of a few seconds on
a normal laptop for a single forward model run. For the kernel function and the definition
of the transmural exchange in Eqs. (3.22) and (3.23), we use the method of D’Angelo (2007)
(see Chapter 6). The new method presented in Chapter 7 has been developed after running
the simulations in this chapter. Since the simulations are very time-consuming, they have
not been rerun with the new method. The choice of the numerical method is not expected
to alter the results and conclusion drawn from the numerical experiments in this chapter.

9.4 Inverse modeling using clinical MRI data

We use clinical MRI data to evaluate the presented model. We choose a patient with
relapsing-remitting MS from a clinical study with 12 MS patients, diagnosed according
to the revised McDonald criteria (Polman et al., 2011), and showing at least one contrast
enhancing lesion on MRI. The data is selected from a previous study that has been published
elsewhere (Verma et al., 2016), and fully anonymized for further analysis. For the employed
GRE-EPI protocol, 19 parallel images with a slice thickness of 5 mm are taken 80 times
during an acquisition time of 119 s. The sequence parameters are given in the caption
of Fig. 9.1. From these images, a clinical expert annotated a voxel within a Gadolinium
enhancing MS lesion (sample L) and a corresponding voxel in NAWM (sample N). Fig. 9.1
shows the samples L and N, together with the respective voxel locations in the MRI slice.

Several model parameters can be assigned a fixed value, either because the parameter assumes
a well-known fixed value given in the literature, or because the parameter is not expected
to significantly affect the results of this particular study and an approximate value can
be obtained from the literature. However, there are also parameters that are inherently
patient-specific and cannot be directly measured, or parameters for which the measurement
data is not available for the given patient. These parameters are a, b , tp, cB, cT, T1,pre, T ∗2,pre,
Lp, Dω. Determining these parameters for a given signal-time curve constitutes an inverse
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problem. In particular, we aim to determine Dω, which may quantify contrast agent leakage,
and thus, has direct clinical relevance.

In the following, we briefly discuss typical values or value ranges for these parameters. The
shape parameters, a, b , tp, determine the inflow profile of the bolus arriving at the voxel
under study. They are generally varying from voxel to voxel. In particular, a and tp depend
on the voxel location and vessel network structure, as well as the resulting bolus dilution
during transport through the vessel tree. The equilibrium contrast agent concentration, b ,
depends on the patient’s blood volume. Neglecting the filtration of contrast agent in the
kidney, and contrast agent leakage, the upper bound for b is the administered amount of
contrast agent divided by the total blood volume. However, b , can become lower in regions
of contrast agent leakage and is dependent on the severity of the leakage and the size of the
affected region in the brain. Here, we choose values for a, b , and tp within large enough
bounds to ensure physically meaningful inflow profiles. The parameters cB and cT are
dimensionless scaling factors for the effect of meso-scale T ∗2 -shortening due to the magnetic
susceptibility contrast at the interface of the vascular and the extra-vascular, extra-cellular
compartment and the interface of the extra-vascular, extra-cellular and the cell compartment,
respectively. Because these values depend on the tissue architecture, cB and cT can also
mitigate errors in the NMR signal prediction caused by patient-specific variations in vessel
geometry. The pre-contrast relaxation times T1,pre and T ∗2,pre vary from voxel to voxel. From
Eq. (9.4), it is clear that T ∗2,pre, cancels when S(t ) is normalized. Therefore, the value of
T ∗2,pre is not critical for the present study. Thaler et al. (2017) measured T1,pre in patients with
relapsing-remitting MS for several lesion types. They reported values between 1.9 s for black
holes, and 0.8 s for NAWM, at 3 T. The filtration coefficient Lp characterizes the fluid mass
exchange between the vascular and the extra-vascular compartment. Baxter and Jain (1989)
suggest Lp = 2.7 · 10−12 mPa−1 s for normal subcutaneous and Lp = 2.1 · 10−11 mPa−1 s for
tumor tissue. While in normal brain tissue the contrast agent stays in the blood stream, it
leaves the vascular compartment over the vessel wall in regions where the BBB is impaired.
Therefore, the filtration coefficient Lp is likely to be elevated in such tissue, due to opened
tight junctions. The diffusive capillary wall conductivity, Dω, characterizes the diffusive
transport of contrast agent between the vascular and the extra-vascular compartment. It
depends, i.a., on the molecular diffusion coefficient of the contrast agent, the wall thickness,
porosity and the tortuosity of the transmural pathway.
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9.4.1 Parameter estimation

In a preliminary model investigation, we use the parameter estimation toolbox PEST (Do-
herty, 2016) to find the parameter set that minimizes the sum of squared differences, ||Eopt||22,
between the simulated signal-time curve and the MRI data. For the parameter estimation,
we employ the truncated singular value decomposition algorithm, available in PEST. The
estimated parameter values for the best fit against the curves N and L, cf. Fig. 9.1, as well as
the corresponding ||Eopt||2, are given in Table 9.1.

A comparison of the simulated and measured NMR signals, Fig. 9.2, indicates that the
model can reproduce the measured curves well. Table 9.1 shows that the diffusive wall
conductivity, Dω, is estimated to be low for the NAWM sample (N), and high for the lesion
sample (L), with a difference of three orders of magnitude, while the other parameters are
within the same order of magnitude. To better understand the influence of the diffusive

Table 9.1 – Best fit parameter values from global optimization algorithm. Best fit parameter set
minimizes ||Eopt||2. Second column shows parameters for the lesion sample (L). Third column lists
parameters for the NAWM sample (N).

parameter Best fit (L) Best fit (N)

a 30.08 mol sm−3 30.03 mol sm−3

b 1.20 molm−3 0.61 molm−3

tp 4.75 s 6.03 s
Lp 7.20 · 10−12 mPa−1 s−1 1.00 · 10−12 mPa−1 s−1

Dω 8.20 · 10−8 ms−1 1.01 · 10−10 ms−1

cB 14.19 35.59
cT 0.73 1.00
T1,pre 1.76 s 2.00 s
||Eopt||2 0.055 0.082

wall conductivity on the computed NMR signal, we compute the mass of contrast agent in
the extra-vascular space

mc
t =

∫

Ω

φM cct dx, (9.14)
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Figure 9.2 – Simulated NMR signals compared with clinical MRI data. Signals are normalized
with pre-contrast signal. Parameters from Table 9.1. Left, result for the lesion sample (L). Right, the
result for the NAWM sample (N). Reprinted from Koch et al. (2020a).

at the end of the simulation, tend = 112s. Additionally, we compute the total mass of contrast
agent going into the domain over the entire time of the simulation,

minj =

tend
∫

0

∫

∂ Λin

AvvvM ccv dadt . (9.15)

The results are shown in Fig. 9.3 for different wall diffusivities. The other parameters were
chosen as in Table 9.1, sample L. It can be seen that for Dω < 1.0 · 10−9 ms−1, there is almost
no leakage into the extra-vascular space, i.e. the BBB is intact. For Dω > 3.0 · 10−6 ms−1, the
leakage of contrast agent into the extra-vascular space has reached a plateau and does not
increase further with Dω. For such high wall diffusivities, the contrast agent mole fractions
in vascular and extra-vascular space reach an equilibrium. This situation would lead to a flat
NMR signal (as seen, for instance, in the uppermost curve in Fig. 9.4 for Dω ), which is not
observed in any of the clinical data. Therefore, such high values of Dω are unlikely to be
physiologically sensible. For the values of Dω in Table 9.1, this means that there is little
to no contrast agent leakage for sample N, while there is significant leakage for sample L.
This is in accordance with the present understanding of the pathology, which assumes leaky
vessel walls in MS lesions.

However, the problem of finding best fit parameters is typically ill-conditioned, or even
ill-posed as the solution may be non-unique, such that the employed parameter estimation
method may not be reliably applied. Therefore, we discuss other methods to further analyze
the model parameters in the subsequent sections.
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Figure 9.3 – Contrast agent leakage for different Dω. The mass of contrast agent in the extra-
vascular space at tend = 112s for different wall diffusivities Dω. Left axis shows the contrast agent
mass in the extra-vascular space, mc

t . Right axis shows the ratio of mc
t to the total injected contrast

agent mass minj in percent. Reprinted from Koch et al. (2020a).

9.4.2 Parameter sensitivity

For a better understanding of the influence of the patient-specific parameters on the signal-
time curve, as well as the sensitivity of the model output to the model input parameters,
we perform a simple sensitivity analysis, where parameters are individually varied, while
all other parameters are kept constant at the values listed in Table 9.1. The results of this
study are shown in Fig. 9.4 for sample L, and in Fig. 9.5 for sample N. It can be seen that
the parameter sensitivity is different for L and N (which correspond to different locations
in the parameter space). Such behavior is characteristic for a nonlinear model response.

Capillary input function The shape parameters a and tp of the capillary input function
have a strong influence on the first pass dip of the NMR signal. The influence is directly
related to the T ∗2 -shortening caused by the contrast agent in the blood vessels. Comparing
the respective curves in Figs. 9.4 and 9.5, shows that contrast agent leakage dampens the
influence of a and tp. The difference in concentration between the vascular and extra-vascular
space decreases in the presence of leakage, attenuating the T ∗2 -shortening meso-scale effects.
For sample L, a also influences the signal in later times in the presence of leakage. A higher
a indicates a larger contrast agent bolus, which will also result in a higher amount of leakage
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leading to a signal increase at later times, due to the T1-shortening effect of the contrast
agent in the extra-vascular space. In the absence of leakage (sample N), the late signal is only
affected significantly by the equilibrium concentration b . For sample L, b has a significant
influence on the late signal slope. In that case, the signal slope is directly related to the
leakage rate. With a higher b , the gradient of the contrast agent concentration over the vessel
wall is higher, leading to a higher leakage rate. For b = 0, the slope is negative, indicating
that leaked contrast agent flows back into the vascular compartment.

NMR parameters The NMR parameters, cB, cT, T1,pre, have an equally strong but differ-
ent effect on the NMR signal. The scaling parameter cB for the meso-scale T ∗2 -effects from
the vascular wall, affects the signal strength almost linearly throughout the entire simulation.
For cB = 0, i.e. if meso-scale effects on T ∗2 -relaxation are neglected, the early time signal
enhancement due to T1-shortening becomes even stronger than the signal decrease due to
T ∗2 -shortening, as clearly seen in Fig. 9.5. This illustrates that it is essential for the NMR
signal model to include meso-scale effects. The scaling parameter cT for the meso-scale
T ∗2 -effects from the cell walls, only influences the signal in the presence of leakage (sample
L). This is evident, since the difference between the contrast agent concentration in the
cells and the extra-vascular, extra-cellular compartment is zero, in the absence of leakage.
Fig. 9.4 shows that signal decrease due to T ∗2 -shortening in the extra-vascular compartment
exceeds signal enhancement due to T1-shortening, if cT is chosen too large. Because this
is not seen in any of the clinical data, cT is likely to be small (cT < 10). The pre-contrast
longitudinal relaxation time, T1,pre, shows a direct influence on the signal-enhancing effect
of T1-shortening. If T1 is already elevated before the administration of contrast agent, the
T1-shortening has a strong signal-enhancing effect. If T1,pre is closer to T1 values measured for
NAWM (Thaler et al., 2017), the signal-enhancing effects are significantly weaker. Fig. 9.4
suggests that signal enhancement is small if T1,pre is not elevated, even in the presence of
leakage.

Leakage coefficients The leakage coefficients for advective and diffusive transmural trans-
port, Lp and Dω, show a very similar qualitative influence on the NMR signal. However,
the sensitivity of the NMR signal with respect to changes in Lp is significantly lower than
the sensitivity with respect to changes in Dω. This suggests that the main mechanism for
transmural contrast agent leakage is of diffusive nature. Furthermore, note that changing
Dω, while keeping the other parameters constant, can change the signal-time curve from
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the shape of sample N to the shape of sample L, and vice versa. This further emphasizes
that diffusive wall conductivity plays a dominant role in characterizing curve shapes.
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Figure 9.4 – Parameter sensitivity for lesion tissue. Influence of different flow, transport, and
NMR parameters on the signal-time curve. The parameters are individually varied, while the other
parameters are chosen as in Table 9.1 (sample L). Reprinted from Koch et al. (2020a).



128 9 A multi-scale sub-voxel perfusion model for perfusion MRI

0 20 40 60 80 100 120 140 160 180
time in s

0.75

0.80

0.85

0.90

0.95

1.00

NM
R 

sig
na

l (
S n

)

a
1.00e+01
3.00e+01
3.25e+01
5.05e+01
5.50e+01
7.75e+01
1.00e+02

0 20 40 60 80 100 120 140 160 180
time in s

0.850
0.875
0.900
0.925
0.950
0.975
1.000

NM
R 

sig
na

l (
S n

)

b
0.00e+00
5.00e-01
6.13e-01
1.00e+00
1.01e+00
1.50e+00
2.00e+00

0 20 40 60 80 100 120 140 160 180
time in s

0.7

0.8

0.9

1.0

NM
R 

sig
na

l (
S n

)

tp

1.00e+00
2.75e+00
4.50e+00
6.01e+00
6.03e+00
6.25e+00
8.00e+00

0 20 40 60 80 100 120 140 160 180
time in s

0.88

0.90

0.92

0.94

0.96

0.98

1.00

NM
R 

sig
na

l (
S n

)

T1, pre

8.00e-01
1.35e+00
1.59e+00
1.90e+00
2.00e+00
2.45e+00
3.00e+00

0 20 40 60 80 100 120 140 160 180
time in s

0.75

0.80

0.85

0.90

0.95

1.00

NM
R 

sig
na

l (
S n

)

B

0.00e+00
2.08e+01
2.50e+01
3.56e+01
5.00e+01
7.50e+01
1.00e+02

0 20 40 60 80 100 120 140 160 180
time in s

0.90

0.92

0.94

0.96

0.98

1.00

NM
R 

sig
na

l (
S n

)

T

0.00e+00
1.24e-01
9.99e-01
1.25e+01
2.50e+01
3.75e+01
5.00e+01

0 20 40 60 80 100 120 140 160 180
time in s

0.90
0.92
0.94
0.96
0.98
1.00
1.02

NM
R 

sig
na

l (
S n

)

Lp

1.00e-12
1.40e-12
1.00e-11
1.00e-10
1.00e-09

0 20 40 60 80 100 120 140 160 180
time in s

1.0

1.2

1.4

NM
R 

sig
na

l (
S n

)

D
3.17e-12
1.00e-10
1.01e-10
1.00e-09
1.00e-08
1.00e-07
1.00e-06

Figure 9.5 – Parameter sensitivity for NAWM tissue. Influence of different flow, transport, and
NMR parameters on the signal-time curve. The parameters are individually varied, while the other
parameters are chosen as in Table 9.1 (sample N). Reprinted from Koch et al. (2020a).
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9.4.3 Bayesian parameter inference

To complete our critical assessment of the proposed model, we ask and attempt to answer
the question: What can we learn about the model parameters, given the MRI data? Bayesian
parameter inference is a method to estimate unknown parameters of a model, given some
prior knowledge about the parameters, and observations, while quantifying the uncertainty
that is inherent to such a parameter estimation. Let θ denote the parameters of the modelM ,
and X the vector of observed values. Bayes’ theorem, applied to the problem of parameter
inference, states that

p(θ|X ) =
p(X |θ)p(θ)

p(X )
, (9.16)

where p(θ|X ) is the posterior distribution, i.e. the probability of θ given the observation
data X . p(X |θ) is the likelihood function, i.e. the probability of the X being from the
same population as the model prediction, given θ. p(θ) is the prior distribution reflecting
prior knowledge about the parameters θ, before knowing the observations. p(X ) is the
marginal likelihood, a normalization constant, not depending on θ. Now, let Y =M (θ)
be the model prediction given the parameters θ. We assume that we can write

X = Y + ε, ε∼N
�

0,σ2� , (9.17)

where ε is the combination of measurement error and unbiased model error and σ its stan-
dard deviation. The likelihood that any model answer, Y , comes from the same population
as the measurement, X , is a Gaussian likelihood

p(X |θ)∝ exp
�

−
∑

i (Xi −Yi )
2

2σ2

�

, (9.18)

if the errors of all observations are assumed to be uncorrelated. The standard deviation, σ ,
has to be estimated for the given MRI data and the proposed model. The measurement error
is estimated from the MRI data obtained before the contrast agent bolus reaches the tissue
sample, where the measurement is assumed to fluctuate around a constant baseline signal. To
this end, we take 100 random signal samples from the brain slice shown in Fig. 9.1, normalize
the signal to the mean of the first 10 sample data points, and compute the standard deviation
of all such baseline data points across all samples, yielding σ = 0.009. Furthermore, we
assume that our mathematical model captures the most significant physical processes. The
model error is assumed to be sufficiently estimated using, in total, a standard deviation of
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σ = 0.009. We are aware that this assumption may be too restrictive, in which case the
estimated model parameters may additionally include modeling uncertainties that may
compromise their physical interpretability for the underlying physical process. However,
the estimated standard deviation of σ = 0.009 represents a rather large uncertainty given
relative signal changes in the order of 0.1, see Fig. 9.2. To estimate the effect of assuming a
larger model uncertainty, we run a second numerical experiment with a 10-fold increase of
the standard deviation.

Markov chain Monte Carlo (MCMC) methods are methods to sample from the posterior
distribution p(θ|X ) without the need to compute marginal likelihood, which is generally
expensive. MCMC draws samples on a random walk through the parameter space, creating
a representative set of samples from the posterior distribution, after a sufficient number
of iterations. These samples form a Markov chain such that the parameters with which
the sample is generated in one step only depend on the parameters in the previous step.
Herein, we use the ensemble sampler proposed by Goodman and Weare (2010), which is
implemented in the Python module emcee (Foreman-Mackey et al., 2013). Its algorithm
features an ensemble of interdependent Markov chains (so called walkers), enabling multiple
parallel forward model runs within one step. For a brief description of the algorithm,
see Appendix A.13. We refer to Goodman and Weare (2010); Foreman-Mackey et al. (2013)
for a comprehensive discussion.

In the following, Bayesian parameter inference is used to compute the probability distribu-
tion of the patient-specific model parameters, under physical parameter constraints, given a
signal-time curve from a voxel of a perfusion MRI sequence. To this end, we choose the prior
distributions of the parameters to be uniform distributions within the bounds given in Ta-
ble A.4 in Appendix A.12. The parameter vector is θ =

�

a, b , tp, log10 Dω,T1,pre,cB,cT
�T

.
The parameter Lp remains fixed to reduce the dimension of the parameter space. Its influence
on the NMR signal has been shown in the previous section to be significantly weaker than
the influence of Dω (see Fig. 9.4).

The resulting histograms from the MCMC for each parameter and their covariance with
respect to the other parameters is visualized in Fig. 9.6 for sample L and Fig. 9.7 for sample
N (cf. Fig. 9.1). The plots show the results for σ = 0.009. The results with a 10 times larger
σ are given in Appendix A.14. The solid black lines in Figs. 9.6 and 9.7 show the parameter
values of Table 9.1 that were obtained previously with PEST.
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To interpret the results, we recall the original question: What can we learn about the model
parameters, given theMRI data? If the posterior distribution of a parameter is close to uniform,
i.e. close to the prior distribution, the data did not provide any additional information about
this parameter. This is, for example, the case for a, b , and cT in Fig. 9.7, for which the 90 %
credible interval is wide. In contrast, if the posterior distribution differs significantly from
the prior distribution, the data provides significant information on this parameter. This is
the case for the parameters Dω and cT in Fig. 9.6, which is consistent with the observation
in Figs. 9.4 and 9.5 that the sensitivity of the NMR curve with respect to those parameters
is high, such that only a small range of values for those parameters is likely to match the
model results with the clinical MRI data. Furthermore, there seem to be correlations
between several parameters. For instance, the inflow curve parameters a and b show a
strong and nonlinear correlation with MR model parameter cB for both samples, L and N.
For high values of a and b , which corresponds to an increase in the amount of contrast
agent entering the tissue sample, it is more likely that cB is low, which decreases the effect
of contrast-induced signal reduction. Conversely, a high cB is more likely if a and b are
low. This effect is expected, since high concentration values correspond to a higher signal
reduction in the vascular compartment, see Eqs. (9.7) and (9.13).

Most interestingly, the distribution of Dω in Fig. 9.6 differs significantly from the distri-
bution of Dω in Fig. 9.7. Both distributions are shown as histograms in Fig. 9.8 for the
experiment with σ = 0.009, as well as for the experiment with an increased model and
measurement error uncertainty. For sample L, the inferred posterior distribution of the
diffusive wall conductivity has a distinct peak around Dω = 9 · 10−8 ms−1 (3 · 10−7 ms−1

for high σ ). Furthermore, it shows that values below Dω = 3 · 10−8 ms−1 are unlikely,
suggesting significant transmural contrast agent leakage with a high probability. For sample
N, the inferred diffusive wall conductivity is likely low (< 5 · 10−9 ms−1), suggesting little to
no leakage; see Fig. 9.3. For low σ , the results suggest that Dω values between 3 · 10−9 ms−1

and 3 · 10−8 ms−1 are more likely than respective lower values. This could indicate that
there may be a small amount of contrast agent leakage in the NAWM sample. That this
effect may indeed occur, is suggested in several clinical studies (Ingrisch et al., 2012; Cramer
et al., 2014). However, this effect can not be seen for the numerical experiment where σ
is assumed 10 times higher (Fig. 9.8, right). Here, all values below Dω = 1 · 10−8 ms−1 are
equally likely. Consequently, the indication of leakage in the given NAWM sample could
also be an artifact resulting from an overconfidence in the accuracy of the measurement
or model data. Moreover, more than 50 % (70 % for high σ ) of the Dω sample values fall
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Figure 9.6 – Parameter distributions for lesion sample (σ = 0.009). Histograms on the diagonal
show single parameter distributions. Scatter plot in the matrix visualizes covariance of the respective
row and column parameters; plot generated with corner.py (Foreman-Mackey, 2016). Histogram
titles present median, 5th and 95th percentile (dashed lines). Horizontal and vertical solid black lines
show the parameter values for sample L of Table 9.1. Reprinted from Koch et al. (2020a).

below 3 · 10−9 ms−1 (including the value obtained with the optimization approach in the
previous section), which corresponds to virtually no contrast agent leakage. Because of the
significant difference between the posterior distributions for Dω in both samples (L and N),
in particular the observation that low Dω are likely for sample N, while they are unlikely
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Figure 9.7 – Parameter distributions for NAWM sample (σ = 0.009). Histograms on the diagonal
show single parameter distributions. Scatter plot in the matrix visualizes covariance of the respective
row and column parameters; plot generated with corner.py (Foreman-Mackey, 2016). Histogram
titles present median, 5th and 95th percentile (dashed lines). Horizontal and vertical solid black lines
show the parameter values for sample N of Table 9.1. Reprinted from Koch et al. (2020a).

for sample L, we conclude that the two samples can be distinguished just on the basis of Dω,
without looking at the estimates for the other parameters. The uncertainty in Dω reflects
the fact that all other parameters are uncertain as well. Consequently, the estimate of Dω

may be improved with additional information about other parameters. Such information
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Figure 9.8 – Dω distributions after learning from clinical MRI data. A low diffusion coefficient
is most likely for the NAWM data (N), while a high diffusion coefficient is most likely for the
contrast-enhancing lesion data (L). Reprinted from Koch et al. (2020a).

might be, for instance, a direct measurement of T1,pre, estimations of the so-called arterial
input function (AIF), or data from other MR sequences of the same patient. Furthermore,
knowledge that a parameter is expected to be similar in a certain region of the brain, could
enable learning from other voxel data of the same sequence. In the Bayesian framework,
such information can be included incrementally, where the posterior distributions of the
previous Bayesian update are the prior distributions of the next Bayesian update.

The values estimated for Dω cannot be compared to values from two-compartment mod-
els straightforwardly. These models are formulated on the macro-scale using averaging
techniques. The relation of fluid-mechanical models on the meso-scale (as considered in
this work) and models formulated on the macro-scale is yet to be better understood and is
addressed in some recent studies (El-Bouri and Payne, 2018; Vidotto et al., 2019; Peyrounette
et al., 2018; Shipley et al., 2019). However, values for the diffusive wall permeabilities have
been estimated from direct measurements with single or multiple capillaries from different
tissues (Crone, 1963; Curry, 1979; Curry et al., 1983; Renkin, 1988). The values and meth-
ods are reviewed by Jain (1987) and Michel and Curry (1999). We are not aware of such
measurements for Gadobutrol. Nevertheless, Dω values can be assumed to be similar for
molecules with similar properties as Gadobutrol (hydrophilic, M = 604.715gmol−1 (Pub-
Chem, 2018), rhy ≈ 0.8nm (Guthausen et al., 2015)). For example, for sucrose (hydrophilic,
M = 342.30gmol−1, rhy ≈ 0.45nm (Price et al., 2016)) values in the order of 1.4 · 10−6 to
1.4 · 10−7 ms−1 are reported for frogmesentery (Jain, 1987) and skeletal muscle tissue (Michel
and Curry, 1999), depending on the measurement method. For (normal) brain tissue in dogs,
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no significant permeability is reported (Crone, 1963), meaning that the pathway through
the endothelial tight junctions of the BBB is impermeable for sucrose. The filter mechanisms
and anatomy of the capillary wall are assumed to be similar in different species (Arkill
et al., 2011). Michel and Curry (1999) and Curry et al. (1983) suggest a strong dependence
on molecule size, so that for the Gadobutrol molecule with twice the size of the sucrose
molecule the expected value for skeletal muscle tissue would be one order of magnitude
lower than that of sucrose, see Michel and Curry (1999, Fig. 1). Hence, the Dω values for
the lesion sample compare to physiological values of other tissues where capillary walls are
known to be more permeable to small molecules (Rippe and Haraldsson, 1994) than in
the brain. In comparison with our estimated value for sample L, this suggests significant
leakage and a strong increase in transmural permeability in comparison with NAWM. The
values for NAWM, with two orders of magnitude lower Dω values, signify impermeable
capillary walls and are in good agreement with the common assumption that the BBB is
impermeable for Gadobutrol.

9.5 Model limitations and outlook

The current model relies on a single exemplary vessel geometry. Today, patient-specific
sub-voxel vessel geometries cannot be routinely measured. Hence, the influence of different
vessel geometries on the presented results has to be investigated.

Furthermore, the used model of the inflow curve, Eq. (9.1), neglects re-circulation in the
form of a second or third pass of the contrast agent. In particular, the effect of the second
pass of the bolus cannot be captured and might lead to more uncertainty in the estimation of
other model parameters. In a future step, the inflow curve model can be improved to include
re-circulation and to be derived from arterial input function measurements. Including such
measurements adds information about the inflow parameters and may thus lead to narrower
estimates of other model parameters. Moreover, we used a rather simple approach for the
estimation of the model error. In future work, the model error can be more rigorously
analyzed, for example, by including the standard deviation of the error model as a random
variable. In this way, Bayesian parameter inference provides an estimate for the model error
alongside the estimates of the other model parameters. This may increase the uncertainty
of the provided parameter estimations.
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The presented model considers processes in a sub-voxel tissue sample that is surrounded by
tissue with the same properties. However, contrast-enhancing lesions in the brain typically
span over several voxels, see Fig. 9.1. Furthermore, patterns such as ring-like shapes have
been observed for MS (Llufriu et al., 2010), suggesting processes on a larger scale, or possible
inter-voxel dependencies. Such effects can not be included in the model in its current state,
since simulation of several voxels are prohibitively expensive due to the large number of
blood vessels.

The applicability of the presented model has yet to be confirmed in a clinical environment.
This would be of special relevance for monitoring of pharmacologic effects and drug efficacy,
e.g. in drugs that are targeted against immune cell trafficking. It is to be analyzed how
reliable the method predicts diffusive capillary wall conductivities over a wider range of
patient-specific data.

A current drawback of the method is the computational time required to infer diffusive
capillary wall conductivities and contrast agent leakage. However, the computational cost
can most likely be improved by applying model reduction techniques and machine learning
algorithms. Likewise, homogenization techniques can be used for model reduction (El-Bouri
and Payne, 2018; Vidotto et al., 2019). However, such techniques are difficult to apply, due
to the hierarchical structure of the micro-circulation. For all approaches, the presented
model can be used as theoretical basis and as validation tool.

9.6 Summary and conclusion

We presented a mixed-dimension fluid-mechanical model for contrast agent brain tissue perfu-
sion on the sub-voxel scale. The blood vessels are considered as a network of cylindrical tubes.
The extra-vascular compartment is modeled as a porous medium. The presented discretiza-
tion results in a coupled system of partial differential equations of three-dimensional and
one-dimensional equations. The fluid-mechanical model can describe the three-dimensional
evolution of the contrast agent concentration on the sub-voxel scale. We further proposed
an NMR signal model, describing the influence of the contrast agent on the NMR voxel
signal, including meso-scale effects. A convergence study suggests that the combined model
is consistent and converges to a unique solution on grid and time step refinement. Using
parameter estimation, it was shown that the model can describe two characteristic NMR
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signal curves from clinical data obtained by DSC-MRI for a patient with MS lesions, and
that the estimated model parameters provide a meaningful physical interpretation. Bayesian
parameter inference, with the given model and clinical DSC-MRI data, showed that the two
given NMR signal curves can be distinguished and characterized, only on the basis of the
estimated diffusive capillary wall conductivity distributions. The study suggests that the
NMR signal curve, given the model, is informative about some patient-specific model pa-
rameters, such as the diffusive capillary wall conductivity, and less informative about others,
such as the tissue’s T1 relaxation time before contrast agent administration. Furthermore,
the uncertainty of the diffusive capillary wall conductivity predictions could be quantified in
the Bayesian framework. For a sample from within an MS plaque in the brain white matter,
a value of Dω = 8.2 · 10−8 ms−1 was estimated using optimization. This value corresponds
to significant contrast agent leakage into the extra-vascular space. With Bayesian parameter
inference, we obtained a median value of Dω = 7.8 · 10−8 ms−1 and an equal-tailed 90 %
credible interval with lower bound 4.7 · 10−8 ms−1 and upper bound 1.1 · 10−7 ms−1, which
contains the value obtained with optimization. With a 10-fold increase of the standard devi-
ation of the assumed modeling and measurement error, slightly higher values for Dω were
estimated to be more likely, and the uncertainty increased (median: 3.2 · 10−7 ms−1; 90 %
credible interval: 6.3 · 10−8 ms−1 to 9.1 · 10−7 ms−1). However, the values are still clearly
distinguishable from those estimated for a NAWM sample, where no significant leakage
is observed. The values are comparable to the diffusive wall conductivity estimated from
experiments with hydrodynamically similar substances in skeletal muscle tissue. The results
agree with the observation that endothelial tight junctions are opened in MS lesions (Plumb
et al., 2002). In summary, the presented model constitutes a useful tool to study contrast
agent perfusion on a sub-voxel scale, and may lead to an improved understanding of the
sub-voxel processes beyond the scope of this work.

The code to reproduce the simulations in this chapter can be found at https://git.iws.
uni-stuttgart.de/dumux-pub/Koch2019a.

https://git.iws.uni-stuttgart.de/dumux-pub/Koch2019a
https://git.iws.uni-stuttgart.de/dumux-pub/Koch2019a




10 Simulation of root water uptake

and root growth

The following chapter discusses different aspects of root-soil interaction simulations. The
simulations are based on the mixed-dimension embedded model developed in Chapters 4
and 6. In Section 10.1, root water uptake is simulated for a small lupin root system. The case
is from a recently published benchmark problem (Schnepf et al., 2020), where a reference
solution with a method explicitly resolving the root-soil interface with the computational
mesh is given. The predicted transpiration rates are shown to depend on the local soil grid
resolution due to the development of large local gradients. Sections 10.2 to 10.4 showcase
three applications demonstrating the importance of mixed-dimension embedded models for
understanding the water management in the vadose zone. The simulations in this chapter
motivate several open questions concerning the application of mixed-dimension embedded
methods for nonlinear equations, such as the two-phase flow equations. These aspects are
briefly discussed in Section 10.5.

10.1 Root water uptake benchmark

In this section, we simulate a benchmark case contributed to Schnepf et al. (2020) (case
C1.2a). An 8-day-old lupin (see Fig. 6.3) is embedded in a soil box (8×8×15 cm) filled with
loamy soil (soil parameters: k = 5.89912 · 10−13 m2, φs = 0.43, α

vg
= 4.077Pa−1, n

vg
= 1.6,

l
vg
= 0.5, Swr = 0.186). The initial soil water saturation at the soil surface is 0.3. The water

pressure profile is initially purely hydrostatic. All soil boundaries are closed. The potential
transpiration rate is given as

rT,pot(t ) = rT
h

1+ sin
�

2πt − π
2

�i

, (10.1)

with the mean transpiration rate rT = 6.4cm3 d−1. At the root collar, a transpiration rate of
rT =min{rT,pot, rT,c} is prescribed, where rT,c is the transpiration rate for which the root
collar pressure is pr,c =−1.4MPa (wilting point pressure). The transpiration rate is enforced
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Figure 10.1 – Locally refined tetrahedral grid. The root is visualized by tubes scaled with the
actual root radius. The smallest tetrahedral cell in the soil grid has a diameter of 0.5 mm, while the
root radius ranges from 0.12 mm to 1.2 mm (cf. Fig. 6.3). The grid needs to be significantly refined
towards the root to resolve local pressure gradients in drying soil.

as a Robin boundary condition. The root hydraulic properties are constant for the entire
root system (kax = 5.07 · 10−17 m4 Pa−1 s−1, krad = 2.04 · 10−13 mPa−1 s−1).
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Figure 10.2 – Benchmark: simulated transpiration rates for drying soil. Grid convergence study
against a reference solution. The reference (solid black line) is given in Koch (2019). The dotted
lines show the diurnal sinusoidal potential transpiration rate (left) and the cumulative potential tran-
spiration rate (right). The other lines result from simulations with the mixed-dimension embedded
method (Chapter 4) for locally refined tetrahedral grids. The legend shows the smallest cell diameter
in the soil grid (the longest distance between two vertices of a cell).
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A reference solution (Koch, 2019) has been produced with a method where the interface is
explicitly resolved by the soil grid cell faces. For a description of the method, see Schnepf
et al. (2020). The benchmark case is designed to investigate the effect of different grid
resolutions for mixed-dimension embedded models in the case of drying low-permeable soil
(large local pressure gradients, cf. Section 6.2.2). We simulate the first day of the benchmark
problem with different soil grid resolutions using the model presented in Chapter 4. The
kernel function is chosen to obtain the method of Köppl et al. (2018). The water balance is
discretized in space using the BOX method (Huber and Helmig, 1999) in the soil domain
and a TPFA cell-centered finite volume method (see Section 7.2) in the root domain. In
time, we discretize with a backward Euler method and limit the maximum time step size
to 1200 s. The tetrahedral soil grid is locally refined to resolve the pressure gradients at the
root soil interface (Fig. 10.1).

The resulting transpiration rates are shown in Fig. 10.2. Transpiration rates decline when the
critical pressure is assumed at the root collar. The solution with the mixed-dimension model
converges to the reference solutionwith repeated (local) grid refinement. Formoderately fine
grids (the smallest cell diameter is 3 times larger as the largest root radius), the transpiration
rate is significantly overestimated. The relative difference with respect to the reference
solution amounts to over 100% of the transpired water mass after one day. With strong
local refinement, this difference is reduced to 5%. However, for the finest grid, the number
of grid cells (0.5 · 106) is as large as the number of grid cells for the reference solution. We
conclude that the presented model seems suitable for the simulation of drying soils around
small root systems. However, for relatively low permeable soil and dry conditions, it is
not more efficient and less accurate than a method which resolves the root-soil interface.
If the soil is moderately wet (not close to the residual saturation), or more permeable (e.g.
most sandy soils), local pressure profiles are significantly more shallow. In this aspect, the
benchmark case is a particularly difficult case for mixed-dimension embedded models.

10.2 Application I: Root water uptake with tracer

We simulate root-water uptake and tracer transport in the soil. The tracer is assumed to
not enter the root. Such a tracer could be used in an experiment to expose the location of
the highest root water uptake rate. The tracer is expected to accumulate at the root-soil
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Figure 10.3 – Simulation result for root-water uptake and simultaneous tracer transport. The
root system is a white lupin, shown at t = 3d. Three horizontal cuts through the soil domain are
shown. The first two slices visualize the mole fraction of the tracer c in water. The bottom slice
displays the water saturation Sw. Water saturation slightly decreases towards the roots. Its spatial
gradient depends on the flow resistances in soil and root, the current water distribution, and the
prescribed transpiration rate rT. Figure from Koch et al. (2020b).

interface. The example has been presented in a different context in Koch et al. (2020b). We
use the model described in Chapter 4.

The soil domain is a closed cylindrical pot (radius: 5 cm, height: 10 cm) and contains a 2-week-
old white lupin root system reconstructed fromMRI data (Schröder, 2014). The soil domain
is discretized with an unstructured tetrahedral grid refined around the root system, while the
root domain is represented by an independent grid of line segments forming the root center-
line network. At the root collar a transpiration rate of rT =min{2.15 · 10−8 kgs−1, rT,c} is
prescribed, where rT,c is defined in Section 10.1. The tracer is initially uniformly distributed
in the soil (mole fraction: xκw = 3 · 10−7, diffusion coefficient: Dκ

w = 2.3 · 10−9 ms−2). We
simulate for a period of 3 d with a maximum time step size of 1 h (backward Euler time
discretization). The remaining parameter values are given in Table 10.1.
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Table 10.1 – Parameter values for root water uptake simulation.

symbol name value unit

φs soil porosity 0.4 -
ρm,w molar density of water 5.55 · 104 molm−3

φr root porosity 0.4 -
α
vg

van Genuchten parameter 2.956 · 10−4 Pa−1

n
vg

van Genuchten parameter 2.0 -
Swr residual water saturation 0.1 -
kax axial root conductivity 5.10 · 10−17 m4 Pa−1 s−1

krad radial root conductivity 2.04 · 10−11 mPa−1 s−1

The resulting spatial distribution of water and the tracer is shown in Fig. 10.3 and tracer
accumulation in close vicinity to the roots is evident. Such a simulation is valuable for
the interpretation of hypothetical experimental results, as it may enable quantification of
root water uptake by observing local tracer accumulation. The result did not significantly
change with grid refinement. Firstly, the local flow field is approximated well by using
local grid refinement (grid cell diameters at the root-soil interface are of similar order of
magnitude as the root radius). Secondly, the local soil water saturation, and thus water
mobility, is high enough to maintain relatively moderate local pressure gradients. The
code to reproduce this simulation can be found at https://git.iws.uni-stuttgart.de/
dumux-pub/dumux2019.

10.3 Application II: Grid growth

We simulate two growing root systems confined in a plant pot, using the model described
in Chapter 4. The example is published in Koch et al. (2018b). The coupling is locally
mass conservative and considers the pore space (xylem) created by the growing root in the
root domain and the corresponding pore space reduction in the soil. Small segments are
avoided by moving root mesh vertices. The soil domain is discretized using an unstructured
hexahedral grid for the soil domain. For simplicity, any kind of competition between the
two plants, e.g. for space, water, or sunlight, is neglected.

The initial water pressure profile is hydrostatic with a fixed water saturation of Sw = 0.3 at
the soil surface. We neglect soil evaporation and diurnal changes of the boundary conditions

https://git.iws.uni-stuttgart.de/dumux-pub/dumux2019
https://git.iws.uni-stuttgart.de/dumux-pub/dumux2019
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Figure 10.4 – Root water uptake of two growing root systems. Uptake is driven by transpiration
at the plants’ leaves (prescribed as Neumann boundary condition at the root collar) and modeled
as a function of root volume. Vertical cut through a plant pot with the shape of a truncated cone.
Root segments are visualized as tubes scaled with the segment radius. The soil color visualizes the
water saturation. The domain is 10 cm high with an upper radius of 5 cm and a lower radius of 2 cm.
Figure from Koch et al. (2018b).

for simplicity. The tap root initially consists of a single segment of length l = 1mm without
daughter branches. Root growth is parameterized using stochastic parameters fit to a white
lupin due to Leitner et al. (2014a).

The root systems are grown at the beginning of each time step, followed by an update of the
flow field in the soil. The change in porosity in root and soil is explicitly considered in the
storage terms of Eq. (4.8). In this example, root growth is not dependent on soil parameters.
The coupled water flow problem is nonlinear in the primary variable water pressure. The
discrete system is solved by Newton’s method. In case the Newton method fails to achieve
the prescribed residual tolerance within 10 steps, the time step size is cut in half. The root
systems are first reset to the previous time step and then regrown for the smaller time step.

At the root collar, we prescribe the transpiration rate rT as Neumann boundary condition.
We compute the transpiration rate as a function of the root volume using Eq. (4.9) with the
values given in Chapter 4. Figure 10.4 shows the resulting root architecture at t1 = 49h and
t2 = 119h. Furthermore, root growth is confined by the domain boundaries, as prescribed
by the model.
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Errors in the global water mass balance stayed within the range of the numerical precision
(≈ 1 · 10−12 gd−1). In contrast, the global mass balance error without considering the porosity
change in root and soil, is on average 0.015 gd−1 on the first day and rises to 0.075 gd−1 at
the end of one week (determined by a second modified simulation with constant porosity
per time step). To better understand the magnitude of the error, we can express it as
a percentage of the transpiration rate (an indicator of the magnitude of mass flow rates
of interest). The error is 17 % and 2 % of the average transpiration rate on the first day
and at the end of one week, respectively. The relative error reduces over time, since the
transpiration rate is a function of root volume, while the error depends on the newly created
root tip volume and the growth rate. The code to reproduce the simulations can be found
at https://git.iws.uni-stuttgart.de/dumux-pub/Koch2017a.

10.4 Application III: Evapotranspiration

We simulate root water uptake and evaporation from soil with a non-isothermal miscible
two-phase two-component model. The example is published in Koch et al. (2018b). Tran-
spiration is prescribed by boundary conditions as in Section 10.2. The same root system
as in Section 10.2 is embedded in an acrylic glass cube (side length: 10 cm) filled homoge-
neously with a laboratory sand. Moreover, there is a thin layer of compacted low-permeable
sand at a depth of 3 to 3.5 cm to emphasize the role of the root system as a water transport
system from deeper soil layers to the surface.

The soil is initially saturated (Sw = 0.99) and has a temperature of T = 285.15K. The
evaporation model is described in Section 4.6. The atmospheric conditions above the soil
are controlled by a wind tunnel, so that the air has an approximately constant relative
humidity of 55 % at 20 ◦C. The atmospheric temperature varies between 10 ◦C during night
and 20 ◦C during day in a sinusoidal diurnal cycle. We assume a stable laminar boundary
layer of thickness δBL = 0.0016m. The acrylic glass cube has a thermal conductivity of
λpg = 0.184Wm−1 K−1, a wall thickness of 5mm, and exchanges energy with the atmo-
sphere and the soil system through heat conduction. Values for the thermal conductivity
(λr = 0.5Wm−1 K−1) and heat capacity (cp,r = 1637 Jkg−1 K−1) of the roots are taken
from Jayalakshmy and Philip (2010). For more details, we refer to Koch et al. (2018b).

https://git.iws.uni-stuttgart.de/dumux-pub/Koch2017a


146 10 Simulation of root water uptake and root growth

To investigate the influence of evaporation from soil and plant transpiration on the evap-
otranspiration rate (total water flux from soil cube into the atmosphere), we define three
scenarios in Table 10.2. The resulting water fluxes are shown in Fig. 10.5. The two stages

Table 10.2 – Different scenarios for the evapotranspiration simulation.

scenario transpiration evaporation description

A 3 3 evapotranspiration
B 7 3 no root (only evaporation)
C 3 7 sealed soil (only transpiration)

of evaporation (see Section 4.6) can be identified. For the given setup, it can be seen by
comparison of the evapotranspiration rates for case A and B that evaporation from soil
exceeds plant transpiration in stage I, while the opposite is the case for diffusion-limited
evaporation (stage II). The evaporation rate in a given time interval is slightly higher in the
absence of a plant (case B). This is since the water content in the soil decreases more slowly
in the absence of transpiration, and evaporation decreases with decreasing water content
close to the soil surface (increasing diffusion distance). Furthermore, the plant reduces the
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Figure 10.5 – Influence of transpiration and evaporation on evapotranspiration. Left, evapora-
tion and evapotranspiration rates for the cases A and B. Right, transpiration rates for the cases A and
C, i.e. with and without the influence of evaporation from the soil. Figure from Koch et al. (2018b).

transpiration rate due to water stress significantly later in time, if the soil surface is sealed
(case C). Hence, in particular for small root systems, evaporation cannot be neglected when
estimating the onset of water stress.

Figure 10.6 shows the simulated soil water distribution at different times. During the
beginning of the simulation, the soil is fully saturated. The root water uptake is highest for
root segments with higher surface area and lower pressure (closer to the root collar in the
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Figure 10.6 – Root water uptake and hydraulic redistribution. Source terms and saturation at
the beginning of the simulation (after midnight) after 1.5 days (noon) and at midnight after 4 days.
The hydraulic redistribution through the root can be seen on the upper dry soil layer as negative
source terms in the root (rightmost figure). Figure from Koch et al. (2018b).

hierarchy). However, the soil towards the root surface already starts drying, so that the root
water uptake for segments closer to the surface is reduced. At noon on the second day (high
transpiration rate), uptake predominantly happens in wet soil (below the compacted soil
layer), while no significant uptake is observed in the drier soil. During night after 4 days,
the root is observed to take up water from lower (wet) soil layers, and releases water in the
upper (dry) soil layers. The hydraulic lift at night (zero transpiration) is only driven by
local pressure gradients in the soil. The mass fluxes across the root cortex are about two
orders of magnitude lower than during the day. Because of the high permeability of the
soil in this experiment, local pressure gradients in the soil are dominated by evaporation
and gravitational forces (vertical gradients) rather than by local root water uptake. The
code to reproduce the simulations can be found at https://git.iws.uni-stuttgart.de/
dumux-pub/Koch2017a.

10.5 Conclusion and outlook

Water uptake and dry soils In comparison with the single phase flow applications in
Chapters 3 and 5, modeling two-phase flow in the unsaturated zone around roots is more

https://git.iws.uni-stuttgart.de/dumux-pub/Koch2017a
https://git.iws.uni-stuttgart.de/dumux-pub/Koch2017a
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challenging for the mixed-dimension embedded model approach. Due to root water uptake,
there is a hydraulic pressure drop towards the root. Water saturation is a nonlinear mono-
tone function of the capillary pressure. With increasing capillary pressure (decreasing water
pressure) saturation decreases. The local saturation drop at the root-soil interface leads to
local drop in relative permeability (over-proportional to the saturation drop, see Eq. (2.6)).
A decrease in relative permeability additionally increases the local pressure drop for a given
root water uptake rate. In summary, these nonlinear dependencies lead to larger gradients
towards the roots than for the single flow systems. For certain parameter combinations,
as in the benchmark case presented in Section 10.1, these local gradients lead to systems
which can only be solved accurately with strong local grid refinement in the soil domain.
Consequently, alternative methods, for example methods based on local analytical recon-
structions, are necessary to simulate larger root systems efficiently. However, in contrast
to the method presented in Chapter 7 for the linear case, exact reconstructions cannot be
found for the nonlinear two-phase flow model. Approximate local pressure or concentra-
tion reconstructions have been suggested by Schröder et al. (2009a); Beudez et al. (2013),
using simplified analytical solutions, or Mai et al. (2019), solving local radially symmetric
problems numerically. However, these methods are constructed in a discrete setting and
therefore depend on the discretization method and the discretization length.

Water stress model In consequence of the above observations, simulations with very dry
soils where the root collar pressure is close to the wilting point pressure, have to be carefully
evaluated with respect to local grid refinement and the given model parameters. Grid cell
diameters in the soil domain of about 1 cm (one to two orders of magnitude larger than the
root diameter) are common in root-soil simulations (Schröder et al., 2008; Schröder, 2014;
Leitner et al., 2014b). As demonstrated in Section 10.1, such under-resolved soil domains
may lead to significant errors in the predicted transpiration rate during water stress. The
presented water uptake model has several limitations. We recall that we do not consider
active adaption of plants to drought, such as the reduction in axial and radial conductance,
wilting, or stomata closure (Bartlett et al., 2016). Moreover, we note that the applicability
of the Van Genuchten-Mualem soil parameter model and the standard two-phase flow
porous medium model (e.g. inter-connected water phase) have been questioned for very
dry soils (Gray and Hassanizadeh, 1991; Webb, 2000). Finally, we use a linear model for
the transmural transport. However, it has been suggested that the radial root conductivity



10.5 Conclusion and outlook 149

nonlinearly depends on pressure and water content, supported by detailed simulations on
root cross-sections (Heymans et al., 2020).

Root system size In particular for the investigation of the local water distribution, it
is important to sufficiently refine computational grids around roots. Unfortunately, this
restricts the applicability of the presented model to small root systems only (young plants).
This problem can be partially solved by enabling the code for modern high performance
computing architectures. Furthermore, algorithmic improvement similar to the method
presented in Chapter 7 may be suitable to improve efficiency.

Root growth The presented mixed-dimension embedded methods are well-suited for
growth simulations, since complicated re-meshing of the root geometry is avoided. In the
case of drying soil, locally adaptive grids may be necessary. However, efficient strategies,
e.g. based on octree data structures (Burstedde et al., 2011), can be employed since the com-
putational grids for root and soil are independent. The presented locally mass-conservative
continuous growth model is also suitable for the inclusion of feedback from soil properties
on root growth.

Competing effects in the vadose zone The presented model has been used to quali-
tatively analyze competing water transport mechanism in the vadose zone (see Fig. 4.1)
in Section 10.4. The detailed model may be used to provide improved relations for larger
scale models for soil-atmosphere water transport.





11 Software and implementation∗

The following chapter discusses implementation aspects and software abstractions for solving
embedded mixed-dimension problems. For the implementation of mixed-dimension prob-
lems in this work, we developed, in collaboration with Dennis Gläser, Kilian Weishaupt and
others, a general software framework for multi-domain simulations. The software module
is part of the open-source porous media simulator DuMux since version 3.

DuMux is an open-source simulator for flow and transport processes in porousmedia (Flemisch
et al., 2011; Koch et al., 2020b). It provides a sustainable, consistent and modular framework
for the implementation of linear and non-linear flow and transport models and constitutive
relations. DuMux has a focus on multi-component multi-phase flow in porous media, and
model coupling. It is based on the Distributed Unified Numerics Environment (Dune) (Bas-
tian et al., 2008b,a; Bastian et al.), an open-source scientific numerical software framework
for solving partial differential equations. Dune and DuMux are written using modern
C++ programming techniques and C++ template meta programming for efficiency and
description of generic interfaces. The Dune core modules provide, for example, multiple
grid managers implementing a versatile common grid interface (see also Section 11.1), linear
algebra abstractions, the iterative solver template library (Blatt and Bastian, 2007), and
abstractions facilitating parallel computing.

In DuMux, embedded mixed-dimension problems, as understood in the context of this work,
are considered a special category of multi-domain simulations, where several PDE systems,
formulated for two or more domains, discretized with different discretization schemes, or
considering different physical processes, are coupled, for example by the exchange of mass,
momentum, or energy. Different types of such coupled systems are depicted in Fig. 11.1.
In contrast to software that couples different solvers for the simulations of the processes
in the individual domains (Gaston et al., 2009; Bungartz et al., 2016), implementing a
multi-domain module in a single framework allows us to achieve simpler interfaces (no
need to write adapter to different application programming interfaces (APIs)) and efficient
and easy access to subdomain data. Consequently, this permits, for example, the efficient
assembly of the full Jacobian of the coupled system, and the use of monolithic solvers. For

*This chapter is based on Koch et al. (2020b).
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Figure 11.1 –Different types of model coupling in DuMux multi-domain simulations. (a) multi-
physics models (on the same grid), (b) multiple non-overlapping domains with sharp conforming or
non-conforming interface, (c) multiple overlapping domains with different discretizations, (d) con-
forming and non-conforming (embedded) mixed-dimensional domains (1D-2D, 1D-3D, 2D-3D).
The different coupling modes can also be combined. Typical mixed-dimensional simulations also
solve multi-physics problems, or use different discretization schemes in the subdomains. The number
of subdomains is not limited to two. Figure from Koch et al. (2020b).

many of the considered applications and problem sizes, such solvers have been found both
more accurate and faster than iterative coupling methods in preliminary investigations,
see, for example, the work by Beck (2019) on the comparison of iterative and monolithic
solvers in the context of coupling flow and geomechanical processes in porous media. In
comparison with writing a single-purpose code, developing a framework requires more
initial effort to implement, produces possibly less efficient code for specific cases (depending
on the abilities of the implementer), and results in more abstract code that maybe harder
to understand the details to some people. However, there are some striking advantages.
Abstract interfaces and generic programming reduce code duplication, making code easier to
test and maintain. Furthermore, the implementation behind the interface maybe exchanged
for more efficient versions in the future without changing the user code. Once a feature
is implemented, it often becomes directly available to all user codes. An example from
the multi-domain module is the time discretization scheme. The assembly routine for
the explicit Euler scheme in time has been implemented once and is since available in all
multi-domain codes which communicate with a generic assembler interface. Finally, the
generic coupling interface briefly presented in Section 11.2, allows user code to couple any
existing DuMux model to other DuMux models. Hence, although the implementation
initially caused more development than a single-purpose code, we are convinced that it saved
more time in the subsequent code development.
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11.1 Network grids†

The tubular networks discussed in this work have to be discretized in form of a computa-
tional grid. However, the grid is somewhat non-standard as the element dimension is two
dimensions less than the coordinate dimension. Furthermore, the grid does not have a man-
ifold structure, that is, an element can have more than one neighbor element with identical
geometry of the intersection between the elements. For reasons of efficiency, these properties
might not be supported by every grid implementation. While the implementation is not very
challenging, additional data structures and logic are required, resulting in memory and run-
time overhead for users not interested in this feature. To solve this problem,Dune provides a
generic grid interface where the actual implementation is easily swapped for another. For in-
stance, there is YaspGrid, an efficient (low memory and run-time overhead) implementation
of structured grids, or UGGrid, providing a flexible unstructured grid implementation with
local conforming and non-conforming refinement, and adaptive vertical and horizontal load
balancing. The grid module dune-foamgrid is an implementation specialized on surface and
network grids. Within the scope of this thesis, dune-foamgrid has been extended to support
one- and two-dimensional simplex grids embedded in a physical Euclidean space of arbitrary
dimension. Furthermore, its interface has been augmented by functions to grow and shrink
the grid at run-time (add and remove elements). dune-foamgrid is open source and licensed
under the LGPLv3+, or the GPLv2 with a linking exception clause. The git repository is cur-
rently hosted at https://gitlab.dune-project.org/extensions/dune-foamgrid.git
and it is described in Sander et al. (2017). The following brief description is adapted from
this publication.

The FoamGrid class is parameterized with a grid and a coordinate dimension. It can, for
example, be constructed from a mesh file in the Gmsh format (Geuzaine and Remacle,
2009):

1 using namespace Dune;

2 using Grid = FoamGrid <1,3>;

3 auto grid = std::shared_ptr <Grid >(

GmshReader <Grid >:: read("filename.msh") );

Using the Dune grid interface it can conveniently be written into a VTK file (without
additional implementation from the dune-foamgrid side):

†This section is based on Sander, Koch, Schröder, and Flemisch (2017).

https://gitlab.dune-project.org/extensions/dune-foamgrid.git
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1 VTKWriter <Grid:: LeafGridView > vtkWriter(grid ->leafGridView ());

2 vtkWriter.write("grid");

The file can be visualized, for example, with ParaView (Ahrens et al., 2005). User data is
separate from the grid. In order to associate data with grid elements (entities of codimension
0) or vertices (entities of codimension d in a d -dimensional grid), the grid implementation
provides indices (zero-based consecutive integers) for every entity in the grid. Furthermore,
each entity is assigned a unique identifier which is persistent with grid adaptation and grid
growth.

A specialty of dune-foamgrid is the ability to add and remove elements after grid construc-
tion. This makes dune-foamgrid a good candidate for modeling root growth, angiogen-
esis (vessel growth), or fracture growth. The user interface combines ideas from Dune’s
GridFactory and the adaptivity interface. Since data is stored separately from the grid, the
interface also contains functions that help a user to manage the data transfer during growth.

The insertion and removal of elements is a two-step process. New elements and vertices
passed to the FoamGrid object are not directly inserted but queued for later insertion.
Moreover, elements can be marked for removal. Once all desired elements and removal
markers are known, the actual grid modification takes place in a second step.

Queuing elements for insertion and removal is controlled by three public member function
of the FoamGrid class. The first,

1 unsigned int insertVertex(const FieldVector <ctype , dimworld >& x);

queues a new vertex with coordinates x for insertion. The return value of the function is
an index that can be used to refer to the new vertex when inserting new elements. The
index remains fixed until all queued elements are actually inserted in the grid (by the grow
function), but may change during the execution of that function. Elements are inserted
with

1 void insertElement(const GeometryType& type ,

2 const std::vector <unsigned int >& vertices);

mimicking the corresponding member function of the GridFactory class. The argument
type has to be a simplex type, because (currently) dune-foamgrid supports only simplex
elements. The array vertices must contain the indices of the vertices of the new element
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to be inserted. These can be either indices of existing vertices, or new indices obtained as
the return values of the insertVertex function.

Finally, the function

1 void removeElement(const Codim <0>:: Entity& element);

marks the given element for removal.

After all elements have been inserted (or marked for removal), the grid is modified using
the member function

1 bool elementsInserted = grid ->grow(); // true if at least one

element was inserted

While element removal is guaranteed, queuing elements does not assure that the element
will be inserted. New elements are restricted by the fact that Dune grids are hierarchic
objects. The vertices given by the user to form an element are always leaf vertices but may
be contained in different hierarchic levels. However, elements can only be constituted by
vertices of the same level. Therefore, new elements in FoamGrid are always inserted on the
lowest possible level substituting the given vertex by its hierarchic descendants or ancestors.
Note that it is not generally guaranteed that relatives of the given vertices on the same level
can be found. In that case, the element will not be inserted. The function grow will return
true if it was possible to insert at least one element.

After the call to grow, it is possible to check whether a given element has been created by
the last call to the grow function:

1 bool isNew = element.isNew(); // true if element was created

by last growth step

where isNew() is a member function of the interface class Entity<0>, that is elements.
This function is helpful, for example, when setting initial values or boundary conditions
for newly created elements.

The two following functions have been added later (not part of the initial growth interface
described by Sander et al. (2017)):
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1 unsigned int growthInsertionIndex(const Codim <0>:: Entity&

element) const;

2 unsigned int growthInsertionIndex(const Codim <dimgrid >:: Entity&

vertex) const;

They return the index, an element or vertex was assigned at insertion time (its index in the
insertion queue). This is necessary to attach data to new elements at insertion time. With
this feature, data can be stored in a temporary container with the size of the queue during
insertion. After calling grow(), the data can be mapped to the new element or vertex using
its new index in the grid, and the intersection index obtained by the growthInsertionIndex
function.

Each growth step is completed with the call

1 grid ->postGrow ();

removing all isNew markers.

Summing up, growing or shrinking the grid and transferring user data attached to the grid
consists of the following steps.

1. Mark elements for removal and queue new vertices and elements for insertion,

2. transfer all simulation data attached to the grid into an intermediate container mapping
entity identifier to data,

3. call grow(),

4. resize data container and copy data from the intermediate container into the data
container,

5. set initial data at newly created elements and vertices and boundary conditions at
newly formed boundaries,

6. finalize by calling postGrow().

Grid vertices in dune-foamgrid can be moved via the grid interface. There is a public
member function of the FoamGrid class with the definition

1 void setPosition(const Traits ::Codim <dimgrid >:: Entity& vertex ,

2 const FieldVector <ctype , dimworld >& pos);
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that resets the position of a vertex (vertex) to a given position (pos). This feature is essential
to model continuous grid growth with a given time step size without creating lots of small
elements in every step.

The presented features of dune-foamgrid are demonstrated at the example of root growth,
and blood flow in a capillary network using adaptive grid refinement in Sander et al. (2017).
Moreover, dune-foamgrid is used for the computational grid of the network domain in all
numerical simulations in this work.

11.2 Coupling different domains

The idea of DuMux multi-domain simulations is to solve a coupled PDE system, of which
a subset (a subdomain model) can be formulated on a different domain, potentially with
different dimensionality, and may be discretized using different meshes or different spatial
discretization schemes. The framework is designed to minimize software coupling, such that
two existing DuMux models can be coupled without modifications in the core components.
To beminimally invasive, only the Problem class is required to be slightlymodified to become
a sub-problem. The Problem class in DuMux is implemented by the end-user and specifies
initial and boundary conditions, and source terms. Sub-problems define their own initial and
boundary conditions, source terms, and store a pointer to the coupling manager instance.
Boundary and source termsmay depend on quantities of other domains, such as in Eqs. (6.7a)
and (6.7b). For the data transfer, we introduce the concept of a coupling manager which
is represented in the code by classes that implement the CouplingManager interface. A
coupling manager has to provide the information which degrees of freedom in one domain
are coupled to which degrees of freedom in another domain (the coupling stencil). To this
end, every coupling manager has to implement the function shown in Listing 11.1.

Listing 11.1 – Coupling stencil. The member function couplingStencil has to be implemented
by all deriving coupling manager implementations. The template arguments i and j are the indices
of one pair of coupled subdomains. They are deduced from the two index objects domainI and
domainJ, passed as arguments to the function. In case two subdomains are not coupled, the function
is required to return a reference to an empty stencil vector. For domain i, an instance of the element
is passed, for which the residual in the element-wise assembly is to be computed. The function returns
a vector of all indices of degrees of freedom coupled to one of the degrees of freedom associated with
element elementI.
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1 // required member function of every CouplingManager class

2 // return the coupling stencil for element elementI (domain i)

3 // with respect to degrees of freedom in domain j

4 template <std:: size_t i, std:: size_t j>

5 const std::vector <std::size_t >&

6 couplingStencil(Dune:: index_constant <i> domainI ,

7 const Element <i>& elementI ,

8 Dune:: index_constant <j> domainJ) const;

Moreover, the coupling manager has to transfer data between the sub-problems. This
general concept can be used to implement a wide class of coupling schemes. Apart from
the simulation in this thesis the multi-domain framework of DuMux has been successfully
applied to flow and transport models for fractured rock systems (Gläser et al., 2017b; Gläser
et al., 2019), coupled porous medium flow and atmosphere flow (Darcy-Navier-Stokes) at
the soil surface (Schneider et al., 2020), and for a model coupling a pore-network model to
a Navier-Stokes model (Weishaupt et al., 2019). The implementation of the different mixed-
dimension embedded schemes presented in this work, only differ in the implementation of
the CouplingManager class but share the same code for temporal and spatial discretization
and the mathematical models in the sub-domains.

11.3 Intersecting grids

Finding the coupling stencils usually involves intersecting two grids. For this purpose,
we implemented efficient grid intersection algorithms based on axis-aligned bounding box
volume hierarchy data structures (Ericson, 2004; Massing et al., 2013) computed for Dune

grids. Here, we compute this spatial data structure of a given computational grid with
elements K using a top-down algorithm (Ericson, 2004). To this end, we first compute
an axis-aligned bounding box (AABB) of each element K . Using this information, the
AABB for the entire grid can be computed (root node). The set of elements is then split
in two halves (children nodes) along the longest axis of the root AABB, where the spatial
position of each node is determined by the AABB centroid. In a recursive algorithm, the
AABB is computed for each child and the set of elements belonging to the child node are
treated in the same procedure. The recursion ends whenever an AABB only contains a
single element. The different levels of AABBs for a simplex grid are shown in Fig. 11.2.
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The result is a binary tree structure of AABBs allowing for efficient intersection detection.

Figure 11.2 – Axis-aligned bounding box (AABB) volume hierarchy. Unstructured simplex grid.
The individual images show the 0th (root) and 1st level (left), the 2nd level (middle), and the 3rd level
(right) of the binary tree structure. Bounding boxes containing only one entity are also called the
leaf nodes of the AABB tree.

For example, to determine the element(s) intersecting with a given point, we first check if
the point intersects the root bounding box (cheap intersection test). If the point intersects,
we can step-wise eliminate half of the cells by checking the intersections with the children
nodes. If a leaf node AABB intersects, a so-called primitive test (expensive intersection
test) has to be performed, where the point is intersected with the actual geometry of the
cell. The resulting intersection algorithm has logarithmic complexity. Likewise, two AABB
trees can be intersected recursively. Primitive intersections only need to computed if leaf
AABBs intersect. The implementation of the AABB tree data structure in the DuMux

class BoundingBoxTree‡ is based on the implementation in FEniCS (Massing et al., 2013).
Most of the primitive intersection algorithms are based on the suggestions by Ericson
(2004). We can currently intersect 1D and 2D grids with 1D, 2D, and 3D grids, where
the coordinate dimension is determined by the grid with the highest dimension. The grid
intersection user interface is that of the MultidomainGlue class. The interface is similar to
that of the dune-grid-glue (Bastian et al., 2010) module which implements an advancing
front algorithm instead of an AABB-tree-based algorithm. In a comparison between the
two implementations, we found that the AABB tree was more reliable and efficient for
intersecting network grids with embedding background grids. Listing 11.2 shows how to
intersect two grids for a DuMux multi-domain simulation, and how to iterate over the
intersection objects.

‡see dumux/common/geometry/boundingboxtree.hh in the DuMux git repository hosted at https:
//git.iws.uni-stuttgart.de/dumux-repositories/dumux.git

https://git.iws.uni-stuttgart.de/dumux-repositories/dumux/blob/master/dumux/common/geometry/boundingboxtree.hh
https://git.iws.uni-stuttgart.de/dumux-repositories/dumux.git
https://git.iws.uni-stuttgart.de/dumux-repositories/dumux.git
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Listing 11.2 – Intersection of two grid geometries. A grid geometry is a DuMux-specific wrap-
per class around Dune grids, see Koch et al. (2020b). Here, we intersect the grid geometries
(lowDimGridGeometry and bulkGridGeometry) The intersection objects (simplices) can be iterated
over using a range-based for loop. Each intersection has geometry information and connectivity
information (which elements in grid A and B do I belong to).

1

2 // intersect two grid geometries
3 // we choose domain (first argument) = lowDim and target (second argument) = bulk
4 // see <dumux/multidomain/glue.hh >
5 // constructs AABB trees if not constructed yet
6 // intersects AABB trees and computes intersection objects
7 const auto glue = makeGlue(lowDimGridGeometry , bulkGridGeometry);
8

9 // interate over all intersections
10 for (const auto& is : intersections(glue))
11 {
12 // the element index of the lowDim grid element of this intersection
13 // there is only one such element
14 const auto& domainEntity = is.domainEntity (0);
15 const auto domainIdx = lowDimGridGeometry.elementMapper ().index(domainEntity);
16 std::cout << "Element␣of␣network␣grid␣with␣index␣" << domainIdx
17 << "␣intersects␣with␣bulk␣grid␣elements:";
18 // there might be multiple bulk elements associated with this intersection
19 for (unsigned int i = 0; i < is.numTargetNeighbors (); ++i)
20 {
21 // the element index of the bulk element of this intersection
22 const auto targetIdx =

bulkGridGeometry.elementMapper ().index(is.targetEntity(i));
23 std::cout << "␣" << targetIdx;
24 }
25 // get the geometry of the intersection
26 auto isGeo = is.geometry ();
27 std::cout << ’\n’ << "The␣intersection␣volume␣is␣" << isGeo.volume ()
28 << "The␣intersection␣is␣a␣" << isGeo.type()
29 << "␣with␣" << isGeo.corners () << "␣corners" << ’\n’;
30 }

Finally, we note that there are other types of bounding geometries, as well as other types of
spatial data structures for fast intersection detection, that may be faster for a specific setting.
For an overview, we refer to Ericson (2004). However, in the numerical experiments in this
work, the computational time and the memory spent on the grid intersection calculation
is negligibly small in comparison with other parts of the simulation such as assembly and
linear solver execution. This is even true for simulations with growing roots, where the
grid intersection is recomputed in every time step.
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11.4 Assembly and linear solver

DuMux provides an assembler class for multi-domain models, which assembles the discrete
PDE system in residual form
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where Ai is the Jacobian of the discrete PDE system for subdomain i , and Ci j is the coupling
Jacobian with derivatives of residuals of domain i with respect to degrees of freedom of
domain j , Ci j =

∂ ri
∂ u j

. The assembler class and the matrix class are generic, so that the
sub-vectors ui and sub-matrices Ai can themselves have a block structure, and support an
arbitrary number of subdomains. The block structure can be exploited, for example, for
constructing preconditioners for a monolithic system, or to implement schemes based on
algebraic decomposition, where the subdomain systems are solved successively in an iterative
algorithm. For the numerical examples in this thesis, two preconditioned iterative solvers
have been implemented using the generic solver interfaces of dune-istl (Blatt and Bastian,
2007). A left-preconditioned version of the system in Eq. (11.1) is given by

P−1Ax = P−1 r, (11.2)

where P−1 is an approximation of A−1, for which a matrix-vector product, P−1v, is cheap
to compute. In the applications in this work, we use a left-preconditioned stabilized bi-
conjugate gradient solver (Saad, 2003, Chapter 7) with block-diagonal preconditioners of
the form

P−1 =
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where P−1
i (Ai ) is an approximation of the A−1

i , constructed either by an incomplete LU-
factorization of the matrix Ai using Ai ’s sparsity pattern (zero fill-in) (Saad, 2003, Chap-
ter 10), or the algebraic multigrid (AMG) preconditioner implemented in dune-istl. Other
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preconditioned solvers for mixed-dimension embedded systems are described by Kuchta
et al. (2019); Cattaneo and Zunino (2014).

11.5 Sustainable development and quality assurance§

We close this chapter with a comment on sustainable software development and quality
assurance in research software. Together with D. Kempf, we assembled typical quality
characteristics expected from scientific software and software frameworks in Kempf and
Koch (2017):

• Correctly implemented code: the code is expected to be implemented correctly with
respect to syntax and functionality of features. It includes e.g. that the source code
compiles with all compilers satisfying the communicated minimum requirements.
Implementation correctness also includes run-time criteria like the absence of mem-
ory leaks and race conditions and proper error handling (e.g. through the use of
exceptions).

• Numerically correct algorithms: the implemented algorithms should function as
intended, namely reproduce results expected from theory. Often, there are well-known
mathematical properties of an implemented algorithm that have to be satisfied.

• Trustworthy results: models and simulations built with the numerical software
framework should produce trustworthy results, in the sense of correctly modeling
what experiments or experts predict. Note that this is not solely a task for the
framework but also for the scientist to use it as intended.

• Good documentation, maintainability, testabilty: a high coverage of code docu-
mentation facilitates code re-usage and also testing.

• Flexibility: in order to have many possibilities of combining features, the implemen-
tation and interfaces need to be designed with a certain level of abstraction. This is a
key competence of numerical software frameworks.

• Sufficient performance and scalability.
§This section is based on Kempf and Koch (2017).
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When writing research code, such as for this thesis, it is often difficult to write software
satisfying all criteria, given the limited scope of a thesis project. However, we advocate
implementing such code by using and contributing missing features to existing research
software frameworks. The scientist usually profits from already implemented features (direct
reuse) or examples for similar examples (reuse after adaption), which are already tested for
quality criteria. Moreover, the software is often more easily understood by others (using
abstractions and conventions of the framework), in particular those peers already working
with the same framework. This increases the chance of re-usage by others which also always
means testing by others. Additionally, frameworks with larger communities often feature
some type of support (mailing list, issue tracker) and a transparent development process.
That means that contributions will be discussed, vetted, and tested by others decreasing the
chance of possible software bugs. Frameworks often contain a type of testing infrastructure
and software testing support for assessing quality continuously. These testing capabilities
can be used to set up tests for user software as well. Finally, if software is written in a flexible
and more abstract way, it is much easier to adapt certain aspects of the simulations in the
research. For example, in Koch et al. (2018b) we demonstrate that by the use of the DuMux

framework it is simple to change the governing equations for the flow simulation in the
soil. Through the abstractions of the new multi-domain framework, we were able to run
simulations with different coupling methods in Chapter 7, by only changing the coupling
manager class described in Section 11.2. Likewise, a first prototype implementation for
the new numerical method described in Chapter 7 could be realized in a single day, by
implementing a different coupling manager.

On the other hand, the flexibility of research software frameworks makes testing challenging.
This is mostly due to the high number of feature combinations possible. The number of
possible parameter combinations, model coupling possibilities, and possible PDEs is infinite.
That is why typical approaches from the software engineering community such as variability
models in Software Product Line Engineering (Pohl et al., 2005) are especially difficult to
apply in the context of numerical research software (Remmel et al., 2011, 2012; Remmel,
2014; Kempf and Koch, 2017). In Kempf and Koch (2017), as an alternative approach, we
design a (system-)testing module at the example of Dune with the following characteristics:

• testing infrastructure integrated in the existing development workflow of Dune

• writing a new system test is as simple as writing a unit test

• the possible combinations are reduced by expert knowledge of the developer
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• high coverage is realized by the combination of many system tests

• testing infrastructure is also available in user modules (such as DuMux)

The efforts resulted in the Dune module dune-testtools, which is as such part of the
Dune environment.

Finally, we note that the code for most of the numerical examples in this work are publicly
available as so-called DuMux-pub modules. These modules are separate Dune modules
which can be installed in the same way as DuMux. Installation instructions are given in
the git repository of every module. The hyperlinks to these git repositories can be either
found at the end of Chapters 7 to 9 and after each examples in Chapter 10. Additionally, an
example for a root water uptake simulation, and the tissue perfusion case with an analytic
solution from Chapter 7 are included in the test suite of DuMux, since version 3.0 (Koch
et al., 2018a), and are continuously tested against reference solutions in nightly builds.
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12.1 Summary

In this work, we have investigated numerical aspects and applications of mixed-dimension
embedded models for porous media systems with embedded tubular network systems. A
mathematical model for biological tissue perfusion with discretely resolved microvasculature
has been presented in Chapter 3. Amodel describing root water uptake and growth and other
fluid-mechanical processes in the vadose zone has been developed in Chapter 4. Finally, well
modeling has been discussed in Chapter 5. All models are based on a spatial model reduction
technique describing flow in the network system by cross-section averaged quantities with
a single spatial dimension per segment. The straight segments are coupled at bends and
bifurcation by applying physical constraints such as mass conservation. In each application,
mass transport from the network domain into the embedding porous domain is an essential
process. In Chapter 6, several existing coupling methods have been summarized in a general
mathematical form by introducing smoothing kernels to handle the dimensional gap. A
new method for linear and elliptic mixed-dimension embedded models has been developed
in Chapter 7. We can show numerically, that the method exhibits improved approximation
qualities of the exchange fluxes between porous and network compartment for coarse grid
resolutions. The robustness and numerical accuracy has been investigated in a series of
numerical experiments for isotropic and anisotropic, homogeneous porous media. The
extension of the method for anisotropic porous media has been presented for the case of well
modeling in Chapter 8. Furthermore, the method has been compared to several existing
approaches. In Chapter 9, we have developed an MRI model on the capillary scale. Being
formulated on the same scale, the MRI model and the mixed-dimension embedded tissue
perfusion model could be combined to model the magnetic resonance of a small brain tissue
sample. The integral MR signal from this sample has been shown to match clinical MRI
data from multiple sclerosis patients. To this end, the model has been parameterized using
Bayesian parameter inference and classical optimization techniques. It has been shown
that the diffusive permeability of a contrast agent through the capillary wall is essential to
distinguish between active and inactive lesions. In Chapter 10, we showed simulations of
root water uptake and growth. Furthermore, we argue that the presented mixed-dimension
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embedded model only produces reliable results for high permeable and wet soils, due to the
large local pressure gradients occurring in dry soils. However, it remains unclear whether
such large gradients occur in real systems or result from shortcomings in the state-of-the-art
uptake model. All simulations have been performed using a unified software framework
integrated in the open-source simulator DuMux. Software aspects of mixed-dimension
embedded models have been discussed in Chapter 11. The software components are generic,
so that the framework is useful beyond the applications presented in this work. Finally, we
have briefly discussed aspects of sustainable research software development.

12.2 Outlook

Nonlinear mixed-dimension problems Mixed-dimension embedded problems, as pre-
sented in this work (1D-3D), often lead to large local gradients for relevant physical quan-
tities. Consequently, these gradients in vicinity of the embedded networks require fine
grid resolutions in the porous domain. Methods to mitigate this problem, including the
methods developed in this work, exploit the fact that the involved equations are linear or
can be linearized. However, such methods might not be suitable for nonlinear problems.
For example, the soil permeability model for the root water uptake problem is strongly
nonlinear. To simulate dry soils efficiently (with coarse computational grids), suitable flux
correction methods have to be developed and analyzed.

Bifurcations Both the models for flow and transport in the network domain and the
models for mass and energy exchange between network and porous medium are commonly
developed for straight line segments. However, bifurcation regions, depending on their size
relative to the distance between bifurcations, may significantly alter the flow field for some
applications. Moreover, the analysis in Chapter 7 showed that the predicted exchange flux
differs at bifurcations for different numerical methods. The local differences did not show a
strong effect on the global mass balance for the presented scenarios. However, it is still to
be investigated, whether this holds true for all applications.

MRI scale dependence The interpretation of MRI data is resolution dependent, which is
of particular importance due to the availability of higher magnetic field strength (Ladd et al.,
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2018). One aspect of this problem could be the heterogeneity of the vascular network. In this
work, only a small tissue sample with a single vascular network geometry was investigated.
However, it remains unclear if the estimated parameter values are independent of the spatial
scale. Therefore, the study needs to be repeated for different vascular geometries and tissue
sample sizes. Furthermore, the comparison with clinical data acquired with differently
parameterize MR sequences is necessary to evaluate the robustness of the model.

Root mass balance and growth The root growth algorithm does currently not consider
the nutrient demand of growth. Hence, root growth is not affected, if no nutrients are
present or water and nutrient uptake is difficult due to dry soil conditions. Therefore, the
current model is restricted to growth under optimal supply conditions. Moreover, fine local
grid resolutions in the case of growing root systems require locally adaptive grids. This is
a straightforward extension of the presented model by using the adaptive grid capabilities
of the Dune grid interface, and a mass-conserving interpolation strategy between different
grid levels.

Parallelization The analysis of many mixed-dimension problems demands large compu-
tational domains. For example, to investigate the scale dependence of the developed MRI
model, time-dependent simulations with millions of degrees of freedom become necessary.
Other examples include root water uptake for mature root systems, and the interaction
of several competing root systems in a field. While parallel algorithms were used in the
parameter inference problem in Chapter 9, the mixed-dimension solver developed in this
work is purely sequential. To leverage the computing power of modern high performance
computing infrastructure, the code has to be parallelized. Parallelization is non-trivial since
two or more non-matching computational grids are involved. For example, the distributed
memory parallelization model in Dune (DuMux) is grid-based. Communication patterns
via intersections of multiple grids are yet to be implemented* and it may be difficult to
achieve good load balance.

*First steps have been undertaken with the Dune module dune-grid-glue (https://gitlab.
dune-project.org/extensions/dune-grid-glue)

https://gitlab.dune-project.org/extensions/dune-grid-glue
https://gitlab.dune-project.org/extensions/dune-grid-glue




A Appendices

A.1 Dimensional analysis of a simplified tissue system

We want to analyze which tissue compartment is limiting for fluid flow across the vessel
membrane and in the extra-vascular space. To this end, consider the dimensionless equation

−∇∗ · (Θm∇
∗ p∗m) =Θω∆p∗δ∗Λ, (A.1)

cf. Eq. (6.8) with a given constant pressure drop across the capillary wall, ∆p∗ = 1. We
consider a circular cross-section perpendicular to a single vessel with radius rv in a cylinder
of radius lm. A dimensionless radius is given by r ∗ = l−1

m r . Then, p∗ admits a radially
symmetric analytical solution of the form

p∗(r ∗) = p∗m,W−
Θm

Θω

1
2π

ln
�

lm
rv

�

, (A.2)

where we assumed that the flow rate over the vessel cross-section wall is equal to the flow rate
over the circle with radius lm (e.g. an fluid emitting arterial capillary vessel is symmetrically
surrounded by venous capillary vessels that absorb the emitted fluid), and the dimensionless
pressure on the vessel surface is p∗m,W. The ratio of the pressure drop in the extra-vascular
space to the pressure drop across the capillary wall is given by

p∗m,W− p∗(1)

∆p∗
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. (A.3)

For the parameter values given in Section 6.2.1, we obtain values between 0.1 (continuous
capillaries) and 100 (fenestrated capillaries). Hence, in healthy brain tissue the capillary wall
is limiting the fluid exchange, while for tumor tissue the interstitium is limiting. Finally, we
note that due to the logarithmic pressure profile, the flow velocities v close to the vessel are
much higher than velocities at some distance. For example,

v(rv l−1
m )

v(1)
=
∇p∗m(rv l−1

m )
∇p∗m(1)

=
lm
rv
≈ 17. (A.4)
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A.2 Dimensional analysis of a simplified root system

We analyze the ratio of the axial pressure drop along the root xylem to the pressure drop
across the root cortex for different ratios ΘωΘ−1

v . To this end, we consider the dimensionless
equation

∂ 2 p∗v
∂ s ∗2

=
Θω
Θv
∆p∗, (A.5)

cf. Eq. (6.8), with the dimensionless pressure drop across the root cortex ∆p∗ = (p∗v − p∗m),
for a given dimensionless soil pressure p∗m. We assume that we have a single straight vertical
root with the length lv such that the dimensionless coordinate s ∗ ∈ [0,1], and prescribe
∂ p∗v/∂ s ∗ = γ with constant γ at the root collar ( s ∗ = 1) and ∂ p∗v/∂ s ∗ = 0 at the root tip
( s ∗ = 0) as boundary conditions.

Case 1: Constant pressure drop across the root cortex

We assume that ΘωΘ−1
v ∆p∗ is constant. Then, Eq. (A.5) admits the analytical solution

p∗v =
1
2
γ s ∗2 and γ =

Θω
Θv
∆p∗. (A.6)

We can relate the mean pressure gradient along the root to the mean pressure drop across
the root cortex

∂ p∗v
∂ s∗

∆p∗
=

∫ 1
0
∂ p∗v
∂ s∗ ds ∗

∆p∗
=

1
2
Θω
Θv

. (A.7)

Consequently, for large ΘωΘ−1
v the pressure drop in the root is much larger than the pressure

drop across the root cortex. For small ΘωΘ−1
v the largest pressure drop is across the root

cortex.

Case 2: Constant soil pressure

A second scenario can be constructed if the dimensionless soil pressure p∗m is assumed
constant (e.g. for highly permeable soils). Then, ∆p∗ = (p∗v − p∗m) is a linear function of
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the dimensionless root (xylem) pressure, and Eq. (A.5) admits the analytical solution

p∗v =C (exp (βs ∗)+ exp (−βs ∗))+ p∗m, (A.8)

with some constant C (which could be determined using the root collar boundary condition)
and β =

Æ

ΘωΘ
−1
v . Then, the ratio of the mean pressure gradient along the root to the

mean pressure drop across the root cortex is
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Note that

f (β)≈




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β for β> 10
1
2β

2 for β< 0.1
and lim

β→0
= 0, (A.10)

so that for small ΘωΘ−1
v the result is the same as for Case 1 Eq. (A.7). This result is

sensible, since for small ΘωΘ−1
v the root pressure barely changes with s ∗, so that ∆p∗ can

be considered constant.

A.3 Additional vessel network data

The vessel network used in Section 7.3.4 is described in Table A.1.
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Table A.1 – Vessel network data. Specifications for the numerical experiment in Section 7.3.4. First
two columns list vertex indices and coordinates in µm. Boundary conditions are supplied, if the
vertex is a boundary vertex. 4th and 5th columns list the segment connectivity and the corresponding
segment radius in µm.

index coordinates (µm) boundary condition segment radius (µm)

0 (20, 20, -10) v = 1.0mms−1 (0, 1) 3.5
1 (20, 20, 50) - (1, 2) 3.5
2 (20, 20, 110) p̃v,out = 2300Pa (3, 4) 3.0
3 (60, -10, 20) v = 0.8mms−1 (4, 5) 3.0
4 (60, 20, 20) - (5, 6) 3.0
5 (70, 40, 20) - (6, 7) 3.0
6 (80, 60, 20) - (8, 9) 3.0
7 (110, 60, 20) p̃v,out = 3400Pa (9, 10) 3.0
8 (80, 110, 80) v = 0.8mms−1 (10, 11) 3.0
9 (80, 80, 80) - (11, 12) 3.0
10 (80, 70, 60) - (13, 14) 3.0
11 (20, 80, 20) - (14, 15) 3.0
12 (20, 80, -10) p̃v,out = 2300Pa (15, 16) 3.0
13 (60, -10, 80) p̃v,out = 3400Pa (16, 17) 3.0
14 (60, 20, 80) -
15 (40, 70, 80) -
16 (20, 80, 80) -
17 (-10, 80, 80) v = 0.8mms−1

A.4 Rotation of coordinates in well-bore ellipse axes

In this section, we derive a rotation operation such that the first and second coordinate are
aligned with the major and minor axis of the well-bore ellipse and third axis is a normal
vector on the ellipse plane. To determine the corresponding rotation matrix R̃, we need to
characterize this well-bore ellipse. The well cylinder in x-coordinates is given by

xTΨx = r 2
ω, Ψ = I −ψψT . (A.11)

After stretching, the coordinate system can be rotated with the rotation matrix R so that the
third axis is aligned with the well direction. Then, projecting into the plane perpendicular
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to the well direction yields the well-bore ellipse equation

v̂T E v̂ = v̂T P T RS̃−1Ψ S̃−1RT P v̂ = r 2
ω, S̃−1RT P v̂ = x (A.12)

in v̂-coordinates, where

R= 2
(e3+ψ

′)(e3+ψ
′)T

(e3+ψ
′)T (e3+ψ

′)
− I , e3 =









0

0

1









, P =









1 0

0 1

0 0









. (A.13)

The rotation matrix R can be derived using Rodrigues’ rotation formula as shown in Ap-
pendix A.5. The length of the major and minor ellipse axis are found as a = rwγ

−1/2
1 and

b = rwγ
−1/2
2 , where γi are the eigenvalues of E , and the axis orientations are given by

ν1 = P ν̂E ,1, ν2 = P ν̂E ,2, where ν̂E ,i denote the corresponding eigenvectors of E . We assume
that the eigenvalues and eigenvectors are sorted such that a ≥ b , and oriented such that
ψ′ = ν1× ν2. Finally the desired rotation is given by

V :R3→R3, u 7→ v = R̃u = R̂T RT u, (A.14)

where
R̂=

�

ν1

�

�

�

�

ν2

�

�

�

�

ψ′
�

(A.15)

is rotating about the well direction axis such that the coordinate system is aligned with the
principal ellipse axes.

A.5 Rodrigues’ rotation formula

We want to rotate a given basisB = {e1,e2,e3} such that e3 is aligned with a vector ψ. The
Rodrigues’ rotation formula (Dai, 2015) describes a rotated vector x rot obtained by rotating
a vector x by the angle θ about an axis given by the unit normal vector k

x rot = x cosθ+(k× x) sinθ+ k(k · x)(1− cosθ). (A.16)
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The desired rotation can be described by a rotation by an angle θ = π about the axis
k = (e3+ψ)

2|e3+ψ|
,

x rot,π = 2k(k · x)− x . (A.17)

Equation (A.17) can be expressed in matrix notation as x rot,π = Rx with

R=
�

2kkT − I
�

, R= RT = R−1, det(R) = 1. (A.18)

A.6 Properties of the conformal mapping
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Figure A.1 – Visualization of the (inverse) Joukowsky transformation. Exemplarily, for a = 1.5,
b = 0.9, and thus f = 1.2. The points on the left are shown on the complex z-plane, the points on
the right are shown in the complex w-plane, and w = T (z). The inner circle on the right image has
radius f . The other circles have radii of r◦ = a+ b and 3r◦. Reprinted with permission from Koch
et al. (2020c), c© 2020 Elsevier Inc.

To motivate a suitable kernel function for anisotropic problems, we first have a closer look
at the properties of the employed Joukowsky transformation. The effect of the mapping
T , Eq. (8.9), is shown in Fig. A.1. Points on the exterior of a line on the real axis between f
and − f are mapped onto the exterior of a circle with radius f . The ellipse with major axis a
and minor axis b is mapped onto a circle with radius r◦ = a+ b . Going further away from
the well, the deformation due to the mapping is less and less pronounced. This matches the
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expectations for the physical flow problem, since isobars at large distance from an elliptical
well-bore become increasingly circular in isotropic media.

The inverse transformation is given by

T −1 :C→C, w 7→ z =
1
2

�

w +
f 2

w

�

, |w|> f , (A.19)

where the restriction on |w| is necessary to obtain a one-to-onemapping. The transformation
T −1 can equally be interpreted as an R2→R2 mapping. The Jacobian of the transformation
T −1 for z = x + i y and w = u + i v has the form

JT −1 =





∂ x
∂ u

∂ x
∂ u

∂ y
∂ v

∂ y
∂ v



=





η ε

−ε η



 , (A.20)

which follows from the Cauchy–Riemann equations (Rudin, 1987). Since the transformation
can be viewed as the composition of a scaling and a rotation, it is angle-preserving. The
transformation is associated with a spatially dependent volume deformation characterized
by the determinant of JT −1 . Furthermore, it can be shown that the Laplace operator behaves
as follows under the transformation z = T −1(w),

∆w p =
∂ 2 p
∂ u2

+
∂ 2 p
∂ v2

=
�

�

�

�

∂ T −1

∂ w

�

�

�

�

2

∆z p = |det(JT −1)|∆z p (A.21)

by computing the derivative of the real and the imaginary part of p separately, applying the
chain rule and the Cauchy–Riemann equations, as shown for completeness in Appendix A.7.
From Eq. (A.21) follows that

|det(JT −1)|−1∆w p =∆z p, (A.22)

for the transformation w = T (z). The determinant can be explicitly computed, us-
ing Eq. (A.21) and complex differentiation (shown in Appendix A.9) as

|det(JT −1)(w)|=
�

�

�

�

∂ T −1

∂ w

�

�

�

�

2

=
�

�

�

�

∂ z
∂ u

�

�

�

�

2

=
1
4

�

1+
f 4− 2 f 2ℜ(w2)

|w|4

�

:= Φ−1
J , (A.23)
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Figure A.2 –Determinant of the Jacobian. For the transformation z = T −1(w) for |w|> f where
f 2 = a2− b 2 and a > b . Larger volume deformations only occur very locally in vicinity of the well
radius r◦ = a + b and quickly converge to 0.25 with larger distance to the well. Reprinted with
permission from Koch et al. (2020c), c© 2020 Elsevier Inc.

where ℜ(w2) is real part of w2, and |w| the absolute value of w. We note that ΦJ quickly
converges to the value 4 with increasing |w|, that is with increasing distance from the well.
The function Φ−1

J is plotted in Fig. A.2 exemplarily for f = 1.2.

A.7 Transformation of the Laplace operator

The Joukowsky transformation is a complex function z = T −1(w) that can be decomposed
in its real and imaginary parts, x = ℜ(z) and y = ℑ(z). Furthermore, let u = ℜ(w) and
v = ℑ(w). As a conformal mapping, z satisfies the Cauchy Riemann equations (Nehari,
1975)

∂ x
∂ u
=
∂ y
∂ v

and
∂ x
∂ v
=−

∂ y
∂ u

. (A.24)
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The Jacobian of the transformation JT −1 is given by Eq. (A.20). We investigation the effect
of the transformation on the Laplace operator

∆w p =
∂ 2 p
∂ u2

+
∂ 2 p
∂ v2

, (A.25)

where p is analytic in Ωw . Applying the chain rule yields

∂ p
∂ u
=
∂ p
∂ x

∂ x
∂ u
+
∂ p
∂ y

∂ y
∂ u

, (A.26)

∂ 2 p
∂ u2

=
∂ p
∂ x

∂ 2x
∂ u2

+
∂ p
∂ y

∂ 2y
∂ u2

+
∂

∂ x

�

∂ p
∂ u

�

∂ x
∂ u
+
∂

∂ y

�

∂ p
∂ u

�

∂ y
∂ u

(A.27)

=
∂ p
∂ x

∂ 2x
∂ u2

+
∂ p
∂ y

∂ 2y
∂ u2

+
∂ 2 p
∂ x2

�

∂ x
∂ u

�2

+ 2
∂ 2 p
∂ x∂ y

∂ x
∂ u

∂ y
∂ u
+
∂ 2 p
∂ y2

�

∂ y
∂ u

�2

.

Analogously, we arrive at a similar expression for ∂ 2 p/∂ v2. Using Eq. (A.24) and

∂ 2y
∂ v2

=
∂

∂ v

�

∂ y
∂ v

�

(B.1)=
∂

∂ v

�

∂ x
∂ u

�

=
∂

∂ u

�

∂ x
∂ v

�

(B.1)=−
∂ y2

∂ u2
,

∂ 2x
∂ v2

=−∂
2x

∂ u2
, (A.28)

we find that
∂ 2 p
∂ u2

+
∂ 2 p
∂ v2

=
�

�

∂ x
∂ u

�2

+
�

∂ y
∂ u

�2��∂ 2 p
∂ x2

+
∂ 2 p
∂ y2

�

. (A.29)

With the complex derivative of T −1 (Rudin, 1987),

∂ T −1

∂ w
=
∂ T −1

∂ u
=
∂ x
∂ u
+ i

∂ y
∂ u

and
�

�

�

�

∂ T −1

∂ w

�

�

�

�

=

√

√

√

�

∂ x
∂ u

�2

+
�

∂ y
∂ u

�2

. (A.30)

From the determinant of the Jacobian of the transformation, we find

det(JT −1) =
∂ x
∂ u

∂ y
∂ v
− ∂ x
∂ u

∂ y
∂ v
=
�

∂ x
∂ u

�2

+
�

∂ y
∂ u

�2

=
�

�

�

�

∂ T −1

∂ w

�

�

�

�

2

, (A.31)

using Eq. (A.24). Hence,

∆w p =
�

�

�

�

∂ T −1

∂ w

�

�

�

�

2

∆z p = |det(JT −1)|∆z p, (A.32)

which also proofs that any harmonic function (∆ f = 0) yields another harmonic function
after a coordinate transformation with a conformal mapping.
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A.8 Source scaling factor in w-coordinates

We want to construct a pressure solution in w-coordinates such that the total mass flux
over the well boundary matches the specified boundary condition in x-coordinates. Hence,
the total mass flux over the boundary of a well segment with length L̂ in w-coordinates
needs to match the total mass flux over the boundary of a well segment with length L in
x-coordinates. A q̂ has to be chosen such that qL= q̂ L̂. A relation between L and L̂ can
be derived by looking at two related volume integrals. The Joukowsky transformation
only affects the two-dimensional well-bore plane such that length L̂ of a well segment is not
affected. The volume of that well segment in v -coordinates (an elliptic cylinder) is given by

Vv =πab L̂. (A.33)

The volume of the same well segment in x-coordinates (a circular cylinder with slanted
parallel planar elliptic caps) is given by

Vx = |ψ
T S̃ R̃T e3||Eω,x |L=πr 2

ωL, (A.34)

where |Eω,x | is the area of the well-bore ellipse described by Eq. (A.12) transformed to
x-coordinates (as shown in Fig. 8.3) and the last equality uses the fact that the integral can
be transformed to an integral over a regular cylinder with radius rω and length L. From the
transformation theorem, we know that Vx =Vv det(S̃). As the parameter kI is chosen such
that det(S̃) = 1,

L̂= L
r 2
ω

ab
, (A.35)

and if the source term is chosen as

q̂ = q
ab
r 2
ω

:= qζ , (A.36)

then qL= q̂ L̂.
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A.9 Determinant of the Joukowsky transformation

In Appendix A.7, we show that |det(JT −1)|=
�

�

�

∂ z
∂ w

�

�

�

2
. Using complex differentiation,

∂ z
∂ w
=
∂ z
∂ u
=
∂

∂ u

�

1
2

�

w +
f 2

w

��

=
1
2

�

1−
f 2

w2

�

=
1
2

�

1−
f 2w2

|w|4

�

, (A.37)

where we used the identities w−1 = w|w|−2, w denoting the complex conjugate of w, and
w2 = w2. Furthermore,

ℜ
�

∂ z
∂ w

�2

=
1
4

 

1−
2 f 2ℜ

�

w2
�

|w|4
+

f 4ℜ
�

w2
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|w|8

!

, (A.38)
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w2�2 = |w|4, (A.39)

such that
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. (A.40)

A.10 Convergence rates for different anisotropy ratios

The following table contains the convergence rate data corresponding to Fig. 8.5 in Chapter 8.

Table A.2 – Convergence rates for Eq for different anisotropy ratios α.

hmax

α 17.32 m 8.66 m 4.33 m 2.17 m

1 2.0545 2.0724 1.9454 -
10 1.7715 2.0184 2.0763 -
50 1.5904 1.9747 2.0925 -
100 1.5970 1.9666 2.1218 -
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A.11 Convergence study in space and time

We present a numerical converge study in space and time for the model presented in Chap-
ter 9. As there is no analytical solution to the problem, we use the solution computed with
a very fine resolution in space and time as a reference for a grid convergence study. We
compute errors with respect to the fine scale solution by mapping the coarse scale solution
to the finest grid. Let R|Mn | be the solution space on gridMn, where |Mn| is the number of
cells on grid level n, andMn is a set of hexahedra, Ki , such thatMn =

⋃

i Ki is a discrete
representation of Ω. The levels are constructed by dividing each hexahedron on level n into
8 hexahedrons on level n+ 1, such that ∀L ∈Mref, there exists exactly one K ∈Mn such
that L⊂K , whereMref denotes the reference grid. The mapping from coarse to fine scale,
I , can be defined as

I := {IL}L∈Mref
, with IL :R|Mn | 7→R,IL(u) = uK . (A.41)

The relative error of the physical quantity u ∈ {pt, xt}, between reference and a solution on
a coarser grid, uref, u, respectively, is defined as

eu =

s

∑

L∈Mref

|L|
�

IL(u)− uref,L

�2

È

∑

L∈Mref

|L|u2
ref,L

. (A.42)

In time, we define the maximum relative error over all time steps t i , i ∈ {0, · · · ,τ}, where τ
is the number of time steps, as

eu,∞ =max
�

e i
u

�

. (A.43)

Finally, we measure the difference of the signal-time curve, S, to the reference curve, Sref,
computed with the finest spatial and temporal discretization, in the following norm

eS = ||S − Sref||∞ =max |S i − S i
ref| (A.44)

The convergence rates for a given error e are computed from one refinement level n to the
next as

rate=
ln en+1− ln en

ln νn+1
max − ln νn

max
, (A.45)
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where νmax is the respective maximum discretization length. In space, νmax is defined as the
maximum edge length of all elements, hmax. When refining, the vessel domain grid is also
refined by bisecting large elements until the maximum element length is smaller than hmax.
In time, νmax is defined as the maximum time step size. The time step size, ∆t , is chosen to
be small around the time when the contrast agent front reaches the domain, and increasingly
larger as the process becomes slower, following the heuristic

∆t = θ ln(t + 1.05), (A.46)

where θ > 0 is a factor controlling the time step size in the refinement study.

The reference solution is obtained with hmax = 1µm and θ = 0.125. The parameters are
chosen to be the optimal parameter set computed by an optimization algorithm described
in Section 9.4.1 and Table 9.1, minimizing the signal difference to the MRI data from an MS
lesion shown in Fig. 9.1 (in red).

Table A.3 show the errors and convergence rates of the extra-vascular fluid pressure, pt, and
the contrast agent mole fraction, xt. Fig. A.3 shows the NMR signal curves and errors with
respect to the reference solution when refining in space and time.

Table A.3 – Errors and convergence rates in space. Errors are given for pressure, pt, and contrast
agent mole fraction, xt, in the extra-vascular domain.

hmax ept
rate ext,∞ rate

32 µm 0.000414833 - 0.028418 -
16 µm 0.000210479 0.978853 0.0152967 0.893589
8 µm 0.000107219 0.973115 0.00874756 0.806266
4 µm 5.31281e-05 1.01302 0.00471859 0.890526
2 µm 2.54764e-05 1.06032 0.00228896 1.04366

It can be seen that all quantities converge to the reference solution. We obtain convergence
rates close to 1 for the pressure and the mole fraction of the contrast agent. The signal
curve converges with first order in time and a slightly higher order in space. The higher
convergence may be explained by the computation of the signal involving the integration of
the concentration over the entire domain. The relative error with respect to the reference
solution, is smaller than 1 % for a moderate spatial and temporal refinement. In conclusion,
we consider a spatial resolution of hmax = 8µm, and a temporal resolution θ= 1 as sufficient
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Figure A.3 –Convergence study in space and time. TheNMR signal curves and errors to reference
solutions when refining in time, while keeping the same fine resolution in space (left), and in space,
while keeping the same fine resolution in time (right). The top left legend indicates the grid cell size
in m, the top right legend indicates the time step factor θ from Eq. (A.46). The bottom left error
plot shows convergence with a mean rate of 1.6966 with grid refinement. The bottom right error
plot shows convergence with a mean rate of 1.0092 with time step refinement.

for the subsequent analysis. We justify this with the assumption that the errors resulting
from model parameter uncertainty, as well as the errors in the measurement data, are
larger than the discretization error. This is also evident, when looking at the results of
the parameter study and comparing the variability with that of the signal–time curves
shown in Fig. A.3 for different spatial and temporal discretizations. In order to verify that
the discretization error is small also for other parameter configurations, we ran the above
analysis for various parameter configurations and confirmed that the analysis looks similar
for those other cases. The results are omitted for brevity.
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A.12 Prior distributions for MCMC

The following table gives an overview over the prior distributions used for the MCMC in
Chapter 9.

Table A.4 – Prior parameter distributions for Bayesian parameter inference.

parameter prior distribution unit

a uniform in [0,200] mols l−1

b uniform in [0,2.0] mol l−1

tp uniform in (0,15] s
− log10 Dω uniform in [5,12] ms−1

Lp fixed at 1 · 10−12 mPa−1 s−1

T1,pre uniform in [0.8,2.0] s
cB uniform in [0,100] -
cT uniform in [0,100] -

A.13 Ensemble sampler for MCMC

This is a brief description of the ensemble sampler used in Chapter 9. We refer to Goodman
and Weare (2010) and Foreman-Mackey et al. (2013) for a comprehensive discussion. The
employed ensemble sampler of Goodman and Weare (2010) considers two sets of k/2
random walkers, S0 = {wi}i=1,··· ,k/2, S1 = {wi}i=k/2+1,··· ,k , where the position of walker wi

in step n is a position in the parameter space (a vector of parameters), denoted as θi
n. After

each step the walkers in Sm are moved such that

θi
n+1 = θ

j
n+m + ζ

�

θ j
n −θ

i
n+m

�

, (A.47)

where θ j is a walker position randomly drawn from the positions of the other set of walkers,
S1−m, and ζ is a random variable drawn from a proposal distribution g (ζ ),

g (ζ )∝







1/
p

ζ if ζ ∈
�

1
2 , 2
�

0 otherwise
(A.48)
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Note that this means moving the walkers in S0 first, then the walkers in S1. At each walker
position, a sample is proposed. The sample is accepted with the probability (Foreman-
Mackey et al., 2013)

z =min

�

1, ζ N−1 p(X |θi
n+1)p(θ

i
n+1)

p(X |θi
n)p(θi

n)

�

, (A.49)

where N = dim(θ) is the dimension of the parameter space. If the sample is not accepted, the
walker remains at the position θi

n, increasing the number of samples at this position by one.
Each step requires a run of the forward model for every walker, which is computationally
the most expensive part. Fortunately, advancing the walkers within a set of walkers can be
done in parallel.

The ensemble sampler is configured with k = 100 walkers and N = 7. The sampler
convergence is estimated using the integrated auto-correlation time, τ f (Goodman and
Weare, 2010),

τ f =
∞
∑

t=−∞

C f (t )

C f (0)
, with C f (t ) =

1
M − t

M−t
∑

k=1

( fk −µ f )( fk+t −µ f ), (A.50)

where f = { fi}Mi=1 is a finite chain of length M , e.g. the value of parameter a for each sample
in the Markov chain, and µ f its arithmetic mean. We use an estimate of the integrated
auto-correlation, τ f ,e , using the Python module acor (dfm; Goodman). We compute this
estimate for the chain of each parameter, θi , and use the maximum and minimum values,
τmax = max0≤i<N τθi ,e

, τmin = min0≤i<N τθi ,e
. The sampler is run until the sample size,

j > 100 ·τmax, and the change in the auto-correlation time estimate from sample j −τmax

to sample j is less than 1%. To eliminate artifacts from the burn-in phase of the MCMC
algorithm, the first 10 ·τmax samples are discarded. To have only independent samples, every
τmin sample of the remaining samples is chosen (Goodman and Weare, 2010), while the
others are discarded.

A.14 MCMC results for σ = 0.095

The MCMC (Markov Chain Monte Carlo) algorithm described in Chapter 9 approximates
the posterior distributions of all parameters in the parameter vector simultaneously. The
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resulting histograms for each parameter and their covariance with respect to the other
parameters is visualized in Fig. A.4 for sample L and Fig. A.5 for sample N (cf. Fig. 9.1).
The plots show the results for σ = 0.095. The results with a 10 times smaller σ are given
in Figs. 9.6 and 9.7, see Chapter 9.
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Figure A.4 – Parameter distributions for lesion sample (σ = 0.095). The standard deviation for
the measurement and model error is increased to σ = 0.095 in comparison with the results in Fig. 9.6
(σ = 0.009). The horizontal and vertical solid black lines show the parameter values for sample L of
Table 9.1.
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Figure A.5 – Parameter distributions for lesion sample (σ = 0.095). The standard deviation for
the measurement and model error is increased to σ = 0.095 in comparison with the results in Fig. 9.7
(σ = 0.009). The horizontal and vertical solid black lines show the parameter values for sample N of
Table 9.1.
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