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Vietoris–Rips persistence



Vietoris–Rips Bltrations

Consider a Bnite metric space (X, d).

The Vietoris–Rips complex is the simplicial complex

Ripst(X) = {S ⊆ X ∣ diam S ≤ t}

• 1-skeleton: all edges with pairwise distance ≤ t
• all possible higher simplices (Dag complex)

Goal:

• compute persistence barcodes for Hd(Ripst(X))
(in dimensions 0 ≤ d ≤ k)
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Demo: Ripser

Example data set:

• 192 points on S2

• persistent homology barcodes up to dimension 2
• over 56 mio. simplices in 3-skeleton

Comparison with other software:

• javaplex: 3200 seconds, 12 GB

• Dionysus: 533 seconds, 3.4 GB

• GUDHI: 75 seconds, 2.9 GB

• DIPHA: 50 seconds, 6 GB

• Eirene: 12 seconds, 1.5 GB

Ripser: 1.2 seconds, 152 MB
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Ripser

A software for computing Vietoris–Rips persistence barcodes

• about 1000 lines of C++ code, no external dependencies

• support for

• coe?cients in a prime Beld Fp
• sparse distance matrices for distance threshold

• open source (http://ripser.org)

• released in July 2016

• online version (http://live.ripser.org)

• launched in August 2016

• most e?cient software for Vietoris–Rips persistence

• computes H2
barcode for 50 000 random points on a torus in 136 seconds /

9 GB (using distance threshold)

• 2016 ATMCS Best New Software Award (jointly with RIVET)
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Design goals

Goals for previous projects:

• PHAT [B, Kerber, Reininghaus, Wagner 2013]:

fast persistence computation (matrix reduction only)

• DIPHA [B, Kerber, Reininghaus 2014]:

distributed persistence computation

Goals for Ripser:

• Use as little memory as possible

• Be reasonable about computation time
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The four special ingredients

The improved performance is based on 4 insights:

• Clearing inessential columns [Chen, Kerber 2011]

• Computing cohomology [de Silva et al. 2011]

• Implicit matrix reduction

• Apparent and emergent pairs

Lessons from PHAT:

• Clearing and cohomology yield considerable speedup,

• but only when both are used in conjuction!
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Matrix reduction



Matrix reduction algorithm

Setting:

• Bnite metric space X, n points

• persistent homologyHd(Ripst(X);F2) in dimensions d ≤ k
Notation:

• D: boundary matrix of Bltration

• Ri: ith column of R

Algorithm:

• R = D,V = I
• while ∃i < jwith pivotRi = pivotRj

• add Ri to Rj, add Vi to Vj

Result:

• R = D ⋅V is reduced (unique pivots)

• V is full rank upper triangular
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Compatible basis cycles

For a reduced boundary matrix R = D ⋅V , call

P = {i ∶ Ri = 0} positive indices,

N = {j ∶ Rj ≠ 0} negative indices,

E = P ∖ pivotsR essential indices.
Then

Σ̃Z = {Vi ∣ i ∈ P} is a basis of Z∗,
ΣB = {Rj ∣ j ∈ N} is a basis of B∗,

ΣZ = ΣB ∪ {Vi ∣ i ∈ E} is another basis of Z∗.

Persistent homology is generated by the basis cycles ΣZ.

• Persistence intervals: {[i, j) ∣ i = pivotRj} ∪ {[i,∞) ∣ i ∈ E}
• Columns with non-essential positive indices never used!
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Clearing



Clearing non-essential positive columns

Idea [Chen, Kerber 2011]:

• Don’t reduce at non-essential positive indices

• Reduce boundary matrices of ∂d ∶ Cd → Cd−1
in decreasing dimension d = k + 1, . . . , 1

• Whenever i = pivotRj (in matrix for ∂d)

• Set Ri to 0 (in matrix for ∂d−1)

• Set Vi to Rj

• Still yields R = D ⋅V reduced, V full rank upper triangular

Note:

• reducing positive columns typically harder than negative

• with clearing: need only reduce essential positive columns
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Cohomology



Persistent cohomology

We have seen: many columns of R = D ⋅V are not needed

• Skip those inessential columns in matrix reduction

For persistence barcodes in low dimensions d ≤ k:

• Number of skipped indices for reducing DT (cohomology) is much larger

than for D (homology)

• reducing boundary matrix produces basis for Hk+1(Kk+1), which is not needed

• The resulting persistence barcode is the same [de Silva et al. 2011]
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Counting homology column reductions

• standard matrix reduction:

k+1
∑
d=1

( n
d + 1

)
´¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¶
dimCd(K)

=
k+1
∑
d=1

(n − 1
d

)
´¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¶
dimBd−1(K)

+
k+1
∑
d=1

(n − 1
d + 1

)
´¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¶
dimZd(K)

k = 2, n = 192: 56050096 = 1 161 471 + 54 888625
• using clearing:

k+1
∑
d=1

(n − 1
d

)
´¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¶
dimBd−1(K)

+ (n − 1
k + 2

)
´¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¶

dimHk+1(K)

=
k+2
∑
d=1

(n − 1
d

)

k = 2, n = 192: 54 888 816 = 1 161 471 + 53 727 345
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∑
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)

k = 2, n = 192: 1 161 472 = 1 + 1 161 471
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Observations

For a typical input:

• V has very few o>-diagonal entries

• most negative columns of D are already reduced

Previous example (k = 2, n = 192):

• Only 845 out of 1 161 471 columns have to be reduced
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Implicit matrix reduction



Implicit matrix reduction

Standard approach:

• Boundary matrixD for Bltration-ordered basis

• Explicitly generated and stored in memory

• Matrix reduction: store only reduced matrix R
• transform D into R by column operations

Approach for Ripser:

• Boundary matrixD for lexicographically ordered basis

• Implicitly deBned and recomputed when needed

• Matrix reduction in Ripser: store only coe?cient matrix V
• recompute previous columns of R = D ⋅V when needed

• Typically, V is much sparser and smaller than R
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Oblivious matrix reduction

Algorithm variant:

• R = D
• for j = 1, . . . , n

• while ∃i < jwith pivotRi = pivotRj
• add Di to Rj

Requires only

• current column Rj

• pivots of previous columns Ri

to obtain the persistence intervals: {[i, j) ∣ i = pivotRj} ∪ {[i,∞) ∣ i ∈ E}.

Corollary

The rank of anm × nmatrix can be computed inO(n) memory.

http://ulrich-bauer.org/ripser-talk.pdf 17 / 25



Oblivious matrix reduction

Algorithm variant:

• R = D
• for j = 1, . . . , n

• while ∃i < jwith pivotRi = pivotRj
• add Di to Rj

Requires only

• current column Rj

• pivots of previous columns Ri

to obtain the persistence intervals: {[i, j) ∣ i = pivotRj} ∪ {[i,∞) ∣ i ∈ E}.

Corollary

The rank of anm × nmatrix can be computed inO(n) memory.

http://ulrich-bauer.org/ripser-talk.pdf 17 / 25



Oblivious matrix reduction

Algorithm variant:

• R = D
• for j = 1, . . . , n

• while ∃i < jwith pivotRi = pivotRj
• add Di to Rj

Requires only

• current column Rj

• pivots of previous columns Ri

to obtain the persistence intervals: {[i, j) ∣ i = pivotRj} ∪ {[i,∞) ∣ i ∈ E}.

Corollary

The rank of anm × nmatrix can be computed inO(n) memory.

http://ulrich-bauer.org/ripser-talk.pdf 17 / 25



Apparent and emergent pairs



Natural Bltration settings

Typical assumptions on the Bltration:

• general Bltration persistence (in theory)

• Bltration by singletons or pairs discrete Morse theory

• simplexwise Bltration persistence (computation)

Conclusion:

• Discrete Morse theory sits in the middle

between persistence and persistence (!)
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Discrete Morse theory

DeBnition (Forman 1998)

A discrete vector Beld on a cell complex is a partition of the set of simplices into

• singleton sets {ϕ} (critical cells), and

• pairs {σ , τ}, where σ is a facet of τ.

A function f ∶ K → R on a cell complex is a discrete Morse function if
6

45

2

3

1

• sublevel sets are subcomplexes, and

• level sets form a discrete vector Beld.
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Fundamental theorem of discrete Morse theory

Let f be a discrete Morse function on a cell complex K.

Theorem (Forman 1998)

If (s, t] contains no critical value of f , then the sublevel setKt collapses toKs .

6
45

2

3

1

Corollary

K ≃M for some cell complexM built from the critical cells of f .

This homotopy equivalence is compatible with the Bltration.

Corollary

K and M have isomorphic persistent homology (with regard to the sublevel sets of f ).
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Morse pairs and persistence pairs

Consider aMorse Bltration (one or two simplices at a time).

Morse pair (σ , τ):

• inserting σ and τ simultaneously does not change the homotopy type

Consider a simplexwise Bltration (one simplex at a time).

Persistence pair (σ , τ):

• inserting simplex σ creates a new homological feature

• inserting τ destroys that feature again
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Apparent pairs

DeBnition

In a simplexwise Bltration, (σ , τ) is an apparent pair if

• σ is the youngest face of τ
• τ is the oldest coface of σ

Lemma

Any apparent pairs is a persistence pair.

Lemma

The apparent pairs form a discrete gradient.

• Generalizes a construction proposed by [Kahle 2011] for the study of random

Rips Bltrations
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FromMorse theory to persistence and back

Proposition (fromMorse to persistence)

The pairs of aMorse Bltration are apparent 0-persistence pairs for the canonical

simplexwise reBnement of the Bltration.

Proposition (from persistence to Morse)

Consider an arbitrary Bltration with a simplexwise reBnement. The apparent

0-persistence pairs yield aMorse Bltration

• reBning the original one, and

• reBned by the simplexwise one.
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Emergent persistent pairs

Consider the lexicographically reBned Rips Bltration:

• increasing diameter, reBned by

• lexicographic order

This is the simplexwise Bltration for computations in Ripser.

Lemma

Assume that

• τ is the lexicographically minimal proper coface of σ with diam(τ) = diam(σ),

• and there is no persistence pair (ρ, τ)with σ ≺ ρ.

Then (σ , τ) is an emergent persistence pair.

• Includes all apparent persistence 0 pairs

• Can be identiBed without enumerating all cofaces of σ
• Provides a shortcut for computation
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