
Please cite this paper as follows:
Fabien Cornillier, Gilbert Laporte, Fayez F. Boctor, Jacques Renaud, The petrol station replen-
ishment problem with time windows, Computers & Operations Research 36 (2009) 919–935,
http://dx.doi.org/10.1016/j.cor.2007.11.007

http://dx.doi.org/10.1016/j.cor.2007.11.007

The petrol station replenishment problem with time windows

Fabien Cornilliera, Gilbert Laportea,b, Fayez F. Boctora, Jacques Renauda,∗,

aInteruniversity Research Centre on Enterprise Networks, Logistics and Transportation (CIRRELT), Université Laval,
Québec, Canada G1K 7P4

bCanada Research Chair in Distribution Management, HEC Montréal, 3000 chemin de la Côte-Sainte-Catherine,
Montréal, Canada H3T 2A7

Abstract

In the Petrol Station Replenishment Problem with Time Windows (PSRPTW) the aim is to opti-
mize the delivery of several petroleum products to a set of petrol stations using a limited hetero-
geneous fleet of tank-trucks. More specifically, one must determine the quantity of each product
to deliver, the assignment of products to truck compartments, delivery routes, and schedules. The
objective is to maximize the total profit equal to the sales revenue, minus the sum of routing costs
and of regular and overtime costs. This article first proposes a mathematical formulation of the
PSRPTW. It then describes two heuristics based on arc preselection and on route preselection.
Extensive computational tests confirm the efficiency of the proposed heuristics.

Keywords: fleet management, fuel delivery, replenishment, routing and scheduling

1. Introduction

This article proposes a mathematical model and two heuristics for the Petrol Station Re-
plenishment Problem with Time Windows (PSRPTW). This problem consists of optimizing the
delivery of several petroleum products to a set of petrol stations which must be supplied once by
a limited heterogeneous fleet of tank-trucks based at a terminal, within given time windows. This
problem is motivated by a real case faced by a Quebec based transportation company. In North
America most petrol companies subcontract the replenishment of their outlets to private trans-
porters who are paid on a delivered quantity basis. The objective of the PSRPTW is to maximize
the total profit, equal to the revenue which is a function of delivered quantities, minus the sum
of routing costs and of regular and overtime costs. Decision variables specify how much of each
product to deliver to stations subject to their minimum requirements, how to assign products to
vehicle compartments, and how to design and schedule delivery routes. In this study, we formu-
late the PSRPTW as a mixed integer linear program. We then propose two heuristics based on
the same formulation. The first heuristic consists of preselecting promising arcs and of solving
the associated mathematical program to optimality. It can solve small instances of up to about 15

∗Corresponding author
Email addresses: fabien.cornillier@cirrelt.net (Fabien Cornillier), gilbert@crt.umontreal.ca

(Gilbert Laporte), fayez.boctor@fsa.ulaval.ca (Fayez F. Boctor), jacques.renaud@fsa.ulaval.ca (Jacques
Renaud)
Published in Computers & Operations Research 36 (2009) 919–935

stations. The second heuristic makes a preselection of promising routes through a geographical
decomposition method, and can be applied to larger instances.

A major difference between the PSRPTW and most vehicle routing problems with time win-
dows is the loading component: in the PSRPTW one must simultaneously design vehicle routes
and assign petroleum products to truck compartments for each trip. Related but different prob-
lems have been studied by a number of authors. Brown and Graves [1] have considered the
problem of direct deliveries (i.e. single-customer trips) and time windows. Different algorithms
have been proposed for other versions of the same problem without time windows. Brown et al.
[2] and Malépart et al. [3] have generalized this problem by allowing the delivery of more than
one station in a same trip. Heuristics for a multiperiod version of this problem have been devel-
oped by Taqa allah et al. [4]. In Cornillier et al. [5], an exact algorithm is developed for a similar
problem without time windows, where only one or two stations can be delivered within a same
trip, while Avella et al. [6] have proposed a heuristic and an exact algorithm based on a route
generation scheme and a branch-and-price algorithm to solve a similar problem. More recently, a
heuristic for the multiperiod problem without time windows was put forward by Cornillier et al.
[7] for the case where the number of stations on any given route is limited to two.

The remainder of this paper is organized as follows. The problem is defined and modeled in
Section 2. The route generation procedure is described in Section 3. In Section 4, we propose two
heuristics, one based on arc preselection, the other based on route preselection. Computational
results are presented in Section 5 and conclusions follow in Section 6.

2. Problem definition and formulation

The PSRPTW can be formally defined as follows. Let G = (V∗, A) = (V ∪ {0}, A) be a
directed graph where V = {1, ..., n} is the set of stations, vertex 0 is the terminal, and A = {(i, j) :
i, j ∈ V∗, i , j} is the arc set. Denote by ti j the travel time associated with arc (i, j) and by si

the service time of station i. The PSRPTW consists of maximizing a profit related function by
designing delivery routes to replenish stations with a limited heterogeneous fleet of K tank-trucks
based at the terminal. Service at station i must start and end within a given time window [ai, bi]
satisfying bi − ai ≥ si. A working day contains H regular working hours which can be extended
by using H′ overtime hours. A regular wage rate applies to regular working time while a higher
rate applies to overtime hours. Only the hours effectively worked are paid, i.e. the hours from the
beginning of the vehicle first trip to the return of its last trip. The total variable cost is the sum
of travel costs, regular and overtime wages. All trucks are assumed to travel at the same speed,
and each is subdivided into several compartments of known capacities. Each petrol station has a
given number of capacitated underground tanks. The PSRPTW consists of determining:

• the quantity of each product to be delivered to each station, which should lie between a
minimum and a maximum;

• the loading of these products into vehicle compartments;

• feasible delivery routes to these stations;

• the selected routes assignment to available trucks;

• the departure time of each truck trip;

in order to maximize a profit function.
2

2.1. Assumptions

The following assumptions are made:

• only one working day is considered;

• the fleet is heterogeneous and limited;

• each station must be visited once and only once during the considered working day;

• several trips can be assigned to the same truck;

• each station requires delivery within a given time window;

• waiting time between stations is allowed;

• regular and overtime working hours are limited;

• regular and overtime wages are known and constant;

• only effectively worked hours are paid;

• the transporter is paid a given amount for each litre delivered which varies as a function of
station location;

• the travel time between any two vertices (terminal and stations), service times at stations
and loading times at the terminal are known;

• each station requires a minimum and a maximum quantity of one or more products that
can be computed from initial inventories, expected consumptions, and the capacities of its
underground tanks.

2.2. Mathematical formulation

Our mathematical model is based on the generation of all feasible routes a truck can follow.
A route is feasible if it satisfies all time windows and constraints on delivered amounts. Given
a route r, one can compute its earliest and its latest departure times, denoted by αr and βr,
minimizing its total waiting time.

We first define the following parameters:
φ regular wage per hour;
φ′ overtime wage per hour;
αr earliest departure time for route r;
βr latest departure time for route r;
λr minimum duration of route r (including waiting time if any);
asr a binary parameter equal to 1 if and only if station s is delivered within route r;
ρrk the profit of route r if performed by truck k. This parameter is equal to −∞ if truck k is

unable to carry out route r.

3

The decision variables are:
xrkv a binary variable equal to 1 if and only if route r corresponds to trip v of truck k;
dkv the departure time of truck k for trip v;
hk the number of regular working hours of truck k;
h′k the number of overtime hours of truck k.

The model is then:

(PS RPTW) Maximize
∑

(r,k,v)

ρrk xrkv − φ
∑

k

hk − φ
′
∑

k

h′k (1)

subject to ∑
(r,k,v)

asr xrkv = 1 ∀s (2)∑
r

xrkv ≤ 1 ∀(k, v) (3)∑
r

xrk,v+1 ≤
∑

r

xrkv ∀(k, v) (4)

∑
r

αr xrkv ≤ dkv ≤
∑

r

βr xrkv + M

1 −∑
r

xrkv

 ∀(k, v) (5)

dk,v+1 ≥ dk,v +
∑

r

λr xrkv ∀(k, v) (6)

dkv − dk,1 +
∑

r

λr xrkv ≤ hk + h′k ∀(k, v) (7)

hk ≤ H ∀k (8)
h′k ≤ H′ ∀k (9)

dkv ∈ N+ ∀(k, v) (10)
hk ∈ N+, h′k ∈ N

+ ∀k (11)
xrkv ∈ {0, 1} ∀(r, k, v). (12)

In this formulation, the objective function (1) maximizes the total profit. Constraints (2)
stipulate that each station is visited once and only once. Constraints (3) ensure that at most one
route is assigned to the vth trip of truck k. By constraints (4), trip v + 1 of truck k exists only
if trip v exists. In constraints (5), M is a large positive number; these constraints require that
route departure times lie within the computed windows [αr, βr]. Constraints (6) state that trip
departure occurs after the arrival time of the preceding trip. Since we do not know the number of
trips of truck k, constraints (7) ensure that the total working hours, decomposed into regular and
overtime hours is equal to the duration, calculated as the difference between its lastest trip return
time and its first trip departure time. Constraints (8) and (9) ensure that regular and overtime
hours lie within the allowable limits.

Figure 1 illustrates a case with three routes r1, r2 and r3, where [α1, β1] = [1, 2], [α2, β2] =

[1, 3], [α3, β3] = [0, 3], and λ1 = 1, λ2 = 2, and λ3 = 3. There are two identical trucks generating
the same profit, and the maximal working hours are H = 3 and H′ = 2, for a total of five hours per
truck. Figure 1a depicts an optimal solution using one overtime hour, while Figures 1b and 1c
correspond to suboptimal solutions using two overtime hours. In Figure 1d, we show that the
solution of Figure 1a cannot be improved by starting route r1 at time t = 0 because r1 would then
need one additional waiting hour.

4

Figure 1: Illustration of the model with two tank-trucks and three routes

3. Route generation

In the above formulation, the number of potential routes is generally huge. We first propose
ways of reducing the number of routes through feasibility and dominance criteria. A route can
potentially visit as many stations as there are compartments in the truck. However, a two-stop
limit per route is common practice in North America. This is explained by the fact that most
trucks have from four to six compartments while stations generally require two or three products,
one of which frequently requires two compartments. In this study, we consider the case where
routes can visit up to four stations. If G is a complete graph, the number of feasible and infeasible
routes visiting at most m stations is equal to

∑m
i=1

n!
(n−i)! and can be rather large. Instead of making

an explicit enumeration of all feasible and infeasible routes to be checked, we use an adaptation of
Johnson’s algorithm [8] to generate candidate routes from G, or a subgraph of G, from which all
infeasible arcs are removed. These are arcs that cannot be included in a solution without violating
a time or duration constraint. Given a directed graph, this algorithm consists of enumerating all
or some of its elementary circuits. In our adaptation, routes are iteratively built starting from
the terminal, station by station, until no more stations can be added without violating time or
quantity constraints.

3.1. Infeasible arc deletion
In our problem, some infeasible arcs of G can be removed since some station pairs are incom-

patible in terms of time windows or requested quantities. Because these stations cannot belong to
the same route, the number of feasibles routes is reduced. We define the subgraph G′ = (V∗, A′)
of G where each arc of A′ corresponds to a pair of compatible stations with respect to their time

5

windows. Also, for each truck k we define the subgraph G′k = (V∗, A′k) of G′ where each arc of
A′k corresponds to a pair of compatible stations with respect to their time windows and demand
feasibility constraints. Demand feasibility of a route for a given truck is checked as shown in
Section 3.2.

3.2. Demand feasibility check and quantity determination

A feasible route should allow the delivery of all minimal quantities required by its stations,
and should visit these stations within the required time windows. In this section, we solve a Tank-
Truck Loading Problem (TTLP) defined as follows. Let P be the set of demands of all stations
on the route, and let gp be the revenue associated with quantity qp delivered to station p. This
revenue is a function of the distance between the station at which the delivery takes place and the
terminal. The TTLP consists of determining the quantity qp to be delivered to each station p of
the route in order to maximize the sum of revenues, while respecting the minimal and maximal
requirements up and vp, and without exceeding the capacity of any tank-truck compartment.
Related problems using compartmented vehicles, generally referred to as Loading Problems,
have been addressed with different objectives (Christofides et al. [9], Yuceer [10], Smith [11],
Bukchin and Sarin [12]), and in different applications: bulk ship scheduling with flexible cargo
holds (Fagerholt and Christiansen [13, 14]), livestock transportation (Oppen and Løkketangen
[15]), grocery delivery (Eglese et al. [16]), and oil delivery (Brown et al. [2], Van der Bruggen
et al. [17], Bausch et al. [18]).

In the PSRPTW, the loading problem can be formulated as follows. Let ypc be a binary
variable equal to 1 if demand p is assigned to compartment c, and 0 otherwise. Then the problem
is:

(TT LP) Maximize
∑
p∈P

gpqp (13)

subject to

up ≤ qp ≤ vp ∀p (14)

qp ≤
∑

c

Qcypc ∀p (15)∑
p∈P

ypc ≤ 1 ∀c (16)

ypc = 0 or 1 ∀(p, c). (17)

In this formulation, the objective function maximizes the total revenue. Constraints (14) ensure
that the delivered quantities lie between the requested minimum and maximum. Constraints (15)
state that delivered quantity of demand p cannot be larger than the sum of compartment capacities
in which it is loaded. By constraints (16), two distinct demands cannot be loaded in a same
compartment.

This model is used to check the feasibility of each route with respect to a given truck and to
obtain an optimal load by maximizing the corresponding revenue. Once the delivered quantities
are known, one can compute the profit ρrk for route r and truck k, which is equal to the difference
between the revenue generated by the delivered quantities and the travel cost. By convention, we
set ρrk = −∞ if truck k is unable to deliver the requirements of route r.

6

3.3. Route duration and departure window
Since the aim is to select a subset of feasible routes and to determine their optimal truck

assignments and schedules, we must compute for each of these a time interval within which any
departure time from the terminal minimizes the total duration including service time and waiting
time, if any. Given a route r delivering all stations of the subset Vr ⊆ V , we index its stations
according to the sequence in which they must be visited. Denote by V∗r = Vr ∪ {0} the set of
vertices including the terminal and all stations of route r. We check whether we can satisfy the
time window constraint of each station and if so, we determine the departure window [αr, βr]
for which the sum of waiting times is minimal. We then have to compute the sum wr of all its
necessary waiting times in order to determine its duration λr. First, for each vertex i we define
a normalized time window [a′i , b

′
i] representing the time interval within which the truck should

leave the terminal in order to satisfy the time window constraint of station i if waiting times were
not allowed:

[a′i , b
′
i] =

ai −

i−1∑
u=0

tu,u+1 −

i−1∑
u=0

su, bi −

i−1∑
u=0

tu,u+1 −

i∑
u=0

su

 . (18)

If waiting times were not allowed, the route would be feasible if and only if the intersection of all
normalized time windows was not empty. However, waiting times may be needed in our problem
and a new feasibility criterion is given by Proposition 1. The proofs of all propositions are given
in the appendix.
prop If waiting times are allowed, a route is feasible if and only if

max
0≤ j<i
{a′j} ≤ b′i , ∀i ∈ Vr. (19)

When a route r is feasible, we compute the sum wr of all its minimal waiting times by means
of Proposition 2. This waiting time is added to the sum of travel and service times in order to
arrive at the route duration λr.
prop If a route r is feasible, the sum of its minimal waiting times wr is:

wr = max
{

0,max
i∈V∗r
{a′i} −min

i∈V∗r
{b′i}

}
. (20)

Finally, we need to determine a departure window for the route r from the terminal, such that
the time window constraint of each station is satisfied.
prop If a route r is feasible, its departure time d0 from the terminal has a time window [αr, βr]

which minimizes the total waiting time, where

αr = max
i∈V∗r
{a′i} − wr, (21)

and
βr = min

i∈V∗r
{b′i}. (22)

Note that starting route r at any time before αr only increases the embedded waiting times
and does not allow the truck to return to the terminal earlier.

Proposition 1 is illustrated in Figure 2 where b′1 < max{a′1, a
′
2, a
′
3} = a′2; in this case there is

no feasible solution. In Figure 3, max{a′1, a
′
2, a
′
3} < min{b′1, b

′
2, b
′
3} and consequently, as implied

7

Figure 2: Three stations route with infeasible time windows

Figure 3: Three stations feasible route without waiting time

Figure 4: Three stations feasible route with waiting time

8

by Propositions 2 and 3, wr = 0 and αr ≤ βr. Figure 4 shows the case where wr > 0 and αr = βr.
In this case, the truck should leave the terminal exactly at βr in order to minimize its waiting
time wr.

Knowing the total minimum waiting time of a route r, we are able to compute its total dura-
tion λr, including travel and service times:

λr = wr +

n−1∑
u=0

(tu,u+1 + su+1) + tn,0. (23)

3.4. Route dominance

When several routes visit the same subset of stations but in a different order, we only retain
Pareto optimal routes. More precisely, given two routes r1 and r2, both visiting the same set of
stations with the same truck, route r1 can be eliminated if α1 ≥ α2, β1 ≤ β2, λ1 ≥ λ2 and ρ1 ≤ ρ2.

4. Heuristics

As the number of stations grows, the problem becomes more difficult to solve, even if there
are fewer candidate routes, since the number of vehicles increases proportionally. In practice, it is
often difficult to solve problems to optimality with more than 15 stations. For larger problems, we
propose two heuristic procedures in which we solve the proposed mathematical model with only
a preselected subset of all feasible routes instead of the whole set. The aim of the first heuristic
is to reduce the number of routes by preselecting a subset of all feasible arcs of G′k. It can be
applied to relatively small instances. In the second heuristic, we decompose the geographical
space in order to iteratively construct a candidate set of locally optimal routes which is then used
to solve the global problem. This heuristic is more appropriate for larger instances.

4.1. A heuristic based on arc preselection

The first heuristic preselects an arc subset A′′k of A′k. In the first version of the heuristic, this
subset includes the arcs linking each vertex to its η nearest neighbours, where η is a parameter to
be determined. Note that η is at most n − 1 because a station has n − 1 neighbours. In the second
version, the arc subset inludes all arcs of at most ν successive minimum spanning tree, where
ν is a parameter; this way of reducing the arc set is inspired by the work of Helsgaun [19, 20]
for the Traveling Salesman Problem and of Toth and Vigo [21] for the Vehicle Routing Problem.
The procedure first generates a minimum spanning tree on the initial graph. It then removes
the selected edges and repeats itself as long as the graph is connected. The value of ν can be at
most bn/2c because the spanning trees sequential generation procedure uses n−1 of the n(n−1)/2
potential edges for each tree. In addition to these selected arcs, all arcs linking the terminal to
customers in both directions are included. Nearest neighbours and minimum spanning trees are
not based on distances, but on travel times. Since minimum spanning trees are constructed on
undirected graphs, we construct them while setting the value of each edge equal to the minimum
travel time for each of the two directions. All routes are generated from each A′′k as described in
Section 3 and the optimal routes selection is made by solving the proposed PSRPTW model.

If the parameteres η or ν are too small, the problem may be infeasible. On the other hand, for
large instances and larger values of the parameters, the number of generated routes can become
prohibitive and make the formulation unsolvable. We found that this heuristic becomes inefficient
as soon as n reaches 20.

9

4.2. A decomposition heuristic based on route preselection
To solve larger instances, we propose a decomposition of the geographical space into sectors.

Since any given decomposition would be arbitrary, we consider successive random partitions.
Each generated random sector s corresponds to a different subset of stations V s ⊂ V . The de-
composition is such that no sector appears in two different partitions. Theoretically, any partition
of V could be used, but since in practice distances are Euclidean, we have only used partitions
induced by non-overlapping sectors centered at the terminal. Once the partitions are genererated,
the problem associated with each sector is solved exactly as a separate PSRPTW and, each time,
the corresponding optimal routes are added to the preselected route set. Thus, the idea of this
decomposition scheme is to generate a set of locally optimal routes which will be used to define
the decision variables of the whole problem model.

4.2.1. Sector generation
Each sector includes a small number of stations, so that the associated problem can easily

and quickly be solved to optimality while allowing the generation of good locally optimal routes
(in our heuristic, sectors contain a random number of stations between five and ten). Each time
a partition is generated, we make sure that none of its sectors has previously been selected.
We iteratively generate new partitions until a given limit of κ preselected routes is reached, or
until a given number of iterations have been executed. Note that in a non-Euclidean space, we
would have to partition the set of stations in a different way, based for example on a measure of
geographical and time windows distances. The rest of the method would otherwise be identical.

4.2.2. Optimal routes for a given sector
For each sector, we solve the corresponding PSRPTW to optimality by means of a branch-

and-bound algorithm in order to generate a set of preselected routes. Since identical routes
can be generated from different partitions, an exponential penalty on the number πr of times
a preselected route r has appeared in previous partitions is added to the objective function in
order to prevent cyclic generation of routes from one partition to another. This penalty is equal
to δr(exp(πr/2) − 1), where δr is proportional to the length of route r. The penalized objective
function of the subproblem is then:

Maximize
∑

(r,k,v)

(ρrk − δr(eπr/2 − 1))xrkv − φ
∑

k

hk − φ
′
∑

k

h′k. (24)

To solve the subproblem associated with a sector V s, we generate all its feasible routes using
a restricted fleet in which dK|V s|/ne trucks are randomly chosen from the whole fleet. Each
time a subproblem is solved, we add all of its optimal routes not already included to the set of
preselected routes, up to the given limit of κ routes.

4.2.3. Recomposition procedure
After locally optimal routes have been extracted for all generated sectors, the recomposition

procedure consists of determining the best routes in order to obtain a global solution to the whole
PSRPTW. The resulting route selection problem (1)-(12) is solved using the entire fleet.

Figure 5 illustrates the route preselection heuristic. Figure 5a shows a first partition. The
problems associated with all sectors (1.1), (1.2), (1.3) and (1.4) are independently solved to
optimality, and the resulting optimal routes are added to the preselected routes set. Sectors (1.1)
and (1.2) each give three locally optimal routes, and sectors (1.3) and (1.4) each yield only one

10

Figure 5: The route preselection heuristic using three successive partitions

11

route. We generate a second partition (Figure 5b) and a third one (Figure 5c) which respectively
give five and three new locally optimal routes to add the the preselected routes set (r9 to r14
for the second partition, and r15 to r17 for the third). After three successive partitions, there
are 16 routes in the preselected routes set. The problem is then to select the best routes from
the preselected route set in order to visit each station once and only once. In this example, the
solution (Figure 5d) uses five routes from the first partition (r3, r4, r5, r6 and r7), and three from
the third one (r15, r16 and r17).

5. Computational results

The two heuristics just described were coded in Objective-C and used the CPLEX 10.0
Callable Library. They were run on dual AMD Opteron 250 processors 2.4GHz computers with
Linux operating system. We present two sets of tests. We have first solved a set of randomly
generated 15 stations instances in order to evaluate the performance of the arc preselection and
route preselection heuristics. The route preselection heuristic was then assessed on randomly
generated instances with 50 stations.

5.1. Test instances

We have generated test instances similar to real-life problems using a set of real data extracted
from Malépart et al. [22]. From these data, we have determined a discrete random distribution
on six categories of stations in function of their daily sales (Table 1). Station categories are
randomly drawn from this distribution and daily sales are then randomly determined within the
lower and upper limits of the obtained categories.

Table 1: Daily sales distribution

Category Daily sales (litres) Percentage (%)
1 0–1 350 21.7
2 1 350–2 700 22.6
3 2 700–5 400 29.8
4 5 400–8 100 13.6
5 8 100–10 800 6.2
6 10 800–16 200 6.1

The sales of regular, intermediate and super petrol grades are 76%, 7% and 17% of the total,
respectively. Because daily sales and underground tank capacities are generally correlated, we
present in Table 2 the typical observed tank capacities as a function of the total daily sales. For
our test instances, the underground tanks configuration for each station is randomly selected
among these three typical configurations. However, the probability of choosing the configuration
corresponding to the station daily sales is 80% and the probability of choosing each of the other
configurations is 10%.

We consider three tank-truck configurations among those commonly used in practice (Ta-
ble 3).

12

Table 2: Underground tank typical configurations as a function of daily sales

Daily sales (litres) Tank Tank size (litres)
0–2 700 1 25 000

2 15 000
3 15 000

700–8 100 1 35 000
2 22 700
3 25 000

8 100–16 200 1 50 000
2 25 000
3 35 000

Table 3: Configurations of the tank-trucks

Type Total capacity (1000 litres) Number of compartments Capacities (1000 litres)
1 60 6 17, 6, 10, 10, 7, 10
2 54 5 16, 6, 6, 10, 16
3 50 4 16, 8, 12, 14

13

The terminal coordinates are (50,50) for all instances, while stations coordinates are integer
and randomly drawn from a uniform distribution in the 100km×300km Euclidean space. The
fleet compositions as a function of the problem size are given in Table 4.

Table 4: Fleet compositions

Number of stations Type I Type II Type III Fleet size
15 2 2 1 5
50 8 5 5 18

In all tests, the number of stations that can be visited in a same route is limited to four, except
in tests in which we evaluate the impact of this limit.

We have used the following data for all instances:
driver wage per regular working hour: $15.00;
overtime hourly cost: $30.00;
variable travel cost per kilometer: $1.70;
average travel speed (km/h): 60;
truck loading time (minutes): 15;
station delivery time (minutes): 30;
daily regular working hours: 9;
daily maximum overtime hours: 3.

The revenue per delivered litre is a function of distance from the terminal. Rates are given in
Table 5.

Table 5: Per litre revenue as a function of the distance from terminal

Distance Revenue per delivered litre
0–50 $0.004

50–100 $0.007
100–150 $0.010
150–200 $0.013
> 200 $0.016

5.2. Performance of the proposed heuristics

In this section, we study the performance of the proposed heuristics. We first analyze the
results given by the arc preselection heuristic used. We then evaluate the impact of limiting
the number of delivered stations per route. Finally, we analyze the performance of the route
preselection heuristic. Average results over 20 instances of 15 or 50 stations are given.

14

5.2.1. Performance of the arc preselection heuristics
In Table 6, we evaluate the performance of the arc preselection heuristic which uses η ∈

{3, ..., 6} nearest neighbours on instances of 15 stations. The last row corresponds to the case
where all arcs are selected and the solution is therefore optimal. We can see that with three
nearest neighbours the profit of 504.24 is 98.88% of the optimum, and an optimal solution is
found 13 times out of 20. With η = 3, the arc preselection heuristic generates only 299 of
all 3 060 feasible routes, i.e. it eliminates 90.2% of all feasible routes limited to four stations; it
also reduces computation time by 88.6%, from 350 to 40 seconds. A tangible improvement can
be observed when four nearest neighbours are considered: we then attain 99.2% of the optimal
profit while eliminating 81.5% of all feasible routes. An optimal solution is found in 90% of
the cases. Further marginal improvements are obtained by using a larger number of nearest
neighbours.

Table 6: Average results as a function of the number of nearest neighbours.

%Rtes(s)

η #CR Dist Qty Rev RT OT #Rtes 1 2 3 4 Profit #O CPU

3 299 2 067 568 485 4 743 41.36 3.46 10.75 70.7 20.5 7.4 1.4 504.24 13 40

4 565 2 051 564 712 4 711 41.18 3.35 10.65 69.5 21.6 7.5 1.4 505.69 17 61

5 888 2 052 564 705 4 713 41.21 3.34 10.65 69.5 21.6 7.5 1.4 506.18 18 92

6 1 271 2 052 564 705 4 713 41.21 3.34 10.65 69.5 21.6 7.5 1.4 506.18 18 155

– 3 060 2 047 563 282 4 709 40.93 3.51 10.60 68.9 22.2 7.5 1.4 509.94 20 350

η number of nearest neighbours;
#CR number of preselected routes;
Dist distance travelled;
Qty delivered quantity in litres;
Rev revenue;
RT regular hours used ;
OT overtime hours used ;
#Rtes number of selected routes in the solution;
%Rtes(s) percentage of routes visiting s stations;
Profit profit corresponding to the best solution;
#O number of times the optimal solution has been obtained;
CPU computing time in seconds;
– all arcs are selected.

Table 7 shows the average results of the arc preselection heuristic using ν ∈ {3, ..., 6} suc-
cessive minimum spanning trees. We observe that the arc preselection heuristic based on the
computation of three successive minimum spanning trees yields a profit equal to 99.3% of the
optimum while eliminating 79.7% of all feasible routes. Further improvements are obtained if
five successive minimum spanning trees are generated, yielding a profit equal to 99.83% of the
optimum. This procedure uses 30.6% less than the CPU time needed to obtain an optimal solu-
tion. From Tables 6 and 7, we can see that there is no tangible performance difference between
the two versions of the arc preselection heuristic for a similar number of candidate routes.

5.2.2. Impact of limiting the number of delivered stations per route
It is possible to reduce the number of generated routes by reducing the maximal number of

stations per route. In this section, we evaluate the impact of this parameter. Average results
are presented in Table 8. A significant improvement over the common practice discussed in

15

Table 7: Average results as a function of the number of minimum spanning trees.

%Rtes(s)

ν #CR Dist Qty Rev RT OT #Rtes 1 2 3 4 Profit #O CPU

3 621 2 052 564 705 4 713 41.21 3.34 10.65 69.5 21.6 7.5 1.4 506.18 18 54

4 1 317 2 052 564 705 4 713 41.21 3.34 10.65 69.5 21.6 7.5 1.4 506.18 18 156

5 2 080 2 050 564 530 4 714 41.04 3.47 10.65 69.5 21.6 7.5 1.4 509.06 19 243

6 2 589 2 050 564 530 4 714 41.04 3.47 10.65 69.5 21.6 7.5 1.4 509.06 19 287

– 3 060 2 047 563 282 4 709 40.93 3.51 10.60 68.9 22.2 7.5 1.4 509.94 20 350

ν maximum number of generated minimum spanning trees.

Section 3, which consists of limiting to two the number of stations per route, can indeed be
obtained by increasing this limit. A relatively large profit improvement of 10.2% is obtained
when we increase the limit to three stations per route. A marginal profit improvement of 0.58%
is obtained by further raising this limit to four stations. We note that the optimal profit with
a limit of three stations per route is slightly better than that obtained by the arc preselection
heuristic with four successive minimum spanning trees or six nearest neighbors, when limiting
the number of stations per route to four.

Table 8: Average results as a function of the maximal number of stations per route.

%Rtes(s)

#S/R #CR Dist Qty Rev RT OT #Rtes 1 2 3 4 Profit #O CPU

2 140 2 223 585 279 5 025 42.67 4.83 11.05 64.3 35.7 – – 460.15 5 182

3 807 2 062 564 979 4 732 41.44 3.27 10.65 68.5 22.1 9.4 – 507.01 17 113

4 3 060 2 047 563 282 4 709 40.93 3.51 10.60 68.9 22.2 7.5 1.4 509.94 20 350

#S/R maximal number of stations per route.

5.2.3. Performance of the route preselection heuristic
To evaluate the performance of the route preselection heuristic, we set κ as a multiple of the

instance size: κ ∈ {45, 90, ..., 315} for the 15 stations instances, and κ ∈ {150, 300, ..., 900} for
the 50 stations instances. In the last row, all feasible routes are generated, yielding the optimum.
Table 9 shows the average results obtained with the route preselection heuristic for the 15 station
instances. For three preselected routes per station (45 routes, i.e. 1.47% of all feasible routes),
the profit is about 96.2% of the optimum. The largest improvement is obtained between six and
12 preselected routes per station (90 and 180 routes, i.e. 2.94% and 5.88%) with a profit of about
99.5% of the optimum.

Table 10 shows the average results of the route preselection heuristic for instances with 50
stations. For each instance, the allowed computation time was limited to two hours of CPU time.
We can see that a major profit improvement of 4.9% can be obtained by increasing the number of
preselected routes per station from three to nine (150 to 450 routes). A slight improvement can
be obtained by further increasing this number, but we observe that the profit and the MIP best

16

Table 9: Average results as a function of the number of preselected routes for the 15 stations instances.

%Rtes(s)

κ Dist Qty Rev RT OT #Rtes 1 2 3 4 Profit #O CPU

45 2 077 564 455 4 752 41.15 3.80 10.65 68.1 23.9 7.0 0.9 490.56 11 131

90 2 082 567 680 4 764 41.25 3.81 10.70 68.2 24.3 6.5 0.9 491.08 12 241

135 2 066 564 765 4 742 41.08 3.69 10.65 69.5 21.6 7.5 1.4 502.72 14 308

180 2 070 568 161 4 753 41.25 3.60 10.70 69.6 22.0 7.0 1.4 507.32 18 472

225 2 070 568 161 4 754 41.25 3.60 10.70 69.6 22.0 7.0 1.4 508.54 19 579

270 2 070 568 161 4 754 41.25 3.60 10.70 69.6 22.0 7.0 1.4 508.54 19 792

315 2 070 568 161 4 754 41.25 3.60 10.70 69.6 22.0 7.0 1.4 508.54 19 954

3 060 2 047 563 282 4 709 40.93 3.51 10.60 68.9 22.2 7.5 1.4 509.94 20 350

κ number of preslected routes.

Table 10: Average results as a function of the number of generated routes for the 50 stations instances.

%Rtes(s)

κ Dist Qty Rev RT OT #Rtes 1 2 3 4 Profit

150 7 003 1863 858 16 075 141.27 9.66 34.55 60.3% 34.6% 5.1% 0.0% 1 760.54

300 6 862 1849 960 15 843 138.91 9.57 34.20 60.1% 33.9% 5.7% 0.3% 1 807.58

450 6 686 1830 191 15 531 135.64 9.81 33.80 60.5% 32.0% 6.7% 0.9% 1 835.91

600 6 632 1818 840 15 438 134.62 9.86 33.55 61.1% 30.1% 7.5% 1.3% 1 848.42

750 6 542 1806 543 15 256 133.81 9.11 33.30 61.0% 29.6% 7.8% 1.7% 1 853.71

900 6 571 1808 900 15 307 134.81 8.60 33.35 61.2% 29.4% 7.8% 1.6% 1 856.91

17

150 300 450 600 750 900

Number of generated routes

1760

1780

1800

1820

1840

1860

1880

A
v
e
ra

g
e
 p

ro
fit

Best solution

MIP best bound

Figure 6: Average profits as a function of the number of generated routes for the 50 stations instances

bound grow in an asymptotic manner (Figure 6). When going from 15 to 18 preselected routes
per station (750 to 900 routes), the profit improvement is only 0.17%. These results show that
this route preselection heuristic is capable of generating a set of good preselected routes and can
solve much larger instances than any of the two versions of the arc preselection heuristic.

6. Conclusions

We have proposed a mathematical formulation of the Petrol Stations Replenishment Problem
with Time Windows. Based on this formulation, an arc preselection heuristic was developped
in order to reduce the number of candidate routes. Computational results show that this heuris-
tic considerably reduces computation time while yielding near-optimal solutions. For larger
instances, a decomposition heuristic based on route preselection was proposed. On small in-
stances, it was compared to an exact algorithm. Computational results show that this decompo-
sition heuristic succeeds in finding near-optimal solutions while using a very small proportion of
all feasible routes. The effect of generating more routes was analyzed on larger instances.

Appendix

Proof. Proof of Proposition 1 Let Ti =
∑i−1

u=0 tu,u+1, S i =
∑i

u=0 su and Yi =
∑i

u=0 yu, where yi ≥ 0
denotes a minimal waiting time between stations i and i + 1. Then a′i = ai − Ti − S i−1 and
b′i = bi − Ti − S i. The route is feasible if and only if for each station i there exists a departure

18

time, denoted by di ∈ R, such that

∀i ∈ V∗r , ai + si ≤ di ≤ bi, (25)

which is equivalent to

∀i ∈ V∗r ,∃di ∈ N : a′i + Ti + S i−1 + si ≤ di ≤ b′i + Ti + S i (26)
⇔ ∀i ∈ V∗r ,∃di ∈ N : a′i + Ti + S i ≤ di ≤ b′i + Ti + S i (27)
⇔ ∀i ∈ V∗r ,∃di ∈ N : a′i ≤ di − Ti − S i ≤ b′i . (28)

But as di = d0 + Ti + S i + Yi, we have

(28) ⇔ ∀i ∈ V∗r ,∃ (Yi ≥ 0, d0 ∈ N) : a′i ≤ d0 + Yi ≤ b′i . (29)

Then, the route is feasible if and only if there exists d0 ∈ N and Yi ≥ 0 such that for all i ∈ V∗r :

a′i − Yi ≤ d0 ≤ b′i − Yi. (30)

For all (i, j) ∈ (V∗r)2 such that j < i, we need to show that there exists a sum of minimal non-
negative waiting times between stations j and i, and a departure time d0 ∈ N from the terminal
such that

a′j − Y j ≤ d0 ≤ b′j − Y j and a′i − Yi ≤ d0 ≤ b′i − Yi, (31)

whenever a′j ≤ b′i .
We get

∃
(
Yi − Y j ≥ 0, d0 ∈ N

)
:[

a′j − Y j ≤ d0 ≤ b′j − Y j and a′i − Yi ≤ d0 ≤ b′i − Yi

]
(32)

⇔ ∃
(
Yi − Y j ≥ 0

)
:
[
a′j − Y j ≤ b′i − Yi and a′i − Yi ≤ b′j − Y j

]
(33)

⇔ ∃
(
Yi − Y j ≥ 0

)
: a′i − b′j ≤ Yi − Y j ≤ b′i − a′j (34)

⇔ b′i − a′j ≥ 0. (35)

Thus b′i ≥ max0≤ j<i{a′j}. �

Proof. Proof of Proposition 2 We have shown in the proof of Proposition 1 that a route is feasible
if and only if there exists for all vertices i and j > i a non-negative sum of waiting times Y j − Yi

between i and j within the interval [a′j − b′i , b
′
j − a′i] (Eq. 34). Then there exists a non-negative

sum of waiting times w = Yn which can be decomposed as follows:

w = Yn (36)
= (Y j2 − Y0) + (Y j1 − Y j2) + (Yn − Y j1), (37)

where j1 = arg maxi∈V∗r {a
′
i} and j2 = arg mini∈V∗r {b

′
i}.

Since the route is feasible, for each i < j2, there exists a non-negative value Y j2 −Yi such that
a′j2 − b′i ≤ Y j2 − Yi ≤ b′j2 − a′i , and we have b′j2 − a′i ≥ 0. Since a′j2 − b′j2 ≤ 0 is true by definition,
Y j2 − Yi can always take a zero value for each i < j2 and a fortiori for i = 0. On the other hand,
for each i > j1, there exists a non-negative value Yi − Y j1 such that a′i − b′j1 ≤ Yi − Y j1 ≤ b′i − a′j1 ,

19

and we have b′i − a′j1 ≥ 0. Since a′j1 − b′j1 ≤ 0 is true by definition, Yi − Y j1 can always take a
zero value for each i > j1 and a fortiori for i = n. Then, wr = Y j1 − Y j2 and, because the route is
feasible, there exists w ≥ 0 such that

a′j1 − b′j2 ≤ w (38)

⇔ max
0≤i≤n
{a′i} − min

0≤i≤n
{b′i} ≤ w (39)

⇔ max
i∈V∗r
{a′i} −min

i∈V∗r
{b′i} ≤ w, (40)

and

wmin = max
i∈V∗r
{a′i} −min

i∈V∗r
{b′i} (41)

= wr. (42)

When maxi∈V∗r {a
′
i} −mini∈V∗r {b

′
i} ≤ 0, there exists a feasible time departure from the terminal

which is common to all stations without waiting time. In this case, we have wr = 0. �

Proof. Proof of Proposition 3 Since waiting time always delays the return to the terminal even
if departure occurs ε time units before βr, it is always preferable to start from the terminal as late
as possible, i.e. at d0 = βr = mini∈V∗r {b

′
i}. Any other departure time βr − ε just makes the route

duration ε longer. Then, if waiting is needed, we have αr = maxi∈V∗r {a
′
i} − wr = βr. �

Acknowledgements

This work was partially supported by the Canadian Natural Sciences and Engineering Re-
search Council (NSERC) under grants OGP0036509, OGP0039682 and OGP0172633. This
support is gratefully acknowledged.

References

[1] G. G. Brown and G. W. Graves. Real-time dispatch of petroleum tank trucks. Management Science, 27:19–32,
1981.

[2] G. G. Brown, C. J. Ellis, G. W. Graves, and D. Ronen. Real-time, wide area dispatch of mobil tank trucks.
Interfaces, 17:107–120, 1987.

[3] V. Malépart, F. F. Boctor, J. Renaud, and S. Labilois. Nouvelles approches pour l’approvisionnement des stations
d’essence. Revue Française de Gestion Industrielle, 22:15–31, 2003.

[4] D. Taqa allah, J. Renaud, and F. F. Boctor. Le problème d’approvisionnement des stations d’essence. APII-JESA,
Journal Européen des Systèmes Automatisés, 34:11–33, 2000.

[5] F. Cornillier, F. F. Boctor, G. Laporte, and J. Renaud. An exact algorithm for the petrol station replenishment
problem. Journal of the Operational Research Society, forthcoming, 2007.

[6] P. Avella, M. Boccia, and A. Sforza. Solving a fuel delivery problem by heuristic and exact approaches. European
Journal of Operational Research, 152:170–179, 2004.

[7] F. Cornillier, F. F. Boctor, G. Laporte, and J. Renaud. A heuristic for the multiperiod petrol station replenishment
problem. Submitted for publication, 2006.

[8] D. B. Johnson. Finding all the elementary circuits of a directed graph. SIAM Journal on Computing, 4:77–84,
1975.

[9] N. Christofides, A. Mingozzi, and P. Toth. Loading problems. In P. Toth, N. Christofides, and C. Sandi, editors,
Combinatorial Optimization, pages 339–369. Wiley, Chichester, 1979.

[10] U. Yuceer. A multi-product loading problem: a model and solution method. European Journal of Operational
Research, 101:519–531, 1997.

20

[11] J. C. Smith. A genetic algorithm approach to solving a multiple inventory loading problem. International Journal
of Industrial Engineering, 10:7–16, 2003.

[12] Y. Bukchin and S.C. Sarin. Discrete and dynamic versus continuous and static loading policy for a multi-
compartment vehicle. European Journal of Operational Research, 174:1329–1337, 2006.

[13] K. Fagerholt and M. Christiansen. A combined ship scheduling and allocation problem. Journal of the Operational
Research Society, 51:834–842, 2000.

[14] K. Fagerholt and M. Christiansen. A travelling salesman problem with allocation, time window and precedence
constraints — an application to ship scheduling. International Transactions in Operational Research, 7:231–244,
2000.

[15] J. Oppen and A. Løkketangen. Finding solutions for the livestock collection and inventory problem using tabu
search. Computers & Operations Research, forthcoming, 2007.

[16] R. W. Eglese, A. Mercer, and B. Sohrabi. The grocery superstore vehicle scheduling problem. Journal of the
Operational Research Society, 56:902–911, 2005.

[17] L. Van der Bruggen, R. Gruson, and M. Salomon. Reconsidering the distribution structure of gasoline products for
a large oil company. European Journal of Operational Research, 81:460–473, 1995.

[18] D. O. Bausch, G. G. Brown, and D. Ronen. Scheduling short-term marine transport of bulk products. Maritime
Policy and Management, 25:335–348, 1998.

[19] K. Helsgaun. An effective implementation of the Lin-Kernighan traveling salesman heuristic. Datalogiske Skrifter
No. 81, Roskilde University, 1998.

[20] K. Helsgaun. An effective implementation of the Lin-Kernighan traveling salesman heuristic. European Journal of
Operational Research, 126:106–130, 2000.

[21] P. Toth and D. Vigo. The granular tabu search and its application to the vehicle routing problem. INFORMS Journal
on Computing, 14:333–346, 2003.

[22] V. Malépart, J. Renaud, and F. F. Boctor. La distribution des produits pétroliers au Québec : État de la situation.
Technical report, Université du Québec, 1998.

21

	Introduction
	Problem definition and formulation
	Assumptions
	Mathematical formulation

	Route generation
	Infeasible arc deletion
	Demand feasibility check and quantity determination
	Route duration and departure window
	Route dominance

	Heuristics
	A heuristic based on arc preselection
	A decomposition heuristic based on route preselection
	Sector generation
	Optimal routes for a given sector
	Recomposition procedure

	Computational results
	Test instances
	Performance of the proposed heuristics
	Performance of the arc preselection heuristics
	Impact of limiting the number of delivered stations per route
	Performance of the route preselection heuristic

	Conclusions

