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Vietoris—Rips persistence



Vietoris—Rips filtrations

Consider a finite metric space (X, d).
The Vietoris—Rips complex is the simplicial complex

Rips,(X) = {Sc X | diam S < ¢}

- 1-skeleton: all edges with pairwise distance < ¢

- all possible higher simplices (flag complex)
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Vietoris—Rips filtrations

Consider a finite metric space (X, d).
The Vietoris—Rips complex is the simplicial complex

Rips,(X) = {Sc X | diam S < ¢}

- 1-skeleton: all edges with pairwise distance < ¢

- all possible higher simplices (flag complex)

Goal:

- compute persistence barcodes for H,(Rips, (X))
(in dimensions 0 < d < k)



Demo: Ripser
Example data set:
+ 192 points on §?
- persistent homology barcodes up to dimension 2

- over 56 mio. simplices in 3-skeleton
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Example data set:
+ 192 points on §?
- persistent homology barcodes up to dimension 2
- over 56 mio. simplices in 3-skeleton

Comparison with other software:
- javaplex: 3200 seconds, 12 GB
- Dionysus: 533 seconds, 3.4 GB
« GUDHI: 75 seconds, 2.9 GB
- DIPHA: 50 seconds, 6 GB

- Eirene: 12 seconds, 1.5 GB
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Demo: Ripser
Example data set:
+ 192 points on §?
- persistent homology barcodes up to dimension 2
- over 56 mio. simplices in 3-skeleton
Comparison with other software:
- javaplex: 3200 seconds, 12 GB
- Dionysus: 533 seconds, 3.4 GB
« GUDHI: 75 seconds, 2.9 GB
- DIPHA: 50 seconds, 6 GB
- Eirene: 12 seconds, 1.5 GB

Ripser: 1.2 seconds, 152 MB
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Ripser
A software for computing Vietoris—Rips persistence barcodes

- about 1000 lines of C++ code, no external dependencies
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Ripser
A software for computing Vietoris—Rips persistence barcodes

- about 1000 lines of C++ code, no external dependencies
- support for
- coefficients in a prime field F,
- sparse distance matrices for distance threshold
- open source (http://ripser.org)
- released in July 2016
- online version (http://live.ripser.org)
- launched in August 2016
- most efficient software for Vietoris—Rips persistence
- computes H? barcode for 50 000 random points on a torus in 136 seconds /
9 GB (using distance threshold)
- 2016 ATMCS Best New Software Award (jointly with RIVET)


http://ripser.org
http://live.ripser.org

Design goals

Goals for previous projects:
- PHAT [B, Kerber, Reininghaus, Wagner 2013]:
fast persistence computation (matrix reduction only)
- DIPHA [B, Kerber, Reininghaus 2014]:
distributed persistence computation
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Design goals

Goals for previous projects:

- PHAT [B, Kerber, Reininghaus, Wagner 2013]:
fast persistence computation (matrix reduction only)

- DIPHA [B, Kerber, Reininghaus 2014]:
distributed persistence computation

Goals for Ripser:
- Use as little memory as possible

- Be reasonable about computation time



The four special ingredients

The improved performance is based on 4 insights:

- Clearing inessential columns [Chen, Kerber 2011]
- Computing cohomology [de Silva et al. 2011]
+ Implicit matrix reduction

- Apparent and emergent pairs

8/25



The four special ingredients

The improved performance is based on 4 insights:

- Clearing inessential columns [Chen, Kerber 2011]
- Computing cohomology [de Silva et al. 2011]
+ Implicit matrix reduction

- Apparent and emergent pairs

Lessons from PHAT:
« Clearing and cohomology yield considerable speedup,

« but only when both are used in conjuction!

/25



Matrix reduction



Matrix reduction algorithm
Setting:
- finite metric space X, n points
- persistent homology H,(Rips,(X);F,) in dimensions d < k
Notation:
- D: boundary matrix of filtration
+ R;: ith column of R
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Matrix reduction algorithm

Setting:

- finite metric space X, n points

- persistent homology H,(Rips,(X);F,) in dimensions d < k
Notation:

- D: boundary matrix of filtration

+ R;: ith column of R
Algorithm:

«R=D,V=1I

- while 3i < j with pivot R; = pivot R;

- add R; to R, add V; to V;
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Matrix reduction algorithm
Setting:
- finite metric space X, n points
- persistent homology H,(Rips,(X);F,) in dimensions d < k
Notation:
- D: boundary matrix of filtration
+ R;: ith column of R
Algorithm:
-R=D, V=1
- while 3i < j with pivot R; = pivot R;
- add R; to R, add V; to V;
Result:
« R=D- Visreduced (unique pivots)
- Vis full rank upper triangular

/25



Compatible basis cycles
For a reduced boundary matrix R = D -V, call

P={i:R; =0} positive indices,
N={j:R;#0} negative indices,
E = P~ pivotsR essential indices.

Then
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Compatible basis cycles

For a reduced boundary matrix R =D -V, call

P={i:R; =0} positive indices,
N={j:R;#0} negative indices,
E = P~ pivotsR essential indices.
Then
¥,={V;|ieP} is a basis of Z,,
Zp={R;|jeN} is a basis of B,,
Y,=23u{V;|icE} is another basis of Z,.

Persistent homology is generated by the basis cycles 2.

- Persistence intervals: {[i,/) | i = pivotR;} U {[i,00) | i € E}
- Columns with non-essential positive indices never used!
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Clearing non-essential positive columns

Idea [Chen, Kerber 2011]:

- Don’t reduce at non-essential positive indices

- Reduce boundary matrices of 9, : C; - Cy_;
in decreasing dimensiond =k +1,...,1
- Whenever i = pivot R; (in matrix for d,))
« Set R; to 0 (in matrix for d,4_;)
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Idea [Chen, Kerber 2011]:

- Don’t reduce at non-essential positive indices

- Reduce boundary matrices of 9, : C; - Cy_;
in decreasing dimensiond =k +1,...,1
- Whenever i = pivot R; (in matrix for d,))
« Set R; to 0 (in matrix for d,4_;)
- Set Vi toR;
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Clearing non-essential positive columns

Idea [Chen, Kerber 2011]:

- Don’t reduce at non-essential positive indices

- Reduce boundary matrices of 9, : C; - Cy_;
in decreasing dimensiond =k +1,...,1

- Whenever i = pivot R; (in matrix for d,))

« Set R; to 0 (in matrix for d,4_;)
- Set Vito Rj

- Still yields R = D - V reduced, V full rank upper triangular
Note:
- reducing positive columns typically harder than negative

- with clearing: need only reduce essential positive columns

/25



Cohomology



Persistent cohomology

We have seen: many columns of R = D - V are not needed

- Skip those inessential columns in matrix reduction
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Persistent cohomology

We have seen: many columns of R = D - V are not needed
- Skip those inessential columns in matrix reduction

For persistence barcodes in low dimensions d < k:

- Number of skipped indices for reducing DT (cohomology) is much larger
than for D (homology)

- reducing boundary matrix produces basis for Hy,1(Ky,1), which is not needed

- The resulting persistence barcode is the same [de Silva et al. 2011]
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Counting homology column reductions

- standard matrix reduction:

k+1 k+1 k+1
-1 -1
o\d+1) g\ d o\d+1
— — —
dim C4(K) dim By_; (K) dim Z4(K)
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Counting homology column reductions

- standard matrix reduction:

k+1 n k+1 n—1 k+1 n-1
;(du)_; ( d ) +Z{(d+1)
~—— ~—— ~——

dim C4(K) dim By_, (K) dim Z4(K)

k=2,n=192: 56050096 = 1161471 + 54 888 625
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Counting homology column reductions

- standard matrix reduction:

Mlon Blom-1y Mn-1
Zi(dﬂ)_; ( d ) +Z{(d+l)

~—— ~—— ~——
dim C4(K) dim B;_;(K) dim Z;(K)

k=2,n=192: 56050096 =1161471 + 54 888625
k+1 k+2

n-1 n-1 n-1

2 () () =200

o\ d k+2 o\ d

~—— N~——
dimBy_;(K) dim Hy4(K)

- using clearing:
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Counting homology column reductions

- standard matrix reduction:

Mlon Blom-1y Mn-1
Zi(dﬂ)_; ( d ) +Z{(d+l)

~—— ~—— ~——
dim C4(K) dim B;_;(K) dim Z;(K)

k=2,n=192: 56050096 =1161471 + 54 888625
k+1 k+2

n-1 n-1 n-1

2 () () =200

o\ d k+2 o\ d

~—— N~——
dimBy_;(K) dim Hy4(K)

k=2,n=192: 54888816 =1161471+ 53727345

- using clearing:
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Counting cohomology column reductions
- standard matrix reduction:

S(1)-2 (o) ()

~—— ~—— ~——
dim C4(K) dim B4+1(K) dim Z4(K)
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Counting cohomology column reductions

- standard matrix reduction:

202 () ()

~—— ~—— ~——
dim C4(K) dim B4+1(K) dim Z4(K)

k=2,n=192: 1179808 =18337 + 1161471

- using clearing:
kon-1 n-1 Mlin—1
;)(dn) +( 0 )+_;)( d )

~—— ——
dim B4+1(K)  dim H(K)
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Counting cohomology column reductions

- standard matrix reduction:

202 () ()

~—— ~—— ~——
dim C4(K) dim B4+1(K) dim Z4(K)

k=2,n=192: 1179808 =18337 + 1161471

- using clearing:
kon-1 n-1 Mlin—1
;)(dn) +( 0 )“%( d )

~—— ——
dim B4+1(K)  dim H(K)

k=2,n=192: 1161472 =1+1161471

14/25



Observations

For a typical input:
- V has very few off-diagonal entries

- most negative columns of D are already reduced
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Observations

For a typical input:

- V has very few off-diagonal entries

- most negative columns of D are already reduced
Previous example (k = 2, n = 192):

- Only 845 out of 1161471 columns have to be reduced
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Implicit matrix reduction



Implicit matrix reduction
Standard approach:

- Boundary matrix D for filtration-ordered basis
- Explicitly generated and stored in memory
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Implicit matrix reduction
Standard approach:
- Boundary matrix D for filtration-ordered basis
- Explicitly generated and stored in memory

- Matrix reduction: store only reduced matrix R
- transform D into R by column operations

Approach for Ripser:
- Boundary matrix D for lexicographically ordered basis
- Implicitly defined and recomputed when needed
- Matrix reduction in Ripser: store only coefficient matrix V'

- recompute previous columns of R = D- V when needed
- Typically, V is much sparser and smaller than R

16/25



Oblivious matrix reduction
Algorithm variant:
« R=D
< forj=1,...,n
- while 3i < j with pivot R; = pivot R;
+ add D; toR;
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Oblivious matrix reduction
Algorithm variant:
«R=D
< forj=1,...,n
- while 3i < j with pivot R; = pivot R;
+ add D; toR;
Requires only
- current column R;
- pivots of previous columns R;

to obtain the persistence intervals: {[,]) | i = pivotR;} u {[i, 00) | i € E}.
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Oblivious matrix reduction

Algorithm variant:

«R=D

< forj=1,...,n

- while 3i < j with pivot R; = pivot R;
+ add D; toR;

Requires only

- current column R;

- pivots of previous columns R;
to obtain the persistence intervals: {[,]) | i = pivotR;} u {[i, 00) | i € E}.
Corollary
The rank of an m x n matrix can be computed in O(n) memory.
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Apparent and emergent pairs



Natural filtration settings

Typical assumptions on the filtration:

- general filtration persistence (in theory)
- filtration by singletons or pairs discrete Morse theory
- simplexwise filtration persistence (computation)
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Natural filtration settings

Typical assumptions on the filtration:

- general filtration persistence (in theory)

- filtration by singletons or pairs discrete Morse theory

- simplexwise filtration persistence (computation)
Conclusion:

- Discrete Morse theory sits in the middle
between persistence and persistence (!)
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Discrete Morse theory

Definition (Forman 1998)
A discrete vector field on a cell complex is a partition of the set of simplices into

- singleton sets {¢} (critical cells), and
- pairs {0, 7}, where ¢ is a facet of 7.

19/25



Discrete Morse theory

Definition (Forman 1998)
A discrete vector field on a cell complex is a partition of the set of simplices into

- singleton sets {¢} (critical cells), and
- pairs {0, 7}, where ¢ is a facet of 7.

A function f : K — R on a cell complex is a discrete Morse function if

- sublevel sets are subcomplexes, and

19/25



Discrete Morse theory

Definition (Forman 1998)
A discrete vector field on a cell complex is a partition of the set of simplices into

- singleton sets {¢} (critical cells), and
- pairs {0, 7}, where ¢ is a facet of 7.

A function f : K — R on a cell complex is a discrete Morse function if

- sublevel sets are subcomplexes, and

19/25



Discrete Morse theory

Definition (Forman 1998)
A discrete vector field on a cell complex is a partition of the set of simplices into

- singleton sets {¢} (critical cells), and
- pairs {0, 7}, where ¢ is a facet of 7.

A function f : K — R on a cell complex is a discrete Morse function if

- sublevel sets are subcomplexes, and %

%

19/25



Discrete Morse theory

Definition (Forman 1998)
A discrete vector field on a cell complex is a partition of the set of simplices into

- singleton sets {¢} (critical cells), and
- pairs {0, 7}, where ¢ is a facet of 7.

A function f : K — R on a cell complex is a discrete Morse function if

- sublevel sets are subcomplexes, and % /
1

19/25



Discrete Morse theory

Definition (Forman 1998)
A discrete vector field on a cell complex is a partition of the set of simplices into

- singleton sets {¢} (critical cells), and
- pairs {0, 7}, where ¢ is a facet of 7.

A function f : K — R on a cell complex is a discrete Morse function if

- sublevel sets are subcomplexes, and 4

19/25



Discrete Morse theory

Definition (Forman 1998)
A discrete vector field on a cell complex is a partition of the set of simplices into
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Discrete Morse theory

Definition (Forman 1998)
A discrete vector field on a cell complex is a partition of the set of simplices into

- singleton sets {¢} (critical cells), and
- pairs {0, 7}, where ¢ is a facet of 7.
A function f : K — R on a cell complex is a discrete Morse function if

6
- sublevel sets are subcomplexes, and , 4
- level sets form a discrete vector field.

1
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Fundamental theorem of discrete Morse theory

Let f be a discrete Morse function on a cell complex K.
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Fundamental theorem of discrete Morse theory

Let f be a discrete Morse function on a cell complex K.

Theorem (Forman 1998) .
If (s, t] contains no critical value of f, then the sublevel set K; collapses to K; .

Corollary
K ~ M for some cell complex M built from the critical cells of f.

This homotopy equivalence is compatible with the filtration.

Corollary
K and M have isomorphic persistent homology (with regard to the sublevel sets of f).

20/25



Morse pairs and persistence pairs

Consider a Morse filtration (one or two simplices at a time).
Morse pair (0, 1):

- inserting o and 7 simultaneously does not change the homotopy type
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Morse pairs and persistence pairs

Consider a Morse filtration (one or two simplices at a time).
Morse pair (0, 1):
- inserting o and 7 simultaneously does not change the homotopy type

Consider a simplexwise filtration (one simplex at a time).
Persistence pair (o, 7):
- inserting simplex o creates a new homological feature

- inserting 1 destroys that feature again

21/25



Apparent pairs
Definition
In a simplexwise filtration, (o, 7) is an apparent pair if
- o is the youngest face of T
- Tis the oldest coface of o

Lemma
Any apparent pairs is a persistence pair.

Lemma
The apparent pairs form a discrete gradient.
- Generalizes a construction proposed by [Kahle 2011] for the study of random

Rips filtrations
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From Morse theory to persistence and back

Proposition (from Morse to persistence)

The pairs of a Morse filtration are apparent 0-persistence pairs for the canonical
simplexwise refinement of the filtration.
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From Morse theory to persistence and back

Proposition (from Morse to persistence)

The pairs of a Morse filtration are apparent 0-persistence pairs for the canonical
simplexwise refinement of the filtration.

Proposition (from persistence to Morse)
Consider an arbitrary filtration with a simplexwise refinement. The apparent
0-persistence pairs yield a Morse filtration

- refining the original one, and

- refined by the simplexwise one.
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Emergent persistent pairs

Consider the lexicographically refined Rips filtration:
- increasing diameter, refined by
- lexicographic order
This is the simplexwise filtration for computations in Ripser.

Lemma
Assume that

- 1is the lexicographically minimal proper coface of o with diam(7) = diam(o),
- and there is no persistence pair (p, T) with o < p.

Then (o, 7) is an emergent persistence pair.
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Emergent persistent pairs

Consider the lexicographically refined Rips filtration:
- increasing diameter, refined by
- lexicographic order
This is the simplexwise filtration for computations in Ripser.

Lemma
Assume that

- 1is the lexicographically minimal proper coface of o with diam(7) = diam(o),
- and there is no persistence pair (p, T) with o < p.
Then (o, 7) is an emergent persistence pair.

- Includes all apparent persistence 0 pairs
- Can be identified without enumerating all cofaces of &
- Provides a shortcut for computation

24/25



Ripser Live: users from 156 different cities
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