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Abstract
Background: Maize (Zeamays ssp. mays L.) is the most widely grown and yield crop in
the world, as well as an important model organism for fundamental research of the
function of genes. The functions of Maize proteins are annotated using the Gene
Ontology (GO), which has more than 40000 terms and organizes GO terms in a direct
acyclic graph (DAG). It is a huge challenge to accurately annotate relevant GO terms to
a Maize protein from such a large number of candidate GO terms. Some deep learning
models have been proposed to predict the protein function, but the effectiveness of
these approaches is unsatisfactory. One major reason is that they inadequately utilize
the GO hierarchy.

Results: To use the knowledge encoded in the GO hierarchy, we propose a deep
Graph Convolutional Network (GCN) based model (DeepGOA) to predict GO
annotations of proteins. DeepGOA firstly quantifies the correlations (or edges) between
GO terms and updates the edge weights of the DAG by leveraging GO annotations and
hierarchy, then learns the semantic representation and latent inter-relations of GO
terms in the way by applying GCN on the updated DAG. Meanwhile, Convolutional
Neural Network (CNN) is used to learn the feature representation of amino acid
sequences with respect to the semantic representations. After that, DeepGOA
computes the dot product of the two representations, which enable to train the whole
network end-to-end coherently. Extensive experiments show that DeepGOA can
effectively integrate GO structural information and amino acid information, and then
annotates proteins accurately.

Conclusions: Experiments on Maize PH207 inbred line and Human protein sequence
dataset show that DeepGOA outperforms the state-of-the-art deep learning based
methods. The ablation study proves that GCN can employ the knowledge of GO and
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boost the performance. Codes and datasets are available at http://mlda.swu.edu.cn/
codes.php?name=DeepGOA.

Keywords: Gene ontology, GO terms, Maize, Protein function prediction, Graph
convolutional network, Convolutional neural network

Background
Maize (Zea mays ssp. mays L.) has been subjected to cultivation and selection ever since
over the past 10,000 years [1, 2]. Advances in sequencing technology have led to a large
and rapidly increasing amount of Maize proteomic data (i.e., amino acid sequences and
interaction networks). Knowledge of protein sequences is useful for many applications,
such as yield and quality improvement, disease resistance and so on. Moreover, under-
standing the behavior of biological systems also requires determining the function of the
protein [3, 4]. The functional annotations of proteins does not increase with the explo-
sion of sequence data. Therefore, accurately annotating the functions of Maize proteins
is crucial for all forms of basic and applied research [4–6]. However, due to the bias
of botanists’ research interests, and identifying protein function always requires in vitro
or in vivo experiments, only a very tiny part of newly obtained sequences have exper-
imentally validated GO annotations [7–9]. Annotating proteins by wet-lab techniques
(i.e., gene knockout and iRNA) is low-throughput and can not keep pace with the rapid
influx of proteomic data. Therefore, the automatic methods have become increasingly
important [4, 10].
Gene Ontology (GO) is a controlled vocabulary of terms for describing the biological

roles of genes and their products [11], it has been extensively used as a golden standard
[12]. GO annotations of proteins are originally collected from published (or unpublished)
experimental data by GO curators. GO includes plenty of GO terms and each GO term
describes a distinct biological concept [13]. If a protein is annotated with a GO term,
it means that the protein has the function represented by the GO term. Furthermore,
many proteins do not only have a single function but may have multiple different func-
tions, making the automated function prediction (AFP) become a multi-label problem.
Additionally, the GO contains strong, formally defined relations between GO terms that
need to be accounted during predicting the function of proteins. Till now, GO contains
over 40000 terms, covering three different sub-ontologies, namely Biological Process(BP),
Molecular Function (MF) and Cellular Component (CC). GO structurally organizes each
sub-ontologies’ GO terms in a direct acyclic graph (DAG). In the DAG, each node corre-
sponds to a GO term and each edge describes the relationship between terms. If a protein
is annotated with a term, then the protein is also annotated with its ancestor (if any) terms.
On the other hand, if a protein is not annotated with a GO term, the protein will not be
annotated with any of its descendant terms. This rule is known as the True Path Rule
[11, 14]: a child term is a further refinement of the function of its parental term. Figure 1
gives an example of GO annotations of Maize protein ‘Zm00008a000131-p01’.
A protein is typically annotated with multiple GO terms at the same time, since it

usually participates in different life processes and executes multiple biological functions.
The function of protein is not isolated. Multiple proteins form a biological pathway to
implement biological functions, such as apoptosis and nerve impulses. Therefore, protein

http://mlda.swu.edu.cn/codes.php?name=DeepGOA
http://mlda.swu.edu.cn/codes.php?name=DeepGOA
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Fig. 1 An example of hierarchical GO annotations of proteins. ‘Zm00008a000131-p01’ is a Maize protein, it is
annotated with ‘GO:0005886’. According to the True Path Rule, the protein ‘Zm00008a000131-p01’ is also
annotated with their ancestor terms (‘GO:0071944’, ‘GO:0044464’, ‘GO:0005623’, ‘GO:0016020’ and
‘GO:0005575’)

function prediction can be regarded as a multi-label learning problem [15–18]. However,
due to a large amount of un-validated GO annotations of proteins, existing multi-label
learning based function predicting methods face the issue of insufficient annotations
and massive candidate GO terms. Furthermore, deep terms in the GO DAG describe
more refined biological functions, and the shallow terms describe the broad functions.
The missing GO annotations of proteins usually correspond to deep terms, which makes
accurately predicting the GO annotations of proteins more difficult than traditional
multi-label learning. Some efforts have been made toward utilizing the knowledge of GO.
To name a few, Valentini [14] adjusts the predictionsmade by binary classifier for eachGO
term by using the GO hierarchy. Pandey et al. [19] firstly defined a taxonomic similarity
through the knowledge of GO hierarchy, and used it to measure the correlations between
GO terms, and then improved the prediction of deep GO terms via the correlation of GO
terms. Yu et al. [18] views the GO structure as a graph and applied downward random
walks (dRW) on the GO hierarchy. This method used the terms already annotated to the
protein as the initial walkers to predict new GO annotation of this protein and identified
the negative GO annotations of this protein [20]. Yu et al. [21] introduced a hybrid graph
based on dRW, composed of two types of nodes (proteins and GO terms), to encode inter-
actions between proteins, GO hierarchy and available annotations of proteins, and then
predicted GO annotations of proteins through the bi-random walk algorithm proposed
on the hybrid graph. Recently, Zhao et al. [22, 23] uses a hierarchy preserving hashing
technique to keep the hierarchical order between GO terms and optimizes a series of
hashing functions to encode massive GO terms via compact binary codes and then makes
protein function prediction in the compressed hashing space and obtained a promising
protein function prediction accuracy.
All the above methods can be regarded as shallow solutions, which are difficult to

mine the deep (non-linear) relationship between proteins and GO terms. In recent years,
deep learning has significantly sparked the development of image recognition and speech
recognition [24]. The huge and complex output space is a big challenge faced by deep
learning model in protein function prediction. Wehrmann et al. [25] established a series
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of fully connected neural networks for the GO terms of different levels in the GO hier-
archy. They used each fully connected neural network as a classifier to predict a certain
number of GO items separately. Since the frequency of GO terms annotated proteins on
the same level also varies, which will impact the performance of the deep model, Zilke
et al. [26] grouped GO terms based on the level of GO and the number of annotations. For
each group, they established a fully connected neural network for the function prediction.
Based on the fully connected neural network, Rifaioglu et al. [27] used conjoint triad [28],
pseudo amino acid composition [29] and subsequence profile map [30] to obtain protein
sequence features, which further improves the accuracy of protein prediction. These two
deep learning based approaches separate GO terms, thus they can not well respect the
connection between GO terms, which are not in the same group. Kulmanov et al. [31]
first utilizes Convolutional Neural Networks to encode amino acids and incorporates the
GO structure into the output layer. They generates a fully connected layer with a Sig-
moid activation function for each GO term, which predicts whether the protein should be
annotated with this GO term. Furthermore, they uses a maximummerge layer which out-
puts the maximum value of the classification results for all child nodes and the internal
nodes to predict the non-leaf terms in the GODAG. Kulmanov et al. [32] further removed
the maximum merge layers and increased the number of convolution kernels to obtain
a better prediction accuracy. These aforementioned deep models optimistically assume
that their models are suitable for multiple GO terms. But in fact, they do not well uti-
lize the hierarchical relationship between GO terms and still suffer from the gap between
amino acids and GO annotations, which is often similarly termed as the semantic gap in
image classification [33].
In this paper, We used the deep neural network to learn the knowledge of Gene Ontol-

ogy and to reduce the semantic gaps between amino acids and Gene Ontology and
the annotations. Particularly, the proposed DeepGOA extracts the feature vectors of
amino acids using the Convolutional Neural Network (CNN), and learns the semantic
representation of GO terms by the Graph Convolution Network (GCN) [34] referring
to GO hierarchy and known annotations related with these GO terms. Then, Deep-
GOA learns a mapping from sequence features to the semantic space of GO terms.
The mapping is learned by a multi-layer neural network, which is reversely guided by
the known GO annotations of proteins. We observe that DeepGOA outperforms exist-
ing state-of-the-art methods [27, 31, 32, 35] on Maize PH207 inbred line and Human
protein sequence dataset. In addition, DeepGOA retains more GO structure informa-
tion. It is important to highlight that the deep learning model incorporating Gene
Ontology structure, to the best of our knowledge, is still less studied in computa-
tional model-based protein function prediction. The conference and short version of
DeepGOA [36], as a showcase of CNN and GCN for mining amino acids and Gene
Ontology for protein function prediction, was published as part of IEEE International
Conference on Bioinformatics and Biomedicine (BIBM 2019). In the extended version,
we updated the background, problem definition, method description, results and their
analysis.

Results and discussion
In this section, we briefly introduce several widely-used protein function prediction
evaluation criteria for performance comparison, and the recommended configuration of
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experiments. Then, we analyze and discuss the experimental results and compare our
results with related and competitive approaches.

Evaluation metrics

For a comprehensive evaluation, we use five widely-used evaluation metrics: AUC,
AUPRC, PR50, Fmax and Smin [37]. AUPRC (area under the precision-recall curve) and
AUC (area under the receiver operator characteristics curve) are widely adopted for
binary classification. Here we compute the AUPRC and AUC for each term and then take
the average AUPRC and AUC of all terms. AUPRC is more sensitive to class-imbalance
than AUC. PR50 is the average precision of all GO terms when the recall rate equals
to 50%. Fmax is the overall maximum harmonic mean of precision and recall across all
possible thresholds on the predicted protein-term association matrix Ŷ . Smin uses the
information theoretic analogs of precision and recall based on the GO hierarchy to mea-
sure the minimum semantic distance between the predictions and ground-truths across
all possible thresholds. The first three evaluation metrics are term-centric ones and
the last two are protein-centric ones. These metrics quantify the performance of pro-
tein function prediction from different perspectives and it is difficult for an approach
to outperform another one consistently across all the metrics. It is worthwhile to point
out that unlike other evaluation metric, the smaller the value of Smin, the better the
performance is.
Fmax is a protein-centric F-measure computed over all prediction thresholds. First, we

compute the average precision and recall using the following formulas:

pi = T Pi
T Pi + FPi

(1)

ri = T Pi
T Pi + FNi

(2)

Pr ecision = 1
N

∑N

i=1
pi (3)

Recall = 1
N

∑N

i=1
ri (4)

We define T and P represent the protein’s true and predicted functions of proteins. Ti
and Pi represent true and predicted values of the i-th protein functions. Where T Pi is the
number of true positive, that is, the total number of occurrences of Ti = Pi = 1. FPi is
the number of false positive, that is, the total number of occurrences of Ti = 0 but Pi = 1.
FNi is the number of false negative, that is the total number of occurrences of Ti = 1 but
Pi = 0.N is the total number of proteins. Pr ecision and Recall are so-called precision and
recall, respectively. Then, we compute the Fmax for all possible thresholds:

Fmax = max
θ∈[0,1]

2p(θ)r(θ)

p(θ) + r(θ)
(5)

where p(θ) = 1
m(θ)

∑m(θ)
i=1 pi(θ), m(θ) is the number of proteins whose predicted prob-

ability of at least one function tag is greater than or equal to the threshold θ , indicating
the average precision of m(θ) proteins at the threshold θ . r(θ) = 1

m(θ)

∑m(θ)
i=1 , ri(θ) is the

average recall of all proteins at the threshold θ .
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Smin computes semantic distance between real and predicted annotations based on
information content of the classes. The information content IC(t) is computed by
Eq. ( 14 ). Smin is computed utilizing the following formulas:

Smin = min
θ∈[0,1]

√
ru(θ)2 + mi(θ)2 (6)

ru(θ) = 1
N

∑N

i=1

∑
t∈Pi(θ)−Ti

IC(t) (7)

mi(θ) = 1
N

∑N

i=1

∑
t∈Ti−Pi(θ)

IC(t) (8)
where Pi(θ) denotes a set of function labels whose prediction probability is greater than
or equal to θ . Ti is a set of true annotations.

Experimental setup

Our approach is implemented on Pytorch platform https://pytorch.org/. We conduct
experiment on GO annotations and amino acids of Maize and Human.We firstly sort GO
terms in descending order based on the number of proteins annotated to the GO term.
Then we selected the most frequent terms for our experiments. Particularly, we select
117, 251 and 112 GO terms in BP, CC and MF for experiments on Maize; and 1190, 661
and 540 GO terms in BP, MF and CC for experiments on Human. After that, we use the
information content of each GO term and the frequency of terms annotations to con-
vert these selected GO terms into terms matrices and adjacency matrices. Meanwhile, we
firstly convert each amino acid into a one-hot encoding and use a combination of one-
hot vectors to represent the protein sequence. After that, we train CNN and GCN with
graphisc processing unit (GPU). Finally, we fuse these two networks to predict association
probabilities, and train these networks through the annotation information of the train-
ing protein sequences. In the following experiment, we randomly partition the proteins
into a training set (80%) and a validation set (20%). All the experiments are performed on
a server with following configurations:CentOS 7.3, 256GB RAM, Intel Exon E5-2678 v3
and NVIDIA Corporation GK110BGL [Tesla K40s].

Results of protein function prediction

For experimental validation, we compare DeepGOA against Naive [4, 10], BLAST [35],
Deepred [27], DeepGO [31] and DeepGOPlus [32]. Naive assigns the same GO terms
to all proteins based on annotation frequencies. The idea of BLAST is to find similar
sequeneces from the training data and transfer GO terms from the most similar. All input
parameters are the same as those reported by authors or optimized within the recom-
mended ranges. Since DeepGOPlus has too many parameters to run in our experimental
environment, we reduce the number of convolution kernels from 512 to 128. Table 1
reveals the prediction results of DeepGOA and those of comparing methods in 10 rounds
of independent partitions.
Among the five evaluationmetrics, DeepGOA consistently achieves better performance

than these methods. The improvement of DeepGOA to other comparing methods with
respect to AUPRC and PR50 is more prominent, which shows that DeepGOA can achieve
effectiveness in dealing with the imbalances of GO terms by introducing GO structure.
Besides, the performance of DeepGOA on the Maize protein dataset is better than the
human protein dataset, because the annotations of Maize protein is more sparse than the

https://pytorch.org/
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annotations of human protein. Through the introduction of GO structure, DeepGOA can
achieve better performance on relatively sparse data compared to other methods. The
semantic representation of the GO term helps to improve this effectiveness. DeepGO
uses the structure between parent and child terms in the final output layer, but still falls
behind DeepGOA, which shows that the GCN we choose for GO hierarchy representa-
tion learning is more effective. DeepGOPlus does not use any GO structural information,
but it gains better performance than DeepGO. This fact suggests that the structural reg-
ularization in the final layer of DeepGO does not make full use of the GO hierarchy. The
performance margin between DeepGOA and DeepGOPlus again indicates the effective-
ness of our coherent learning on the semantic representation of GO terms and the feature
representations of amino acids. Deepred does not use the convolutional structure to learn
the local features of the sequence but uses the fully connected layer to learn the protein
sequence. Due to the sparseness of protein annotations, there are many false-negative
predictions in this method, resulting in a higher AUC, but it does not perform well in
AUPRC. The AUC value of Naive is always lower than 0.5, since it predicts the GO anno-
tation of a protein based on the frequency of GO terms, and tends to assign the most
frequent GO terms to a protein. Mostly, BLAST is inferior to other comparing methods
(except Naive). This fact proves the effectiveness of learning the representation of amino
acids by CNN for protein function prediction.
We choose one protein (Name:Zm00008a011322-p01) from our Maize protein dataset

to illustrate the effectiveness of DeepGOA in the CC sub-ontology. Table 2 lists the
GO annotations predicted by DeepGOA and other deep learning competing methods.
The real annotation have been supplemented by True Path Rule. DeepGO annotates
a GO term to a protein and automatically annotates all ancestor terms of that term
to the protein simultaneously, due to the maximum merge layers. But the maximum
merge layers of DeepGO will increase the false positive rate of the model. Compared
with DeepGO, DeepGOplus uses a more reasonable convolutional structure and can
mine deep terms. However, this method can not achieve the expected performance
on the strong correlated GO terms because it ignores GO structural information.
Deepred attempts to learn the overall features of the sequence based on a fully con-
nected network, which leads to a situation that many annotations cannot be predicted.
These results again confirms that DeepGOA performs better than other compared
methods.

Table 2 The prediction of the Maize protein (Zm00008a011322-p01) with different methods

Real annotation DeepGOA DeepGOplus DeepGO Deepred

CC GO:0005622 GO:0005622 GO:0005622 GO:0005622 GO:0005622

GO:0044464 GO:0044464 GO:0044464 GO:0044464 GO:0044464

GO:0005623 GO:0005623 GO:0005623 GO:0005623 GO:0005623

GO:0044424 GO:0044424 GO:0044424 GO:0044424

GO:0043229 GO:0043229 GO:0005737 GO:0043229

GO:0005737 GO:0005737 GO:0005737

GO:0043231 GO:0043231 GO:0043231

GO:0043227 GO:0043227

GO:0005634



Zhou et al. BMC Bioinformatics 2020, 21(Suppl 16):420 Page 9 of 16

Component and hyper-parameters analysis

In order to investigate which component of DeepGOA contribute to the improved per-
formance of DeepGOA, we introduc three variants: DeepGOA-GO only uses the GO
hierarchy; DeepGOA-LABEL only uses the co-annotation patterns without GO hierar-
chy; DeepGOA-CNN directly uses the representation of amino acids and the dot product
to make function prediction, without using the semantic representation of GO terms.
Table 3 lists the results of DeepGOA and its three variants on Human genome. The
experimental configuration is the same as in the previous section.
DeepGOA generally has a better performance than its three variants due to the contri-

bution of more valid information. Under the same experimental setting, DeepGOA-GO
and DeepGOA-Label have better performance than DeepGOA-CNN. This observation
proves that it is important and beneficial to learn the semantic representation of GO
terms and optimize the mapping of feature representation of amino acids to the semantic
representation. DeepGOA-GO achieves better results than DeepGOA-Label with respect
to Smin, since it utilizes the GO hierarchy while DeepGOA-Label mainly uses the co-
annotation pattern of GO terms to the same proteins, and Smin is defined with respect to
the GO hierarchy. On the other hand, DeepGOA-Label has better results on AUPRC and
AUC by modeling GO term co-annotation. DeepGOA leverages the GO hierarchy and
GO terms’ co-annotation pattern, and thus it obtains better results than three variants.
This ablation study further confirms the necessity of incorporating GCN for exploring
and exploiting the latent hierarchical relationship betweenGO terms, and thus to improve
the prediction accuracy.
DeepGOA gives the predicted association probabilities by the dot product of the

low-dimensional representation of the amino acid sequences and the low-dimensional
representation of GO terms. If the dimensionality of low-dimensional representation is
too low, it will lead to the loss of effective information. On the other hand, if it is too high,
it will generate many parameters to degrade the training efficiency. Figure 2 reveals that
when the low-dimensional vector dimension increases from 16 to 256, the AUPRC and
AUC of DeepGOA prediction results will accordingly increase until stabilizing in the CC
sub-ontology of Maize data. In our experiment, in order to make the experiment adapt
to more GO terms and avoid the waste of computing resources, we chose 128 as the
low-dimensional vector dimension.

Table 3 Prediction results of DeepGOA and its variants

AUC AUPRC Smin ↓ Fmax

BP

DeepGOA 69.79 62.20 19.7772 38.52

DeepGOA-GO 69.72 60.69 20.1579 36.79

DeepGOA-Label 70.12 61.72 20.2206 38.14

DeepGOA-CNN 69.19 61.06 20.2332 36.12

CC

DeepGOA 75.69 49.97 4.9029 62.92

DeepGOA-GO 75.94 48.64 4.9127 62.43

DeepGOA-Label 76.83 55.87 4.9707 62.67

DeepGOA-CNN 74.85 49.19 5.0134 61.43

MF

DeepGOA 82.03 70.98 4.7571 47.71

DeepGOA-GO 81.75 70.28 4.8201 46.98

DeepGOA-Label 81.46 70.81 4.9661 46.88

DeepGOA-CNN 77.65 63.12 5.2867 41.54

The best results for each metric are in boldface



Zhou et al. BMC Bioinformatics 2020, 21(Suppl 16):420 Page 10 of 16

Fig. 2 The AUC and AUPRC under different values of low-dimensional vector dimension

Conclusions and future work
Protein function prediction is one of the fundamental challenges in the post-genomic era.
The firmly and formally defined relationship between the functions contained in the GO
structure can improve the prediction performance. To this end, we develop DeepGOA
based on GCN and CNN. DeepGOA utilizes the GCN to learn the semantic representa-
tion of GO terms through GO hierarchy and annotations related to GO terms, and the
CNN to learn the representation of amino acids by combining the long and short range
features of amino acid sequences. Then DeepGOA jointly seeks the mapping from the
amino acids feature representation to GO terms semantic representation, and complete
protein function prediction in an end-to-end and coherent manner. Experimental results
on archived GO annotations dataset of Maize and Human show that DeepGOA out-
performs existing deep learning-based protein function predicting models. Our ablation
study further confirms that it is beneficial to learn the semantic representations of GO
terms for function prediction. We will extend our work to predict the functional roles of
diverse protein isoforms and noncoding RNAs.

Methods
In the protein function prediction, effectively mining GO hierarchy and known annota-
tion is important [12, 13, 22, 23]. The semantic and structural information of GO can
largely assist computational models to determine the function of proteins. Recently, Deep
learning has been widely used in the field of protein function prediction [25, 26, 31].
However, how to properly use the knowledge of GO in the deep model has been a huge
challenge. Most deep models simply try to learn the mapping of protein sequences to
GO terms directly, without respecting to the GO hierarchy when optimizing the map-
ping. Different from these methods, DeepGOA firstly learns the semantic representation
of Gene Ontology via GCN and simultaneously optimizes the representation of protein
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Fig. 3 The network architecture of DeepGOA. The upper yellow subnetwork is the convolutional network
part. The amino acids are extracted by convolution kernels of different sizes, and the fully connected layer is
used to learn the mapping from sequence features to semantic representations of GO terms. The lower blue
subnetwork is the graph convolution part, it uses the GO hierarchy H0 ∈ R

|T |×|T | and empirical correlations
between GO terms stored in A ∈ R

|T |×|T | to learn the semantic representation of each GO term. The dot
product is finally used to guide the mapping between proteins and GO terms and to reversely adjust the
representations of proteins and GO terms. In this way, the associations between GO terms and proteins are
also predicted

sequence through CNN. After that, DeepGOA computes the dot product of the afore-
mentioned two sub-nets to learn the mapping from feature representation to semantic
representation in an end-to-end style. At the same time, it utilizes the collected annota-
tions of proteins and back propagation to refine the mapping coefficients and to obtain
coherent representations. Figure 3 illustrates the basic architecture of our model.

Datasets

For our experiments, we downloaded the Gene Ontology data (June 2019) from GO offi-
cial site1. GO data, which has three branches and 44,786 terms, includes 4169 terms
in CC, 29,462 terms in BP, 11,155 terms in MF. We use Maize PH207 inbred line [38]
sequence dataset to evaluate our approach. To prove the universality of our model, we
also used the Human sequence protein dataset. We collect the protein sequence and GO
annotation data of Maize PH207 inbred line from Phytozome2. The Maize PH207 inbred
line protein data contains 18,533 protein sequences that annotated with one or more GO
terms. We collected the reviewed and manually annotated protein sequences with GO
annotations of Human from SwissProt,3 which contains 20,431 protein sequences.
For each subontology in GO, we all train a model to learn the knowledge of GO struc-

ture. Particularly, we rank GO terms by their number of annotations and select terms
with the minimum number of annotations 25, 150 and 25 for CC, BP and MF, respec-
tively. The adopted cutoff values are only half of those used by DeepGO [31], and thus

1http://geneontology.org/page/download-ontology
2https://phytozome.jgi.doe.gov/pz/portal.html
3http://www.uniprot.org/uniprot/

http://geneontology.org/page/download-ontology
https://phytozome.jgi.doe.gov/pz/portal.html
http://www.uniprot.org/uniprot/
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our datasets include much more deep GO terms which describe more refined biological
functions. Then, we propagate annotations by applying the True Path Rule. For instance,
if a protein is annotated with a GO term, it will be annotated with all of its ancestor terms.
We convert the annotations of protein into a binary label vector. If a protein sequence is
annotated with a GO term from our list of selected terms, we will assign 1 to the term
position in the binary vector and use it as a positive sample for this GO term. Otherwise,
we will assign 0 and use it as a negative sample. In our model training process, we exclude
proteins not annotated by any of the selected GO terms. In this paper, n represents the
number of proteins in the training set, T represents the set of studied GO terms, |T |
counts the number of selected GO terms.

Extracting features from amino acids via CNN

Computers cannot directly identify amino acid sequences. Moreover, different proteins
have different peptide chain structures and amino acid numbers. We need to numerically
encode each amino acid sequence while retaining their characteristics. Kulmanov et al.
[32] confirms that utilize one-hot encoding in deep networks can achieve a good predic-
tive effect. Therefore, the input of our model is the one-hot encoding of amino acids. Each
amino acid can be represented via a one-hot encoding vector of length of 21. There are
twenty types of amino acids. Some amino acid sequences have undetermined amino acids
at certain positions. We specifically use an additional one-hot bit to represent them. We
transform each amino acid into a one-hot encoding and utilize a combination of one-hot
vectors to represent the first-order structure of a protein. To ensure that the model input
vectors are equal in length, we take the first 2000 amino acids for proteins vectors longer
than 2000 amino acids and zero-padded for proteins vectors less than 2000 amino acids.
We finally got the amino acid sequences feature vector with size 2000 × 21. Each amino
acid sequence can be presented by a matrix:

X i =[ xi1, xi2, . . . , xi2000] (9)

whereX i ∈ R
2000×21 represents the i-th protein in the data set, xij is the one-hot encoding

of the j-th amino acid of the i-th protein.
For each protein sequence feature vector, we utilize CNN to learn its low-dimensional

representation. Convolutional Neural Networks (CNN) is a kind of feedforward neural
network with convolutional computation and deep structure. It is one of the repre-
sentative algorithms of deep learning and has a strong ability to extract features when
processing fixed-size data. Therefore, we use a convolutional network to extract features
from amino acid sequences andmine the deep information contained in the sequences. In
addition, the amino acid sequence has not only a primary structure but also a secondary
structure (α-helix and β-sheets) and a tertiary structure. This causes adjacent amino acids
not necessarily participating in certain biological functions together. In order to dig out
the impact of protein secondary and tertiary structure on function, we choose four differ-
ent sizes of convolution kernels, respectively 8, 16, 24, 32, and set different sliding steps.
The convolution portion takes X as input and extracts protein sequence features by a
series of differently sized 1D convolution kernels. The convolution kernel is w ∈ R

21×h

and h is the sliding window length. The convolution operation is defined as follows:

cim = f
(
w ∗ xim:m+h

)
,m ∈[ 1, k − h] (10)
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where ∗ is a convolution operation, w is a convolution kernel, f (·) is a non-linear oper-
ation, x is our model input vector, k is the input feature vector length. The new feature
vector of ci is defined as:

ci = [
ci1, ci2, . . . , cip

]
(11)

where p = k − h + 1. To this end, we get the feature representation of each protein.
Since our deep network has a lot of parameters and the loss function is used to opti-

mize the training data, the neural network is very easy to get higher precision on the
training data, but the poor results on the test data. Due to the unequal length of the pro-
tein sequence and the huge output space, it is easy to cause over-fitting. To solve this
problem, We added two dropout layers in the fully connected layer of the convolution
module. The role of the dropout layer is to stop the activation of a certain neuron with
a certain probability p in forward propagation, which makes the model more generalized
against relying too much on some local features. Protein function prediction is a multi-
label learning problem and it is easy for the activation function to fall into the saturation
region, causing the gradient disappearance. To solve this problem, a batch normalization
layer is added after the convolution layer. The batch normalization layer aims to normal-
ize the feature map generated by the convolution layer and leads parameters obeying the
normal distribution.

Graph convolutional network

Many existing protein function prediction methods utilize different techniques to employ
the GO structure (or correlation) between terms and show improved per [21, 22, 31].
However, incorporating the GO structure into the deep model is a very challenging prob-
lem. For the learning of graph structure, traditional deep learning models can’t get a good
performance, because they are designed for grids or simple sequences, such as images
and texts. Graph Convolutional Network (GCN) [34] can learn the node representation
of a graph (or network) using the graph structure. The core idea of GCN is to generate
the representations of GO terms by propagating information between GO terms using
the neighborhoods of GO terms. Unlike standard convolution for fixed-size input oper-
ations, GCN takes the feature descriptions H0 ∈ R

|T |×|T | with one-hot coding and the
corresponding correlation matrix A ∈ R

|T |×|T | of GO terms as input, and updates the
representation H l ∈ R

|T |×dl of |T | GO terms. The operation of GCN layer is defined as
follows:

H l+1 = f
(
ÂH lW l

)
(12)

where Â ∈ R
|T |×|T | is the normalized version of the correlation matrix A, which will be

given later. f (·) is a non-linear operation, andW l ∈ R
dl×dl+1 is a transformation matrix to

be learned. We can learn the deep information of GO terms on the GO DAG by stacking
the GCN layers.
The frequency of two terms annotated to the same protein is often used to estimate the

correlation between GO terms, which has been widely adopted in multi-label learning
based protein function prediction [15–17]. However, this simple estimation can not well
reflect the underlying correlation between GO terms because the available annotations
of proteins are imbalance and incomplete. Furthermore, the GO hierarchy between GO
terms is independent from the known species. However, it has important guidance for
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accurate protein function, which is overlooked in this simple estimation process. In the
Gene Ontology, the deep terms describe more refined biological functions. Therefore,
the different information contents between GO terms are also the key information to
estimate the correlation between GO terms. Given that, we combine the GO hierarchy
and collected annotations of proteins to estimate the correlations between the parental
term t and its child term s as follows

A(t, s) = ns
nt

+ IC(s)∑
s′∈ch(t) IC (s′)

(13)

where ch(t) is an aggregation of all direct child terms of t, ns and nt represent the number
of proteins annotated with term s and t, respectively. IC(t) is the information content of t
and it is measured as:

IC(t) = 1 − log(1 + |desc(t)|)
log |T | (14)

where desc(t) includes all the descendants of t and itself. The semantic similarity between
GO terms is widely measured utilizing this type of information content [20, 39, 40]. Obvi-
ously, since t has a lot of descendant GO terms, which convey more specific biological
functions than t, the bigger the desc(t) is, the smaller the information content t has.
This GO structure-based measurement is independent of the known GO annotations of
proteins. Therefore, it is less affected by the incomplete and sparse GO annotations of
proteins. In this way, we can differentiate the edges between parental terms and child
terms.

DeepGOA classifier learning

Till now, we can obtain the representation H ∈ R
|T |×d for GO terms via the GCN, and

the representation Z ∈ R
n×d of n protein sequences (after dense layer of C in Fig. 3) in

the d-dimensional semantic space encoded byH. Finally, we get the dot product ofH and
Z as the predicted association probabilities as follows:

Ŷ = HZT (15)

Since it is a binary problem to predict the association between a GO term and a protein,
and the semantic representation already encodes the latent relationships between GO
terms, our multi-label loss function can be defined by cross-entropy as follows:

Loss =
|T |∑

s=1
ys log

(
σ

(
ŷs

)) + (1 − ys) log
(
1 − σ

(
ŷs

))
(16)

where y ∈ R
|T | stores the truth annotations of a protein, ys ∈ {0, 1} denotes whether GO

term s is annotated to the protein or not, σ(·) is the Sigmoid activation function.
By minimizing the above loss and back propagating the loss to the subnetwork of learn-

ing H and to the subnetwork of learning Z, we can achieve the optimization of H and Z,
and protein function prediction in the semantic space in a coherent end-to-end fashion.
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