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ABSTRACT · Chemical industrial processes involve numerous multivariable nonlinear systems. Nonlinear
Muli-Input Muli-Output (MIMO) models seem more suitable to represent most systems and control
problems in industrial processes. Furthermore, the outputs of the real systems might be corrupted with the
colored noises, which do not satisfy the assumption of the white noises. In order to solve the impact of the
colored noises, an Amplitude-Limiting Variational Bayesian (ALVB) method combined with multivariable
nonlinear model (Hammerstein model) working in over-sampling closed-loop structure is proposed in this
paper. This method is the improvement of the Variational Bayesian (VB) method combining Hammerstein
model and over-sampling closed-loop structure. Simulation experiments show that for the nonlinear model
(Hammerstein model), the proposed algorithm not only overcomes the unidentifiable disadvantage of
the traditional structure but also contributes to a higher identification accuracy. Furthermore, even under
situation that the processes output noise is a colored noise, the proposed algorithm still maintains and
converges to the achieved accuracy.

INDEX TERMS Over-Sampling Closed-Loop structure, Hammerstein model, Variational Bayesian (VB)
method, Amplitude-Limited Variational Bayesian (ALVB) method, Colored noise

I. INTRODUCTION
In current chemical industrial processes, the performance
of the controller is determined by the accuracy of the pro-
cess models [1]. An industrial process involves a class of
multivariable nonlinear systems. The problems of the mul-
tivariable nonlinear plants operating in industrial processes
have not received a lot of attention so far. According to
industrial demands and relative theory, we choose to replace
the nonlinear model with a linear model for research, it is
just an approximation which is easier for process analysis.
This method to describe nonlinear models requires additional
numerous restrictive conditions, and the description is still
not correct [2]. Therefore, it is necessary to do the further
research on multivariable nonlinear model identification to
meet the needs of practical industrial processes.

In the field of multivariable nonlinear model identification,
a Hammerstein model which consists of a static nonlinear
module and a dynamic linear module is the focus of the
nonlinear modelling [3]. The Hammerstein model has less
computational complexity and represents the characteris-
tics of a process [4], which is always used for industrial

nonlinear process analysis, such as continuous reactors [5],
PH neutralization processes [6], and pressurized boilers [7].
There are lots of methods of Hammerstein models, such as
the traditional iterative method [8], over-parameter identi-
fication method [10], subspace identification method [11],
blind identification method [13], neural network [15], and
particle swarm algorithm [16]. In the identification methods
above, the extra excitation should be applied to ensure the
informative data for the system parameter estimate [17]-[18].
In the large industrial chemical process, the extra excitation is
generally limited to ensure that the identification experiments
do not cause the unqualified products and the emergency
shutdown [19]. The extra excitation might not only cause a
huge cost for identification procedure, but also produce an
effect on the industrial processes regularly operating [20].
In order to solve the practical problems above, this paper
provides a new method to obtain an accurate model at a low
cost.

There have been a lot of researches on the model structure
identifiability. Sun first proposed the over-sampling closed-
loop structure and proved that the over-sampling closed-
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loop structure identification could ensure the identifiability
without extra excitation [21]. Wang proved the identifiability
of the linear over-sampling closed-loop structure without
input signal in the frequency domain [22]-[23]. By analyzing
the asymptotic variance expression of linear over-sampling
structure, Zhu concluded the high-frequency parts in the
output noise can be converted into persisting exciting with
the over-sampling structure [24].

With the deep study of the over-sampling structure, a
series of traditional identification methods, such as the least
square method [25], the prediction-error [26] method and the
asymptotic variance method [27], are improved by the com-
bination with the over-sampling structure. The researches
above are most based on the univariate linear models, less
on the multivariate models. A new identification method, the
Variational Bayesian (VB) method can greatly improve the
accuracy of the model and widely used in the industrial iden-
tification experiments with the fast convergence. The Varia-
tional Bayesian (VB) methods based on several model types
have been proposed, such as multi-switched model [28],
multi-switched model under gamma noise distribution, time-
varying model [29], and autoregressive exogenous (ARX)
model with random missing output data [30]. In the practical
industrial processes, the Variational Bayesian (VB) methods
above require extra excitation to ensure the informativity of
the identification experiments, which might cause a large cost
for the normal plant operation. There is also a problem that
the original VB method might not converge with the colored
noise.

In order to obtain an accurate dynamic model at a low
cost, this paper provided a VB method based on the mul-
tivariable nonlinear model with over-sampling which com-
bines the Hammerstein models and over-sampling closed-
loop structure. An Amplitude-Limited Variational Bayesian
(ALVB) method combined with the over-sampling closed-
loop structure with colored noise for multivariable nonlinear
models is proposed. This algorithm is improved from the
traditional VB method and applicable to the condtion of
colored noise. Simulations show that the Amplitude-Limited
Variational Bayesian (ALVB) method combined with the
over-sampling closed-loop structure overcomes the short-
coming of the traditional closed-loop structure identifiability
and achieves higher accuracy. Simulations also prove the
algorithm convergences in the condtion of colored noise.

II. MULTIVARIABLE NONLINEAR OVER-SAMPLING
CLOSED-LOOP STRUCTURE
In the large-scale industrial processes, the continuously op-
erated plants are always nonlinear Multi-Input Multi-Output
(MIMO) systems, the frequency in the operating system is
much lower than that in the DCS sampling system, which is
suitable for the multivariable nonlinear over-sampling struc-
ture identification. Therefore, multivariable nonlinear over-
sampling structure can be used for the large-scale industrial
process modelling.

Fig.1 displays how the Hammerstein model over-sampling

structure operated in closed-loop identification. The Ham-
merstein model basically consists of a nonlinear static mul-
tivariable block F (•) and a dynamic linear multivariable
blockGc(s). There exists a multivariable controllerK(z−1)
of the control period T , and z−1 is the backward shift
operator that corresponds to T , i.e, z−1y(t) = y(t − 1).
K(z−1) generates piecewise model input U(m) through a
zero-order holder. In the over-sampling closed-loop structure,
the output is sampled at a period of ∆ = T/p to generate
Y ∆(m) for identification, while the sampling time for output
in conventional identification is T , p is the positive integer
indicating the over-sampling rate.

In the Hammerstein model over-sampling structure shown
in Fig.1, U(m) = [u1(m) · · ·un(m)]T is the nonlinear part
input and ζ(m) = [ζ1(m) · · · ζn(m)]T is the nonlinear part
output. R(m) = [r1(m) · · · rn(m)]T is the system input
and Y ∆(k) = [y∆1(k) · · ·y∆n(k)]T is the system output.
V ∆(k) = [v∆1(k) · · ·v∆n(k)]T is a white zero mean noise
or colored noise vector.

It is assumed that the nonlinear static multivariable block
F (•) can be expressed as

ζi(m) = Fi (ui(m))

= di1fi1 (ui(m)) + di2fi2 (ui(m)) + · · · dindfind (ui(m))

=

nd∑
l=1

dilfil (ui(m)) .

(1)
Denote the plant model Gc∆(s) with respect to sampling

time ∆ as

Y∆(k) = Gc∆
(
q−1
)
ζ∆(k) + V∆(k), (2)

then the specific forms of Gc∆(q−1) and V ∆(k) are sepa-
rately as follows

Gc∆
(
q−1
)

=
B∆

(
q−1
)

A∆ (q−1)

=
1

A∆ (q−1)

 B∆11

(
q−1
)
· · · B∆1n

(
q−1
)

...
. . .

...
B∆n1

(
q−1
)
· · · B∆nn

(
q−1
)
 ,

V∆(k) = H∆

(
q−1
)
v∆∗(k)

=
C∆

(
q−1
)

A∆ (q−1)
v∆∗(k)

=
1

A∆ (q−1)

 C∆1

...
C∆n

v∆∗(k)

(3)

where H∆(q−1) is the stable minimum phase transfer func-
tion. v∆∗(k) is a white noise with zero mean and δ−1

variance. B∆(q−1) is the n × n numerator of the trancfer
functionGc∆(q−1) and C∆(q−1) is the n× 1 numerator of
the transfer function Hc∆(q−1). A∆(q−1) is the denomina-
tor of the transfer functionGc∆(q−1).
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FIGURE 1. Over-sampling structure in closed-loop identification.

In (3), A∆(q−1), B∆(q−1), and C∆(q−1) are separately
expressed as

A∆

(
q−1
)

= 1 + a∆,1q
−1 + · · ·+ a∆,naq

−na ,

B∆ij

(
q−1
)

= b∆ij,1q
−1−τb∆ij + · · ·+ b∆ij,nbq

−nb−τb∆ij ,

C∆i

(
q−1
)

= 1 + c∆i,1q
−1 + · · ·+ c∆i,ncq

−nc

(4)
where a∆,1 · · · a∆,na are the parameters of the A∆(q−1) and
na is the number of A∆(q−1) parameters. b∆ij,1 · · · b∆ij,nb
are the parameters of B∆ij(q

−1) and nb is the number of
B∆ij(q

−1) parameters. τb∆ij is the time delay ofB∆ij(q
−1).

c∆,1 · · · c∆,nc are the parameters of C∆i(q
−1) and nc is the

number of parameters of C∆i(q
−1).

In the over-sampling closed-loop structure, the input
U∆(k) is also over-sampled. Due to the zero-order holder,
the input U∆(k) for identification is actually generated as

U∆(k∆) = U(mT ), k = mp,mp+ 1, . . . , (m+ 1)p− 1.
(5)

Referring to (1) - (5), we can obtain the following

Y∆(k) = −
na∑
qa=1

a∆,qaY∆ (k − qa)

+

nb∑
qb=1

B∆,qbF (U∆ (k − qb))

+

nc∑
qc=1

c∆,qce∆ (k − qc) + e∆(k),

(6)

B∆,qb =

 b∆11,qb · · · b∆1n,qb
...

. . .
...

b∆n1qb · · · b∆nn,qb

 ,

c∆,qc =

 c∆1,qc
...

c∆n,qc

 .
(7)

(8) can be obtained as

Y∆(k) = Φ∆(k)θ∆ + e∆(k) (8)

where Φ∆(k) is the matrix composed of the model input and
output data shown as

Φ∆(k) =

 y∆1(k) F (U∆(k)) · · · 0
...

...
. . .

...
y∆n(k) · · · 0 F (U∆(k))

 .
(9)

In (8) - (9), the specific forms of y∆i(k) and F (U∆(k))
are as follows

y∆i(k) = [−y∆i(k − 1) · · · − y∆i (k − na)] ,

F (U∆(k)) = [F1 (u∆1(k)) · · · Fn (u∆n(k))]
T
,

e∆(k) = A∆

(
q−1
)
V ∆(k) = [e∆i(k) · · · e∆i (k − nc)]T

(10)
where

Fi (u∆i(k)) = [Fi1 (u∆i(k)) · · · Find (u∆i(k))]
T
,

Fij (ui(k))
= [fij (u∆i (k − 1− τb∆ij)) · · · fij (u∆i (k − nb − τb∆ij))] .

(11)
θ∆ is the parameter vector of the ∆ model shown as

θ∆ = [a∆ b∆i · · · b∆n]
T
,

a∆ = [a∆1 · · · a∆,na ] ,

b∆i = [b∆i,1 · · · b∆i,nb ] ,

b∆ij = [b∆ij,1 · · · b∆ij,nd ] ,

b′∆ij,l = [b∆ij,1 × dil · · · b∆ij,n × dil] .

(12)

θ∆ can be obtained from the input data U∆ and output
data Y∆ of the ∆ model by using identification algorithm,
such as recursive least squares and prediction error method.
We assumed di1 = 1 to ensure the identification uniqueness,
then the dil = 1 and b∆ij,l can be separated by the mean
value method. d̂il is the mean value of d̂il,qb , calculated and
used as the accurate parameters estimate

d̂il =
1

nb

nb∑
q=1

d̂il,qb (13)
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where
d̂il,qb =

b̂∆ij,l(qb)

b̂∆ij,qb
,

b̂∆ij,qb = b̂′∆ij,1.

(14)

Denote the plant modelGc(z−1) with respect to sampling
time T as

Gc
(
z−1
)

=
B
(
z−1
)

A (z−1)

=
1

A (z−1)

 B11

(
z−1
)
· · · B1n

(
z−1
)

...
. . .

...
Bn1

(
z−1
)
· · · Bnn

(
z−1
)
 (15)

where A(z
−1) and Bij(z−1) are the n× n denominator and

numerator of the transfer functionGc(z−1), respectively.
In (15), A(z

−1) and Bij(z−1) are separately expressed as

A(z
−1) = 1 + a1z

−1 + · · ·+ anaz
−na ,

Bij(z
−1) = bij,1z

−1−τbij + · · ·+ bij,nbz
−nb−τbij

(16)

where parameters a1 · · · ana are the parameters of the
A(z−1). bij,1 · · · bij,nb are the parameters of Bij(z−1). τbij
is the time delay of the Bij(z−1). To achieve the relationship
between the T model and the ∆ model, the Multi-input
Multi-Output (MIMO) system can be divided into Multiple-
Input and Single-Output (MISO) subsystems shown as

y∆i(k) = −
na∑
qa=1

a∆,qay∆i (k − qa)

+
n∑
j=1

nb∑
qb=1

b∆ij,qbζ∆j (k − qb − τb∆i) .
(17)

Referring to (17), each subsystem can be converted into
the state-space model structure

Xi(k) = AXi(k − 1) +Biζ∆(k − 1− τb∆i),

y∆i (k) = CXi(k)
(18)

where the A, Bi, and C are as follows

A =


−a∆,1 1 0 0

−a∆,2 0
. . . 0

...
... 0 1

−a∆,nmax 0 . . . 0

 ,

Bi =

 b∆i,1 . . . b∆in,1
...

. . .
...

b∆i,nmax · · · b∆in,nmax

 ,
C =

[
1 0 · · · 0

]
,

τ b∆i =

 τb∆1

...
τb∆in



(19)

where nmax = max(na, nb). When nmax = nb, a∆,qa = 0.
When nmax = na, b∆ij,qb = 0.

Referring to (18), we can get the following expression

Xi(k) = ApXi(k− p) +

p−1∑
t=0

AtBiζ∆(k− 1− t− τb∆i).

(20)
Referring to (1), (6) - (7), ζ∆(k − 1 − t − τb∆i) can be

obtained as

ζ∆ (k − 1− t− τb∆i) =

 F1 (u1(k − 1− t))
...

Fn (un(k − 1− t))


=

 F1 (u1(k − p))
...

Fn (un(k − p))

 = ζ∆(k − p− τb∆i).

(21)

Referring to (17) - (21), we can obtain that

Xi(k) = ApXi(k − p) +
p−1∑
t=0

AtBiζ∆(k − 1− t− τb∆i),

y∆i (k) = CXi(k).
(22)

Due to q−p = z−1 and k∆ = mT , the (k − p)∆ =
(m − 1)T . The model Gi(z−1) of the subsystem obtained
from (22) is

Gi(z
−1) = C(I −Apz−1)

p−1∑
t=0

AtBiz
− τb∆ip . (23)

Therefore, the A(z−1) andBi(z−1) can be expressed as
A
(
z−1
)

= det
(
I −Apz−1

)
Bi

(
z−1
)

= Cadj
(
I −Apz−1

) p−1∑
t=0

AtBiz
− τbsp .

(24)

III. VARIATIONAL BAYESIAN (VB) METHOD FOR
NONLINEAR MULTIVARIABLE OVER-SAMPLING
CLOSED-LOOP STRUCTURE
The V∆(k) is a white noise with zero mean and the variance
δ−1, θ∆ is the normal distribution with the variance λ, then
the probability density of θ∆ can be expressed as

P (θ∆ | λ) = N
(
0, λIdim(θ∆)

)
. (25)

The V∆(k) is the normal distribution, assuming the vari-
ance λ is the Gamma distribution, then the probability density
of λ can be expressed as

P (δ | α, β) = gamma (α, βIn×n) (26)

where α is the shape parameter and β is the scale parameter.
Referring to (25) - (26), the prior probability distribution

of Θ =
{
θ∆, δ

−1
}

can be expressed as

P (Θ) = P (θ∆ | λ)P (δ | α, β). (27)
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Through the Variational Bayesian (VB) method, the poste-
rior probability distribution of Θ can be expressed as

F (Q(Θ))

=

∫
Q(Θ) logP (Y∆ | Θ)dΘ

+

∫
Q(Θ) log

P (Θ)

Q(Θ)
dΘ

=

∫
Q(Θ) logP (Y∆ | Θ)dΘ

+

∫
Q(Θ) logP (Θ)dΘ−

∫
Q(Θ) logQ(Θ)dΘ.

(28)

By taking the first-order partial derivative of (28) with
respect to θ∆, referring to (27) the posterior probability
distribution Q(θ∆) can be achieved as

Q(θ∆)

= P (Y∆ | Θ)P (Θ)

= P (Y∆ | Θ)P (θ∆ | λ)P (δ | α, β)

=
1

Cθ
exp

(
− 1

2λ
θT∆Iθ∆

)

exp

 N∑
k=1

−
δ
(
Y∆(k)−ΦT

∆(k)θ∆

)2

2



=
1

Cθ
exp


− 1

2θ∆
T

[
λ−1I +

N∑
k=1

Φ∆(k)δΦ∆
T (k)

]
θ∆

+
N∑
k=1

δY∆(k)Φ∆
T (k)θ∆


(29)

where P (Y∆ | Θ) is the normal distribution with mean value
ΦT

∆(k)θ∆ and variance δ−1. Cθ is a constant and Cθ =

2π(δ−1λ)
1
2

[
βαδα−1

Γ(α) exp

(
−βδ −

N∑
k=1

δ
2Y∆(k)Y∆

T (k)

)]−1

.

Based on (29), it is obtained that θ∆ is a normal distribu-
tion, the mean value θ∆ and the variance Var(θ∆) are shown
as follows

θ∆ = Var(θ∆)
N∑
k=1

δY∆(k)ΦT
∆(k), (30)

Var(θ∆) =

[
λ−1I +

N∑
k=1

Φ∆(k)δΦT
∆(k)

]−1

, (31)

θ
2

∆ =
〈
θT∆θ∆

〉
Q(θ∆)

= Var (θ∆) + θ∆θ
T
∆. (32)

By taking the first-order partial derivative of (28) with
respect to δ, referring to (27) the posterior probability dis-

tribution Q(δ) can be achieved as

Q(δ)

= P (Y∆ | Θ)P (Θ)

= P (Y∆ | Θ)P (θ∆ | λ)P (δ | α, β)

=
1

Cδ
exp

[
N∑
k=1

1

2
ln(δ)− 1

2
δ
(
Y∆(k)−ΦT

∆(k)θ∆

)2
]

δα−1 exp (−βδ)

=
1

Cδ
exp

 N∑
k=1

1

2
ln(δ)− 1

2
δ


(Y∆(k)Y T

∆(k)

−Y∆(k)θT∆Φ∆(k)

−ΦT
∆(k)θ∆Y

T
∆(k)

+Φ∆(k)Tθ
2

∆ΦT
∆(k))




δα−1 exp (−βδ)

=
1

Cδ
δα+ 1

2N−1

exp

−δ
βI +

1

2

N∑
k=1


(Y∆(k)Y T

∆(k)

−Y∆(k)θT∆Φ∆(k)

−ΦT
∆(k)θ∆Y

T
∆(k)

+Φ∆(k)Tθ
2

∆ΦT
∆(k))




(33)

where Cδ is a constant and Cδ =

2π(λ)
1
2

[
βα

Γ(α) exp
(
− 1

2λθ
T
∆Iθ∆

)]−1

.
(33) shows that δ is a Gamma distribution with

δ̄ = (2α+N)(2βI + γ)−1 (34)

where γ is expressed as

γ =
N∑
k=1

(
Y∆(k)Y T

∆(k)− Y∆(k)θT∆Φ∆(k)

−ΦT
∆(k)θ∆Y

T
∆(k) + ΦT

∆(k)θ
2

∆ΦT
∆(k)

)
.

(35)
Referring to (30) - (32), (34), and (35), where k is the

lable such as U∆(k), h is the iteration number, the recursive
steps of the multivariate Variational Bayesian (VB) method
are obtained as follows:

1.Initialization: when k ≤ 0, define Φ∆(k) = 0,
U∆(k) = 0 , and a non-negative number ε0.

2.Define initial parameter Θ, the initial iteration number
h = 1, and non-negative numbers λ, α, β.

3.Update θ
h+1

∆ , Var (θ∆)
h+1, and

〈
θ∆θ

T
∆

〉h+1

Q(θ∆)
by

(30) - (32).
4.Update δ̄h+1 by (34) - (35).
5. If

∥∥∥θh+1

∆ − θh∆
∥∥∥ ≤ ε0, then θ

h+1

∆ is the estimated value
of θ∆. Otherwise, h = h+ 1, and repeat step 3.

IV. AMPLITUDE-LIMITED VARIATIONAL BAYESIAN
(ALVB) METHOD FOR NONLINEAR MULTIVARIABLE
OVER-SAMPLING STRUCTURE
A. AMPLITUDE-LIMITED VARIATIONAL BAYESIAN
(ALVB) METHOD FOR COLORED NOISE
When V∆(k) is a colored noise, the matrix Φ∆(k) contains
the unknown noise e∆(k). The estimate of the e∆(k) can be
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expressed as

ê∆(k) = Y∆(k)−Φ∆(k)θ̂∆. (36)

In the algorithm iteration, the estimated value ê∆ might
not converge caused by the huge difference between the
initial value θ̄∆ and the true value θ∆. Therefore, define the
ê∆ satisfy an amplitude limiting rule

ê∆(k) =

 ê∆1(k)
...

ê∆n(k)

 (37)

where

ê∆i(k) =

 κ, ê∆i(k) ≥ κ
ê∆i(k),−κ < ê∆i(k) < κ
−κ, ê∆i(k) ≤ −κ

. (38)

In (38), κ is defined as a large positive number.
According to (30) - (38), where k is the lable such as

U∆(k), h is the iteration number, the recursive steps of
the multivariable Amplitude-Limited Variational Bayesian
(ALVB) method for colored noise are obtained as follows:

1. When k ≤ 0, define Φ∆(k) = 0, U∆(k) = 0 , and a
non-negative number ε0.

2. Define initial parameter Θ, the initial iteration number
h = 1, and non-negative numbers λ,α,β.

3. ê∆ is estimated by (36) - (38)

4. Update θ
h+1

∆ , Var (θ∆)
h+1, and

〈
θ∆θ

T
∆

〉h+1

Q(θ∆)
by

(30) - (32).
5. Update δ̄h+1 by (34) - (35).
6. If

∥∥∥θh+1

∆ − θh∆
∥∥∥ ≤ ε0, then θ

h+1

∆ is the estimated value
of θ∆. Otherwise, h = h+ 1, and repeat step 4.

B. ERROR EXPRESSION OF NOISE ESTIMATION
ε is defined as the error between the true value θ∆ and the
initial value θ

1

∆, meaning ε = θ∆ − θ
1

∆. The Multi-input
Multi-Output (MIMO) system can be divided into Multiple-
Input and Single-Output (MISO) subsystems, ê∆i(k) can be
estimated in each subsystem when h = 1. The relationship
between ê∆i and e∆i satisfies

I∆ij(k) =


0, k 6= na + (n× nb × nd + nc) (i− 1)
+ (na + nb + j)
1, k = na + (n× nb × nd + nc) (i− 1)
+ (na + nb + j)

,

(39)

∆e∆i(k) = ê∆i(k)− e∆i(k). (40)

The relationship between Φ∆i(k) and Φ̂∆i(k) satisfies

Φ̂∆i(k) = Φ∆i(k) +

nc∑
qc=1

∆e∆i(k − 1)I∆ij . (41)

Referring to (8), (37), and (39) - (41), when k = 1, (40)
can be expressed as

ê∆i(1)

= y∆i
(1)− Φ∆i(1)θ̄

1
∆

= y∆i
(1)− Φ∆i(1) (θ∆ − ε)

= e∆i(1) + Φ∆i(1)ε,

(42)

∆e∆i(1) = Φ∆i(1)ε. (43)

Referring to (8), (37), and (42) - (43), when k = 2, (40)
can be expressed as

ê∆i(2)

= y∆i(2)− Φ̂∆i(2)θ̄
1
∆

= y∆i(2)− Φ̂∆i(2) (θ∆ − ε)
= y∆i(2)− (Φ∆i(2) + ∆e∆i(1)I∆i1) (θ∆ − ε)
= e∆(2) + Φ∆i(1)ε2I∆i1 + (Φ∆i(2)− c∆i1Φ∆i(1)) ε,

(44)
∆e∆i(2)

= Φ∆(1)ε2I∆i1 + (Φ∆i(2)− c∆i1Φ∆i(1)) ε

= Φ∆i(1)ε2I∆i1 +R∆i(2).

(45)

Therefore, based on iteration above, (40) can be expressed
as

∆e∆i(k)

= Φ∆i(1)ε (I∆i1ε)
k−1

+R∆i(k)

= Φ∆i(1)εk (I∆i1)
k−1

+R∆i(k).

(46)

(46) shows that if the initial error εin > 1 and when k →
∞, e∆i(k) might not converge, shown as

lim
k→∞

|∆e∆i(k)| ≥ |Φ∆i(1)ε‖εin|k−1 − |R∆i(k)|

≈ |Φ∆i(1)ε| |εin|k−1
= +∞.

(47)

Referring to (47), ê∆i(k), Φ̂∆i(k), and θ∆ might not
converge to the achieved accuracy during the whole algo-
rithm iteration. To solve the problem above, ê∆i(k) would
be defined in a certain range, which ensures the algorithm
operate well, the θ

h

∆ and ê∆i(k) converge to the achieved
accuracy.

V. SIMULATIONS
The benchtop neutralization system studied by Henson and
Seborg is taken as an example for simulation. The base
stream Q1 is NaOH of 0.003 mol/L, the buffer stream Q2 is
NaHNO3 of 0.03 mol/L, and the acid stream Q3 is HNO3

of 0.003 mol/L. Lakshminarayanan proposed that the process
above can be expressed by a 2 × 2 Hammerstein model.
The outputs of the model are the liquid level h(y1) and the
PH value PH(y2), the inputs are the base stream Q1 (u1)
and the acid stream Q3 (u2). The process above operated in
the over-sampling closed-loop structure, and the controllers
are K1 and K2. Experiments for Model-1 and Model-2
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are conducted. The specific experimental parameters are as
follows:

ζ1(k) = u1(k) + 0.2735u2
1(k) + 2.347u3

1(k),

ζ2(k) = u1(k)− 2.0381u2
2(k) + 10.869u3

2(k).
(48)

Model-1:

Gc
(
z−1
)

=

 0.0699z−1−0.0632z−2

1−1.8656z−1+0.8717z−2
0.0069z−2

1−1.8656z−1+0.8717z−2

0.0042z−2

1−1.8656z−1+0.8717z−2
−0.1748q−1+0.1679q−2

1−1.8656z−1+0.8717z−2

 .
(49)

Model-2:

Gc
(
z−1
)

=

 0.0599z−1−0.0732z−2

1−1.8656z−1+0.8717z−2
0.0069z−2

1−1.8656z−1+0.8717z−2

0.0042z−2

1−1.8656z−1+0.8717z−2
−0.1848z−1+0.1579z−2

1−1.8656z−1+0.8717z−2

 .
(50)

R(k) =

[
0
0

]
, p = 4. (51)

Example of white noise:

K1

(
z−1
)

= 0.1−0.06z−1

1+0.6z−1 , K2

(
z−1
)

= −0.012−0.06z−1

1−0.9z−1 ,

H
(
z−1
)

=

 1
1−1.8656z−1+0.8717z−2

1
1−1.8656z−1+0.8717z−2

 .
(52)

Example of colored noise:

K1

(
z−1
)

= 0.1 + 0.06z−1, K2

(
z−1
)

= −0.012− 0.06z−1,

H
(
z−1
)

=

 1+1.5z−1+2z−2

1−1.8656z−1+0.8717z−2

1+z−1+3z−2

1−1.8656z−1+0.8717z−2

 .
(53)

A. VARIATIONAL BAYESIAN (VB) METHOD IN
MULTIVARIABLE NONLINEAR OVER-SAMPLING
CLOSED-LOOP STRUCTURE FOR WHITE NOISE
When V ∆(k) is white noise, Variational Bayesian (VB)
method and Recursive least squares (RLS) are separately
used to achieve the multivariable nonlinear over-sampling
closed-loop structure model parameters. Here first Model-1
is taken as the experimental model. The relative errors of
RLS and VB are shown in Fig. 2 and Fig. 3, respectively.
The parameter estimates of the two algorithms are shown in
Tables I and II. The probability distributions of the parameter
estimates are shown in Fig. 4 and Fig. 5. The above identi-
fication experiments are repeated for Model-1 and Model-2.
The statistical results are shown in Fig. 6.

FIGURE 2. Relative error of RLS.

FIGURE 3. Relative error of VB.

FIGURE 4. Probability distribution of parameter θ∆1.

Fig. 2 and Fig. 3 show that the identification experiments
of multivariate nonlinear over-sampling closed-loop structure
model can achieve the accuracy of the parameter estimates,
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TABLE 1. θ∆1 with the white noise as the output noise

Algorithm a∆1 a∆2 b∆11,1 b∆11,2 b∆12,1 b∆12,2 d∆1,1 d∆1,2 d∆1,3 σ(%)
RLS −1.8489 0.8552 −0.0244 −0.0515 −0.0195 0.0286 1 0.2723 2.345 5.33
VB −1.8496 0.8559 0.0208 −0.0947 −0.0210 0.0294 1 0.2734 2.348 3.83
Truth value −1.8656 0.8717 0.0069 −0.0632 0 0.0069 1 0.2735 2.347 ——

TABLE 2. θ∆2 with the colored noise as the output noise

Algorithm a∆1 a∆2 b∆11,1 b∆11,2 b∆12,1 b∆12,2 d∆1,1 d∆1,2 d∆1,3 σ(%)
RLS −1.8489 0.8552 0.0234 −0.0045 −0.1529 0.1415 1 −2.0380 10.871 5.33
VB −1.8496 0.8559 0.0228 0.0002 −0.1553 0.1443 1 −2.0381 10.868 3.83
Truth value −1.8656 0.8717 0 0.0042 −0.1748 0.1679 1 −2.0381 10.869 ——

FIGURE 5. Probability distribution of parameter θ∆2.

FIGURE 6. Relative errors of repetitive experiments for Model-1 and Model-2.

without the extra excitations and the controller order is lower
than the model order. The structure widens the identifiability
of multivariable nonlinear models. Fig. 6 and Tables 1 and 2
shows that the experiment results of the multivariate nonlin-
ear over-sampling closed-loop structure model, the error of
VB is smaller than that of RLS under the same conditions.
Fig. 4 and Fig. 5 show that the probability density reaches
the maximum at the true value θ∆.

FIGURE 7. Relative error of RLS.

B. AMPLITUDE-LIMITED VARIATIONAL BAYESIAN
(ALVB) METHOD IN MULTIVARIABLE NONLINEAR
OVER-SAMPLING CLOSED-LOOP STRUCTURE FOR
COLORED NOISE
When V ∆(k) is colored noise, Amplitude-Limited Varia-
tional Bayesian (ALVB) method, Variational Bayesian (VB)
method, and Recursive least squares (RLS) are separately
used to achieve the multivariable nonlinear over-sampling
closed-loop structure model parameters. Here first Model-
1 is taken as the experimental model. The relative errors of
RLS and ALVB are shown in Fig. 7 and Fig. 8, respectively.
The parameter estimates of the three algorithms are shown in
Table III and Table IV. The probability distributions of the
parameter estimates are shown in Fig. 9 and Fig. 10. The
above identification experiments are repeated for Model-1
and Model-2. The statistical results are shown in Fig. 11.
Table 3 and Table 4 show the ALVB method overcomes the
shortcomings that the traditional VB method might not con-
verge, which satisfies the situation that the output is colored
noise. Fig. 7, Fig.8, Table 3, Table 4, and Fig. 11 show that
the over-sampling closed-loop structure ALVB method not
only does not need extra excitation but also achieve high
parameter estimates accuracy compared with that of RLS.
Fig. 4 and Fig. 5 show that the probability density reaches
the maximum at the true value θ∆2.
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TABLE 3. θ∆1 with the white noise as the output noise

Algorithm a∆1 a∆2 b∆11,1 b∆11,2 b∆12,1 b∆12,2 d∆1,1 d∆1,2 d∆1,3 σ(%)
RLS −1.9197 0.9306 0.0629 −0.0682 0.0461 −0.0493 1 0.2722 2.345 6.16
ALVB −1.8700 0.8774 0.0796 −0.0659 0.0236 −0.0058 1 0.2735 2.346 1.18
VB ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞
Truth value −1.8656 0.8717 0.0069 −0.0632 0 0.0069 1 0.2735 2.347 ——

TABLE 4. θ∆2 with the colored noise as the output noise

Algorithm a∆1 a∆2 b∆11,1 b∆11,2 b∆12,1 b∆12,2 d∆1,1 d∆1,2 d∆1,3 σ(%)
RLS −1.9179 0.9306 0.0036 0.0141 −0.1654 0.2358 1 −2.0379 10.869 6.16
ALVB −1.8700 0.8774 −0.0027 0.0099 −0.1662 0.1912 1 −2.0380 10.870 1.18
VB ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞
Truth value −1.8656 0.8717 0 0.0042 −0.1748 0.1679 1 −2.0381 10.869 ——

FIGURE 8. Relative error of ALVB.

FIGURE 9. Probability distribution of parameters θ∆1.

VI. CONCLUSION
This paper proposes a multivariable nonlinear over-sampling
closed-loop structure model when the multivariable nonlinear
traditional closed-loop structure model cannot be identifi-
able. A Variational Bayesian (VB) method based on the

FIGURE 10. Probability distribution of parameters θ∆2.

FIGURE 11. Relative errors of repetitive experiments for Model-1 and
Model-2.

multivariable over-sampling closed-loop structure Hammer-
stein model is proposed, which improved the traditional
VB method. Also, in this paper, we propose an Amplitude-
Limited Variational Bayesian (ALVB) method based on the
multivariable nonlinear over-sampling closed-loop structure
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model which is applicable for colored noise. The simulations
show that the VB method based on multivariable nonlinear
over-sampling closed-loop structure model satisfy the iden-
tifiability, but also has a higher identification accuracy than
RLS. Under the situation that the traditional VB method
might not converge caused by the colord output noise, the
ALVB method satisfy the convergence and has a higher ac-
curacy advantage over the traditional VB method. Therefore,
the VB and ALVB methods based on the multivariable non-
linear over-sampling closed-loop structure model are suitable
for the large plant process identification.
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