
Surface as Structure: The multi-touch controller as map of musical state space

Oliver Bown
Design Lab,

University of Sydney,
NSW, 2006, Australia

oliver.bown@sydney.edu.au

Daniel Jones
Department of Computing,

Goldsmiths,
London, SE14 6NW, UK

daniel@jones.org.uk

Sam Britton
School of Arts,

Brunel University,
Middlesex, UB8 3PH, UK

sam@icarus.nu

ABSTRACT

In this paper we present a new general approach to the
use of multi-touch screens as musical controllers. In our
approach the surface acts as a large hierarchically struc-
tured state-space map through which a musician can navi-
gate a path. We discuss our motivations for this approach,
which include the possibility of representing large amounts
of musical data such as an entire live set in a common vi-
sually mnemonic space rather like a map, and the potential
for a rich dynamic and non-symbolic approach to live algo-
rithm generation. We describe our initial implementation
of the system and present some initial examples of its use
in musical contexts.

1. INTRODUCTION

In this paper we present a new general approach to the use
of multi-touch screens as musical controllers. In our ap-
proach the surface acts as a large state-space map through
which a musician can navigate a path. Our motivation is
to find a way for the multi-touch controller to act as an in-
tuitive and memorable representation of some underlying
musical structure, rather than as a set of controls applied
to elements within a musical structure which is defined
elsewhere. In this way we hope to extend the potential
of the tablet as a form of musical instrument, exploiting
its novel properties. In particular we believe that through
a zoomable map metaphor, we have a method by which a
performer can have rapid access to huge amounts of data,
such as an entire live set or even their entire repertoire, in
a single surface. Our work so far provides an elementary
sketch of these ideas, supporting our intuition that the ap-
proach is musically valuable. In this paper we present a
set of design considerations surrounding the use of multi-
touch surfaces (Section 2). We then describe our system
design and implementation (Section 3). We then present a
number of applications (Section 4) which are in progress,
but sufficiently developed to suggest novel musical uses.

Copyright: c©2012 Oliver Bown et al. This is an open-access article distributed

under the terms of the Creative Commons Attribution 3.0 Unported License, which

permits unrestricted use, distribution, and reproduction in any medium, provided

the original author and source are credited.

2. DESIGN CONSIDERATIONS

Commercial multi-touch devices have led to a prolifera-
tion of novel music performance and production systems.
The majority of these systems model traditional electronic
musical controllers such as banks of knobs and sliders,
instruments such as a piano keyboard or drum pads and
elements from Digital Audio Workstations (DAWs) such
as waveform editors and loop-based sequencers. One of
the most popular systems is TouchOSC 1 , which allows
users to lay-out standard knob, button and slider widgets,
bound to custom OSC messages. TouchOSC’s combina-
tion of simple elementary GUI elements with customisabil-
ity for specific performance contexts has proven success-
ful, and the distinction between controller and controlled
system is clear (the user can program two-way binding
between controller and controllable elements where nec-
essary). Although largely similar, the iOS version of the
original Lemur controller 2 distinguishes itself by provid-
ing a host of generative behaviours built into its control
widgets, demonstrating how the tablet can further exploit
its built-in processing capacity, acting in part as generative
music system.

Several novel alternatives applications of the multi-touch
surface context exist. For example a popular approach,
which clearly diverges from the use of traditional instru-
ments and controllers as reference points, uses the multi-
touch surface as a way to define musical interactions be-
tween elements to produce generative effects. A typical
approach following this format is to use properties relat-
ing objects in the Euclidean space of the surface – dis-
tance, angle, etc. – to musical properties – volume, pitch,
tempo, etc. Although it has yet to be deployed for a tablet,
the Nodal software developed my McCormack et al. [1]
is a good example of the compositional power of such ap-
proaches.

Certain types of control are additionally afforded by the
multi-touch format. Two-dimensional sliders provide para-
metric data control. The topological nature of 2D space is
such that paths through a parameter space can be drawn
that are circular rather than palindromic, a limitation of
1D space. This potential is well demonstrated in instru-
ment layouts that use Euler pitch lattices (for example, [2]).
These layouts allow performers to trace non-palindromic
paths through a set of harmonically related pitches, which
provides a musically meaningful structuring of control in a

1 http://hexler.net/software/touchosc.
2 http://liine.net/en/products/lemur/.

mailto:oliver.bown@sydney.edu.au
mailto:daniel@jones.org.uk
mailto:sam@icarus.nu
http://creativecommons.org/licenses/by/3.0/


2D space.
The multi-touch context also has an inherently obvious

coherence with polyphonic music performance, formed by
assigning each finger to a musical voice.

In this paper we focus on the broader potential of these
inherent features of 2D multi-touch control in defining re-
lationships between surfaces and musical structures. We
begin with the starting point of the multi-touch surface as
a directly playable polyphonic musical instrument: each
finger triggers a sound on touch-down, and sustains it un-
til release, with potential changes to the sound while it is
playing being caused by drag actions. (As we will show
our approach can also be extended beyond direct sound
generation, and could even be used, in the extreme, as a
system for visual computer programming).

Rather than thinking in terms of fixed designs for instru-
mental surfaces, however, our interest is in methods for
designing or automatically generating surfaces that in one
way or another embody some aspect of the musical struc-
ture being controlled, either being derived from a given
musical structure, creatively generated in order to produce
a musical structure, or created in combination with some
musical structure.

By musical structure we mean any arrangement of musi-
cal elements that guides the creation of an actual musical
output. A score or actual musical recording is a particu-
larly final structure, in the case of a score and less so in
the case of an audio recording you may argue that there is
still plenty to be finalised. Rule-based scores offer more
flexible structures.

All instruments embody some aspects of musical struc-
ture. The placement of black and white keys on the pi-
ano reflects diatonic form. A guitar’s strings are arranged
to facilitate the performance of chords. Other instruments
such as the auto-harp embody musically motivated design
decisions, constraining musical choices to a limited set of
harmonic relations. Whilst the latter may be more of a
counter-example, most instruments successfully balance the
freedom of open-endedness with these constraints, which
can be thought of in the language of perceived affordances
[3], the interactive offerings an object contains within it.

Computation provides other structuring methods: Markov
models, for example, are statistical models that can be used
to determine musical sequences based on the probabilities
of transitions from one note or sequence of notes to the
next, and are are a common strategy for music AI.

As district from traditional instrument interfaces our em-
phasis is on (a) the adaptiveness of the interface to different
musical needs, (b) the capacity for the musical creator to
be creatively engaged in the layout of the surface, and (c)
using the 2D graphical surface to the best of its potential.

Our research question, then, is how can surface structures
– the organisation of shapes in a 2D space – be used to rep-
resent musical structures in usable and creatively effective
ways?

A number of design considerations were considered in
arriving at the concept presented in this paper:

Non-widget based – It has been suggested that non-widget
based interfaces may provide more natural performance

contexts that those using standard GUI widgets (e.g., [4]).
Further still, touch interfaces that require little or no vi-
sual feedback are seen by some as preferable for musical
performance; the great majority of traditional musical in-
struments fit into this category.

Singular – Electronic performance interfaces can be di-
vided between those that essentially employ a singular para-
digm, such as the Korg Kaoss Pad 3 , and those that com-
bine multiple GUI elements, such as TouchOSC. Although
it would be pointless to argue that TouchOSC is unintu-
itive, it may be worth considering the utility of singular
paradigm approaches.

Hierarchical – Hierarchical structural analysis can be ap-
plied to patterns in both shape and music and is arguably
essential to our cognitive capacity in both domains. There-
fore hierarchical structuring may be a useful way to think
about developing a correspondence between the two.

Visually Mnemonic – Shapes are easily memorable and
can be used as visual mnemonics for other entities such as
sounds or other musical structures.

Massive – Graphical surfaces can contain visual struc-
tures of unlimited size, accessed through zooming and track-
ing. They can therefore provide controller surfaces with
multiple elements combined in a single canvas most of
which is hidden at any point in time.

A Novel Niche for Generativity – Touch interfaces that
can be understood as topologically connected spaces are
environments that can be interacted with using ones’s fin-
ger but also using automated agents that are able to au-
tonomously explore these spaces. In this way they have
the obvious perceived affordance of being touchable, but
also a design affordance according to which they can be
automatically navigated by programmed agents.

3. SYSTEM DESIGN AND IMPLEMENTATION

The following description of a system design and imple-
mentation is based on a first attempt to capture the idea of
extendable, visually mnemonic shapes as structured music
performance interfaces.

Surfaces – We begin by defining a surface as a set of
polygonal regions with non-intersecting edges (no edge of
any polygon crosses any other edge of that polygon or of
any other polygon, although edges may lie on the same
line). Surfaces can be stored as sets of region definitions in
JSON 4 objects for cross-platform use. In our experiments,
we have generated surfaces using different techniques and
rendered them on iOS and Android platforms either via
OpenGL or native graphics methods. Tablet implementa-
tions include the ability to track, rotate and infinitely zoom
surfaces, using direct two-finger transforms, with a toggle
to switch between ‘zoom’ mode and ‘playback’ mode. The
effect is similar to using an interactive map program such
as Google Maps 5 .

Voices – A touch in any region creates a new voice and
binds the voice to the currently touched region. Drag ac-
tions that traverse region boundaries cause the current re-

3 See http://www.korg.com.
4 JavaScript Object Notation. See http://www.json.org/.
5 http://maps.google.com.



1

2 3

4 5 6 7 8

10 119

12 13

1

2

34

5

6

7

8
9

10

11

12

13

Tree Surface interface

Figure 1. Relationship between the arrangement of shapes
on a surface (right) and the tree representing the shape hi-
erarchy (left).

gion associated with the voice to be updated to the new re-
gion. Each voice is monophonic, polyphony is achieved by
multiple voices (i.e., multiple touch events). A voice has
exactly one region set as its current region at any one time
(any point in the space is bound to exactly one region). We
say that the voice is activating that region. Multiple voices
can activate the same region at the same time. Voices are
assigned unique IDs and there is no limit to the number of
voices that can be active at any one time (noting that au-
tomated playback agents can also act as voices, as well as
human fingers).

Messages – All voice activation data is sent as an Open
Sound Control (OSC 6 ) message to a receiving music com-
puter. The message contains the type of voice, either “fin-
ger” or a string identifying a type of automated playback
agent (e.g., “looper”, “random walker”), the voice ID, a
string representing the currently active region, which we
will explain below, and optionally additional information
such as how close the finger is to the centre of the region,
touch pressure, etc. Except for this last type of informa-
tion, which was not considered in the studies presented in
this paper, messages need only be sent when a voice acti-
vates a new region or is released entirely. OSC messages
therefore describe enter and exit actions on given regions.

Hierarchical Structure – Polygonal surfaces as defined
above can be said to have hierarchical structure in the nest-
ing of polygonal regions within other polygonal regions. In
a simple polygonal picture of a face, for example, eyes and
nose are nested inside head, and pupils are nested inside
eyes. The spatial hierarchy can be represented as a tree,
with head at the root, with two eyes and one nose descend-
ing from it, and a single pupil descending from each of the
eyes. Figure 1 shows a simple example of the relationship
between a tree structure and a surface.

As a voice traverses a surface, therefore, by entering,
moving and releasing, its trajectory can also be described
in terms of the traversal of the shape hierarchy (Figure 2).
Our view is that such spatial hierarchies provide a sensi-
ble structuring paradigm bridging, on the one hand, the ar-
rangement of shapes in a surface, and on the other, aspects
of musical structure.

6 See http://opensoundcontrol.org/introduction-osc

In the simplest case, hierarchical structure is not consid-
ered and the system simply takes the form of a spatial dis-
tribution of buttons, possibly resembling a piano keyboard
or drum pad. In this case the potential for shaping the sur-
face in usefully memorable or performable ways is of in-
terest, offering the possibility of laying out musical objects
for a performance in ways that embody musical sequences.
But as well as looking at appropriate ways to layout mu-
sical relationships in 2D we are interested in ways to lay-
out hierarchical musical relationships using 2D hierarchi-
cal spatial relationships, with the aim of making complex
forms of control more intuitive, and exploring the potential
of unlimited zoomability in shape hierarchies, and what
that could mean for musical control at different scales.

A number of possible hierarchical structures in music make
potential candidates for representation using surfaces, such
as: structures deriving from grammatical analysis of music
(as in [5]); levels of control in hierarchically nested signal
chains, such as in groupings of devices in Ableton Live 7 ;
sequences of operations on objects that can be written as
reversible program instructions, for example, a transform
applied to a sound, such as modulation in the context of
synthesis.

3.1 Surface creation and structural mapping

In this section, the following surface design methods are
considered. In the first case, Voronoi tessellation is used to
derive a set of regions from a set of points. The relation-
ship between points is determined in two different ways,
either by a designer, who draws the points (at the same
time as specifying their relationship), or by a process of
hierarchical clustering, with a modified pruning stage to
make appropriate trees. In the second case, shapes are de-
rived from other sources and their hierarchical structures
are extracted. In the third case, the musical data is used to
derive shapes. Only the first method has been implemented
in this paper.

These methods cover three general approaches to making
surfaces: (i) procedurally – a generative process generates
surfaces that have interesting abstract properties but no in-
herent associations with a musical system; (ii) designed –
a user can in some way design a surface. Although the
surface has no inherent associations with musical elements
the design process may make those associations, for ex-
ample the designer may derive a surface from analysis of
a photograph of an orchestra; (iii) musically determined
– the surface structure is derived from information about
the computer music elements that will be controlled by the
surface.

3.1.1 Procedural shape generation: noise combined with
hierarchical clustering

Our initial experiments looked at procedural approaches to
creating surfaces. Whilst procedurally generated structures
may seem overly abstract for the context, our interest was
whether structure generation procedures may be found that
result in surface properties that could be of creative musical
interest. The initial arbitrariness of mappings from such

7 See http://www.ableton.com.



1

2

3

4

5

6

7

8

9
10

11

12

13

ent
er 

1

en
ter

 2

en
te

r 5

ex
it 

5

ex
it 

2

ex
it 

1

down

up

Figure 2. Example of a trajectory through a surface caused by a touch event, indicating the messages sent and the resulting
tree activation states.

abstractly generated surface structures to musical control
may not be a problem, since the performer’s internalisation
of this relationship is already an adaptive process.

A simple approach to procedural shape generation is to
generate a set of points from which to derive both regions
and their hierarchical relations.

Voronoi tessellation transforms any set of points into a
set of convex polygonal regions such that any point inside
a given region is closest to the centre point associated with
that region. Through Voronoi tessellation, therefore, a set
of points can act as a description of a surface.

Hierarchical clustering is a clustering technique that cre-
ates a tree of proximity relations from a given set of data
points, rather than the specific categorisation into clusters
resulting from most clustering algorithms. The tree can
then be used to derive clusters. The hierarchical cluster-
ing algorithm begins by binding nearby points together to
form subtrees and then proceeds by incrementally binding
subtrees based on their cluster distance. In the result, each
node has at most two children (i.e., these are binary trees),
meaning resulting trees can turn out to be very deep. This
can be corrected using customised pruning.

The combination of Voronoi tessellation and hierarchical
clustering mean that both surface and tree structure can be
derived from any given set of points.

Point distributions were generated using Perlin noise, which
is used in the generation of natural landscape effects, and
resulting region tessellations and trees were generated. Fig-
ure 3 shows one such generated surface. A colouring algo-
rithm based on the position of nodes in the tree is used
to indicate the tree structure. In this case, unlike the drawn
example in Figure 1 the hierarchical structure does not clearly
visually correspond to the nesting of polygons. Here the
polygons can be thought of as nested but with shared edges
between children and their parents.

3.1.2 Dynamic cellular shape design

As an alternative to using procedural methods to produce
point distributions, we constructed a simple drawing tool
with which a surface designer could arrange points. The
Voronoi tessellation was still used to derive regions from
points, but in this case the designer could also manually
specify the relations between points. The drawing tool was
designed to be dynamic, so that points could be sprayed on
a surface but would partly self-organise according to the
relations specified by the designer, the idea being that they
would relax into more or less regularly distributed struc-
tures, with the degree of relaxation being a parameter that
could be chosen by the designer. This was achieved using
a mass-spring model applied to points, with points con-
nected by springs based on their relationship in the tree
structure. This provided an intuitive and manipulable region-
drawing tool, albeit only a rough prototype, which could
be of additional interest if also allowed to run and modify
itself during musical playback.

3.1.3 Shape analysis: extraction of shape hierarchies

Since any set of non-overlapping polygons can be used as
a surface, we can also derive surfaces from other sources
such as image analysis. Any image can be converted to
greyscale and thresholded at different greyscale levels to
derive contour lines, resulting in a set of non-overlapping
but possibly nested regions (this can include regions within
other regions and also holes within regions). The nesting
structure of this resulting set of regions can be analysed,
resulting in a tree structure that is inherent to the image.
If desired, the resulting shapes can be further partitioned
into more localised subregions, whilst maintaining that all
subregions of an original region point to the same node on
the tree.

Whilst procedural generation can in theory produce infi-
nite detail, shape analysis can only produce finite levels of
detail and zoomability.



Figure 3. Procedurally generated surfaces. Random points
were generated using Perlin noise. The points were then
assigned to a tree using hierarchical clustering. Colours
were assigned to points according to their position in the
tree. Voronoi tessellation was used to convert points to
surface regions.

Although it has not yet been tried in a musical exam-
ple we adapted software used for thresholding and edge
detection to produce shapes that fit our polygonal surface
description format. A trivial extra step is to extract the
shape hierarchy from these images and colour surfaces ac-
cordingly if required. This allows us to take any image
as source material for a surface, and derive the surface
polygons and hierarchy from the image, from which the
OSC message contents can also be derived. Obviously,
as with procedurally generated shapes, the decision about
what musical structures will respond to shapes has still to
be made.

3.1.4 Derivation of shapes from musical data

An obvious alternative is to work the other way and derive
shapes from the sonic material that will be controlled. A
well-known example of such a process is Schwarz’s CataRT
software [6], which draws scatter-plots of granular frames
from a corpus of audio recordings using low-level audio
features. The user can then play back sound in a feature-
driven manner by hovering their mouse over the scatter
plot. Hierarchical musical analysis, for example using the
methods in Lerdahl and Jackendoff’s Generative Theory of
Tonal Music [5], can be used to derive trees that describe
the relationships between notes in a musical work. Such
trees can be mapped to 2D spaces using a variety of meth-
ods such as Tree Maps [7]. Similarly, Markov Modelling
(for example as used by [8]) can be used to find proba-
bilistic relationships between sequences and an optimisa-
tion algorithm can be used to find spatial arrangements be-
tween elements whose proximities correspond to the tran-
sition probabilities between musical elements. As a final
example, modular synth structures represented as trees, for
example as patches in MaxMSP, could be abstracted and
likewise represented spatially as hierarchies.

We have not attempted any of the above methods at this
stage in the research but these possibilities provide a range
of alternative approaches to constructing surfaces that are
made possible by our first prototypes.

Figure 4. Example of interpolating between different
paths through a 2D surface.

3.2 Methods for traversing surfaces and tree
structures

Another motivation for creating surfaces representing mu-
sical structure is to define appropriate environments in which
automated and generative processes could act to produce
semi-composed musical output. For example, a random
walk around a Euler lattice is likely to sound more ‘musi-
cal’ [2], at least by tonal standards, than one along a chro-
matic scale. Likewise, a random traversal of a tree struc-
ture results in a kind of output distribution in which closely
related states are more likely to occur close together than
more distantly related states, but in which sudden leaps can
occur. This kind of output can be used to get the effect
of self-organised criticality or correspond to observed pat-
terns in musical structure. As such the structuring of the
space is a way of incorporating compositional decisions
into an instrument, allowing simpler performance processes
to act upon structures with meaningful results.

3.2.1 Interpolating and drifting playback agents

The most obvious playback mechanism is to record a user’s
actions and repeat them, in a loop for example. In its literal
form this has no greater potential than any other form of
recording. However, the 2D surface allows forms of path
interpolation that would not be possible in 1D. Figure 4
shows an example of a path interpolation that could be used
to create a recurring sequence with drifting variation. In
such a context the user could specify keyframe paths and
set an interpolation going.

3.2.2 Swarms and locally adaptive agents

Another more generative approach involves ‘agents’ that
traverse the surface based on some kind of interactive be-
haviour. A continuous 2D space provides a more intuitive
environment in which to think about agent behaviour than
an abstract musical structure, and agents inhabiting the 2D
space of the surface on a tablet can be easily observed
and interacted with. Two approaches to designing agents
for such spaces are swarms and locally adaptive agents,
loosely modelled on Braitenberg vehicles.

Braitenberg vehicles are simple mobile robots (or soft-
ware simulations of robots) in which two light sensors are
connected to two wheel-motors [9]. Depending on whether
the connections are parallel or cross-connections, the vehi-
cles behave as either light followers or light avoiders. In
a similar way, we can design software agents that travel
around surface spaces using virtual sensors to determine
their direction of travel. Virtual sensors can use informa-



tion drawn from the surface structure, or in a more complex
mode, could be listening to the resulting music.

A swarm of agents provides a simple way to get interest-
ing varying polyphonic structures. Swarms have been used
in a range of musical applications, most notably by Black-
well and Young, who used swarms of agents in a para-
metric musical space to create the effect of self-organised
group improvisation [10].

4. APPLICATIONS

Our initial research has looked at the most basic examples
of interpreting tree structures as sound, focusing on both
direct sound generation and the more abstract manipulation
of musical elements being played back by the host com-
puter. This work is at an early stage and we accept that it is
not presently clear what kinds of mappings from surfaces
to musical structures will be of greatest interest. The sys-
tem in its current state is presented as a framework for ex-
ploring creative musical uses based on the design outlined
above. Whilst tools such as TouchOSC cater very simple
relations between controller and controlled elements, our
system is focused on a more involved integration between
structure and music. A guiding concept is that the 2D space
of the surface, divided into regions, maps to a musical state
space, with a region corresponding to a musical state.

From our procedurally generated surfaces, we derived
trees, as described above, that can also be read into the
recipient music software (the recipient software does not
need to know about the surface itself, only the hierarchi-
cal relationships between nodes). OSC messages from the
tablet to the host computer then identify tree nodes on a
per-voice basis such that the recipient software can track
where each voice is in the tree and apply transitions as nec-
essary.

A granular sampler was used for playback, and the posi-
tion of nodes in the tree hierarchy was mapped to control
of the sound being played back. Each node was sent over
OSC as a path from the tree’s root to the node. For ex-
ample, region 12 in Figure 1 would be sent as the array
{1,2,4,9,12}. Since the recipient software is assumed to
contain its own representation of the tree this is not strictly
necessary, but assuming message density to be minimal
this approach is used to provide useful redundancy, e.g.,
to confirm that the tree is correct or to work even when the
tree is not known by the recipient (in the future these long
redundant messages may be optional). From the node path,
top-level distinctions, i.e., branches just below the root of
the tree, such as the number 2 in the sequence {1,2,4,9,12},
are used to choose between different sounds from a bank
of pre-buffered sound files. Then following the path from
the root down the tree, subsequent distinctions were used
to modify the sound in less and less significant ways, be-
ginning with register, then pitch class (based on the cir-
cle of fifths), followed by coarse and then finer control of
grain size, grain interval and grain rate. The purpose of this
mapping is that closer regions in the surface tree represen-
tation (those with more similar colours in Figure 3) will
play sounds that sound more similar. As you cross a major
colour boundary you will hear a more significant change in

sound. Although the parameters and the surfaces are ran-
domly generated in this initial experiment, these essential
similarity relationships are maintained.

Experiments performing with the system indicated that
exploration of the space through zooming, panning and
playing was essentially intuitive, with the potential to ex-
ploit visual memory to allow fast access to electronic mu-
sic structures. Whilst the visual memory of structures was
basically viable, the method for procedurally generating
surfaces was clearly too bland, so surface regions weren’t
especially memorable. We intend to address this by explor-
ing the use of existing images as source data, as discussed
in Section 3.1.3, or using alternative procedural processes.
In further work we hope to show that visually memorable
surface layouts with consistent mappings to sound can then
result in easily learnable performance environments.

4.1 Automatic derivation of surfaces from DAW data

Work is underway to adaptively derive surfaces from a va-
riety of existing musical systems. A popular creative elec-
tronic music tool is Ableton Live. Live allows realtime
multitrack performance through the selection of clips, small
blocks of music such as audio loops or MIDI sequences.
Clips can be triggered using a range of MIDI devices such
as the Novation Launchpad. We propose to apply auto-
mated analysis to existing Live projects (a “project” is a
single document consisting of a number of tracks within
which clips can be selected) from which control surfaces
could be derived.

4.2 Shapes as program code: spatial live coding

An exciting possibility is that the paradigm of shaped-based
control of hierarchical sequences can extend to an open-
ended programming technique, given the right procedu-
ral or design techniques for creating structures that relate
to program code. For example, the novice programming
tool Scratch 8 allows users to construct program code us-
ing drag and drop operations on shapes representing blocks
of code. The experimental hybrid coding/patching envi-
ronment Field 9 uses the concept of an interactive GUI
block which can be coded to respond to user interaction
such as mouse-overs. Following our surface paradigm,
polygons would represent software objects which would
respond to enter and exit commands, by, for example cre-
ating and destroying objects in a signal path. Nested poly-
gons would be handed an environment on entry, consisting
of objects created by their enclosing polygons. Procedu-
ral methods would enable the generation of vast zoomable
spaces of generative possibilities that could be explored in-
teractively.

5. DISCUSSION

In this paper we have presented a general approach to cre-
ating musical controllers based on the arrangement of poly-
gons in a 2D surface. The purpose of this paper has been

8 http://scratch.mit.edu/
9 http://openendedgroup.com/field



to outline the design thinking behind this approach, de-
scribe our implementation of the system and discuss our
initial reflections using the system musically. Our view is
that the software we have started to develop for this pur-
pose will have general applicability to a range of contexts
and offers an original and potentially valuable approach
to using multi-touch tablets in musical performance, but
that our first prototype leaves many open questions about
the best design and musical use, which we hope to an-
swer in future experimentation. Our immediate aim is to
finalise publicly available apps for loading and using sur-
faces on Android and iOS devices, and sending OSC mes-
sages to a host computer running music software. A gen-
eral purpose file format for representing surfaces can then
be used to load surfaces onto apps but also the correspond-
ing trees into the recipient programs. Whist the app can
work as a standalone player/controller, specific standalone
tools would be able to generate surfaces and correspond-
ing musical playback systems in the ways proposed in this
paper (and in other ways). In addition, different playback
agents could also be created as plug-ins for the tablet con-
trollers.

Acknowledgments

This project was supported by a residency from STEIM,
Amsterdam (http://www.steim.nl), and associated perfor-
mance at the Sonic Acts Festival, Amsterdam, February
2012.

6. REFERENCES

[1] J. McCormack, P. McIlwain, A. Lane, and A. Dorin,
“Generative composition with nodal,” in Workshop on
Music and Artificial Life, E. Miranda, Ed., Lisbon, Por-
tugal, 2007.

[2] S. Maupin, D. Gerhard, and B. Park, “Isomorphic
tessellations for musical keyboards,” in Proceedings
of the 8th Sound and Music Computing Conference,
S. Zanolla, F. Avanzini, S. Canazza, and A. de Götzen,
Eds., 2011, pp. 471–478.

[3] D. Norman, The Psychology of Everyday Things. Ba-
sic Books, 1988.

[4] D. Saffer, Designing for Interaction: Creating Innova-
tive Applications and Devices. New Riders, 2009.

[5] F. Lerdahl and R. Jackendoff, A Generative Theory of
Tonal Music. MIT Press, 1983.

[6] D. Schwarz, G. Beller, B. Verbrug, and S. Britton,
“Real-time corpus-based concatenative synthesis with
catart,” in Proceedings of 9th International Conference
on Digital Audio Effects, 2006.

[7] B. Johnson and B. Shneiderman, “Tree-maps: a space-
filling approach to the visualization of hierarchical in-
formation structures,” in Visualization, 1991. Visual-
ization ’91, Proceedings., IEEE Conference on, oct
1991, pp. 284 –291.

[8] F. Pachet, “Beyond the cybernetic jam fantasy: The
continuator,” IEEE Computer Graphics and Applica-
tions, vol. 24, no. 1, pp. 31–35, 2004.

[9] V. Braitenberg, Vehicles: Experiments in synthetic psy-
chology. MIT Press, 1986.

[10] T. Blackwell and M. Young, “Self-organised music,”
Organised Sound, vol. 9, no. 2, pp. 137–150, 2004.


	 1. Introduction
	 2. Design Considerations
	 3. System Design and Implementation
	3.1 Surface creation and structural mapping
	3.1.1 Procedural shape generation: noise combined with hierarchical clustering
	3.1.2 Dynamic cellular shape design
	3.1.3 Shape analysis: extraction of shape hierarchies
	3.1.4 Derivation of shapes from musical data

	3.2 Methods for traversing surfaces and tree structures
	3.2.1 Interpolating and drifting playback agents
	3.2.2 Swarms and locally adaptive agents


	 4. Applications
	4.1 Automatic derivation of surfaces from DAW data
	4.2 Shapes as program code: spatial live coding

	 5. Discussion
	 6. References

