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ABSTRACT

Optical Music Recognition (OMR) is an important tech-
nology within Music Information Retrieval. Deep learn-
ing models show promising results on OMR tasks, but
symbol-level annotated data sets of sufficient size to train
such models are not available and difficult to develop.
We present a deep learning architecture called a Convolu-
tional Sequence-to-Sequence model to both move towards
an end-to-end trainable OMR pipeline, and apply a learn-
ing process that trains on full sentences of sheet music in-
stead of individually labeled symbols. The model is trained
and evaluated on a human generated data set, with vari-
ous image augmentations based on real-world scenarios.
This data set is the first publicly available set in OMR re-
search with sufficient size to train and evaluate deep learn-
ing models. With the introduced augmentations a pitch
recognition accuracy of 81% and a duration accuracy of
94% is achieved, resulting in a note level accuracy of 80%.
Finally, the model is compared to commercially available
methods, showing a large improvements over these appli-
cations.

1. INTRODUCTION

Optical Music Recognition (OMR) is an application of
recognition algorithms to musical scores, to encode the
musical content to some kind of digital format. In mod-
ern Music Information Retrieval (MIR), these applications
are of great importance. The digitization of sheet music
libraries is necessary first step in various data-driven meth-
ods of musical analysis, search engines, or other applica-
tions where digital formats are required.

OMR is an active area of research in MIR, and a classi-
cally hard problem. OMR systems need to deal with a large
range of challenges such as low quality scans, ambiguous
notation, long range dependencies, large variations in mu-
sical font, and handwritten notation. Multiple commercial
applications are available, each with their own strengths
and weaknesses [3], but the accuracy of these products is
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often too low to use without human supervision. An imple-
mentation that deals with these challenges in a satisfactory
way has yet to be developed.

A traditional OMR system typically consists of multi-
ple parts: score pre-processing, staff line identification and
removal, musical object location, object classification and
score reconstruction [15]. Each of these individual parts
has its own difficulties, resulting in OMR systems with low
confidence. More recently, there has been a trend towards
less segmented systems involving machine learning meth-
ods, such as OMR without staffline removal [13] or with-
out symbol segmentation [16]. However, a major difficulty
of these algorithms is the need for large amounts of train-
ing data. Typically, scores need to be annotated on musi-
cal symbol level to train such machine learning pipelines,
but large corpora of sufficiently diverse symbol-annotated
scores are difficult and expensive to produce [15].

In this study, we propose a novel deep learning archi-
tecture to both move towards an end-to-end trainable OMR
pipeline, and greatly reduce the data requirements for train-
ing. This is achieved by using two common deep learning
architectures: Convolutional Neural Networks (CNN) and
Recurrent Neural Networks (RNN). Convolutional archi-
tectures have been a popular choice of algorithm in various
MIR related tasks, due to the ability to learn local struc-
tures in images, and combining them to useful features. In
our method, we use a CNN to learn a feature representation
of the input scores. Continuing, a Sequence-to-Sequence
model [5, 18] is used, which is a stack of two RNN’s used
commonly in machine translation tasks. This model di-
rectly produces a digital representation of the score from
the learned representation by the CNN. The combination of
these two architectures is called a Convolutional Sequence-
to-Sequence model. By using a Sequence-to-Sequence ar-
chitecture, we cast the problem of OMR as a translation
problem. Instead of training on individual segmented sym-
bols without context, full lines of sheet music are translated
simultaneously. This approach has two major advantages;
Firstly, by training the algorithm on full lines of sheet mu-
sic, there is no need for symbol level annotated training
data. This means that in principle any corpus of sheet mu-
sic with corresponding digital notation could be used for
training, opening up many new possibilities for data-driven
OMR systems. Secondly, because in the proposed model
each of the classically segmented OMR steps is done by
a single algorithm, the model can use a large amount of
contextual information to solve ambiguity and long-range
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dependency problems.
To train the proposed model, a large corpus of mono-

phonic sheet music is generated from a MusicXML dataset
as described in Section 3. Additionally, in Section 3.2 vari-
ous types of image augmentations based on real-world sce-
narios are proposed to enhance the models flexibility to
different kinds of fonts and varying score quality. Finally
in Section 5, the results of the method are discussed on
both clean and augmented data, and the weaknesses of the
model are examined.

2. RELATED WORK

A starting point for any OMR research is the overview pa-
per by Rebelo et al. [15], which contains a complete in-
troduction to OMR systems and a description of the cur-
rent state of the field. The paper describes four main
stages that are necessary for any OMR pipeline: Image
pre-processing, musical symbol recognition, musical in-
formation reconstruction and construction of musical no-
tation. The second component, as the name suggests, is
where the main recognition work is done. Detecting and
removing staff lines, segmenting individual symbols, and
classifying symbols. Systems where steps are conducted
by different methods we call segmented systems.

Not all methods follow this model, recent data-driven
approaches suggest merging or omitting some of these seg-
mented steps. An example of this is an approach suggested
by Pugin et al. [12, 13], which applies Hidden Markov
Models (HMM) to the recognition stage, without perform-
ing staff line removal. Shi et al. [16] incorporate a deep
learning approach with Connectionist Temporal Classifi-
cation function [6] as decoding mechanism. They pose a
similar idea to the method proposed in this research, with a
difference in the encoder mechanism. Instead of using both
a CNN and RNN as encoder, only a CNN is used. This
is less computationally expensive, but the additional RNN
in the Sequence-to-sequence model can make the method
proposed in this research more context aware.
Symbol classification involving neural networks has been
researched by several authors [14, 19]. Convolutional ar-
chitectures have been used for different OMR sub-tasks,
such as staff-line detection [4] or symbol recognition [11].

In a different paper, Rebelo et al. [14] research the use
of Deformable Templates [8] with various classifiers to
make symbol recognition invariant to changes in musical
font. This method is very similar to the Elastic Transfor-
mations [17] used in this research. However, we decide to
use Elastic Transformations for ease of use and application
speed.

3. DATASET

The dataset used in this research is compiled from
monophonic MusicXML scores from the MuseScore
sheet music archive [1]. The archive is made up of
user-generated scores, and is very diverse in both content
and purpose. As a result, the dataset contains a large
variation in type of music, key signature, time signature,

clef, and notation style.
To generate the dataset, each score is checked for mono-
phonicity, and dynamics, expressions, chord symbols,
and textual elements are removed. This process produces
a dataset of about 17 thousand MusicXML scores. For
training and evaluation, these scores are split into three
different subsets. 60% is used for training, 15% for
validation and 25% for the evaluation of the models. A
specification to reproduce the data set is publicly available
online. 1

3.1 Preprocessing

From the corpus of monophonic MusicXML files, a dataset
of images of score fragments and corresponding note an-
notations is created. Each MusicXML score is split into
fragments of up to four bars, with a two bar overlap be-
tween adjacent fragments. The fragments are converted to
sheet music using MuseScore [1], each image containing a
single staff line. The corresponding labels are represented
with a pitch and duration vector, containing all information
about the notes and rests within the same four bars. Each
musical symbol is represented with two values: a pitch,
and a duration. Pitch values are specified by a MIDI pitch,
and durations by quarterlength. In case of a rest, the pitch
is a special rest indicator, which we indicate with r. The
possible duration classes contain only the durations that
can be specified by a single notehead. Notes with dura-
tions that require multiple noteheads are split into multiple
notes. The first note will contain the pitch, and pitches
of subsequent tied notes are replaced with a tie indicator,
which we indicate with t

As an example, a quarter rest followed by a note
with MIDI pitch 60 and a complex duration of a
tied quarter note and a sixteenth note is notated as
((r, 1), (60, 1), (t, 0.25)). Applying this method to the full
score fragments produces the pitch and duration vector,
and is a suitable representation for the model. A maxi-
mum of 48 events per fragment is used to put a limit on
the sequence length the model has to decode. Finally, at
the end of each pitch and duration vector an extra event is
added to indicate the sequence has ended. This indicator is
implemented as a rest with duration of zero quarter notes.

Each generated image is padded to the same width and
height, and images containing notes with more than five
ledger lines are discarded. These notes are extreme out-
liers and do not occur in normal notation. The resulting
fragments have a dimension of 2261× 400 pixels.

3.2 Image Augmentation

The computer generated score fragments contain no noise
or variation in musical symbols. To make the proposed
model robust to lower quality inputs and different kinds
of musical fonts we propose four different augmentations,
each simulating a real world source of input noise. Ad-
ditionally, for each augmentation, we choose two separate

1 https://github.com/eelcovdw/
mono-musicxml-dataset
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Figure 1. An example of each of the used image aug-
mentations from the evaluation dataset. From top to bot-
tom: No Augmentations, Additive White Gaussian Noise
(AWGN), Additive Perlin Noise (APN), Small scale Elas-
tic Transformations (ET small), Large scale Elastic Trans-
formations (ET large), and all combined augmentations.

settings. For the augmented training data, the parameters
are chosen such that the input sheet music is greatly de-
formed but still readable. For the augmented evaluation
set, parameters are chosen such that they resemble real-
world sheet music, with less deformation than the train-
ing data. The larger amount of deformation in training
will force our model to learn to recognize musical symbol
in any situation, and should improve the accuracy of our
model on both non-augmented and augmented evaluation
data.

A popular choice of augmentation is Additive White
Gaussian Noise (AWGN). This augmentation introduces a
normally distributed random deviation in pixel intensities,
to mimic noise introduced by low quality scans or photos.
This noise has a mean µ, which is chosen to be the same as
the mean pixel intensity of the full dataset. The standard
deviation σ is different between our training and evalua-
tion set. In the training set, the σ of pixel intensities in our
non-augmented data set is used. The evaluation set has a σ
of half that value.

The second type of noise augmentation used is Additive
Perlin Noise [10]. Perlin noise is a procedurally generated
gradient noise, that generates lighter and darker areas in
the image at larger scales than AWGN. This effect mim-
ics quality differences in parts of the score. Some sym-
bols might be faded and parts of staff lines less visible, and
dark areas in the image are created. The mean size of gen-
erated clouds is controlled by a frequency parameter. For
each augmented score, this frequency is chosen to be a ran-
dom value between the size of one note head and the mean
width of a full bar, to generate noise structures at different
scales. The maximum intensity of the noise in our training
set is chosen to be a strength of 0.8. The evaluation set uses
a maximum intensity of half this value.

The final two augmentations are achieved with Elastic
Transformations (ET) [17], which apply a smoothed field
of local random affine transformations, resulting in wave-
like displacements in the augmented image. An advantage
of using this augmentation is that it applies a large range
of possible affine and geometric transformations to each
image, such as rotation, skewing, squeezing and stretch-
ing. This both enhances the diversity of the augmented
data and alleviates the need to use manually defined geo-
metric transformations.

Two parameters are used to control an elastic transfor-
mation: a strength factor σ, which reduces the strength of
the distortion if a larger value is used, and a smoothing
factor α, which controls the scale of deformations. A very
large α will apply a nearly linear translation to the image,
while an α of zero applies fully random displacements on
individual pixels.

The first type of Elastic Transformation is applied on
very small scales, to change the characteristics of lines and
smaller symbols. Lines might appear to be drawn by pencil
or pen, and the edges of symbols become less defined. α
is chosen to be a random value between 2 and 8, with a σ
of 0.5 for the training data, and a σ of 2 for the evaluation
data.

The second type of Elastic Transformation is applied on
a large scale to change the shape and orientation of musi-
cal symbols. Barlines and note stems get skewed or bent,
note heads can be compressed or elongated, and many new
shapes are introduced in the score. This transformation
mimics the use of different musical fonts, or even hand-
written notation. An α between 2000 and 3000 is used,
with a σ of 40 for the training data, and 80 for the evalu-
ation data. To maintain straight and continuous stafflines,
the original algorithm is slightly adapted to reduce vertical
translations of pixels by reducing the vertical component
of transformations by 95%.

In Figure 1, an example of each of these four augmen-
tation is shown, with the setting used for generating the
evaluation data. The last example shows a combination of
all four augmentations.

4. METHOD

We introduce the Convolutional Sequence-to-Sequence
model as applied to OMR tasks, translating lines of sheet-
music to a sequence of (pitch, duration) pairs. Continuing,
the training and evaluation methods are defined.

4.1 Model

We define a Convolutional Sequence-to-Sequence network
as a stack of three components. First, a CNN encodes the
input image windows to a sequence of vector representa-
tions. Then, an encoder RNN encodes the vector sequence
to a fixed size representation, containing all information
from the input score. Finally, a decoder RNN decodes
the fixed size representation to a sequence of output labels.
The following section describes each component in detail.
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Figure 2. A diagram of the proposed Convolutional Sequence-to-Sequence model. On the left, a score fragment is pro-
cessed by a CNN and Encoder RNN to a fixed size representation. This representation is used by the decoder RNN to create
a sequence of (pitch, duration) pairs.

Note that, while each component is described separately,
the model will be trained as a single algorithm.

Sliding window input. The image input of the algo-
rithm is defined as a sequence of image patches, gener-
ated by applying a sliding window over the original input
score. The implementation has two separate parameters:
the window width w and window stride s. By varying w,
the amount of information per window can be increased or
decreased. s defines how much redundancy exists between
adjacent windows. Increasing the value of w or decreasing
the value of s provides the model with more information
about the score, but will raise the computational complex-
ity of the algorithm. Thus when determining the optimal
parameters, a balance has to be struck between complexity
and input coverage. As a rule of thumb, we use a w that
is approximately twice the width of a notehead, and an s
of half the value of w. This will ensure that each musical
object is shown in full at least once in an input window.
This gives a w of 64 pixels with a s of 32.

Convolutional neural network. To extract relevant
features from the image patches, each patch is fed into
a CNN. In this research, we keep the architecture of the
CNN the same between different experiments, to ensure a
fair comparison. First a max-pooling operation of 3× 3 is
applied on the input window for dimensionality reduction.
Then, a convolutional layer of 32 5× 5 kernels is applied,
followed by a relu activation and 2×2 max-pooling opera-
tion. These three layers are repeated, and a fully-connected
layer of 256 units with relu activation is applied, so each
input for the encoder will be a vector of size 256.

Sequence-to-Sequence network. After extracting a
vector description of each image patch, the sequence of
vectors is fed into a Sequence-to-Sequence network [5,18].
This architecture consists of two RNN’s. The first RNN,
the encoder, encodes the full input sequence to a fixed size
representation. The second RNN, the decoder, produces
a sequence of outputs from the encoded representation. In
the case of the OMR task, this sequence of outputs is the
sequence of pitches and durations generated from the Mu-

sicXML files. For both encoder and decoder, a single Long
Short-Term Memory (LSTM) [7] layer is used with 256
units. To predict both the pitch and duration, the output
of the decoder is split into two separate output layers with
a softmax activation and categorical cross-entropy loss.

A diagram of the full model is shown in Figure 2, where
four input patches and output predictions are shown. On
the left side, A sliding window is applied to a 2 bar score
fragment. Each image patch is sequentially fed into the
same CNN. This CNN is connected to the encoder net-
work, creating a fixed size representation of the two in-
put bars. The decoder uses this representation to produce
the output sequence of (pitch, duration) pairs. Note that
the second predicted pitch is an r pitch, representing a rest
symbol.

Using the described configuration, the model has an in-
put sequence length of 70 windows and an output sequence
length of 48 units. Shorter output sequences are padded to
this maximum length and the loss function is masked after
last element of the sequence. The number of pitch cate-
gories is 108, and the number of duration categories is 48.
In total, the model contains approximately 1.67 million pa-
rameters.

4.2 Training

Six separate models are trained, one on each of the pro-
posed augmented data sets: No augmentations, AWGN,
APN, Small ET, large ET and all augmentations. Augmen-
tations are applied during training, and will be different
each time the network is presented with a training sam-
ple. All models are trained with a batch-size of 64 using
the ADAM optimizer [9], with an initial learning rate of
8∗10−4 and a constant learning rate decay tuned so the rate
is halved every ten epochs. Each model is trained to con-
vergence, taking about 25 epochs on the non-augmented
dataset. A single Nvidia Titan X Maxwell is used for train-
ing, which trains a model in approximately 30 hours.
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4.3 Evaluation Metrics

On the evaluation data, three different metrics are calcu-
lated, similar to [3]:

• Pitch accuracy, the proportion of correctly predicted
pitches.

• Duration accuracy, the proportion of correctly pre-
dicted note durations.

• Note accuracy, the proportion of predicted events
where both pitch and duration are correctly pre-
dicted.

The accuracy is measured over all notes before the stop
indicator, and the stop indicator is not included in the cal-
culation of accuracy. The model is not given any a priori
knowledge about how many notes are in the input frag-
ment, so a wrong number of notes could be predicted. In
case of a shorter predicted sequence, the missing notes
are automatically marked as incorrect. If the predicted se-
quence is longer than the ground truth, the additional pre-
dicted notes are cut and only the notes within the length of
the ground truth are used. This method of measuring accu-
racy is quite strict, as an insertion or omission of a note in
the middle of a sequence could mean subsequent notes are
all marked as incorrect. This should be kept in mind when
evaluating the results of the model, and perhaps more de-
scriptive metrics could be applied in future work.

5. RESULTS

5.1 Model Evaluation

The six trained models are evaluated on both a clean eval-
uation set, shown in Table 1, and augmented sets, shown in
Table 2. The augmented evaluation sets are generated by
applying the augmentations the model was trained on to
the full clean evaluation set, with the parameters described
in Section 3.2.

The model trained on data with all augmentations is
compared against two commercially available methods in
Table 3, similar to Shi et al. [16]. The comparison between
the different methods on the clean dataset gives a base-
line performance on digital scores, while the comparison
on augmented data gives an indication of the difference of
performance on real-world sheet music.

Training
Augmentation

Pitch
Accuracy

Duration
Accuracy

Note
Accuracy

None 0.79 0.92 0.76
AWGN 0.79 0.92 0.77
APN 0.82 0.91 0.79
ET - Small 0.78 0.91 0.76
ET - Large 0.79 0.94 0.78
All augmentations 0.81 0.94 0.80

Table 1. Measured accuracy on non-augmented scores.
The accuracy scores for augmentations with the highest
positive impact are in bold.

2 https://www.capella-software.com/

Training
Augmentation

Pitch
Accuracy

Duration
Accuracy

Note
Accuracy

AWGN 0.79 0.90 0.75
APN 0.81 0.89 0.76
ET - Small 0.78 0.89 0.74
ET - Large 0.78 0.94 0.75
All augmentations 0.79 0.92 0.77

Table 2. Measured accuracies on scores with augmenta-
tions. Each model trained on different augmented data is
evaluated on an evaluation set with corresponding augmen-
tations.

Model Clean Augmented
Capella Scan 8 2 0.53 0.14
Photoscore 8 3 0.61 0.09
CS2S 0.80 0.77

Table 3. A comparison of accuracy between the proposed
model (CS2S) and two popular commercially available
methods.

5.2 Evaluation of Model Difficulties

To examine the difficulties the model has on different kinds
of scores, three additional evaluations are performed on
different subsets of the evaluation data.

Figure 3. Top: The note-level accuracy for each number
sharps/flats in the key signature. Bottom: The note-level
accuracy for the most common time signatures. The dotted
lines indicate the mean accuracy of 0.80.

First, an investigation into the impact of key signature
on the note level accuracy on the non-augmented evalua-
tion data is conducted. Just like human performance, the
added complexity of many sharps or flats in the key sig-
nature of a fragment impacts the accuracy of the model.
The results of this experiment are displayed in Figure 3
(top). At zero sharps or flats, the reported accuracy is 0.86,

3 http://www.neuratron.com/
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Figure 4. The mean note-level accuracy for each number
of notes per fragment, with a confidence interval at a 95%
level fit with a Gaussian Process.

achieving 0.06 higher than the mean accuracy of 0.80.
With more than 4 sharps or flats in the key signature the
note accuracy starts diminishing, down to a minimum of
0.66 for key signatures with seven sharps or flats.

Continuing, the nine most common time signatures and
their accuracies are examined. While the output notation
does not encode any direct information about time signa-
ture, the model could use structural information imposed
by the time signature on the score to aid in note recogni-
tion. This evaluation will both look at if that is the case,
and investigate which time signatures are potentially more
difficult to transcribe. The results in Figure 3 (bottom) do
not show a significant difference between the measured ac-
curacy of different time signatures. The complex time sig-
natures of 7/8 and 5/4 both are slightly less accurate, but
this observation could be caused by a random deviation, or
by features correlating with complex time signatures such
as number of notes in a fragment.

As a final evaluation, we look at the correlation between
number of notes in a fragment and accuracy. The model
capacity and the representation between encoder and de-
coder are of a fixed size, which forces the model to rep-
resent more notes in the same space for fragments with a
higher note density. This higher density could cause a loss
in accuracy. Figure 4 shows clear evidence that this is the
case; fragments containing more than 25 notes have a sig-
nificantly lower accuracy than the measured mean.

6. DISCUSSION

We propose the Convolutional Sequence-to-Sequence
model to deal with the difficulties OMR presents for learn-
ing systems. By using an end-to-end trainable sequential
model, we completely move away from segmented sym-
bol recognition, and perform the full OMR pipeline with a
single algorithm. By incorporating Sequence-to-Sequence
models into OMR, there are many new possibilities for
obtaining development data. We view this aspect as the
largest advantage the proposed method has over segmented
models, as the acquisition of quality training data can be a

limiting factor. The proposed model shows that it is robust
to noisy input, an important quality for any OMR model.
Additionally, the experiments show that it can deal with the
large scale Elastic Transformations that essentially change
the musical font. In future research, this aspect could be
expanded to include handwritten notation.

A weakness of the model is pitch classification. Pool-
ing operations introduce a degree of translation invariance,
we hypothesize this invariance reduces the pitch recog-
nition accuracy by discarding information about symbol
position. However, omitting pooling operations from the
model would greatly reduce the dimensionality reduction
performed by the CNN. We propose incorporating a com-
bination of convolutional layers and fully connected layers
as a possible solution.

Furthermore, on more complex scores the model per-
forms significantly worse. Both the number of sharps or
flats in the key signature and the note density in the score
fragment play a large role in the prediction accuracy. In fu-
ture work, these problems could be addressed in multiple
ways. A separate key signature recognition could be per-
formed, and given as additional information to the model.
This would take away some of the long range computations
the key signature introduces and could improve the results
on more complex scores.

The difficulty of translating long sequences with
Sequence-to-Sequence models is a well studied problem
[5, 18]. For longer sequences, the model needs to encode
more information in the same fixed size representation, re-
ducing the amount of storage available per note. A pos-
sible solution for this difficulty is proposed by Bahnadau
et al. [2]: they replace the fixed size representation be-
tween encoder and decoder with an attention mechanism, a
method that essentially performs a search function between
the two networks. This mechanism has shown improve-
ments to Sequence-to-Sequence models in neural machine
translation, and could be used in the proposed method to
alleviate some of the problems introduced with long se-
quences and long range dependencies.

The experiments performed in this research are exclu-
sively on monophonic scores. The current representation
of (pitch, duration) pairs does not allow for polyphonic
note sequences, and in order to apply the model to poly-
phonic OMR tasks this representation needs to be adapted.
A possible representation could be produced by using a
method close like the MIDI-standard or piano roll repre-
sentation.

Finally, we propose that the Convolutional Sequence-
to-Sequence model could be applied to tasks outside of
OMR that translate a spatial sequential representation to a
sequence of labels. Within MIR, tasks like Automatic Mu-
sic Transcription can be considered as such a task, where a
representation of an audio signal is converted to a sequence
of pitches and durations. Outside of MIR, tasks like video
tagging or Optical Character Recognition are similar ex-
amples.
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