Ripser
 Efficient Computation of Vietoris-Rips Persistence Barcodes

Ulrich Bauer

TUM
March 23, 2017

Computational and Statistical Aspects of Topological Data Analysis
Alan Turing Institute

Persistent homology

Vietoris-Rips persistence

Vietoris-Rips filtrations

Consider a finite metric space (X, d).
The Vietoris-Rips complex is the simplicial complex

$$
\operatorname{Rips}_{t}(X)=\{S \subseteq X \mid \operatorname{diam} S \leq t\}
$$

- 1-skeleton: all edges with pairwise distance $\leq t$
- all possible higher simplices (flag complex)

Vietoris-Rips filtrations

Consider a finite metric space (X, d).
The Vietoris-Rips complex is the simplicial complex

$$
\operatorname{Rips}_{t}(X)=\{S \subseteq X \mid \operatorname{diam} S \leq t\}
$$

- 1-skeleton: all edges with pairwise distance $\leq t$
- all possible higher simplices (flag complex)

Goal:

- compute persistence barcodes for $H_{d}\left(\operatorname{Rips}_{t}(X)\right)$ (in dimensions $0 \leq d \leq k$)

Demo: Ripser

Example data set:

- 192 points on \mathbb{S}^{2}
- persistent homology barcodes up to dimension 2
- over 56 mio. simplices in 3-skeleton

Demo: Ripser

Example data set:

- 192 points on \mathbb{S}^{2}
- persistent homology barcodes up to dimension 2
- over 56 mio. simplices in 3-skeleton

Comparison with other software:

- javaplex: 3200 seconds, 12 GB
- Dionysus: 533 seconds, 3.4 GB
- GUDHI: 75 seconds, 2.9 GB
- DIPHA: 50 seconds, 6 GB
- Eirene: 12 seconds, 1.5 GB

Demo: Ripser

Example data set:

- 192 points on \mathbb{S}^{2}
- persistent homology barcodes up to dimension 2
- over 56 mio. simplices in 3-skeleton

Comparison with other software:

- javaplex: 3200 seconds, 12 GB
- Dionysus: 533 seconds, 3.4 GB
- GUDHI: 75 seconds, 2.9 GB
- DIPHA: 50 seconds, 6 GB
- Eirene: 12 seconds, 1.5 GB

Ripser: 1.2 seconds, 152 MB

Ripser

A software for computing Vietoris-Rips persistence barcodes

- about 1000 lines of $\mathrm{C}++$ code, no external dependencies

Ripser

A software for computing Vietoris-Rips persistence barcodes

- about 1000 lines of $\mathrm{C}++$ code, no external dependencies
- support for
- coefficients in a prime field \mathbb{F}_{p}

Ripser

A software for computing Vietoris-Rips persistence barcodes

- about 1000 lines of $\mathrm{C}++$ code, no external dependencies
- support for
- coefficients in a prime field \mathbb{F}_{p}
- sparse distance matrices for distance threshold

Ripser

A software for computing Vietoris-Rips persistence barcodes

- about 1000 lines of $\mathrm{C}++$ code, no external dependencies
- support for
- coefficients in a prime field \mathbb{F}_{p}
- sparse distance matrices for distance threshold
- open source (http://ripser .org)
- released in July 2016

Ripser

A software for computing Vietoris-Rips persistence barcodes

- about 1000 lines of $\mathrm{C}++$ code, no external dependencies
- support for
- coefficients in a prime field \mathbb{F}_{p}
- sparse distance matrices for distance threshold
- open source (http://ripser .org)
- released in July 2016
- online version (http://live.ripser.org)
- launched in August 2016

Ripser

A software for computing Vietoris-Rips persistence barcodes

- about 1000 lines of $\mathrm{C}++$ code, no external dependencies
- support for
- coefficients in a prime field \mathbb{F}_{p}
- sparse distance matrices for distance threshold
- open source (http://ripser .org)
- released in July 2016
- online version (http://live.ripser.org)
- launched in August 2016
- most efficient software for Vietoris-Rips persistence
- computes H^{2} barcode for 50000 random points on a torus in 136 seconds / 9 GB (using distance threshold)

Ripser

A software for computing Vietoris-Rips persistence barcodes

- about 1000 lines of $\mathrm{C}++$ code, no external dependencies
- support for
- coefficients in a prime field \mathbb{F}_{p}
- sparse distance matrices for distance threshold
- open source (http://ripser .org)
- released in July 2016
- online version (http://live.ripser.org)
- launched in August 2016
- most efficient software for Vietoris-Rips persistence
- computes H^{2} barcode for 50000 random points on a torus in 136 seconds / 9 GB (using distance threshold)
- 2016 ATMCS Best New Software Award (jointly with RIVET)

Design goals

Goals for previous projects:

- PHAT [B, Kerber, Reininghaus, Wagner 2013]: fast persistence computation (matrix reduction only)
- DIPHA [B, Kerber, Reininghaus 2014]: distributed persistence computation

Design goals

Goals for previous projects:

- PHAT [B, Kerber, Reininghaus, Wagner 2013]: fast persistence computation (matrix reduction only)
- DIPHA [B, Kerber, Reininghaus 2014]: distributed persistence computation
Goals for Ripser:
- Use as little memory as possible
- Be reasonable about computation time

The four special ingredients

The improved performance is based on 4 insights:

- Clearing inessential columns [Chen, Kerber 2011]
- Computing cohomology [de Silva et al. 2011]
- Implicit matrix reduction
- Apparent and emergent pairs

The four special ingredients

The improved performance is based on 4 insights:

- Clearing inessential columns [Chen, Kerber 2011]
- Computing cohomology [de Silva et al. 2011]
- Implicit matrix reduction
- Apparent and emergent pairs

Lessons from PHAT:

- Clearing and cohomology yield considerable speedup,
- but only when both are used in conjuction!

Matrix reduction

Matrix reduction algorithm

Setting:

- finite metric space X, n points
- persistent homology $H_{d}\left(\operatorname{Rips}_{t}(X) ; \mathbb{F}_{2}\right)$ in dimensions $d \leq k$ Notation:
- D : boundary matrix of filtration
- R_{i} : ith column of R

Matrix reduction algorithm

Setting:

- finite metric space X, n points
- persistent homology $H_{d}\left(\operatorname{Rips}_{t}(X) ; \mathbb{F}_{2}\right)$ in dimensions $d \leq k$ Notation:
- D : boundary matrix of filtration
- R_{i} : ith column of R

Algorithm:

- $R=D, V=I$
- while $\exists i<j$ with pivot $R_{i}=\operatorname{pivot} R_{j}$
- add R_{i} to R_{j}, add V_{i} to V_{j}

Matrix reduction algorithm

Setting:

- finite metric space X, n points
- persistent homology $H_{d}\left(\operatorname{Rips}_{t}(X) ; \mathbb{F}_{2}\right)$ in dimensions $d \leq k$ Notation:
- D : boundary matrix of filtration
- $R_{i}: i$ th column of R

Algorithm:

- $R=D, V=I$
- while $\exists i<j$ with pivot $R_{i}=\operatorname{pivot} R_{j}$

$$
\text { - add } R_{i} \text { to } R_{j} \text {, add } V_{i} \text { to } V_{j}
$$

Result:

- $R=D \cdot V$ is reduced (unique pivots)
- V is full rank upper triangular

Compatible basis cycles

For a reduced boundary matrix $R=D \cdot V$, call

$$
\begin{aligned}
P & =\left\{i: R_{i}=0\right\} & & \text { positive indices, } \\
N & =\left\{j: R_{j} \neq 0\right\} & & \text { negative indices, } \\
E & =P \backslash \text { pivots } R & & \text { essential indices. }
\end{aligned}
$$

Then

Compatible basis cycles

For a reduced boundary matrix $R=D \cdot V$, call

$$
\begin{aligned}
P & =\left\{i: R_{i}=0\right\} & & \text { positive indices, } \\
N & =\left\{j: R_{j} \neq 0\right\} & & \text { negative indices, } \\
E & =P \backslash \text { pivots } R & & \text { essential indices. }
\end{aligned}
$$

Then

$$
\widetilde{\Sigma}_{Z}=\left\{V_{i} \mid i \in P\right\}
$$

is a basis of Z_{*},

Compatible basis cycles

For a reduced boundary matrix $R=D \cdot V$, call

$$
\begin{aligned}
P & =\left\{i: R_{i}=0\right\} & & \text { positive indices, } \\
N & =\left\{j: R_{j} \neq 0\right\} & & \text { negative indices, } \\
E & =P \backslash \text { pivots } R & & \text { essential indices. }
\end{aligned}
$$

Then

$$
\begin{aligned}
& \widetilde{\Sigma}_{Z}=\left\{V_{i} \mid i \in P\right\} \\
& \Sigma_{B}=\left\{R_{j} \mid j \in N\right\}
\end{aligned}
$$

is a basis of Z_{*},
is a basis of B_{*},

Compatible basis cycles

For a reduced boundary matrix $R=D \cdot V$, call

$$
\begin{aligned}
P & =\left\{i: R_{i}=0\right\} & & \text { positive indices, } \\
N & =\left\{j: R_{j} \neq 0\right\} & & \text { negative indices, } \\
E & =P \backslash \text { pivots } R & & \text { essential indices. }
\end{aligned}
$$

Then

$$
\begin{aligned}
& \widetilde{\Sigma}_{Z}=\left\{V_{i} \mid i \in P\right\} \\
& \Sigma_{B}=\left\{R_{j} \mid j \in N\right\} \\
& \Sigma_{Z}=\Sigma_{B} \cup\left\{V_{i} \mid i \in E\right\}
\end{aligned}
$$

is a basis of Z_{*},
is a basis of B_{*},
is another basis of Z_{*}.

Compatible basis cycles

For a reduced boundary matrix $R=D \cdot V$, call

$$
\begin{aligned}
P & =\left\{i: R_{i}=0\right\} & & \text { positive indices, } \\
N & =\left\{j: R_{j} \neq 0\right\} & & \text { negative indices, } \\
E & =P \backslash \text { pivots } R & & \text { essential indices. }
\end{aligned}
$$

Then

$$
\begin{aligned}
& \widetilde{\Sigma}_{Z}=\left\{V_{i} \mid i \in P\right\} \\
& \Sigma_{B}=\left\{R_{j} \mid j \in N\right\} \\
& \Sigma_{Z}=\Sigma_{B} \cup\left\{V_{i} \mid i \in E\right\}
\end{aligned}
$$

is a basis of Z_{*},
is a basis of B_{*},
is another basis of Z_{*}.
Persistent homology is generated by the basis cycles Σ_{Z}.

Compatible basis cycles

For a reduced boundary matrix $R=D \cdot V$, call

$$
\begin{aligned}
P & =\left\{i: R_{i}=0\right\} \\
N & =\left\{j: R_{j} \neq 0\right\} \\
E & =P \backslash \text { pivots } R
\end{aligned}
$$

positive indices, negative indices, essential indices.
Then

$$
\begin{aligned}
& \widetilde{\Sigma}_{Z}=\left\{V_{i} \mid i \in P\right\} \\
& \Sigma_{B}=\left\{R_{j} \mid j \in N\right\}
\end{aligned}
$$

$$
\Sigma_{Z}=\Sigma_{B} \cup\left\{V_{i} \mid i \in E\right\} \quad \text { is another basis of } Z_{*}
$$

Persistent homology is generated by the basis cycles Σ_{Z}.

- Persistence intervals: $\left\{[i, j) \mid i=\operatorname{pivot} R_{j}\right\} \cup\{[i, \infty) \mid i \in E\}$
- Columns with non-essential positive indices never used!

Clearing

Clearing non-essential positive columns

Idea [Chen, Kerber 2011]:

- Don't reduce at non-essential positive indices
- Reduce boundary matrices of $\partial_{d}: C_{d} \rightarrow C_{d-1}$ in decreasing dimension $d=k+1, \ldots, 1$
- Whenever $i=\operatorname{pivot} R_{j}$ (in matrix for ∂_{d})
- Set R_{i} to 0 (in matrix for ∂_{d-1})

Clearing non-essential positive columns

Idea [Chen, Kerber 2011]:

- Don't reduce at non-essential positive indices
- Reduce boundary matrices of $\partial_{d}: C_{d} \rightarrow C_{d-1}$ in decreasing dimension $d=k+1, \ldots, 1$
- Whenever $i=\operatorname{pivot} R_{j}$ (in matrix for ∂_{d})
- Set R_{i} to 0 (in matrix for ∂_{d-1})
- Set V_{i} to R_{j}

Clearing non-essential positive columns

Idea [Chen, Kerber 2011]:

- Don't reduce at non-essential positive indices
- Reduce boundary matrices of $\partial_{d}: C_{d} \rightarrow C_{d-1}$ in decreasing dimension $d=k+1, \ldots, 1$
- Whenever $i=\operatorname{pivot} R_{j}$ (in matrix for ∂_{d})
- Set R_{i} to 0 (in matrix for ∂_{d-1})
- Set V_{i} to R_{j}
- Still yields $R=D \cdot V$ reduced, V full rank upper triangular

Clearing non-essential positive columns

Idea [Chen, Kerber 2011]:

- Don't reduce at non-essential positive indices
- Reduce boundary matrices of $\partial_{d}: C_{d} \rightarrow C_{d-1}$ in decreasing dimension $d=k+1, \ldots, 1$
- Whenever $i=\operatorname{pivot} R_{j}$ (in matrix for ∂_{d})
- Set R_{i} to 0 (in matrix for ∂_{d-1})
- Set V_{i} to R_{j}
- Still yields $R=D \cdot V$ reduced, V full rank upper triangular

Note:

- reducing positive columns typically harder than negative
- with clearing: need only reduce essential positive columns

Cohomology

Persistent cohomology

We have seen: many columns of $R=D \cdot V$ are not needed

- Skip those inessential columns in matrix reduction

Persistent cohomology

We have seen: many columns of $R=D \cdot V$ are not needed

- Skip those inessential columns in matrix reduction

For persistence barcodes in low dimensions $d \leq k$:

- Number of skipped indices for reducing D^{T} (cohomology) is much larger than for D (homology)
- reducing boundary matrix produces basis for $H_{k+1}\left(K_{k+1}\right)$, which is not needed
- The resulting persistence barcode is the same [de Silva et al. 2011]

Counting homology column reductions

- standard matrix reduction:

$$
\sum_{d=1}^{k+1} \underbrace{\binom{n}{d+1}}_{\operatorname{dim} C_{d}(K)}=\sum_{d=1}^{k+1} \underbrace{\binom{n-1}{d}}_{\operatorname{dim} B_{d-1}(K)}+\sum_{d=1}^{k+1} \underbrace{\binom{n-1}{d+1}}_{\operatorname{dim} Z_{d}(K)}
$$

Counting homology column reductions

- standard matrix reduction:

$$
\sum_{d=1}^{k+1} \underbrace{\binom{n}{d+1}}_{\operatorname{dim} C_{d}(K)}=\sum_{d=1}^{k+1} \underbrace{\binom{n-1}{d}}_{\operatorname{dim} B_{d-1}(K)}+\sum_{d=1}^{k+1} \underbrace{\binom{n-1}{d+1}}_{\operatorname{dim} Z_{d}(K)}
$$

$$
k=2, n=192: \quad 56050096=1161471+54888625
$$

Counting homology column reductions

- standard matrix reduction:

$$
\sum_{d=1}^{k+1} \underbrace{\binom{n}{d+1}}_{\operatorname{dim} C_{d}(K)}=\sum_{d=1}^{k+1} \underbrace{\binom{n-1}{d}}_{\operatorname{dim} B_{d-1}(K)}+\sum_{d=1}^{k+1} \underbrace{\binom{n-1}{d+1}}_{\operatorname{dim} Z_{d}(K)}
$$

$$
k=2, n=192: \quad 56050096=1161471+54888625
$$

- using clearing:

$$
\sum_{d=1}^{k+1} \underbrace{\binom{n-1}{d}}_{\operatorname{dim} B_{d-1}(K)}+\underbrace{\binom{n-1}{k+2}}_{\operatorname{dim} H_{k+1}(K)}=\sum_{d=1}^{k+2}\binom{n-1}{d}
$$

Counting homology column reductions

- standard matrix reduction:

$$
\sum_{d=1}^{k+1} \underbrace{\binom{n}{d+1}}_{\operatorname{dim} C_{d}(K)}=\sum_{d=1}^{k+1} \underbrace{\binom{n-1}{d}}_{\operatorname{dim} B_{d-1}(K)}+\sum_{d=1}^{k+1} \underbrace{\binom{n-1}{d+1}}_{\operatorname{dim} Z_{d}(K)}
$$

$$
k=2, n=192: \quad 56050096=1161471+54888625
$$

- using clearing:

$$
\sum_{d=1}^{k+1} \underbrace{\binom{n-1}{d}}_{\operatorname{dim} B_{d-1}(K)}+\underbrace{\binom{n-1}{k+2}}_{\operatorname{dim} H_{k+1}(K)}=\sum_{d=1}^{k+2}\binom{n-1}{d}
$$

$$
k=2, n=192: \quad 54888816=1161471+53727345
$$

Counting cohomology column reductions

- standard matrix reduction:

$$
\sum_{d=0}^{k} \underbrace{\binom{n}{d+1}}_{\operatorname{dim} C^{d}(K)}=\sum_{d=0}^{k} \underbrace{\binom{n-1}{d+1}}_{\operatorname{dim} B^{d+1}(K)}+\sum_{d=0}^{k} \underbrace{\binom{n-1}{d}}_{\operatorname{dim} Z^{d}(K)}
$$

Counting cohomology column reductions

- standard matrix reduction:

$$
\sum_{d=0}^{k} \underbrace{\binom{n}{d+1}}_{\operatorname{dim} C^{d}(K)}=\sum_{d=0}^{k} \underbrace{\binom{n-1}{d+1}}_{\operatorname{dim} B^{d+1}(K)}+\sum_{d=0}^{k} \underbrace{\binom{n-1}{d}}_{\operatorname{dim} Z^{d}(K)}
$$

$$
k=2, n=192: \quad 1179808=18337+1161471
$$

Counting cohomology column reductions

- standard matrix reduction:

$$
\sum_{d=0}^{k} \underbrace{\binom{n}{d+1}}_{\operatorname{dim} C^{d}(K)}=\sum_{d=0}^{k} \underbrace{\binom{n-1}{d+1}}_{\operatorname{dim} B^{d+1}(K)}+\sum_{d=0}^{k} \underbrace{\binom{n-1}{d}}_{\operatorname{dim} Z^{d}(K)}
$$

$$
k=2, n=192: \quad 1179808=18337+1161471
$$

- using clearing:

$$
\sum_{d=0}^{k} \underbrace{\binom{n-1}{d+1}}_{\operatorname{dim} B^{d+1}(K)}+\underbrace{\binom{n-1}{0}}_{\operatorname{dim} H^{0}(K)}+=\sum_{d=0}^{k+1}\binom{n-1}{d}
$$

Counting cohomology column reductions

- standard matrix reduction:

$$
\sum_{d=0}^{k} \underbrace{\binom{n}{d+1}}_{\operatorname{dim} C^{d}(K)}=\sum_{d=0}^{k} \underbrace{\binom{n-1}{d+1}}_{\operatorname{dim} B^{d+1}(K)}+\sum_{d=0}^{k} \underbrace{\binom{n-1}{d}}_{\operatorname{dim} Z^{d}(K)}
$$

$$
k=2, n=192: \quad 1179808=18337+1161471
$$

- using clearing:

$$
\sum_{d=0}^{k} \underbrace{\binom{n-1}{d+1}}_{\operatorname{dim} B^{d+1}(K)}+\underbrace{\binom{n-1}{0}}_{\operatorname{dim} H^{0}(K)}+=\sum_{d=0}^{k+1}\binom{n-1}{d}
$$

$$
k=2, n=192: \quad 1161472=1+1161471
$$

Observations

For a typical input:

- V has very few off-diagonal entries
- most negative columns of D are already reduced

Observations

For a typical input:

- V has very few off-diagonal entries
- most negative columns of D are already reduced

Previous example ($k=2, n=192$):

- Only 845 out of 1161471 columns have to be reduced

Implicit matrix reduction

Implicit matrix reduction

Standard approach:

- Boundary matrix D for filtration-ordered basis
- Explicitly generated and stored in memory

Implicit matrix reduction

Standard approach:

- Boundary matrix D for filtration-ordered basis
- Explicitly generated and stored in memory
- Matrix reduction: store only reduced matrix R
- transform D into R by column operations

Implicit matrix reduction

Standard approach:

- Boundary matrix D for filtration-ordered basis
- Explicitly generated and stored in memory
- Matrix reduction: store only reduced matrix R
- transform D into R by column operations

Approach for Ripser:

- Boundary matrix D for lexicographically ordered basis
- Implicitly defined and recomputed when needed

Implicit matrix reduction

Standard approach:

- Boundary matrix D for filtration-ordered basis
- Explicitly generated and stored in memory
- Matrix reduction: store only reduced matrix R
- transform D into R by column operations

Approach for Ripser:

- Boundary matrix D for lexicographically ordered basis
- Implicitly defined and recomputed when needed
- Matrix reduction in Ripser: store only coefficient matrix V
- recompute previous columns of $R=D \cdot V$ when needed
- Typically, V is much sparser and smaller than R

Oblivious matrix reduction

Algorithm variant:

- $R=D$
- $\operatorname{for} j=1, \ldots, n$
- while $\exists i<j$ with pivot $R_{i}=\operatorname{pivot} R_{j}$
- add D_{i} to R_{j}

Oblivious matrix reduction

Algorithm variant:

- $R=D$
- $\operatorname{for} j=1, \ldots, n$
- while $\exists i<j$ with pivot $R_{i}=\operatorname{pivot} R_{j}$
- add D_{i} to R_{j}

Requires only

- current column R_{j}
- pivots of previous columns R_{i}
to obtain the persistence intervals: $\left\{[i, j) \mid i=\operatorname{pivot} R_{j}\right\} \cup\{[i, \infty) \mid i \in E\}$.

Oblivious matrix reduction

Algorithm variant:

- $R=D$
- $\operatorname{for} j=1, \ldots, n$
- while $\exists i<j$ with pivot $R_{i}=\operatorname{pivot} R_{j}$
- add D_{i} to R_{j}

Requires only

- current column R_{j}
- pivots of previous columns R_{i}
to obtain the persistence intervals: $\left\{[i, j) \mid i=\operatorname{pivot} R_{j}\right\} \cup\{[i, \infty) \mid i \in E\}$.
Corollary
The rank of an $m \times n$ matrix can be computed in $O(n)$ memory.

Apparent and emergent pairs

Natural filtration settings

Typical assumptions on the filtration:

- general filtration
- filtration by singletons or pairs
- simplexwise filtration
persistence (in theory)
discrete Morse theory
persistence (computation)

Natural filtration settings

Typical assumptions on the filtration:

- general filtration
- filtration by singletons or pairs
- simplexwise filtration
persistence (in theory)
discrete Morse theory
persistence (computation)

Conclusion:

- Discrete Morse theory sits in the middle between persistence and persistence (!)

Discrete Morse theory

Definition (Forman 1998)

A discrete vector field on a cell complex is a partition of the set of simplices into

- singleton sets $\{\phi\}$ (critical cells), and
- pairs $\{\sigma, \tau\}$, where σ is a facet of τ.

Discrete Morse theory

Definition (Forman 1998)

A discrete vector field on a cell complex is a partition of the set of simplices into

- singleton sets $\{\phi\}$ (critical cells), and
- pairs $\{\sigma, \tau\}$, where σ is a facet of τ.

A function $f: K \rightarrow \mathbb{R}$ on a cell complex is a discrete Morse function if

- sublevel sets are subcomplexes, and

Discrete Morse theory

Definition (Forman 1998)

A discrete vector field on a cell complex is a partition of the set of simplices into

- singleton sets $\{\phi\}$ (critical cells), and
- pairs $\{\sigma, \tau\}$, where σ is a facet of τ.

A function $f: K \rightarrow \mathbb{R}$ on a cell complex is a discrete Morse function if

- sublevel sets are subcomplexes, and

Discrete Morse theory

Definition (Forman 1998)

A discrete vector field on a cell complex is a partition of the set of simplices into

- singleton sets $\{\phi\}$ (critical cells), and
- pairs $\{\sigma, \tau\}$, where σ is a facet of τ.

A function $f: K \rightarrow \mathbb{R}$ on a cell complex is a discrete Morse function if

- sublevel sets are subcomplexes, and

Discrete Morse theory

Definition (Forman 1998)

A discrete vector field on a cell complex is a partition of the set of simplices into

- singleton sets $\{\phi\}$ (critical cells), and
- pairs $\{\sigma, \tau\}$, where σ is a facet of τ.

A function $f: K \rightarrow \mathbb{R}$ on a cell complex is a discrete Morse function if

- sublevel sets are subcomplexes, and

Discrete Morse theory

Definition (Forman 1998)

A discrete vector field on a cell complex is a partition of the set of simplices into

- singleton sets $\{\phi\}$ (critical cells), and
- pairs $\{\sigma, \tau\}$, where σ is a facet of τ.

A function $f: K \rightarrow \mathbb{R}$ on a cell complex is a discrete Morse function if

- sublevel sets are subcomplexes, and

Discrete Morse theory

Definition (Forman 1998)

A discrete vector field on a cell complex is a partition of the set of simplices into

- singleton sets $\{\phi\}$ (critical cells), and
- pairs $\{\sigma, \tau\}$, where σ is a facet of τ.

A function $f: K \rightarrow \mathbb{R}$ on a cell complex is a discrete Morse function if

- sublevel sets are subcomplexes, and

Discrete Morse theory

Definition (Forman 1998)

A discrete vector field on a cell complex is a partition of the set of simplices into

- singleton sets $\{\phi\}$ (critical cells), and
- pairs $\{\sigma, \tau\}$, where σ is a facet of τ.

A function $f: K \rightarrow \mathbb{R}$ on a cell complex is a discrete Morse function if

- sublevel sets are subcomplexes, and
- level sets form a discrete vector field.

Fundamental theorem of discrete Morse theory

Let f be a discrete Morse function on a cell complex K.

Fundamental theorem of discrete Morse theory

Let f be a discrete Morse function on a cell complex K.
Theorem (Forman 1998)
 If $(s, t]$ contains no critical value of f, then the sublevel set K_{t} collapses to K_{s}.

Fundamental theorem of discrete Morse theory

Let f be a discrete Morse function on a cell complex K.
Theorem (Forman 1998)
 If $(s, t]$ contains no critical value off, then the sublevel set K_{t} collapses to K_{s}.

Fundamental theorem of discrete Morse theory

Let f be a discrete Morse function on a cell complex K.
Theorem (Forman 1998)

If $(s, t]$ contains no critical value of f, then the sublevel set K_{t} collapses to K_{s}.

Fundamental theorem of discrete Morse theory

Let f be a discrete Morse function on a cell complex K.
Theorem (Forman 1998)
 If ($s, t]$ contains no critical value of f, then the sublevel set K_{t} collapses to K_{s}. Corollary
$K \simeq M$ for some cell complex M built from the critical cells of f.

Fundamental theorem of discrete Morse theory

Let f be a discrete Morse function on a cell complex K.
Theorem (Forman 1998)
 If $(s, t]$ contains no critical value of f, then the sublevel set K_{t} collapses to K_{s}.

Corollary

$K \simeq M$ for some cell complex M built from the critical cells off .
This homotopy equivalence is compatible with the filtration.

Corollary

K and M have isomorphic persistent homology (with regard to the sublevel sets off).

Morse pairs and persistence pairs

Consider a Morse filtration (one or two simplices at a time).
Morse pair (σ, τ):

- inserting σ and τ simultaneously does not change the homotopy type

Morse pairs and persistence pairs

Consider a Morse filtration (one or two simplices at a time).
Morse pair (σ, τ):

- inserting σ and τ simultaneously does not change the homotopy type

Consider a simplexwise filtration (one simplex at a time).
Persistence pair (σ, τ):

- inserting simplex σ creates a new homological feature
- inserting τ destroys that feature again

Apparent pairs

Definition

In a simplexwise filtration, (σ, τ) is an apparent pair if

- σ is the youngest face of τ
- τ is the oldest coface of σ

Lemma

Any apparent pairs is a persistence pair.

Lemma

The apparent pairs form a discrete gradient.

- Generalizes a construction proposed by [Kahle 2011] for the study of random Rips filtrations

From Morse theory to persistence and back

Proposition (from Morse to persistence)

The pairs of a Morse filtration are apparent 0-persistence pairs for the canonical simplexwise refinement of the filtration.

From Morse theory to persistence and back

Proposition (from Morse to persistence)

The pairs of a Morse filtration are apparent 0-persistence pairs for the canonical simplexwise refinement of the filtration.

Proposition (from persistence to Morse)

Consider an arbitrary filtration with a simplexwise refinement. The apparent 0 -persistence pairs yield a Morse filtration

- refining the original one, and
- refined by the simplexwise one.

Emergent persistent pairs

Consider the lexicographically refined Rips filtration:

- increasing diameter, refined by
- lexicographic order

This is the simplexwise filtration for computations in Ripser.

Lemma

Assume that

- τ is the lexicographically minimal proper coface of σ with $\operatorname{diam}(\tau)=\operatorname{diam}(\sigma)$,
- and there is no persistence pair (ρ, τ) with $\sigma<\rho$.

Then (σ, τ) is an emergent persistence pair.

Emergent persistent pairs

Consider the lexicographically refined Rips filtration:

- increasing diameter, refined by
- lexicographic order

This is the simplexwise filtration for computations in Ripser.

Lemma

Assume that

- τ is the lexicographically minimal proper coface of σ with $\operatorname{diam}(\tau)=\operatorname{diam}(\sigma)$,
- and there is no persistence pair (ρ, τ) with $\sigma<\rho$.

Then (σ, τ) is an emergent persistence pair.

- Includes all apparent persistence 0 pairs
- Can be identified without enumerating all cofaces of σ
- Provides a shortcut for computation

Ripser Live: users from 156 different cities

