

AFRL-IF-RS-TR-2003-55

Final Technical Report
March 2003

A NATIONWIDE EXPERIMENTAL MULTI-
GIGABIT NETWORK

High Speed Connectivity Consortium

Sponsored by
Defense Advanced Research Projects Agency
DARPA Order No. G147, J164

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

The views and conclusions contained in this document are those of the authors and should not be
interpreted as necessarily representing the official policies, either expressed or implied, of the
Defense Advanced Research Projects Agency or the U.S. Government.

AIR FORCE RESEARCH LABORATORY
INFORMATION DIRECTORATE

ROME RESEARCH SITE
ROME, NEW YORK

 This report has been reviewed by the Air Force Research Laboratory, Information
Directorate, Public Affairs Office (IFOIPA) and is releasable to the National Technical
Information Service (NTIS). At NTIS it will be releasable to the general public,
including foreign nations.

 AFRL-IF-RS-TR-2003-55 has been reviewed and is approved for publication.

APPROVED:
ROBERT L. KAMINSKI

 Project Engineer

 FOR THE DIRECTOR:
WARREN H. DEBANY, Technical Advisor
Information Grid Division

 Information Directorate

REPORT DOCUMENTATION PAGE
Form Approved

OMB No. 074-0188
Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing this collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including
suggestions for reducing this burden to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302,
and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188), Washington, DC 20503
1. AGENCY USE ONLY (Leave blank)

2. REPORT DATE
MARCH 2003

3. REPORT TYPE AND DATES COVERED
Final Sep 98 – Dec 02

4. TITLE AND SUBTITLE
A NATIONWIDE EXPERIMENTAL MULTI-GIGABIT NETWORK

6. AUTHOR(S)
Raj Reddy,

5. FUNDING NUMBERS
C - F30602-98-2-0193
PE - 62301E
PR - G147
TA - 00
WU - 01

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
High Speed Connectivity Consortium
123 University Place
Pittsburgh Pennsylvania 15213

8. PERFORMING ORGANIZATION
 REPORT NUMBER

9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES)
Defense Advanced Research Projects Agency AFRL/IFGC
3701 North Fairfax Drive 525 Brooks Road
Arlington Virginia 22203-1714 Rome New York 13441-4505

10. SPONSORING / MONITORING
 AGENCY REPORT NUMBER

AFRL-IF-RS-TR-2003-55

11. SUPPLEMENTARY NOTES

AFRL Project Engineer: Robert L. Kaminski/IFGC/(315) 330-1865/ Robert.Kaminski@rl.af.mil

12a. DISTRIBUTION / AVAILABILITY STATEMENT
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

12b. DISTRIBUTION CODE

13. ABSTRACT (Maximum 200 Words)
 The High Speed Connectivity Consortium (HSCC) created a nation-wide multi-gigabit network, capable of gigabit connections to end
user sites, using fiber optic links at OC-48 rates. The consortium provided high-speed access to the network with consumption-based
pricing for affordability.
 The network backbone was provided by Qwest using their national network. Local access was provided by various sources such as
power utilities, Competitive local exchange carriers, and other Right-of-Way owners.
 The network provided high speed connectivity for research in networking architectures, high bandwidth applications, and protocol
research.
 Specifically, the Matisee Project, a joint collaboration between UC Berkeley, LBNL, CMU, MIT, CNRI and USC/ISI utilized
the network for remote MEMS design, fabrication and testing/experiments. The network enabled research into why host systems
and the TCP protocols have so much difficulty achieving high performance when operating across high bandwidth delay product
networks. The network also enabled research and testing into the distribution of Uncompressed HTDV across wide area networks.

15. NUMBER OF PAGES
127

14. SUBJECT TERMS
Optical Networking, Gigabit Networks, Network Protocols, Network Architectures

16. PRICE CODE

17. SECURITY CLASSIFICATION
 OF REPORT

UNCLASSIFIED

18. SECURITY CLASSIFICATION
 OF THIS PAGE

UNCLASSIFIED

19. SECURITY CLASSIFICATION
 OF ABSTRACT

UNCLASSIFIED

20. LIMITATION OF ABSTRACT

UL
NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89)

Prescribed by ANSI Std. Z39-18
298-102

et al

 i

Table of Contents

Introduction... 1
Technical Report... 1
Distributed Science Classroom Experiments.. 2
METACARTA subcontract .. 2
Technical Highlights... 3
Publications... 6
APPENDIX A PUBLICATIONS.. 8

goodelle

goodelle
 IMPLEMENTING CONGESTION CONTROL IN THE REAL WORLD	 9 Large Group Teleconferencing: Techniques and Considerations		 13 Yima: A Second-Generation Continuous Media Server			 31 Experiments with Delivery of HDTV over IP Networks			 40 Applied Techniques for High Bandwidth Data Transfers across Wide Area Networks 52 Enabling Network-Aware Applications					 61 Using High-Speed WANs and Network Data Caches to Enable Remote and Distributed Visualization									 69 METACARTA Geographic Text Search				 	92

 ii

Acknowledgments

The Principal Investigator wishes to acknowledge Terry Gibbons and Tom
Lehman of the University of Southern California, Information Sciences Institute
(East), Arlington, Virginia for their collaborative efforts.

 1

Introduction

This final report is being submitted by High Speed Connectivity Consortium
(HSCC), for work performed under Award Agreement No. F30602-98-2-0193, for
the period September 18, 1998 through December 31, 2002.

Technical Report

Beginning September 18, 1998, HSCC planned to have five sites operational at
OC 48 rates. The contract was subsequently modified to have four sites and a
distributed classroom experiment which uses the high bandwidth. A
geographical index of the web experiment was added as a subcontract to Meta-
Carta in July 2001.

1. Los Angeles, CA - NTON Network

This network connection was operational at OC 48 rates between October 15,
1999 and November 04, 2002. It linked NTON (National Testbed for Optical
Networking) Network to the HSCC backbone via a direct in-building connection
on Wilshire Boulevard in LA. Using HSCC network NTON provided connectivity
for Lawrence Livermore Laboratory (LL), NASA, Ames and SRI.

2. Washington, DC - ATD Network

This network connection was in operation at OC 48 rates between October 25,
1999 and November 04, 2002. It linked the DARPA supported ATD (Advanced
Technology Demonstration) network to the HSCC backbone via an OC-48 line
from ISI-East.

3. Pittsburgh, PA - Pittsburgh Super Computer Center

This network connection became operational at OC 12 rates since December
1,1999. It was upgraded to OC 48 rates in January, 2001 and was in operation till
Nov 04, 2002. It linked Carnegie Mellon University to the HSCC backbone via an
intermediate connection at the Pittsburgh Supercomputer Center (PSC).

4. Seattle, WA- Pacific Northwest Network

This network connection was in place since December 15, 1999. However, this
link was terminated as of June 30, 2000 due to the merger between Qwest and
US West communications.

HSCC attempted to include Argone National Laboratory in Argone, IL as the new
fourth node for the last year of operation. However due to the difficulties in
obtaining local access fiber this option did not become operational in time.

 2

Distributed Science Classroom Experiments

In December 2000, HSCC requested and received a modification to change the
work statement for this project. Accordingly, HSCC have provided partial funding
for distributed Classroom experiments to four nationally recognized Universities.

Brown University
Carnegie Mellon University
University of California at Berkeley
University of Washington at Seattle

Experiments are ongoing and will continue beyond the scope of this contract.

METACARTA subcontract

In July 2001, HSCC requested and received additional funding for the
METACARTA project. These funds were provided to create software to support
the following activities

• Generate a prototype geographic index of web pages.
• Geographic structuring of non-relational information.
• Location specific applications that require surrounding information for

analysis and planning.
• Wireless applications that require proximity- sensitive searching.
• Platform for organizing data from instruments, sensors, and

communications.

The MetaCarta final report can be read in its entirety at URL:
http://www.hscc.net/MetaCarta_GTS_Appliance.ppt.

 3

Technical Highlights

SuperNet/HSCC continued its support for multiple research programs and
demonstrations, which are described in detail at this web URL: http://www.ngi-
supernet.org/experiments.html.

Various programs under NGI-Supernet were able to utilized the bandwidth which
was provided by HSCC:

• Matisse

• BOSSNET

• Gigabit To The Desktop

• Gigabit Rate IP Security

• Secure Network Toolbox (Secure Network Monitoring and Management
Infrastructure)

• High Performance Local Area Networks (10-40Gb/s)

• NGI Multicast Applications and Architecture (NMAA)

• Uncompressed High Definition Television (HDTV) over IP

• Access Grid (AG)

• Collaborative Advanced Interagency Research Network (CAIRN)
Experiments

 4

The List of the research programs, which utilized HSCC bandwidth, is given
below:

• TCP performance across high bandwidth-delay product networks
• Remote Media Immersion (RMI)
• IMSC's Remote Media Immersion (RMI)
• Integrated Media Systems Center (IMSC)
• Matisse
• Distributed-Parallel Storage System (DPSS)
• Gigabit To The Desktop
• Gigabit Rate IP Security
• Secure Network Toolbox (Secure Network Monitoring and Management

Infrastructure)
• Collaborative, Operational Virtual Exploitation Team (COVET)
• NGI Multicast Applications and Architecture (NMAA)
• Uncompressed High Definition Television (HDTV) over IP
• Access Grid (AG)
• Collaborative Advanced Interagency Research Network (CAIRN)

Experiments
• X-Bone (Automated Overlay Network Deployment)
• Active Networks Backbone (ABone)
• National Internet Measurement Infrastructure (NIMI)
• Multicast-based Inference of Network-internal Characteristics (MINC)
• Secure Border Gateway Protocol (S-BGP)
• Border Gateway Multicast Protocol (BGMP)
• Network Time Synchronization Project (NTSP)
• Reliable Multicast Performance
• DNS Security (DNSSEC) in CAIRN
• Secure Network Toolbox (SNMPv3, SSL, SSH)
• SNMPv3 in CAIRN
• Fault-Tolerant Networking Through Intrusion Identification and Secure

Compartments (FNIISC)
• Fault-Tolerant Mesh of Trust Applied to DNSSEC (FMESHD)
• Bro: A System for Detecting Network Intruders in Real-Time
• Realizing Adaptive Distributive Internet Operations on ACTIVE Networks

(RADIOACTIVE)
• Secure Conferencing Access with Multicast Protocols for the
• Internet (SCAMPI)

 5

The List of experiments and demonstrations, which utilized HSCC bandwidth, is
given below:

• ACCESS Facility Demos
• Stereoscopic Rendered Images and Video Streaming with Real-time
• Compression Methods (Internet2 and Super Net infrastructure)
• Telepresence in the Operating Room Utilizing IP Video (Internet2 and
• Super Net infrastructure)
• Super Computing 2000
• Accelerated Strategic Computing Initiative (ASCI)
• VisaPult: Image Based Rendering Assisted Volume Rendering - SC2000
• Network Challenge Winner
• Cal Tech Particle Physics Using Globus
• Data Management Infrastructure for Climate Modeling Research
 (Striped FTP)-SC2000 Network Challenge Winner
• Stanford Linear Accelerator Center (SLAC)
• NASA Digital Sky Demo
• Digital Amplitheater
• Digital Earth
• Land Speed Record
• Internet2 Land Speed Record
• UW-ISIe High Bandwidth Tests
• UW-ISIe Internet HDTV Tests
• Super Computing 2001
• TeleImmersion

 6

Publications
As a result of HSCC’s collaborative efforts the following articles were published.

• Retransmission-Based Error Control in a Many-to-Many Client-Server
Environment. Roger Zimmermann, Kun Fu, Nitin Nahata, and Cyrus
Shahabi. Accepted for presentation at the SPIE Conference on Multimedia
Computing and Networking 2003(MMCN 2003), Santa Clara, California,
January 29-31, 2003.

• Ladan Gharai & Colin Perkins, Implementing Congestion Control in the

Real World, Proceedings of the IEEE International Conference on
Multimedia and Expo, Lausanne, Switzerland, August 2002.
http://www.east.isi.edu/projects/NMAA/hdtv/publications/icme2002.pdf

• Ladan Gharai, Colin Perkins & Allison Mankin, Large Group

Teleconferencing: Techniques and Considerations, Proceedings of the 3rd
International Conference on Internet Computing, Las Vegas, June 2002.
http://csperkins.org/publications/ic2002.pdf

• Christian Rembe, Rishi Kant, Michael P. Young, Richard S. Muller,

"Network-connected MEMS-measuring system for high-speed data
transfer to CAD and simulation tools," Conference on Vibration
Measurements by Laser Techniques," Italian Assn. for Laser Velocimetry,
Ancona, Italy, 18-21 June 2002

• Yima: A Second Generation Continuous Media Server. Cyrus Shahabi,

Roger Zimmermann, Kun Fu, and Shu-Yuen Didi Yao. Published in the
IEEE Computer magazine, June 2002, pp. 56-64.
http://idefix.usc.edu/pubs/IEEEComp.pdf

• On Internet of the Future, Surfers May Almost Feel the Spray, New York

Times Article, May 9, 2002. Article about RMI.
http://idefix.usc.edu/pubs/NYTimes-RMI.pdf

• Colin Perkins, Ladan Gharai, Tom Lehman & Allison Mankin, Experiments

with delivery of HDTV over IP Networks, Proceedings of the 12th
International Packet Video Workshop, Pittsburgh, April 2002.
http://www.east.isi.edu/projects/NMAA/hdtv/publications/pv2002.pdf

• J. Lee, D. Gunter, B. Tierney, W. Allock, J. Bester, J. Bresnahan,

S.Tuecke, " Applied Techniques for High Bandwidth Data Transfers
across Wide Area Networks", Proceedings of Computers in High Energy
Physics 2001 (CHEP 2001), Beijing China, LBNL-46269.
http://www-didc.lbl.gov/papers/dpss_and_gridftp.pdf

 7

• B. Tierney, D. Gunter, J. Lee, M. Stoufer, "Enabling Network-Aware
Applications", Proceedings of the 10th IEEE Symposium on High
Performance Distributed Computing (HPDC-10), August 2001, LBNL-
47611. http://www-didc.lbl.gov/papers/Enable.HPDC01.pdf

• W. Bethel, Tierney, B., Lee, J., Gunter, D., Lau, S., "Using High-Speed

WANs and Network Data Caches to Enable Remote and Distributed
Visualization", Proceeding of the IEEE Supercomputing 2000 Conference,
Nov. 2000. LBNL-45365. http://www-didc.lbl.gov/papers/visapult-sc00.pdf

• W. Bethel, B. Tierney, J. Lee, D. Gunter, S. Lau, "Using High-Speed

WANs and Network Data Caches to Enable Remote and Distributed
Visualization," in Proceedings of SC00, November 2000. 2000/LBNL-
45365-VisapultSC00.pdf (LBNL 45365).
http://www-vis.lbl.gov/Publications/2000/LBNL-45365-VisapultSC00.pdf

Print outs of these hyper-linked publications are attached in Appendix A.

The MetaCarta final report can be read in its entirety at URL:

http://www.hscc.net/MetaCarta_GTS_Appliance.ppt

 8

APPENDIX A
PUBLICATIONS

IMPLEMENTING CONGESTION CONTROL IN THE REAL WORLD

Ladan Gharai Colin Perkins

University of Southern California
Information Sciences Institute

ABSTRACT

It is well known that congestion control is a key issue for
the safe deployment of multimedia applications over IP. We
describe our initial experiences implementing TCP-friendly
congestion control in a system designed to deliver HDTV
content over IP. In particular we discuss the effects of packet
reordering on the calculated throughput, and highlight the
problems this can pose for high-rate applications.

1. INTRODUCTION

Given the proliferation of high speed networks and multi-
media applications, it is becoming increasingly important
to consider congestion control. This is especially critical
for applications with unusual bandwidth requirements, due
to their potential to disrupt existing network traffic.

An example of the emerging class of ultra-high rate mul-
timedia applications might be delivery of gigabit rate high
definition television (HDTV) signals over IP networks. We
have implemented such a system [7], at a constant data rate
of 850 Mbps, and have experience of the problems such
high rate traffic can cause. To make this application safe for
use outside carefully controlled testbeds, we desired to im-
plement congestion control. This paper describes our initial
experiences with TCP-friendly rate control of this applica-
tion.

The paper is organized as follows. Section 2 describes the
demonstrator system, and outlines algorithms for multime-
dia congestion control. Section 3 describes our implemen-
tation, while Sections 4 and 5 discuss experimental setup
and results. The lessons learnt from our experiment are de-
scribed in section 6, along with directions for further work.
Finally, Section 7 concludes the paper.

2. BACKGROUND

In previous work, we developed a prototype telepresence
system that uses HDTV equipment to provide very high

quality telepresence over IP networks [7]. The system runs
at rates of approximately 850 Mbps, delivering 1280x720
pixel video at 60 frames-per-second in 24-bit YUV color. It
is implemented with off-the-shelf components: a PC-based
server running Linux, with HDTV I/O and gigabit Ethernet
cards. It uses standard RTP over UDP/IP network transfer
protocols [8, 4].

Our wide area tests with this system proved the viability of
transporting high bandwidth video streams over IP. How-
ever, they also highlighted a severe limitation: due to the
lack of congestion control our tests could only be conducted
with permission, and careful monitoring, from the network
operations staff, so as to ensure that such a high-rate non-
congestion controlled stream did not adversely affect other
traffic on the network.

In order for multimedia traffic and TCP/IP flows to co-exist
and receive a fair share of available bandwidth, the non-TCP
traffic must be TCP friendly. A TCP friendly flow will fairly
share bandwidth with other flows, while judiciously seek-
ing free bandwidth. It has been shown that, for a saturated
steady state TCP sender, throughput is proportional to in-
verse of the square root of the packet loss rate, � [5]. This is
known as the TCP-friendly equation, and it provides an up-
per bound on the steady state throughout � , for packet size�

, round trip time � , retransmission timeout �����
	�����
and the steady state loss event rate � , such that:

���
�

�
� ������ �����
	����

� � ���� � �! � �#" � � �
(1)

Utilizing the TCP-friendly equation has resulted in a class
of equation based congestion control schemes, such as the
TCP friendly rate control (TFRC) protocol [3]. The basic
concept is to regulate throughout using equation 1, guaran-
teeing that the flow is TCP-friendly. Once a sender is aware
of the loss event rate � and the round trip time � , it can com-
pute its fair share of bandwidth and adjust its sending rate
accordingly. Damping is applied, to ensure that the rate of
adaptation is smoother than TCP, while maintaining long-
term fairness. The dynamics of TFRC, and its interaction
with TCP, are described in [3].

9

3. DESIGN AND IMPLEMENTATION

TCP friendly rate control relies on the sender being able to
adjust its sending rate according to the amount of loss the
flow is experiencing. In TFRC, loss is measured as a loss
event fraction by the receiver. TFRC distinguishes between
loss fraction and loss event fraction, to better emulate TCP.
Loss event fraction measures the fraction of loss occurring
more than one round trip time (��� �) apart. In other words,
once an initial loss occurs, any other following loss within
a � ��� is ignored. This closely mimics most TCP variants.

I0 - I8 TRFC Loss Intervals

I0I1I2I3I4I5I6I7I8

time

last packet
packet loss, after one RTT
packet loss, within one RTT
RTT

Figure 1: TFRC Loss Intervals.

Handling of loss intervals in TFRC is shown in Figure 1.
TFRC recommends the use of

� ��� intervals, however as
seen in Figure 1,

� � intervals are actually maintained. To
compute the average loss interval, TFRC chooses the max-
imum of the values of ����	��
� � and �

�
�	����� � . Therefore,

if the interval since the last packet loss event, �
 , is large,
it is accounted for in the computation of the loss event rate,
helping TFRC increase its sending rate in the absence of
loss.

To implement TFRC, the following two feedback loops are
needed: first, the sender must periodically send perceived
RTT to the receiver, thereby allowing the receiver to com-
pute the loss event rate, � . Secondly, the receiver must send
the computed lose event rate, � , back to the sender. Figure
2 illustrates the process.

0

3233363738

RTT
APP SR

...

...
RR APP

p
23

26
27
28

30
31RTCP packet

RTP packet

sender receiver

N0

N1

arrival history

100

Figure 2: TFRC feedback loops implemented in RTCP.

Our implementation uses RTP over UDP/IP transport. RTP
provides feedback using the RTP Control Protocol, RTCP.
At regular intervals, implementations generate Receiver Re-
port (RR) or Sender Report (SR) packets, providing recep-
tion quality feedback and support for lip-synchronization.
Application specific feedback is supported using APP pack-
ets, that are piggy-backed at regular intervals with RR or SR

SuperNetreceiver

M40

GigaE

M20

ISI−West

ISI−East

sender

(Mixture of M160 and GSR routers)

Return tunnel

Figure 3: The network used in our tests.

packets. In our implementation, each time the sender gen-
erates a sender report it also sends the ��� � to the receiver
in an APP packet. Likewise, when the receiver sends back a
receiver report it also includes an APP packet with the latest
computation on the loss event rate, � .

4. EXPERIMENTAL SETUP

To test our system, we need a wide-area network capable
of supporting high rate UDP flows. Several such networks
have become available recently, including Internet2 and the
DARPA SuperNet testbed. We report on tests conducted
using SuperNet (previous experiments have used Internet2).

The SuperNet testbed comprises several research networks,
connected using a cross-country overlay on a commercial
ISP network. The individual research networks are multi-
gigabit capacity, and the overlay is intended to support giga-
bit rate applications. In practice, the capacity of the overlay
network varies with the load on the underlying network.

The network path we tested is shown in Figure 3. The wide
area path from ISI East in Arlington, VA, to ISI West in
Los Angeles is nine IP hops. We configured a tunnel to
return traffic from the router in LA, looping traffic back to
our laboratory. This allows us to display the results, and
gives a network path with 10 logical – 18 actual – hops and
a 132ms round trip time.

The sender and receiver are Dell PowerEdge 2500 servers
with dual 1.2GHz Pentium III processors, running Linux
2.4.2. They are equiped with 3Com 3c985 gigabit Ethernet
and DVS HDstationOEM HDTV interface cards. We cap-
ture live HDTV content, packetize and transmit RTP pack-
ets destined for the tunnel interface of the receiver. The
routing is such that the packets traverse the network before
returning though the tunnel to the receiver, where they are
depacketized and displayed. The full rate of the system
is 850 Mbps, although it can adapt by sending at reduced
frame rate.

When the underlying network is lightly loaded, we have
consistently been able to run cross-country HDTV-over-IP

10

5

ACK 1

1

ACK 1

3

ACK 1

4

ACK 1

2

ACK 2

6

ACK 6

7

ACK 7

Three duplicate ACKs

Packet reordered

Figure 4: Packet reordering gives the appearance of loss

at 850 Mbps without packet loss. As the network becomes
more loaded, typically during business hours, we see packet
loss in our application, indicating congestion in the network.

5. EXPERIMENTAL RESULTS

We conducted a number of experiments with our system,
both local area and on the wide area network described in
Section 4. As expected, the network performance varied:
much of the time it was loss free, but there were instances
when packet loss was observed, making congestion control
necessary.

We are still evaluating the performance of our system in the
presence of packet loss, and tuning our congestion control
and rate adaptation algorithms. These results are outside the
scope of this paper (although we discuss the issues in Sec-
tion 6). The results we present here reflect our experience
when the network was lightly loaded, and loss free.

In the absence of packet loss, we noticed that our conges-
tion control function was suggesting we send at a relatively
low rate (and was stable at that rate). This was somewhat
unexpected, since TCP performance, and by extension the
performance of TFRC congestion control, is driven mostly
by packet loss. Indeed, a naive interpretation of equation 1
would say that zero packet loss should result in infinite rate.

That interpretation does not, however, take into account the
effects of packet reordering in the network. Experiments
showed that some amount, up to 1.3% depending on time
of day, of packets were reordered (a value not incompatible
with [1, 2, 6]).

Our hypothesis is that reordering causes the congestion con-
trol function to return lower-than-expected rates. For ex-
ample, packets that arrive at least four places out of order
would cause TCP to deliver a triple duplicate ACK, giving
the appearance of loss (see Figure 4). The analysis behind
the TCP-friendly rate control equation [5] reflects this, so
TFRC can also be expected to treat reordering as loss.

To validate this hypothesis, we took a closer look at packet
reordering and how it effects the computation of the loss
event rate. The results shown in Figure 5 plot the evolution

0

2e-05

4e-05

6e-05

8e-05

0.0001

30 35 40 45 50 55 60

Lo
ss

 E
ve

nt
 R

at
e

Time(seconds)

Loss Event Rate
Reordering Events

Figure 5: Evolution of Loss Event Rate due to reordering.

of the loss event rate along with reorderings that give the ap-
pearance of loss and start a new loss interval, � � , as defined
by TFRC. It is evident that changes in the loss event rate cor-
relate with the new intervals, demonstrating that significant
packet reordering causes TFRC to change its transmission
rate.

It is also interesting to note that throughout the graph, when
new loss intervals are substantially spaced apart, this results
in a gradual reduction in the loss event rate. A good example
of this occurs at about second 48 in the graph. As discussed
in Section 3, TFRC may or may not include the last interval
�
 in its computation of the average loss intervals. Clearly,
around point 48 second in the graph, due to lack of loss, �

gradually grows, and this growth correlates to the gradual
reduction of the loss event rate.

As an additional validation step, we conducted a number of
performance tests with TCP traffic. Although there was not
an exact match, we found that – after the hosts were tuned
for optimal performance – the Linux TCP stack gave com-
parable throughout to that predicted by our congestion con-
trol function. Our results show the Linux TCP achieving
throughput on the order of twice that of our TFRC imple-
mentation. This is somewhat more than expected, perhaps
due to the use of SACK TCP in Linux which is less sensitive
to reordering than the Reno TCP used in the derivation of
the TCP-friendly equation, but not unreasonable. Detailed
comparison of TCP and TFRC throughput in the presence
of reordering is ongoing, but omitted here due to lack to
space.

We also note that the fraction of reordered packets we ob-
serve appears to be somewhat independent of the transfer
rate. This can be expected to disrupt the operation of the
congestion control algorithm to some degree.

11

6. LESSONS LEARNT AND FUTURE WORK

First, and foremost, our experience has taught us that packet
reordering is not innocuous, even on the scales of 0.2%.
The results presented show that TFRC loss events caused by
packets arriving too late and out of order can significantly
affect throughput in the absence of actual packet loss.

Our implementation utilizes RTCP to provide the feedback
loops needed by TFRC. Since feedback timing is important,
and directly impacts calculation of the loss event rate, we
are investigating the interaction between RTP and the TFRC
protocol. In particular, how often loss event and round trip
time information can be communicated, and how the trans-
mission rate can be adapted.

As noted in Section 3, we piggyback feedback information
into RTCP APP packets. Standard reporting intervals are on
the order of seconds, too slow for effective TFRC feedback,
but the reduced reporting interval of

��������� � � �����
	����������� � (2)

where
	 ���������� � is the session bandwidth expressed in kilo-

bits per second may be used. For our application, this corre-
sponds to a report every 400 � s on average, easily allowing
feedback at least once per round trip time (although the pro-
cessing load may prohibit this).

Processing load is also an issue when implementing the loss
interval calculation. We noticed that our implementation
observed packet loss at a lower data rate when the calcula-
tion of the TFRC parameters was enabled, even if they were
not used to control the sending rate. Investigation pointed to
the calculation of the average loss interval: performing this
computation for every packet is a significant bottleneck, es-
pecially for high-rate sources (tests show that the loss event
calculation, for a full rate HDTV source, consumes 14% of
the CPU on an otherwise unloaded host).

There are also issues with rate adaptation, since the obvi-
ous method of changing the transmission rate – adapting
the video frame rate – will cause significant step changes in
the throughput, and cannot choose any arbitrary rate. TFRC
assumes the TCP-friendly rate can be selected, and it is not
clear how deviations affect the system behavior. These is-
sues also feed into the human factors of the system: not only
must the rate adaptation fit the dictates of TCP-friendly be-
haviour, it must be chosen to avoid disturbing viewers with
sudden quality changes.

7. CONCLUSIONS

When discussing congestion control, it is common to focus
on packet loss, since that is the primary driver in TCP, and

TCP-friendly, congestion control. There are, however, real-
world IP networks in which packet loss is a extremely rare
event, but where packet reordering is not infrequent. Our
measurements show that this reordering limits the transmis-
sion rate of both native TCP flows, and multimedia flows
controlled by the TCP friendly rate control protocol.

We understand the desire to be TCP-friendly, but it is not
clear that this behavior is appropriate for multimedia appli-
cations. Indeed, one of major philosophies in the design of
RTP was Application Level Framing, making applications
tolerant to packet loss and reordering. We believe that, if
the network is not congested, emulation of TCP’s response
to packet reordering is overly conservative.

To allow the deployment of high-rate multimedia, such as
HDTV-over-IP, it is necessary to develop congestion control
that is both safe and usable. The TFRC protocol is clearly
safe, but we have demonstrated scenarios where its overly
conservative nature limits its usefulness. It is desirable to
develop modifications to TFRC that decouple its response to
congestion and packet reordering, so that reordering without
congestion ceases to be a limiting factor.

8. ACKNOWLEDGMENTS

This work is supported by DARPA ITO and by hardware
donated by Intel corporation.

9. REFERENCES

[1] J. C. R. Bennett, C. Partridge, and N. Shectman. Packet reordering is
not pathological network behavior. IEEE/ACM Transactions on Net-
working, 7(6):789–798, December 1999.

[2] E. Blanton and M. Allman. On making TCP more robust to packet
reordering. ACM Computer Communication Review, January 2002.

[3] S. Floyd, M. Handley, J. Padhye, and J. Widmer. Equation based con-
gestion control for unicast applications. In SIGCOMM Symposium on
Communications Architectures and Protocols, 2000.

[4] L. Gharai, G. Goncher, C. Perkins, D. Richardson, and A. Mankin.
RTP payload format for SMPTE 292M. Internet Draft, Internet Engi-
neering Task Force, February 2002. Work in progress.

[5] J. Padhye, V. Firoiu, D. Towsley, and J. Kurose. Modeling TCP
throughput: A simple model and its empirical validation. ACM Com-
puter Communication Review, 28(4):303–314, September 1998.

[6] V. Paxson. End-to-end internet packet dynamics. IEEE/ACM Trans-
actions of Networking, 7(3), June 1999.

[7] C. S. Perkins, L. Gharai, T. Lehman, and A. Mankin. Experiments
with delivery of HDTV over IP networks. In Proceedings of the 12th
International Packet Video Workshop, Pittsburgh, April 2002.

[8] H. Schulzrinne, S. Casner, R. Frederick, and V. Jacobson. RTP:
A transport protocol for real-time applications. IETF Audio/Video
Transport Working Group, January 1996. RFC1889.

12

Large Group Teleconferencing: Techniques and Considerations
�

Ladan Gharai Colin Perkins Allison Mankin

USC Information Sciences Institute

3811 N. Fairfax Drive, Suite 200

Arlington, VA, 22203

March 8, 2002

Abstract

Much work has focused on the problems of small group communication and of one-to-many broadcast,

while issues in large scale interactive networked teleconferences have received less attention. In this paper, we

consider the problems inherent in conducting large scale conferences: teleconferences with hundreds, or perhaps

thousands, of active participants. The lessons learnt from our design for a digital amphitheater – a system based

on active agents, where about one hundred remote participants can conference together – are discussed. In that

system we successfully overcame end system limitations by off-loading some processing into the network, thus

creating parallelism and reducing the bottleneck inherent in the serial nature of the hosts managing each display.

We expand on this architecture, further exploring parallelism by pushing functions from individual end systems,

to clusters and the network, with the aim of scaling to thousands of users.
�
This paper is based upon work supported by the Information Technology Office of the Defense Advanced Research Projects Agency. Any

opinions, findings, conclusions or recommendations expressed in this material are those of the authors and do not necessarily reflect the views

of DARPA. The authors may be contacted as � ladan � csp � mankin � @isi.edu

13

1 Introduction

The infrastructure of the Internet has grown at an incredible pace since its inception. With the widespread intro-

duction of optical networking, bandwidth has become plentiful and wide-area networks operating at OC-48 rates,

such as the SuperNet 1 and Internet2 2, are common with OC-192 and other higher rate connections becoming

available. This growth in wide area connectivity has been matched by improvements in LAN technology: 100

Mbit Ethernet is ubiquitous, 1 gigabit is becoming common, and 10 gigabit Ethernet is now being introduced.

Parallel to the growth of the infrastructure, consumers and academics have been busy envisioning new and far

reaching applications: the traditional uses – email, netnews, file transfer – are giving way to more interactive

applications based on the world wide web, to streaming media, digital radio, television and cinema, and to real-

time interactive teleconferencing.

There is another variable which affects this happy growth in network bandwidth and application demand: the

performance of the end-systems. According to Moore’s Law, the number of transistors that will fit on a chip

doubles every 18 months, and performance closely follows this. This is an impressive increase, but is dwarfed by

the rate of increase in network capacity, which has grown at a much faster pace (figure 1). Given the availability

OC-48 PCI network interface cards, gigabit – and soon 10 gigabit – Ethernet cards, the question remains: is current

processing power capable of processing such data rates?

In this paper we explore end-system limitations in the context of scaling video conferencing, tele-conferencing

hundreds, or perhaps thousands, of participants. Such a conference may be held worldwide with participants from

different university campuses, corporate facilities, government organizations or even a lone participant from the

Arctic. In this work we draw from our experience with the digital amphitheater, where we successfully video

conferenced close to one hundred participants.

We begin, in section 2, by further describing the architectural implications of scaling teleconferencing systems.
1http://www.ngi-supernet.org/
2http://www.internet2.org/

14

Pe
rf

or
m

an
ce

 (
lo

g
sc

al
e)

Moore’s Law

 Network Bandwidth

1970 1980 1990 2000

Figure 1: Moore’s law vs. network growth.

Next, in section 3, we briefly describe our initial experiences with a prototype large-scale conferencing system –

the digital amphitheater – and the lessons learnt from it. We expand on this experience to explore issues related to

scaling up further, to possibly thousands of participants, in section 4. Finally we discuss related work in this area,

section 5, and conclude in section 6.

2 Architectural Implications of Scaling

We envision a system capable of supporting several hundred, perhaps one thousand, simultaneous interactive

users. The benefits of such a system are obvious: large organizations can have regular meetings with all levels of

management involved without incurring high travel cost, long distance educational programs can meet as if within

a lecture hall while students and lecturers join from geographically disparate locations, or it could be used for

political and other debates.

Video teleconferencing among small groups of people is now quite common, and is supported by a number of

commercial and open-source tools. However large structured meetings, on the scale that we are envisioning, have

not yet been tried. There are a number of reasons for this: processing such a large number of video streams

15

Figure 2: The end-system bottleneck.

presents a formidable challenge, both in the network and for the end-user application, and display technology is

often a limiting factor. Processing over a thousand video streams can easily overwhelm most consumer grade

workstations, in terms of bus access, interrupt processing, context switching, packet handling and demultiplexing,

decoding, display processing and rendering.

Many of the current teleconferencing tools, especially the research oriented ones such as the popular multicast

toolset maintained by University College London [13] have been designed with scaling properties in mind. How-

ever, their focus has been mainly on attaining scaling via multicast, and thereby reducing network load. This

approach does not address the problem of the end-system bottleneck, and in fact it aggravates it. End-users can

generate video content in parallel, this content moves through the network, but once received at its destination,

must be processed by an inherently serial system. As all the video flows must be instantaneously reconstructed,

decompressed and rendered (figure 2), thereby creating a performance bottleneck in the end-system.

Given that the processing limitations of end-systems are the main bottleneck and deterrent to very large scale

video conferencing, what are the possible solutions? Our experience shows that the simple brute force technique

of ‘faster end-systems’ is not a viable solution, as even the fastest available workstations cannot keep up with

hundreds of video streams.

The implication is that we must distribute the processing, leveraging the increased communication ability rather

16

?

?

?

?
?

?

Figure 3: Large group conferencing: An architectural template.

than drinking from the firehose of the full set of input streams. Parts of processing must be pushed into the network

infrastructure, offloading functions from the end-system to agents within the network (figure 3). The questions

remains as to how much and which parts of the process can be off-loaded from the end-system, and exactly what

are the tradeoffs involved.

We have explored some of these tradeoffs, and the performance which can be gained through the use of agents, in

our prototype digital amphitheater. In the next section we discuss this in some detail, followed by an evaluation of

the extensibility of this model to other large scale conferences.

3 The Digital Amphitheater: Prototyping Large-Scale Conferencing

When attempting to conduct a teleconference with upwards of one hundred participants using the standard multi-

cast toolset, it rapidly becomes clear that those tools are unable to process the received data: the system load goes

to 100%, data is dropped, and the visual appearance of the conference is destroyed.

There can be a number of reasons for this poor performance: it could be that the system cannot handle the

total bandwidth of the incoming media streams, it could be the per-packet processing, it could be limited CPU

performance, or it could be limited memory bandwidth in the host.

17

Our initial investigation led us to believe that the limit was not related to the raw bandwidth of the media streams:

experiments with high rate TCP and UDP traffic on similar hosts have shown that they can receive significantly

higher data rates, if tuned correctly. Those experiments also suggest a number of approaches to tuning the system,

including: use of large frames, interrupt coalescing, zero copy networking, and checksum offloading [3].

When considering these, our first observation was that the media streams comprise a large number of small packets,

due to the compressed nature of their payload. If these packets could be combined into larger frames, it might

be possible to increase performance without having to tune the end host. This can also be expected to ease the

application performance, by reducing the number of participants it must track.

This is a simple matter for TCP streams, since the communication is point to point and the data can be split

arbitrarily. For real-time communication, however, the problem is more complex due to the following factors: (1)

a video conferencing session naturally involves multiple sources; (2) the size of the packets generated depends on

the compression scheme used, and cannot be arbitrarily varied. In particular, any change in the compression ratio

to affect the packet size will vary the rate, defeating the point of the change.

We devised a technique we have term ‘Spatial Tiling’ which address the above constraints: combining data from

multiple sources whilst maintaining the rate [7].

3.1 Spatial Tiling

Our concept of spatial tiling is to tile � frames from separate sources next to each other, and to modify the meta-

data of the tiled frame, such that it represents a single frame. This is illustrated via an example in figure 4 where

three individual video frames are placed side by side to form a single frame. Each individual frame is completely

represented in the tiled frame, however the meta-data, in this case block coordinates, has been adjusted accordingly.

We believe tiling satisfies both of our constraints: packetizing the tiled frame provides more opportunity for

generating fuller packets, and the number of input sources is reduces from � to a single source.

18

(2,2) (3,2)

��������������
��������������

��������������
����������

���������������
���������������

���������������
	�		�	
	�	

�
�

�
�

�
�

���������������

���������������
����������������

����������
���������������
��������������� ������

���
������
���������������

���������������������
����������
�����

(7,2)

(8,3)

Frame 1: 80x64

tiled frame: 240x64Frame 2: 80x64

Frame 3: 80x64

(4,0)

(2,2)

(3,3)

(1,2) (2,2)

(1,2) (2,2)
(4,0)

(12,2) (13,2)

��������������
����������

Figure 4: Tiling three frames into a single frame. Both frame size and block coordinates have been adjusted for

the tiled frame.

It is important that spatial tiling does not add additional delay to the video stream. Tiling agents only parse and

deconstruct the incoming video streams into smaller building blocks, whilst maintaining their relevant meta-data:

no decompression is done in the tiling agent. To maintain independence between incoming and outgoing frame-

rates, two sets of buffers are maintained per stream. The tiled frame is constructed at given intervals (determined

by the outgoing frame rate) from the output buffers. New incoming frames are copied from the incoming buffer to

the output buffers, once they are received in full.

Although, theorically, it is possible to tile an unlimited number of streams, we have restricted the tiling to 15 video

streams. This restriction allows us to use the built in mixer functionality of RTP/RTCP [15], since an RTP packet

can carry the contributing source identifiers for up to 15 different sources. The input streams can be tiled in any

geometry requested: for 15 streams the agent can generate a single row of 15x1, a square of 4x4 (where the last

square will be empty), a 5x3 rectangle, or even a single row/column.

In our current implementation, the spatial tiling agents support two video representations: high bandwidth raw

YUV video with conditional replenishment (YUVCR) [8] and H.261 [17] using only intra-frame compression.

Spatial tiling agents may be employed within a standard video conferencing session, or in conjunction with a

19

STA serverSIP

STA serverSIP

STA serverSIP

STA serverSIP

STA serverSIP

224.2.2.2 DA multicast group

224.2.2.2

128.1.35.6 1

2

15

224.2.2.2
128.1.35.6

multicast
unicast

10.145.2.16

10.145.2.16

10.145.2.16

10.145.2.16

10.145.2.16

10.145.2.16

10.145.2.16

anycast address

Figure 5: The digital amphitheater: user interface and architecture.

special purpose application, such as our digital amphitheater [14] system.

Figure 5 displays the digital amphitheater’s user interface (with a conference in session). The amphitheater consists

of the rows of attendees, four front panel members and the speaker. In all instances the background of the offices

have been removed, in order engender a feeling of presence and location. To do so we have adapted a simple, low

cost background substitution algorithm which runs in real time on the senders systems.

Each attendee in the amphitheater participates by unicasting video to the ‘closest’ agent, located via an anycast

address. The agent, in turn, tiles together all the video streams it receives, and multicasts the tiled video stream

to a multicast group. All participants join this group, receiving and displaying the combined audience video. The

panel members and speaker send directly to the multicast group, thus avoiding the tiling.

3.2 Performance Gains

To determine the performance gains obtained by using the tiling agents we decided to measure and quantify: (1)

bandwidth, in bits per second (�����); (2) packets per second (�����); and (3) the total number of streams the end

system is capable of decoding and rendering (�). We compared the value of these variables in a conferencing

session with and without the use of STAs. Here, we only present results obtained from the H.261 tests (results

20

Variable seperate tiled gain%

� ��� 186 122 34.51%

����� 979 936 4.33%

� 55 97 43.2%

Table 1: Variables quantified with and without the STAs for H.261 video: average bit-rate, � ��� , average packet

rate, ����� , and � total number of streams.

with YUVCR support these conclusions, and are omitted due to lack of space).

The receiving system was what is currently considered an average user grade system: a 550Mhz Pentium III

machine with 256M of memory, running Red Hat Linux 7. The tiling was initially run on a somewhat lower grade

system, a 400Mhz Pentium II with 64M memory, running FreeBSD 3.4, but this was found to have insufficient

memory, although it was sufficient in other ways. A more powerful system, with 512M of memory, was used to

host the tiling agents during the tests we report. Work is underway to reduce the memory footprint of the tiling

agents, since they are otherwise not very compute intensive and require only a few percentage of CPU time.

In our initial set of trials, we measured ����� and ����� . To do so, first we streamed the 15 test video streams

individually to the receiver. Next, we ran the test video through the tiling process with the output frame rate set

to 8 fps - essentially the same as the input frame rate of the test videos. To measure the bitrate, ����� , and packet

rate, ����� , we instrumented the receiver such that it logged these variables, along with other decoding statistics, to

a file. Figure 6 displays the results of these tests. In these graphs, ����� clearly show a reduction for the tiled H.261

stream. Although not apparent, ����� , also shows an overall reduction of 4.33% percent for the tiled stream over the

entire test run. Table 1 summarizes these results.

The reduction in ����� is primarily due to the aggregation of smaller packets. The tiling process generates a single

large frame, therefore there are fewer ‘half empty’ packets in the resulting stream. In the tiled H.261 stream � ���

is reduced by approximately 35%. Given the average size of H.261 packets such a decrease is to be expected.

21

Figure 7 displays the cumulative packet size for 15 individual H.261 streams and their corresponding tiled video

frame.

In terms of bandwidth, ����� is reduced by 4%. Although bandwidth is reduced over the duration of the test runs, the

graphs reveal that this in not the case on a per minute bases, as in some instances the ����� of the separate streams

appears to be less than the tiled stream. This is in part due to synchronization differences between the separate

streams and the tiled stream, and in part due to measurement artifacts resulting from the averaging process. We

also note the the low reduction in bandwidth is to be expected. In these tests the tiling agents reproduce the input

video streams, exactly as they come in, without any temporal or spatial down sampling. Both the input and output

frame rates are 8 fps and the tiling agents more or less copy each incoming frame to the outgoing tile frame. The

existing reduction in � ��� is mainly a reflection of the reduced � ��� and lower packet overhead,

Finally, we turned our attention to the performance of the end-system, and quantifying � . Our decoder maintains

statistics on the number of packets correctly decoded and on packets discarded due to late arrival or lack of

rendering time. We used these statistics to measure the maximum number of streams, � , our end-system could

receive without loss, both with and without tiling. This process was conducted by incrementally increasing the

number of individual streams until the end-system reached the point of saturation. For the H.261 video streams

it was found that the system could decode and render up to 55 individual video streams without loss. With this

number of streams CPU was at 100% utilization. When receiving tiled H.261, the system could receive 6 tiled

streams of 15 and an additional stream of 2 tiles, comprising a total of 97 individual streams, an overall increase

of 43% in number of streams.

These numbers clearly demonstrate the reduction of workload on the end-system due to the spatial tiling process.

Despite almost no reduction in bit-rate, the end-system is capable of receiving almost twice as many video streams,

once the video streams are tiled and packet rate is reduced. This leads us to conclude that a primary load on end-

systems is per-packet interrupt processing and per-source rendering, rather than the computational complexity of

the decoding process and therefore spatial tiling is more amendable to relatively highly compressed video streams

22

where the average packet size is significantly smaller than the network MTU. Having a significant number of

‘half-full’ packets, gives the tiling agents more leverage in reducing the overall packet rate.

0

50

100

150

200

250

300

0 20 40 60 80 100 120

P
ac

ke
ts

 p
er

 S
ec

on
d

Time(seconds)

’tiled-h261-pps’
’seperate-h261-pps’

0

200

400

600

800

1000

1200

1400

1600

1800

0 20 40 60 80 100 120
D

at
a

ra
te

 (
kb

ps
)

Time(seconds)

’tiled-h261-bps’
’seperate-h261-bps’

a. b.

Figure 6: Comparison of 15 separate H261 QCIF video streams and the equivalent 5x3 tiled stream (a) packets

per second (b) bits per second.

3.3 Limitations and Lessons Learnt

The spatial tiling agents were designed with two goals in mind: (1) reducing the number of sources visible to

the receiver; and (2) reducing the number of smaller packets, combining them into larger output. Clearly this

has resulted in performance increases: the number of streams received successfully by our end-system has almost

been doubled, whereas the number of streams has actually been reduced from 55 to 5, as the 97 tiled streams, are

really 5 separate streams.

By allowing the tiling agents to packetize bigger frames, we were able to produce 35% less packets of which over

80% are at MTU size (figure 7). This is in contrast to having only 40% of packets at full capacity.

Although, it is very promising that 80% of the packets are mostly full, it also indicates that we have reached the

limit of what can be achieved via spatial tiling. Employing a hierarchy of tiling agents, or tiling more than 15

23

0

200

400

600

800

1000

1200

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

P
ac

ke
t S

iz
e

’separate.cdf’
’tiled.cdf’

Figure 7: Cumulative distribution of packet sizes, showing increase in the fraction of large packets after tiling

streams, may reduce the number of sources received by an end-system, but it is unlikely that it reduce � ��� any

further.

4 Challenges in Further Scaling

Experience with the digital amphitheater has shown the benefit which can be gained by coalescing packets within

the network to reduce the load on an end-system. This is effective at reducing the packet rate up to a point, but

rapidly runs into a bottleneck due to limitations of the network MTU.

To further scale the system we need to consider the other limiting factors, starting with general issues in optimizing

the network stack, and moving on to issues with efficient RTP processing.

4.1 Optimizing the network stack

There are a number of ways in which the performance of the network stack can be improved, many of which have

been explored in the context of high performance TCP implementations. These optimizations fall into two major

categories: those which improve the per-packet performance of the stack, and those which reduce the per-byte

overheads.

24

The major issue with respect to per-packet overheads is the interrupt processing load. High performance TCP

implementations reduce this by sending larger packets, a solution which we have explored for teleconferencing

through our use of spatial tiling.

Another solution is interrupt coalescing, where the network driver gathers several packets before signaling to the

operating system that data has been received, rather than generating an interrupt for each packet. This is clearly of

benefit, and needs little further discussion.

Reduction in the per-byte overhead is typically achieved with zero copy network stacks, where the network hard-

ware writes into a buffer which is directly mapped into the application’s memory space. This is useful, up to a

point, but the gains which can be achieved are perhaps limited compared to some other applications.

The main issue is decompression of the media stream, which not only results in a copy of the data being made, but

it’s expansion. For example, a factor of ten compression is not unreasonable, yet the memory traffic generated by

such a decompresser will dwarf the gains from a zero-copy network stack.

The other common technique used to improve performance of TCP is checksum offloading, where the network

interface verifies the TCP or UDP checksum before passing the packet to the host. Once again, there is some

gain for teleconferencing applications, but due to the processor intensive nature of these applications it may have

limited impact (for example, the cost of computing a UDP checksum is negligible compared to that if MPEG

decompression).

To conclude, there is some gain to be had from optimizing the UDP/IP network stack, but the nature of large scale

teleconferencing is such that the RTP and application processing costs dwarf those of UDP/IP network processing.

The reduction in packet rate achieved through spatial tiling is perhaps the most significant effect we can expect,

followed by the gains from zero-copy stacks.

25

4.2 Optimizing RTP

Rather than considering the network stack alone, it is instructive to view the complete application, and consider

how performance of the RTP protocol and media decoding can be optimized. Such an approach fits well with

the nature of RTP, which was designed around the concepts of application level framing [4] and integrated layer

processing.

There are two major issues to consider when optimizing RTP and application performance: participant state and

media decoding performance.

An application using RTP will maintain a significant amount of state for each participant: the 32 bit synchroniza-

tion source identifier, playout calculation details, decoding state, media data awaiting playout, reception quality

statistics, source description information, etc. In total, this can easily comprise several hundred bytes per partici-

pant, excluding the media data.

When compared to the cache sizes of modern processors, where 64kBytes is considered large, it is clear that the

complete state cannot fit into the level 1 cache. It may therefore be advantageous to split data structures into

those parts necessary for decoding each packet and those parts which are required less often, so that unnecessary

references to main memory can be avoided.

The use of tiling agents within the network has the unintended consequence of reducing the amount of state which

has to be accessed during decoding. Since they act as synchronization sources for the media, it is necessary for

the receiver to maintain state per-agent, rather than per participant.

As we have noted, media decoding is significant in terms of both processor utilization and memory bandwidth.

The obvious result of this is that zero copy techniques must be adopted within an application, with media being

rendered directly onto the display device if possible. In addition, the use of various SIMD extensions to processor

instruction sets (e.g. MMX, AltiVec, VIS, etc.) can significantly reduce decoding times.

Media decoding is also a function which is parallelizable: each member of the session can be independently

26

decoded and rendered. There is a clear benefit to be gained through the use of multiprocessor hardware, but this

still suffers from a bottleneck due to the single network socket used to receive data.

We believe that there is a significant amount to be gained through the use of layered coding, in conjunction with

multi-processor systems. The use of layered coding allows the network interface card to filter unwanted traffic,

so each processor sees only a fraction of the total. This gives the benefit of parallel decoding, along with a

signification reduction in the amount of state which needs to be kept.

It may be advantageous for agents near the edges of the network to combine outgoing data into a single stream, and

split incoming data into layers. The trade-off for optimal performance at the end host and in routers is different: it

is better for data to be layered at the edges, so the host can separate processing, but it is better to be combined in

the core where packet switching is not an issue but per group state maintenance is. This is an ideal use for agents:

offloading processing from groups of hosts at the boundary between relatively low speed local networks, and the

high speed core network.

5 Related Work

The use of active service agents [1] to adapt the behavior of network traffic flows has been widely studied. Active

services avoid the well known problems of active networks by restricting computations to the application layer,

deploying services onto a network of computation servers placed within the network. As a result of this, they are

readily deployable and form the basis of a number of commercial content distribution networks.

Whilst these commercial offerings have typically focused on efficient distribution of world-wide web content, a

number of researchers have studied the problem of adapting streaming audio/video flows to match the network

capacity.

One of the earliest such papers referred to self-organized transcoding of streaming audio/video media flows [11],

leveraging from tools such as the video gateway developed at UC Berkeley [2]. More recently, implementations

27

such as the ‘FunnelWeb’ Application Level Active Network [6], active routers [10], and overlay networks, such

as the X-bone [16], add genericity and flexibility to the system.

The use of these techniques, whilst beneficial to the network, degrades the quality of the media stream. It would be

desirable if the load generated by a media stream could be reduced whilst retaining its quality. Our proposed STA

network has this property, at the expense of limited adaptability (when compared to schemes based on transcod-

ing).

Critical to the operation of active services is the placement of the active elements within the network. This has

received considerable attention in the literature [18, 12, 5], particularly when related to reliable multicast, leading

to recent standards work in the IETF [9]. We do not seek to design new tree building mechanisms at present, rather

we rely on existing work.

Our proposal seeks to leverage existing work in the field of active services: the concept of active agents within the

network to adapt media flows to fit network/system constraints, the platforms for service creation and deployment,

and mechanisms for placement of service agents.

6 Conclusion

We have presented the digital amphitheater, a system for large-scale teleconferences, based around the use of

active agents to tile video streams, reducing the load on the receivers. This system illustrates one approach to

scaling a teleconferencing system to large numbers of participants.

We have also present some preliminary thoughts on how we can further scale the system, to larger or higher quality

conferences. In particular, we note the beneficial effect of RTP mixer/translators in reducing the state requirements

for end systems, and their potential role layering media streams to enable efficient parallel decoding.

The requirements for conducting large conferences are difficult to meet, and no existing application is entirely

28

successful. The digital amphitheater is a step towards the solution, and points the way to further development and

performance improvements.

References

[1] E. Amir, S. McCanne, and R. Katz. An active service framework and its application to real-time multimedia

transcoding. In Proc. ACM SIGCOMM 1998, Vancouver, BC, 1998.

[2] E. Amir, S. McCanne, and H. Zhang. An application level video gateway. In Proc. ACM Multimedia’95, San

Francisco, CA, November 1995.

[3] J. Chase, A. J. Gallatin, and K. G. Yocum. End system optimizations for high-speed tcp. IEEE Communica-

tions Magazine, 39(4):68–74, April 2001.

[4] D. D. Clark and D. L. Tennenhouse. Architectural considerations for a new generation of protocols. Com-

puter Communications Review, 20(4), September 1990.

[5] P. Francis. Yallcast: Extending the Internet multicast architecture. Technical report, NTT Information

Sharing Platform Laboratories, September 1999.

[6] M. Fry and A. Ghosh. Application level active networking. Computer Networks, 31(7):655–667, July 1999.

[7] L. Gharai, C. Perkins, and A. Mankin. Scaling video conferencing through spatial tiling. In Proc. NOSSDAV

2001, Port Jefferson, NY, June 2001.

[8] M. Handley. YUV-CR codec for vic. Personal correspondance.

[9] M. Kadansky, B. Levine, D. M. Chiu, B. Whetten, G. Taskale, B. Cain, D. Thaler, and W. H. Koh. Reliable

multicast transport building block: Tree auto-configuration. Internet Engineering Task Force, November

2000. Work in progress.

29

[10] R. Keller, S. Choi, D. Decasper, and M. Dasen. An active router architecture for multicast video distribution.

In Proc. IEEE Infocom 2000, Tel Aviv, March 2000.

[11] I. Kouvelas, V. Hardman, and J. Crowcroft. Network adaptive continuous-media applications through self

organised transcoding. In Proc. NOSSDAV ’98, Cambridge, UK, July 1998.

[12] B. N. Levine, S. Paul, and J. J. Garcia-Luna-Aceves. Organizing multicast receivers deterministically by

packet loss correlation. In Proc. ACM Multimedia ’98, Bristol, UK, September 1998.

[13] University College London. Multicast conferencing applications archive. Software available online, 2001.

http://www-mice.cs.ucl.ac.uk/multimedia/software/.

[14] A. Mankin, L. Gharai, R. Riley, M. Perez Maher, and J. Flidr. The design of a digital amphitheater. In Proc.

NOSSDAV 2000, Chapel Hill, NC, June 2000.

[15] H. Schulzrinne, S. Casner, R. Frederick, and V. Jacobson. RTP: A Transport Protocol for Real-time Appli-

cations. Internet Engineering Task Force, January 1996. RFC 1889.

[16] J. Touch and S. Hotz. The X-Bone. In Proc. 3rd Global Internet Mini-Conference/Globecom ’98, Sydney,

November 1998.

[17] International Telecommunication Union. Video codec for audiovisual services at P � 64 kbits/s. ITU-T rec-

ommendation H.261, 1993.

[18] R. X. Xu, A. C. Myers, H. Zhang, and R. Yavatkar. Resilient multicast support for continuous media appli-

cations. In Proc. NOSSDAV ’97, Washington University in St. Louis, May 1997.

30

Yima: A Second-
Generation Continuous
Media Server

A pplications such as news on demand, dis-
tance learning, e-commerce, and scientific
visualization all store, maintain, and
retrieve large volumes of real-time data
over a network. These data are denoted

collectively as continuous media, or CM. Video
and audio objects are popular examples; haptic and
avatar data are less familiar types. CM data require
a streaming architecture that can, first, manage
real-time delivery constraints. Failure to meet these
constraints on CM data disrupts the display with
“hiccups.” Second, the architecture must address
the large size of CM objects. A two-hour MPEG-2
video with a bandwidth requirement of 4 megabits
per second is 3.6 gigabytes in size.

The currently available commercial implementa-
tions of CM servers fall into two broad categories:

• low-cost, single-node, consumer-oriented sys-
tems serving a limited number of users; and

• multinode, carrier-class systems such as high-
end broadcasting and dedicated video-on-
demand systems.

RealNetworks, Apple Computer, and Microsoft
product offerings fit into the consumer-oriented cat-
egory, while SeaChange and nCube offer solutions
oriented toward carrier-class systems. While com-
mercial systems ordinarily use proprietary technol-
ogy and algorithms, making it difficult to compare
their products with research prototypes, we have
designed and developed a second-generation CM
server that demonstrates several advanced concepts.

We call our system Yima, a name denoting the
first man in ancient Iranian religion. While Yima
has not achieved the refinement of commercial solu-
tions, it is operational and incorporates lessons
learned from first-generation research prototypes.1,2

Yima distinguishes itself from other similar research
efforts in the following:

• complete distribution with all nodes running
identical software and no single points of fail-
ure;

• efficient online scalability allowing disks to be
added or removed without interrupting CM
streams;

• synchronization of several streams of audio,
video, or both within one frame (1/30 second);

• independence from media types;
• compliance with industry standards;
• selective retransmission protocol; and
• multithreshold buffering flow-control mecha-

nism to support variable bit-rate (VBR) media.

Yima is also a complete end-to-end system that
uses an IP network with several supportable client
types. This feature distinguishes it from previous
research that focused heavily on server design.

SYSTEM ARCHITECTURE
Figure 1 shows the overall Yima system archi-

tecture. In our prototype implementation, the server
consists of an eight-way cluster of rack-mountable
Dell PowerEdge 1550 Pentium III 866-MHz PCs
with 256 Mbytes of memory running Red Hat

Yima, a scalable real-time streaming architecture, incorporates
lessons learned from earlier research prototypes to enable advanced
continuous media services.

Cyrus
Shahabi
Roger
Zimmermann
Kun Fu
Shu-Yuen
Didi Yao
University of
Southern California

31

Linux. Sixteen 36-Gbyte Seagate Cheetah hard-disk
drives store the media data and connect to the
server nodes via Ultra160 small computer system
interface (SCSI) channels.

The nodes in the cluster communicate with each
other and send the media data via multiple 100-
Mbps Fast Ethernet connections. Each server is
attached to a local Cabletron 6000 switch with either
one or two Fast Ethernet lines. The local switch con-
nects to both a WAN backbone for serving distant
clients and a LAN environment for local clients. Our
testbed also includes server clusters at other remote
locations, for example, Metromedia Fiber Network
in El Segundo, California, and Information Sciences
Institute East in Arlington, Virginia.

Choosing an IP-based network keeps the per-port
equipment cost low and makes the system imme-
diately compatible with the public Internet.

The current prototype implements clients on stan-
dard Pentium III PC platforms, but we could also
port them to digital television set-top boxes. The
client software, Yima Presentation Player, runs on
either Red Hat Linux or Windows NT. Structured
into several components, the player lets various soft-
ware and hardware decoders be plugged in. Table 1

shows the different media types that Yima currently
recognizes. One unusual type is panoramic video
with 10.2-channel audio.

SERVER DESIGN CHALLENGES
The servers for delivering isochronous multime-

dia over IP networks must store the data efficiently
and schedule the data retrieval and delivery precisely
before transmission. We studied both master-slave
and bipartite design approaches in the Yima-1 and
Yima-2 CM servers, respectively. These approaches
share many features that address design challenges
in this domain. They differ mainly in the logical
interconnection topology between cluster nodes.

Data placement and scheduling
There are two ways to assign data blocks to the

magnetic disk drives that form the storage system:
in a round-robin placement3 or randomly.4 Tra-
ditionally, round-robin placement uses a cycle-based
approach for resource scheduling to guarantee a
continuous display, while random placement uses
a deadline-driven approach.

In general, the round-robin cycle-based approach
provides high throughput with little wasted band-

57

User interface

RTSP and RTP
controller

Playback

RTSP/TCP
RTP/UDP Command and Control

Media data

Client components

Playout
buffer

Amount
of

data

Playout
buffer

0

Overflow watermark (PAUSE issued)

Slowdown (for example, ∆p + 20%)

Slowdown (for example, ∆p + 10%)

Speedup (for example, ∆p − 10%)

Speedup (for example, ∆p − 20%)
Underflow watermark
WMU

WMO

1,000 Mbps

100 Mbps100 Mbps

Node 0 Node 1 Node 2 Node N

Ethernet
switch

Disks: high-performance, Ultra160 SCSI
(for example, Seagate Cheetah)

up to 160 Mbytes/s

Multiple 100-Mbps NICs

Ultra160 SCSI controller

Personal
computer

(for example,
866 MHz;

256 Mbytes)

PCI bus; 1,064 Mbps

Disk 0 Disk 1 Disk 2 Disk N

Ethernet

Fast Ethernet or Gigabit Ethernet

Ethernet

...

...

Internet backbone routers

RESUME issued (∆p set to default)

B

Video/audio
decoder

Server components

RTSP = Real-time streaming protocol
TCP = Transmission-control protocol

Figure 1. Yima sys-
tem architecture.
The prototype imple-
mentation uses off-
the-shelf commodity
hardware compo-
nents and industry
standards end to
end.

32

width for video objects that are retrieved sequen-
tially, such as a feature-length movie. The startup
latency for an object might be large under heavy
loads, but object replication can reduce it.5

The random deadline-driven approach supports
fewer optimizations, so it could lower throughput,
but several benefits outweigh this potential draw-
back.6 First, random data placement supports mul-
tiple delivery rates with a single server block size;
it also simplifies the scheduler design, supports
interactive applications, and automatically achieves
the average transfer rate with multizoned disks.
Finally, random placement reorganizes data more
efficiently when the system scales up or down.

Random placement can require a large amount
of metadata to store and manage each block’s loca-
tion in a centralized repository, for example, in
tuples of the form <nodex, disky>. Yima avoids this
overhead by using a pseudorandom block place-
ment. A seed value initiates a sequence of numbers
that can be reproduced by using the same seed
value. By placing blocks in a pseudorandom fash-
ion across the disks, the system can recompute the
block locations. Since Yima numbers disks glob-
ally across the server nodes, it will assign blocks to
random disks across different nodes.

Hence, Yima stores only the seed for each file
object instead of locations for every block.

Scalability, heterogeneity,
and fault resilience

Any CM server design must scale to support
growth in user demand or application requirements.
Several techniques address this requirement, includ-
ing the use of multidisk arrays. However, if the
design connected all the disks to a single large com-
puter, the I/O bandwidth constraints would limit
the overall achievable throughput—hence, Yima’s
architecture uses multiple computers, or multinodes.

As Figure 1 shows, the Yima server architecture
interconnects storage nodes via a high-speed net-
work fabric that can expand as demand increases.
This modular architecture makes it easy to upgrade
older PCs and add new nodes.

Applications that rely on large-scale CM servers,
such as video-on-demand, require continuous oper-
ation. To achieve high reliability and availability
for all data stored in the server, Yima uses disk
merging7 to implement a parity-based data-redun-
dancy scheme that, in addition to providing fault
tolerance, can also take advantage of a heteroge-
neous storage subsystem. Disk merging presents a
virtual view of logical disks on top of the actual
physical storage system, which might consist of
disks that provide different bandwidths and storage
space. This abstraction allows a system’s applica-
tion layers to assume a uniform characteristic for all
the logical disks, which in turn allows using con-
ventional scheduling and data placement algo-
rithms across the physical storage system.

Data reorganization
Computer clusters try to balance load distribu-

tion across all nodes. Over time, both round-robin
and random data-placement techniques distribute
data retrievals evenly across all disk drives. When
a system operator adds a node or disk, however,
the system must redistribute the data to avoid par-
titioning the server. Reorganizing the blocks
involves much less overhead when the system uses
random rather than round-robin placement. For
example, with round-robin striping, adding or
removing a disk requires the relocation of almost all
data blocks. Randomized placement requires mov-
ing only a fraction of the blocks from each disk to
the added disk—just enough to ensure that the
blocks are still randomly placed to preserve the load
balance.

Table 1. Yima client media support.

Video
Media Operating Minimum resolution Audio Delivery
type Decoder Channels system CPU speed (in pixels) encoding rate

DivX Software 1 video, Linux 500 MHz 720 × 480 MP3 <1 Mbps
MPEG-4 2 audio
MPEG-2 Creative 1 video, Linux 200 MHz 720 × 480 Dolby AC-3 6-8 Mbps
and Dolby Dxr2 DVD 5.1 audio
Digital
MPEG-2 Software 1 video Linux >2 × 1.5 1,920 × 1,080 19.4 Mbps
HD GHz
MPEG-2 Vela 1 video, Linux 500 MHz 1,920 × 1,080 Dolby AC-3 or 19.4-45 Mbps
HD Research 10.2 audio uncompressed and 11 Mbps

CineCast HD PCM
Panoramic Vela 5 video, Windows 2 × 400 (5 × 720) × Uncompressed 4 × 5 Mbps
MPEG-2 Research 10.2 audio NT MHz 480 each PCM and 11 Mbps

CineCast

33

Yima uses a pseudorandom number generator to
produce a random, yet reproducible, number
sequence to determine block locations. Because
some blocks must move to the added disks when
the system scales up, Yima cannot use the previous
pseudorandom number sequence to find the blocks;
therefore, Yima must derive a new random number
sequence. We use a composition of random func-
tions to determine this new sequence. Our
approach—termed Scaling Disks for Data Arranged
Randomly (Scaddar)—preserves the sequence’s
pseudorandom properties, resulting in minimal
block movements and little overhead in the com-
putation of new locations.8 The Scaddar algorithm
can support disk scaling while Yima is online.

Multinode server architecture
We built the Yima servers from clusters of server

PCs called nodes. A distributed file system provides
a complete view of all the data on every node with-
out requiring individual data blocks to be repli-
cated, except as required for fault tolerance.7 A
Yima cluster can run in either a master-slave or
bipartite mode.

Master-slave design (Yima-1). With this design, an
application running on a specific node operates on
all local and remote files. Operations on remote files
require network access to the corresponding node.
The Yima-1 software consists of two components:

• the Yima-1 high-performance distributed file
system, and

• the Yima-1 media streaming server.

As Figure 2a shows, the distributed file system
consists of multiple file I/O modules located on each
node. The media-streaming server itself is com-
posed of a scheduler, a real-time streaming proto-
col (RTSP) module, and a real-time protocol (RTP)
module. Each Yima-1 node runs the distributed file
system, while certain nodes also run the Yima-1
media-streaming server. A node running only the
file I/O module has only slave capabilities, while a
node that runs both components has master and
slave capabilities.

A master server node is a client’s point of con-
tact during a session. We define a session as a com-
plete RTSP transaction for a CM stream. When a
client wants to request a data stream using RTSP,
it connects to a master server node, which in turn
brokers the request to the slave nodes. If multiple
master nodes exist in the cluster, this assignment is
decided based on a round-robin domain name ser-
vice (RR-DNS) or a load-balancing switch. A
pseudorandom number generator manages the
locations of all data blocks.

Using a distributed file system obviates the need
for applications to be aware of the storage system’s
distributed nature. Even applications designed for
a single node can to some degree take advantage of
this cluster organization. The Yima-1 media stream-
ing server component, based on Apple’s Darwin
Streaming Server (DSS) project (http://www.open
source.apple.com/projects/streaming/), assumes that
all media data reside in a single local directory.
Enhanced with our distributed file system, multiple
copies of the DSS code—each copy running on its
own master node—can share the same media data.
This also simplifies our client design since it sends
all RTSP control commands to only one server
node.

Finally, Yima-1 uses a pause-resume flow-con-
trol technique to deliver VBR media. A stream is
sent at a rate of either RN or zero megabits per sec-
ond, where RN is an estimated peak transfer rate
for the movie. The client issues pause-and-resume
commands to the server depending on how full the
client buffer is. Although the pause-resume design
is simple and effective, its on-off nature can lead to
bursty traffic.

With the Yima-1 architecture, several major per-
formance problems offset the ease of using clus-
tered storage, such as a single point of failure at the
master node and heavy internode traffic. These
drawbacks motivated the design of Yima-2, which
provides a higher performing and more scalable
solution for managing internode traffic.

Bipartite design (Yima-2). We based Yima-2’s bipar-
tite model on two groups of nodes: a server group
and a client group.

 59

Client

Inactive modules

Data request

Data

Active modules

RTP server

Scheduler

File I/O

RTSP server

RTP server

Scheduler

File I/O

RTSP server

RTP server

Scheduler

File I/O

RTSP server

RTP server

Scheduler

File I/O

RTSP server

Client

RTSP server

RTP server

Scheduler

File I/OFile I/O File I/O File I/O

RTP server

Scheduler

RTP server

Scheduler

RTP server

Scheduler

RTSP server RTSP server RTSP server

(a) (b)

Figure 2. Client
session view of the
Yima server. (a) Data
is sent through the
master node in
Yima-1, and (b) data
is sent from all the
nodes in Yima-2.

34

With Yima-1, the scheduler, RTSP, and
RTP server modules are all centralized on a
single master node from the viewpoint of a
single client. Yima-2 expands on the decen-
tralization by keeping only the RTSP mod-
ule centralized—again from the viewpoint of
a single client—and parallelizing the sched-
uling and RTP functions, as Figure 2b shows.
In Yima-2, every node retrieves, schedules,
and sends its own local data blocks directly
to the requesting client, thereby eliminating
Yima-1’s master-node bottleneck. These
improvements significantly reduce internode
traffic.

Although the bipartite design offers clear advan-
tages, its realization imposes several new chal-
lenges. First, clients must handle receiving data
from multiple nodes. Second, we replaced the
original DSS code component with a distributed
scheduler and RTP server to achieve Yima-2’s
decentralized architecture. Last, Yima-2 requires
a flow-control mechanism to prevent client buffer
overflow or starvation.

With Yima-2, each client maintains contact with
one RTSP module throughout a session for control
information. For load-balancing purposes, each
server node can run an RTSP module, and the deci-
sion of which RTSP server to contact remains the
same as in Yima-1: RR-DNS or switch. However,
contrary to the Yima-1 design, a simple RR-DNS
cannot make the server cluster appear as one node
since clients must communicate with individual
nodes for retransmissions. Moreover, if an RTSP
server fails, sessions are not lost. Instead, the system
reassigns the sessions to another RTSP server, with
no disruption in data delivery.

We adapted the MPEG-4 file format as specified
in MPEG-4 Version 2 for the storage of media
blocks. This flexible-container format is based on
Apple’s QuickTime file format. In Yima-2, we
expanded on the MPEG-4 format by allowing
encapsulation of other compressed media data such
as MPEG-2. This offers the flexibility of delivering
any data type while still being compatible with the
MPEG-4 industry standard.

To avoid bursty traffic caused by Yima-1’s
pause/resume transmission scheme and still
accommodate VBR media, the client sends feed-
back to make minor adjustments to the data
transmission rate in Yima-2. By sending occa-
sional slowdown or speedup commands to the
Yima-2 server, the client can receive a smooth
data flow by monitoring the amount of data in
its buffer.

CLIENT SYSTEMS
We built the Yima Presentation Player as a client

application to demonstrate and experiment with
our Yima server. The player can display a variety
of media types on both Linux and Windows plat-
forms. Clients receive streams via standard RTSP
and RTP communications.

Client buffer management
A circular buffer in the Yima Presentation Player

reassembles VBR media streams from RTP pack-
ets that are received from the server nodes.
Researchers have proposed numerous techniques
to smooth the variable consumption rate RC by
approximating it with a number of constant-rate
segments. Implementing such algorithms at the
server side, however, requires complete knowledge
of RC as a function of time.

We based our buffer management techniques on
a flow-control mechanism so they would work in
a dynamic environment. A circular buffer of size
B accumulates the media data and keeps track of
several watermarks including buffer overflow
WMO and buffer underflow WMU. The decoding
thread consumes data from the same buffer. Two
schemes, pause/resume and ∆p, control the data
flow.

Pause-resume. If the data in the buffer reaches
WMO, the client software pauses the data flow
from the server. The playback will continue to con-
sume media data from the buffer.

When the data in the buffer reaches the under-
flow watermark WMU, the stream from the server
resumes. However, the buffer must set WMO and
WMU with safety margins that account for net-
work delays. Consequently, if the data delivery rate
(RN) is set correctly, the buffer will not underflow
while the stream is resumed.

Although the pause/resume technique is a simple
and effective design, if pause and resume actions
coincide across multiple sessions, bursty traffic will
become a noticeable effect.

Client-controlled ∆p. ∆p is the interpacket delivery
time the schedulers use to transmit packets to the
client. Schedulers use the network time protocol
(NTP) to synchronize time across nodes. Using a
common time reference and each packet’s time
stamp, server nodes send packets in sequence at
timed intervals.

The client fine-tunes the delivery rate by updat-
ing the server with new ∆p values based on the
amount of data in its buffer. Fine-tuning is achieved
by using multiple watermarks in addition to WMO

and WMU, as Figure 1 shows.

35

When the level of data in the client buffer
reaches a watermark, the client sends a corre-
sponding ∆p speedup or slowdown command to
maintain the amount of data within the buffer. The
buffer smoothes out any fluctuations in network
traffic or server load imbalance that might delay
packets. Thus, the client can control the delivery
rate of received data to achieve smoother delivery,
prevent bursty traffic, and keep a constant level of
buffer data.

Player media types
We have experimented with a variety of media

types for our Yima player. Figure 1 shows the
player’s three-threaded structure. The playback
thread interfaces with the actual media decoder.
The decoder can be either software- or hardware-
based. Table 1 lists some decoders that we incor-
porated.

The CineCast hardware MPEG decoders from
Vela Research support both MPEG-1 and MPEG-
2 video and two-channel audio. For content that
includes 5.1 channels of Dolby Digital audio, as
used in DVD movies, we use the Dxr2 PCI card
from Creative Technology to decompress both
MPEG-1 and MPEG-2 video in hardware. The
card also decodes MPEG audio and provides a 5.1-

channel Sony-Philips Digital Interface (SP-DIF) dig-
ital audio output terminal.

With the emergence of MPEG-4, we began
experimenting with a DivX software decoder.9

MPEG-4 provides a higher compression ratio than
MPEG-2. A typical 6-Mbps MPEG-2 media file
may only require an 800-Kbps delivery rate when
encoded with MPEG-4. We delivered an MPEG-4
video stream at near NTSC quality to a residential
client site via an ADSL connection.10

HDTV client
The streaming of high-definition content pre-

sented several challenges. First, high-definition
media require a high-transmission bandwidth. For
example, a video resolution of 1,920 x 1,080 pix-
els encoded via MPEG-2 results in a data rate of
19.4 Mbps. This was less of a problem on the
server side because we designed Yima to handle
high data rates.

The more intriguing problems arose on the client
side. We integrated an mpeg2dec open source
software decoder because it was cost-effective.
Although it decoded our content, achieving real-
time frame rates with high-definition video was
nontrivial because of the high resolution. On a
dual-processor 933-MHz Pentium III, we achieved

 61

Yima
audio

client PC

Yima
video

client PC

Trigger
unit

Genlock
Unit

CineCast
MPEG-2

quad
decoder

CineCast
MPEG-2

quad
decoder

Network
connection

to Yima server

Network
connection

to Yima server

Audio D/A
converter

NTSC
video

NTSC
video

12 channels of PCM audio (sampling rate: 48,000)

Ultra SCSI

Ultra SCSI

Panoramic real-time
video stitching equipment

(or separate displays)

Audio preamplifier

Audio power
amplifier

10.2 channels of audio

To additional
speakers and

subwoofers

Subwoofers

Head-mounted display

Multiscreen displayMultiscreen display

MPEG-2 video
(5 x 4 Mbps)

PCM audio
(11 Mbps)

2 optical TOSlink connections
(max. 8 digital audio channels each)

SCSI card

Sound card

Figure 3. Panoramic
video and 10.2-
channel audio play-
back system block
diagram. One Yima
client renders five
channels of syn-
chronized video in
a mosaic of 3,600 ×
480 pixels while
another Yima client
renders 10.2 chan-
nels of synchronized
audio (0.2 refers to
two low-frequency
channels, or
subwoofers).

36

approximately 20 frames per second using
unoptimized code with Red Hat Linux 6.2
and Xfree86 4.0.1 on an nVidia Quadro 2
graphics accelerator. In our most recent
implementation, we used a Vela Research
CineCast HD hardware decoder, which
achieved real-time frame rates at data rates
up to 45 Mbps.

Multistream synchronization
The flow-control techniques implemented

in the Yima client-server communications
protocol synchronize multiple, independently
stored media streams.

Figure 3 shows the client configuration for the
playback of panoramic, five-channel video and 10.2-
channel audio. The five video channels originate from
a 360-degree video camera system such as the
FullView model from Panoram Technologies. We
encode each video channel into a standard MPEG-2
program stream. The client receives the 10.2 chan-
nels of high-quality, uncompressed audio separately.

During playback, all streams must render in tight
synchronization so the five video frames corre-
sponding to one time instance combine accurately
into a panoramic mosaic of 3,600 x 480 pixels
every 1/30th of a second. The player can show the
resulting panoramic video on either a wide-screen
or head-mounted display. The experience is
enhanced with 10.2-channel surround audio, pre-
sented phase-accurately and in synchronization
with the video.

Yima achieves precise playback with three levels
of synchronization: block-level via retrieval sched-
uling, coarse-grained via the flow-control protocol,
and fine-grained through hardware support. The
flow-control protocol maintains approximately the
same amount of data in all client buffers. With this
prerequisite in place, we can use multiple CineCast
decoders and a genlock timing-signal-generator
device to lock-step the hardware MPEG decoders
to produce frame-accurate output. All streams must
start precisely at the same time.

The CineCast decoders provide an external trig-
ger that accurately initiates playback through soft-
ware. Using two PCs, one equipped with two
four-channel CineCast decoders and one with a
multichannel sound card, a Yima client can render
up to eight synchronous streams of MPEG-2 video
and 24 audio channels.

RTP/UDP AND SELECTIVE RETRANSMISSION
Yima supports the industry-standard RTP for the

delivery of time-sensitive data. Because RTP trans-

missions are based on the best-effort user datagram
protocol, a data packet could arrive out of order at
the client or be altogether dropped along the net-
work. To reduce the number of lost RTP data pack-
ets, we implemented a selective retransmission
protocol.11 We configured the protocol to attempt
at most one retransmission of each lost RTP packet,
but only if the retransmitted packet would arrive
in time for consumption.

When multiple servers deliver packets that are
part of a single stream, as with Yima-2, and a
packet does not arrive, how does the client know
which server node attempted to send it? In other
words, it is not obvious where the client should
send its retransmission request.

There are two solutions to this problem. The client
can broadcast the retransmission request to all server
nodes, or it can compute the server node to which it
issues the retransmission request. With the broad-
cast approach, all server nodes receive a packet
retransmission request, check whether they hold the
packet, and either ignore the request or perform a
retransmission. Consequently, broadcasting wastes
network bandwidth and increases server load.

Yima-2 incorporates the unicast approach.
Instead of broadcasting a retransmission request to
all the server nodes, the client unicasts the request
to the specific server node possessing the requested
packet. The client determines the server node from
which a lost RTP packet was intended to be deliv-
ered by detecting gaps in node-specific packet
sequence numbers. Although this approach re-
quires packets to contain a node-specific sequence
number along with a global sequence number, the
clients require very little computation to identify
and locate missing packets.

TEST RESULTS
In extensive sets of experiments, Yima-2 exhibits

an almost perfectly linear increase in the number
of streams as the number of nodes increases. Yima-
2’s performance may become sublinear with larger
configurations, low-bit-rate streams, or both, but
it scales much better than Yima-1, which levels off
early. We attribute Yima-1’s nonlinearity to the
increase of internodal data traffic.

We sent MPEG-4 data from the Yima servers in
our lab to the public Internet via the University of
Southern California campus network. The geo-
graphical distance between the two end points mea-
sured approximately 40 kilometers. We set up the
client in a residential apartment and linked it to the
Internet via an ADSL connection. The ADSL
provider did not guarantee any minimum band-

37

width but stated that it would not exceed 1.5
Mbps. The raw bandwidth achieved end-to-end
between the Yima client and servers was approxi-
mately 1 Mbps.

The visual and aural quality of an MPEG-4
encoded movie at less than 1 Mbps is surprisingly
good. Our test movie, encoded at almost full NTSC
resolution, displayed little degradation—a perfor-
mance attributable to the low packet loss rate of
0.365 percent without retransmissions and 0.098
percent with retransmissions. The results demon-
strated the superiority of Yima-2 in scale-up and
rate control. They also demonstrated the incorpo-
rated retransmission protocol’s effectiveness.

We colocated a Yima server at Metromedia Fiber
Network in El Segundo, California, to demonstrate
successful streaming of five synchronized video
channels. Also, as part of a remote media immer-
sion experiment (http://infolab.usc.edu/News/
NYT-RML.html). We successfully streamed HD
video at 45 Mbps from Arlington, Virginia, syn-
chronized with 10.2-channel audio at 11 Mbps
from Marina del Rey, California, to our lab at the
University of Southern California.

W e are exploring resource management
strategies across both distributed and peer-
to-peer architectures in which multiple

Yima clusters would exist across geographically
dispersed areas.12 This distribution would allow a
wider range of serviceable clients. We also plan to
extend the support of data types to include haptic
and avatar data as part of the overall research in
immersive media at USC’s Integrated Media
Systems Center. �

Acknowledgments
This research has been funded by the US National

Science Foundation grants EEC-9529152 (IMSC
ERC) and IIS-0082826. We thank our IMSC
collaborators Chrysostomos L. Nikias, Ulrich
Neumann, Alexander Sawchuk, Chris Kyriakakis,
Christos Papadopoulos, and Albert Rizzo. We also
thank the following students for helping with the
implementation of certain Yima components:
Mehrdad Jahangiri, Nitin Nahata, Sahitya Gupta,
Farnoush Banaei-Kashani, and Hong Zhu.

References
1. D.J. Gemmell et al., “Multimedia Storage Servers:

A Tutorial,” Computer, May 1995, pp. 40-49.

2. A. Bonhomme, “Survey of Video Servers,” hyper-
linked resource page, including bibliography,
http://www.ens-lyon.fr/~abonhomm/video/survey.
html (current May 2002; last update June 2001).

3. S. Berson et al., “Staggered Striping in Multimedia
Information Systems,” Proc. 1994 ACM Sigmod Int’l
Conf. Management of Data, ACM Press, New York,
1994, pp. 79-90.

4. J.R. Santos and R.R. Muntz, “Performance Analy-
sis of the RIO Multimedia Storage System with Het-
erogeneous Disk Configurations,” Proc. 6th ACM
Int’l Multimedia Conference (ACM MM 98), ACM
Press, New York, 1998, pp. 303-308.

5. S. Ghandeharizadeh et al., “On Minimizing Startup
Latency in Scalable Continuous Media Servers,”
Proc. Multimedia Computing and Networking
(MMCN 97), SPIE-Int’l Society Optical Engineering,
Bellingham, Wash., 1997, pp. 144-155.

6. J.R. Santos, R. Muntz, and B. Ribeiro-Neto, “Com-
paring Random Data Allocation and Data Striping
in Multimedia Servers,” Int’l Conf. Measurement
and Modeling of Computer Systems (Sigmetrics
2000), ACM Press, New York, 2000, pp. 44-55.

7. R. Zimmermann and S. Ghandeharizadeh, “Contin-
uous Display Using Heterogeneous Disk-Subsys-
tems,” Proc. 5th ACM Int’l Multimedia Conf. (ACM
MM 97), ACM Press, New York, 1997, pp. 227-236.

8. A. Goel et al., “Scaddar: An Efficient Randomized
Technique to Reorganize Continuous Media Blocks,”
Proc. 18th Int’l Conf. Data Eng. (ICDE 02), IEEE
CS Press, Los Alamitos, Calif., 2002, pp. 473-482.

9. J. Hibbard, “What the $%@# is DivX;-)?” Red Her-
ring Magazine, Jan. 2001, pp. 60-64.

10. R. Zimmermann et al., “Yima: Design and Evalua-
tion of a Streaming Media System for Residential
Broadband Services,” Proc. VLDB 2001 Workshop
Databases in Telecommunications (DBTel 01),
Springer-Verlag, Berlin, 2001, pp. 116-125.

11. C. Papadopoulos and G.M. Parulkar, “Retransmis-
sion-Based Error Control for Continuous Media
Applications,” Proc. 6th Int’l Workshop Network
and Operating Systems Support for Digital Audio
and Video (NOSSDAV 96), Springer-Verlag, Heidel-
berg, 1996, pp. 5-12.

12. C. Shahabi and F. Banaei-Kashani, “Decentralized
Resource Management for a Distributed Continuous
Media Server,” to be published in IEEE Trans. Par-
allel and Distributed Systems, vol. 13, no. 6, June
2002.

Cyrus Shahabi is an assistant professor and direc-
tor of the Information Laboratory (http://infolab.
usc.edu) in the Computer Science Department at

6338

the University of Southern California. He is also
director of the Information Management Research
Area at the Integrated Media Systems Center, an
NSF Engineering Research Center at USC. His
research interests include multidimensional data-
bases, multimedia servers, and data mining. Sha-
habi received a PhD in computer science from USC.
He is a member of the IEEE and the ACM. Contact
him at shahabi@usc.edu.

Roger Zimmermann is a research assistant profes-
sor in the Computer Science Department at the
University of Southern California and director of
the Media Immersion Environment Research Area
at the Integrated Media Systems Center. His inter-
ests include novel database architectures for immer-
sive environments, video-streaming technology,
cluster and distributed computing, and fault-
resilient storage architectures. Zimmermann re-

ceived a PhD in computer science from USC. He is
a member of the IEEE and the ACM. Contact him
at rzimmerm@usc.edu.

Kun Fu is a doctoral candidate in computer science
at the University of Southern California. His re-
search interests include multimedia servers, real-
time data distribution, and parallel computing. Fu
received an MS in engineering science from the Uni-
versity of Toledo. Contact him at kunfu@cs.
usc.edu.

Shu-Yuen Didi Yao is a doctoral candidate in com-
puter science at the University of Southern Califor-
nia. His research interests include scalable storage
architectures, multimedia servers, video streaming,
and fault-tolerant systems. Yao received an MS in
computer science from USC. He is a member of the
ACM. Contact him at didiyao@cs.usc.edu.

39

Experimentswith Deliveryof HDTV over IP Networks

Colin Perkins LadanGharai TomLehman Allison Mankin
USCInformationSciencesInstitute

15 March2002

Abstract

We presentthe design,andpreliminaryperformanceresults,for a systemthat transportsuncom-
pressedHDTV contentover IP networks.Oursystemis motivatedby thegrowth in useof digital video,
and the ever increasingcapacityof local- and wide-areaInternet links. We aim to demonstratethe
feasibility of IP asa transportfor very high quality video, andto highlight areaswhereperformance
bottlenecksexist andfurtherdevelopmentis needed.To this end,our systemis constructedfrom com-
modity components,andwastestedoverexisting commercialIP backbonenetworks. Performancewas
shown to begood,with theendsystembeingthemainlimiting factor.

1 Introduction

Theconversionof broadcasttelevisionfrom thelegacy analogPAL andNTSCstandardstodigital formathas
many exciting implications.Theseincludethepossibleconvergenceof televisiondistribution andcomputer
network infrastructures,allowing interactive applications,and the increasein quality possiblewith high
definitiondigital formats.

To date, the different aspectsof this convergencehave beenstudiedin isolation: therehasbeenmuch
work on thetransportof compressedstandarddefinitionTV over IP, andmuchwork definingprotocolsand
standardsfor highdefinitionTV (HDTV), but few havestudiedthetransportof HDTV over IP. In thispaper
wepresentour initial experimentswith asystemto deliverproductionqualityuncompressedHDTV over IP
networks.

Why do we choseto deliver uncompressedHDTV? Several reasons,primarily to maintainimagequality
andreducelatency. This is mostusefulin a productionfacility, whereimagedegradationdueto repeated
compressioncyclesis undesirable,but mayalsobeappropriatefor very high quality telepresenceapplica-
tions. Delivery of compressedHDTV, usingexisting MPEG-2over IP standards,maybemoreappropriate
for otherapplications.

The outline of this paperis asfollows: section2 coversbackgroundin HDTV technology, protocolsfor
transportof videoover IP networksandnetwork performance.This is followed,in section3 with a discus-
sionof theoptionsfor protocoldevelopment,with ourdesignbeingoutlinedin section4. Section5 provides
preliminaryperformanceanalysisof our system,demonstratingtransmissionof HDTV overawide-areaIP
network, with section6 outlining directionsfor furtherdevelopment.Finally, we summarizerelatedwork
in section7, andprovide conclusions.

40

Format PictureFormat Ratio FrameRate
HDTV 1920x1080 16:9 30I, 30P, 24P
HDTV 1280x720 16:9 60P, 30P, 24P
SDTV 704x480 16:9 30I, 60P, 30P, 24P
SDTV 640x480 4:3 30I, 60P, 30P, 24P

Table1: Pictureformatsfor digital televisions,definedby ATSCstandardA/53.

2 Background

The television industryis in theprocessof a major transformation,from standardanalogPAL andNTSC
systemsto highdefinitiondigital formats.Thesenew formatsprovidesignificantlyhigherspatialandtempo-
ral resolution,andgreatercolourdepth,thantheexistingformats.Thedigital natureof thenew formatsalso
allows for greaterintegrationwith computersystemsandnetworks,providing amoreinteractive system.

High definition TV definesa rangeof picture formatsdistinguishedby framesizeandrate,aspectratio,
andscanningtechnique(seetable1). They encompassHDTV formatswith 16:9 aspectratiosandboth
progressive and interlacedscanning,and digital equivalentsof the standardPAL/NTSC picture formats
with both 16:9 and4:3 aspectratios. HDTV contentis broadcastat 19.34Mbps,usingMPEG-2for both
compressionandtransport[11, 10].

Local areatransportof uncompressedHDTV is via coaxialcableor opticalfibre, usingtheSMPTE-292M
standard[13]. This is theuniversalmediumof interchangebetweenvarioustypesof HDTV equipment(e.g.
cameras,encoders,VTRs, editing systems,etc.) at dataratesof 1.485Gbps. It is widely usedin studios
andproductionhouses,allowing HDTV contentto be delivereduncompressedthroughvariouscyclesof
production,avoiding the artifacts that are an inevitable result of multiple compressioncycles. If wide
areatransportis desired,the292M bit-streamis typically run over dedicatedfibre connections,but a more
economicalalternative is desirable.Weconsidertheuseof IP networksfor thispurpose.

Standardsfor real-timetransportof video over IP networks have reachedrelative maturity recently, with
thedominantprotocolbeingtheReal-timeTransportProtocol,RTP[20, 21]. RTPprovidesmediaframing,
identifiesthepayloadtypeandsource,andallowsfor timing recoveryandlossdetection.It typically runson
UDP/IPnetworks,inheritingtheir limitations: unreliable,besteffort delivery. Receiversuseinformationin
theRTPheadersto correctfor packet loss,andto reconstructmediatiming. A key featureis applicationlevel
framing,wherethecodecoutputis intelligently fragmentedandpacketized,accordingto apayloadformat,
sothateachRTPpacketcanbedecodedindependently[4]. Thismakescarefuldesignof receiversimportant,
sincethey have theprimaryresponsibilityfor correctplayoutof mediadisruptedby thevagranciesof anIP
network.

IP networksprovide a best-effort packet delivery service.Thereis no guaranteethat thenetwork will not
discard,duplicate,delayor mis-orderpackets.ApplicationsandtransportprotocolsusingIP mustadaptto
theseissues,abstractingthenetwork behaviour to give a usableservice.RTP applicationshave developed
sophisticatedstrategies for dealingwith timing jitter and packet loss [16]. It is expectedthat a system
for delivery of HDTV over IP will usetheseto provide a robust service.A critical areawhereRTP based
systemsarelackingis congestioncontrol;adaptingtheirbehaviour to fit theavailablenetwork capacity. The
implicationhereis that it is necessaryto eitherdevelopcongestioncontrol for RTP or to run applications
only on a network provisionedwith sufficient capacityto supporttheir needs.Of course,if it is desiredto
transmituncompressedHDTV over IP, thenetwork will needacertaincapacityanyway. For this reason,we
deferdiscussionof congestioncontrolto section6 andconcentrateinsteadontheissueof findinganetwork
thatcansupportgigabitrateIP flows.

41

Thereareseveral networks that have demonstratedsufficient capacityfor theseexperiments. Internet2’s
Abilene network [17] andtheDARPA SuperNettestbed[24] areexamplesto which we have access.Su-
perNethasbeenusedto demonstrateperformanceof 740 Mbps of singlestreamTCP and957 Mbps of
multi-streamTCPtraffic overacrosscountrypath[18].

Our initial testingwasconductedover SuperNetbetweenISI East(Arlington, VA) andCMU (Pittsburgh,
PA). The path includesnine hopsin eachdirectionandhasan RTT of approximately10 ms (seefigure
1). We alsoconductedtestson a SuperNetpathwherethepacketsflowedfrom ISI Eastto ISI West(Los
Angeles,CA) andbackto ISI East.In thisconfiguration,boththesenderandreceiverwereat ISI East.This
pathhastwenty-two hopsandanRTT of approximately67ms.

SuperNet receiver

CMUCMU
ISI−East

sender

M40

GigaE

GSR

GigaE

(Mixture of M160 and GSR routers)

Figure1: DatapathoverSuperNetfrom ISI-Eastto CMU

Ourtestconfigurationconsistedof sendersandreceiverswith gigabitEthernetNICsconnectedto aswitched
gigabit EthernetLAN infrastructure. The local areagigabit Ethernetconnectedto a site borderrouter.
Dependingon thesite, theborderrouterwaseithera Juniperor Ciscorouterwhich connectedto thewide
areanetwork via an OC48 POSconnection. SuperNetusesa commerciallyavailable IP backbonefor
transportacrossthewidearea.Thiswideareanetwork consistedof amix of JuniperandCiscorouterswith
OC48andOC192POSinterfaces.

Prior to conductingtheHDTV experiments,we first desiredto ascertainthatsufficient capacitywasavail-
ableacrossthewide areanetwork. We alsodesiredto accomplishthis in a mannerwhich would not sig-
nificantly disruptother traffic. TCP’s congestioncontrol mechanismprovidesa goodgaugeof available
capacity. We usedthe iperf application[9] to measurebothTCPandUDP bandwidthperformance.Run-
ning iperf betweenour sendmachineat ISI Eastandthe receiver at CMU, we wereableto recorda 702
MbpsTCPstream.Likewisewe carriedout thesameexperimentfor UDP flows andwereableto transfer
flows in excessof 600Mbps.Performancewasdependenton network load,with throughputbeinglessat
busytimes.

Thesetestsshow it is possibleto engineeran IP network to have low packet lossandjitter, andsupport
gigabit rateflows. From this, we concludethat the network capacityshouldbe availableto conducttests
with HDTV over IP.

A systemto transportHDTV over IP networkswill useRTPasits transport,with theimplicationbeingthat
anRTPpayloadformatneedsto bedevelopedfor HDTV content.Theoptionsfor thedevelopmentof such
a formatareoutlinedin section3, with thedetailsof ourdesignbeingpresentedin section4.

3 Options for Transport of HDTV

A systemfor transportof HDTV over IP will accepta SMPTE-292Mdigital videosignalandencapsulate
it within RTP for transmissionover IP. At thereceiver, theSMPTE-292Msignalcanberegenerated,or the
videocanbedisplayeddirectly. Therearea numberof optionsin how this canbedone,dependingon the
aimof thetransport.If theintentis to link existingequipmentthecorrectapproachmaybecircuit emulation,

42

wheretheSMPTE-292Msignalis mappedonto IP irrespective of its contents.Thealternative is a native
packetization, whereanRTP payloadformat is definedto transportthevideodirectly, with SMPTE-292M
usedonly locally.

Circuit emulationprovidestransparentdelivery of the HDTV bit-stream,suitablefor input into otherde-
vices. It supportsany format that SMPTE-292Msupports,without having to be adaptedto thedetailsof
that format. Themaindisadvantageis that thepacketizationis mediaunaware,andcannotoptimisebased
on thevideoformat.Thismakescircuit emulationsomewhatlossintolerant.

Native packetizationlooksat thecontentsof theSMPTE-292Mstream,actingon thevideodatawithin it.
Hence,a native formatsneedto bedefinedfor every possiblevideoresolution,althoughthoseformatscan
be mademoreoptimal. It alsoexposesthe contentto manipulationby endsystems,ratherthanhiding it
within anotherlayerof framing.

We choseto usea native packetization,sinceoneof our aimsis to displayandmanipulateHDTV content
on commodityworkstations;wedo notnecessarilyneedto regeneratetheSMPTE-292Moutput.

4 Design and Implementation

In thedesignandimplementationof our HDTV system,our priority wasto usecommercial,off-the-shelf,
componentsrather than to develop customhardware. Accordingly, the core of our systemis a high-
performancePC,with gigabitEthernetandanHDTV capturecard.

The PC is a Dell PrecisionWorkstation620 MT with dual 1GHz PentiumIII processors,runningLinux
2.4.2. It hastwo 64 bit, 66MHz PCI slotsand four 32 bit, 33MHz PCI slots. The 64 bit PCI cardsare
locatedon aseparatePCIbusto theslower cards.Thenetwork interfaceis a3Com3c985gigabitEthernet.

For HDTV captureandplayout,we useanHDstationOEM[22] card,providing SMPTE-292Minput and
output. This cardcanoperatein several modes:captioning,captureandplayback.We usedit to capture
HDTV into main memory, and to regenerateSMPTE-292Moutputat the receiver. Our systemcanalso
displayHDTV on the workstationmonitor, usinga software-baseddecoder. The capturecardsupportsa
rangeof video formats,but our systemusesonly SMPTE-296M(1280x720pixels, progressive scan,60
framespersecond)at this time.

TheHDstationOEMcardprovidesaccessto SMPTE-292McontentusingaFIFOAPI thattransfersframes
in orderbetweenthe hostanda capture/playoutqueuein the card’s on-boardmemory. The API hastwo
modesof operation: Mappedmodemapsthe memoryon the card into the systemaddressspace. It is
primarily for captioningapplications,allowing smallchangesto bemadeasframesarefilteredthroughthe
card.In DMA mode,theapplicationsuppliesapointerto a buffer in systemmemory, andthecardfills that
buffer with a completeframe.DMA modeis intendedprimarily for captureandplaybackapplications.As
notedlater, we experimentedwith bothmodesof operation.

We usedan updatedversionof theRTP library from the UCL Robust-AudioTool [7] to provide thecore
network functionsof oursystem.ThisaacompleteRTP implementation,supportingIPv4, IPv6andmulti-
cast.Transmissionandreceptionwereimplementedastwo separateprograms,becausetherequirementsof
thesystemaresuchthatit is notpossibleto transmitandreceive on thesamemachine.

43

Network

HDTV Transmitter

Grab
Framer

PacketsizeReceive
Frame

Fragment
Frame Frame

Send
Fragment

Camera

Grabber thread

Transmit thread

Figure2: Block diagramof transmitter

4.1 Transmission

A block diagramof the transmitteris shown in figure 2. Thereare several parts to it: frame capture,
fragmentationto matchthe network MTU, packetizationand transmission.The captureprocessruns in
a separatethreadto the other operations,becausethe FIFO API provided by the grabberonly supports
blockingreads,thathave to beoverlappedwith theotheroperations.

Onceframeshave beencaptured,they are fragmentedto fit within the network MTU andtransmittedin
separateRTP packets. Framesaresplit into equalsizedfragments,with anRTP payloadheaderindicating
theoffsetwithin theframe.

Our initial designsmoothedtransmission,spacingpacketsacrosstheframinginterval, ratherthansending
themin a burst. This provedhardto implement:the inter-packet spacingis on theorderof microseconds,
andsystemcallssuchasnanosleep() operatewith a 10msschedulinggranularityunderLinux, unless
real-timeschedulingis used. It alsotakesapproximately30� s to senda packet on our system,which is
comparableto the desiredpacket spacingof 50� s. For thesereasons,we revertedto a simpleapproach,
sendingpacketsbackto back.

We initially usedmemorymappedcapture,sincewe do not manipulatethevideobeforetransmission.Our
hopewas that it wasnot necessaryto transferthe datainto systemmemory. Ratherwe could calculate
thefragmentsize,generatetheRTP headersseparately, andpassa pointerto theon-boardmemoryon the
capturecarddirectlyto thekernelvia thesendmsg() systemcall. Thisperformedverybadly: thememory
accesspatternsusedto generateUDP packetsarenotoptimalfor thecapturecard.

Instead,we usedDMA mode,wherethe capturecardwrites completeframesinto memory. The restof
our systemwasunchanged:we calculatefragmentsizes,andusesendmsg() to sendthepacketswith a
scatter/gatherarray, to avoid anothercopy in systemmemory. Theresultis thatvideodatapassesover the
PCI bustwice: oncefrom thecapturecardinto systemmemory, andagainfrom thesystemmemoryto the
gigabit Ethernetcard. We believe transmissionperformancecould be greatly improved if the kernelwas
smartenoughto useDMA for largecopiesin thesendmsg() systemcall.

4.2 Reception

A block diagramof the receiver is shown in figure 3. It operatesin a classicalselect() loop, with a
timeouton the orderof the inter-frametime. Eachiterationpulls a packet from the RTP stack,performs
colourconversionif needed,andinsertsthecontentsinto aframestoreat theappropriatepoint. If thepacket

44

Display
Driver

HDTV receiver

Color Space
Conversion

Frame Store

Render

Network

RTP

UDP

IP

Kernel space

User space

Figure3: Block diagramof thereceiver

is thelastin theframe,renderingis triggered.Thesystemalsocollectsperformancestatisticsandperforms
RTCPprocessing.

Thefirst stageof receptionoccursin theRTPstack.Packetsarereceivedfrom thekernel,validatedasRTP,
andthenpassedto theapplication.TheRTP library usedwasoriginally written for a voice-over-IP system,
anddesignedfor flexibility ratherthanspeedof operation.Despitethis, it worked reasonablywell at the
ratesneededfor HDTV transport.Theareaswhereperformancewaslimited by thelibrary included:

� Buffer allocation,sincethemalloc() systemcall is slow. Ratherthanallocatea new buffer for
eachpacket, thelibrary wasmodifiedto reusebufferswherepossible.

� Packet validation,sincethevalidity testsdefinedby RTP requirea passover theheaderincludinga
numberof consistency checks.This wasfoundto take approximately10%of thetotal runtimewhen
usinghardwarerendering,sothelibrary wasmodifiedto checkonly theRTPversionnumber.

� Sequencenumbervalidation,asa furthervalidity check,alsousesanoticeablefractionof thesystem
runtime,andwe consideredremoving it. Instead,we limited our changesto a rewrite that improves
thecachefootprint of thecode.

A numberof systemparametersalso had to be adjustedbeforethe full dataratecould be sustained,as
discussedin section5.

Colour spaceconversionmay be needed,dependingon the displaydevice. The HDstationOEMcardcan
directly outputtheregeneratedSMPTE-292Msignal,but to renderinto awindow it is necessaryto convert
from YUV colourspaceinto theRGB spaceusedby thedisplay. Conversionis straightforward, but time
consuming,sinceit requiresarithmeticon every sampleof theframe. We implementcolourconversionin
optimisedC code,yet it takesover90%of thetotal runtimewhenrenderinginto awindow.

Onceany necessarycolourconversionhasbeenperformed,the fragmentis copiedto the correctlocation
in the framebuffer. The offset is includedasan RTP payloadheaderwithin eachpacket, making this a
straightforwardmatter. Sinceit is advantageousto reducethenumberof copies,this stepis integratedinto
thecolourconversioncodewherepossible.

The final packet of eachframe is indicatedby a marker in the RTP header, and this is usedto trigger
rendering.To regenerateSMPTE-292Moutput,theFIFO API of theHDstationOEMcardis usedin much
the sameway asfor framecapture.To renderinto a window on the display, we usethe sharedmemory
extensionof the X window system. Sincerenderingis triggeredby receiptof the packet with the RTP
marker set,our systemis vulnerableto threefailures:

45

500

550

600

650

700

750

1000 2000 3000 4000 5000 6000 7000 8000 9000

T
hr

ou
gh

pu
t (

M
bp

s)

�

MTU (octets)

60 fps
45 fps

Figure4: Effectsof network MTU on throughout

� If thepacket containingthemarker is lost, theapplicationwill discardtheframe.

� If the packet containingthe marker is reordered,somefragmentswill be lost (they arrive after the
framehasbeendisplayed).

� If thepacket containingthemarker is delayed,theframewill beoffsetfrom its trueplayouttime.

For our proof of conceptsystem,theseissuesareconsideredan acceptabletrade-off for implementation
simplicity. A robust implementationwould usea moresophisticatedplayoutbuffer algorithm,to smooth
network jitter andto compensatefor packet loss.

We have conducteda numberof testsof the systemperformance,which we describenext, andbasedon
thesewe proposeanumberof enhancementsto ourdesignin section6.

5 Experimental Performance

5.1 Local area tests

Ourinitial trialswereconductedbetweentwohostsonthesameEthernetsegment,connectedvia anExtreme
5i gigabitEthernetswitch. Theaim wasto demonstratethatour systemcouldsupportHDTV delivery on
anunloadednetwork, freefrom theeffectsof competingtraffic. Thetestsweresuccessful:whencorrectly
tuned,our implementationis lossfree in the local areatests.Thetuningprocesswassignificant,however,
requiringadjustmentsto thenetwork maximumtransferunit (MTU), socket buffer sizeandnetwork driver.

With thedefault 1500octetMTU, thesystemthroughputis 535Mbps. This is insufficient for our needs,
but gigabit Ethernetinterfacessupportthe jumbo-framesextension,allowing us to increasethe MTU to
9000octets.IncreasingtheMTU affectsthroughputasshown in figure4: largerMTU sizesresultin higher
throughout.Theincreaseis dueto thereductionin theheaderprocessingoverheadrelative to theamountof
data,andthereductionin interruptloadon thehost.Wechosea4470octetMTU for our tests,eventhough
thatdoesnot give bestperformance,sinceit is themaximumsupportedby thewide areanetwork, andwe
desiredto compareour localandwide arearesults.

The default 64k socket buffer wasinsufficient, andcausedpacket loss in the receiving host. Experience
shows that thebuffer mayneedto be large enoughto storethepacketsfor an entireframeof video. This
becausethe receiver is not able to processpackets continually: thereare someperiodswhen it is busy

46

0

0.05

0.1

0.15

0.2

0 20 40 60 80 100

Local area

Interarrival time (microseconds)

F
re

qu
en

cy

0

0.05

0.1

0.15

0.2

0 20 40 60 80 100

Wide area

Interarrival time (microseconds)

F
re

qu
en

cy

Figure5: Inter-packet timing at thereceiver

0

0.05

0.1

0.15

0.2

0 20 40 60 80 100

F
re

qu
en

cy

�

Intersend time (microseconds)

Figure6: Inter-packet timing at thesender

processingthevideo,andcannotreceive packets. This is a particularproblemwith our softwaredecoder,
sincecolourconversiontakesasignificantamountof time. Multithreadingthereceiver is expectedto reduce
thebuffering requirements,sinceit will allow concurrentpacket receptionandmediaprocessing/decoding
on dualprocessorsystems.

ThegigabitEthernetdriverperformsinterruptcoalescingandchecksumoffloading,andhaddelayedpacket
notificationenabled.Adjusting theseparametersdoesnot appearto significantlyaffect performance,and
aftermuchexperimentationwe settledon thedefault values.

With thesechangesin place,thesystemcansustaina transferrateof 615Mbps,with no packet loss. This
allows usto send1280x720pixel videoat 45 framespersecond,using8 bits percolourcomponent.Once
packet losswaseliminated,we madetwo setsof measurementsrelatingto the network timing jitter: the
inter-packet timing andrelative transitdelay.

Figure5 plots inter-packet timing againstrelative frequency of occurrence,for both local andwide-area
tests.It shouldbecomparedwith Figure6, whichshows timing measuredat thesender. As canbeseen,the
inter-packet timing is stronglybi-modal,a resultwhich surprisedussincethetransmittersendsthepackets
that compriseeachframein a tight loop (thereis a muchsmallerpeakat the locationof the inter-frame
interval, which is notvisible in thefigure).Thebimodalityseemsdueto thesenderblockingin thetransmit
call, perhapsdue to limited buffering in the network card. If the on-boardbuffer is full, we expect the
systemblocksuntil thepacket is sent,causingsomepacketsto bedelayed.Theeffect of network transitis
to smearthis secondpeakout in time. Thereceiver seestheinitial peakin theinter-packet timing, with the
sameinterval asthesender, but a broadertail to thedistribution.

The relative transitdelay, thedifferencebetweenthearrival time in RTP clock units andthesendtime in
the sameunits, is illustratedin Figure7. We notevariation of approximately10ms,equalto the Linux

47

Local area

20ms
Relative Transit Delay (seconds)

0

20000

40000

60000

80000

100000

120000

140000

0

F
re

qu
en

cy

0

20000

40000

60000

80000

100000

120000

140000

0

F
re

qu
en

cy

Wide area

20ms
Relative Transit Delay (seconds)

Figure7: Relative transitdelay

Losseventduration Frequency
No loss 24697400
Singlepacket 85797
Two consecutive packets 587
Threeconsecutive packets 7
Fouror morepackets 0

Table2: Observedpacket lossrates

schedulinginterval, andbelieve thesemeasurementsareheavily influencedby the time taken to wake the
receiver on arrival of the first packet in a frame,and that suchlarge variation in network transit time is
largely ameasurementartifact.Furtherstudyis neededto confirmthis result.

Surprisingly, our testsalso revealedthe presenceof a small amountof packet reorderingbetweenhosts
on the sameEthernetsegment. Typical measurementsshowing approximately1 in 10000packets being
deliveredoutof order. Reorderingpersistswhenthetwo hostsareconnectedbackto backusingcross-over
fibre,andcanalsobedemonstratedwith theiperf tool [9]. Wehavenogoodexplanationfor this,but suspect
a raceconditionin theLinux 2.4kernel,triggeredby ouruseof dualprocessorsystems.

Video quality wasexcellentduring the tests,although45 framesper seconddoesnot result in optimally
smoothmotion(every 4th frameof theoriginal is dropped,sotheframetiming is notuniform).

5.2 Wide area tests

We conducteda numberof wide areatestsof our system,usingvariouspathsacrosstheDARPA SuperNet
testbed.Thefirst factorevaluatedwaspacket losson thewide-areanetwork path.Thiswaspartly to ensure
thatwewerenotcausingnetwork congestion,andpartly to determinetheeffectsof packet lossonthevideo
quality. Packet losswasdifficult to measure,sincethenetwork commonlyoperatedwithout loss. Table2
shows typical measurementswhenthenetwork wasloaded:approximately0.3%of packetswerelost,with
mostlosseventsbeingof isolatedpackets.Morecommonwasthecasewhereno losswasobserved.

Thedistributionof inter-packet arrival timesandrelative transitdelayfor thewideareanetwork path,shown
in Figures5 and7, is almostidenticalto thatfor thelocalareatests.Thenetwork is lightly loaded,andhence
thereis no significantqueueingjitter to impactthepacket timing.

As to be expected,somesmall degreeof packet reorderingwaspresenton the wide areapath. Typical
resultsshowed 0.05%of packetsdeliveredout of order, with thevastmajority of reorderingeventsbeing

48

of adjacentpackets. In rarecases,we observedpacketsbeingdeliveredtwo or threeout of sequence.This
degreeof reorderingis notunusual,similar valueshave beenreportedby [2, 3, 15]

Videoquality for thewide-areatestswassubjectively identicalto thatobservedin thelocal tests.

In additionto thecloselymonitoredtestsover DARPA’sSuperNet,we alsodemonstratedthesystemat the
SuperComputing2001conferencein Denver, November2001. In this demonstration,thesystemwasrun
over a pathfrom WashingtonD.C to Denver. Thenetwork pathfor his demonstrationutilised Internet2’s
AbileneandtheWashingtonD.C.areaMAX gigapop.Thispathwas10routerhopswith aRTT of approx-
imately 43 ms. The backbonelinks alongthis pathwereOC48POSandtherewasno advanceresource
reservation. We have no formal measurementsof thesystemperformanceover this path,but informal ob-
servationsof thesystemshowednegligible packet lossandjitter. Veryhighqualityvideowasreceived,with
no apparentproblems,for aperiodof severalhours.

6 Limiting Factors and Future Directions

Our experimentswereconductedusing615 Mbps mediastreams,comprising1280x720pixel imagesat
45 framespersecondwith 8 bits percolourcomponent.This is insufficient for trueuncompressedHDTV,
which requires850Mbpsto increasetheframerateto 60 framespersecond,and1.03Gbpsfor full colour.

PCI buscontentionappearsasthemainlimiting factor. We initially put theHDTV capturecardandthegi-
gabitEthernetinto thetwo 64bit/66MHz PCIslotsonthePC,but testsshowedthatperformanceincreased
whenwe movedtheEthernetcardontoaslower 32bit/33MHz PCIslot. Investigationshowedthatthefast
PCIslotssharedasinglebus,distinctfrom thatusedby theslowerslots,leadingusto believethatcontention
on thebuswasanissue.Wehave underdevelopmentasystemusingaPCwith dual64bit/66MHz PCIbus
architecture,whichweexpectto reachthe850Mbpsdatarateneededfor full frame-rateHDTV, subsampled
to 8 bitspercomponent.

To supportthefull colourdepth– 10 bits percomponent– we needa fasternetwork interface,for example
a PCI-basedOC-48interface. Our initial experimentswith suchinterfaceshave beendisappointing,with
theavailablecardsbeingunableto exceedthetransferratesachievableusinggigabitEthernet.Useof dual
gigabitEthernetmayalsobepossible,but we mayagainrun into thelimitationsof thePCI bus.

An alternative to fasternetworks may be useof losslessvideo compression,to reducethe bandwidthre-
quirementsof thesystem.This is anareato beexploredin future,althoughit is not clearthatcommodity
systemscancompressgigabitratestreamsin real-time.

Memory bandwidthalso limits performance;the systemhasbeenrefactoredseveral times to reducethe
numberof copies,increasingperformance.This is especiallyan issuefor thesoftwaredecoder, rendering
into a window, due to the needfor colour conversion. Useof MMX extensionsis expectedto help, as
will off-loading conversionusingthe hardwareaccelerationavailablein somedisplayadaptors.Interrupt
processingoverheadsarealsoa factor, evidencedby increasedthroughputwhenlarger packetsareused.
This is anareawherewide areanetworkslimit performance,sincethey limit theMTU to 4470octets.

Our implementationhasa simpleplayoutroutine,anddoesnot dealwell with jitter or lossaroundframe
boundaries.We planto implementanadaptive playoutbuffer, to compensatefor jitter andto correctframe
playout time. Oncethis is done,we plan to studymore sophisticatederror correctionandconcealment
algorithms.At present,packet lossis concealedby repeatingpartof thepreviousframeto cover themissing
data. If framesarebuffered beforeplayout, it will be possibleto usesomeform of FEC (e.g. [19]) or
retransmissionto correctlostpackets.

49

Congestioncontrol is a seriousissuefor high rateUDP applicationson the currentInternet. Our imple-
mentationis not currentlycongestioncontrolled,raisingthe issuesof fairnessto othertraffic andpotential
congestioncollapseof the network. Beforewe deploy our systemoutsidea controlledenvironment,we
needto implementsomeform of ratelimiting or congestioncontrol. TheTFRCprotocol[5] might bean
appropriatemeansof congestioncontrol,but morework is neededto implementandevaluatethis.

Our implementationusesa simplistic RTP payloadheader, consistingonly of the fragmentoffset within
a frame(the fragmentlengthbeinginferredfrom the packet length). A moregeneralpayloadformat for
uncompressedvideo, betterpreservingframemetadatashouldbe defined. The RTP payloadformat for
BT.656video[25] maybesuitableasabasedesign,althoughit will needextensionfor HDTV formats.

7 Related work

A productfrom 2netFX[1] deliverscompressedHDTV over IP. ThesystemusesMPEG-2compressionat
19.2MbpsusingthestandardRTPpayload[8]. Theuseof compressionaddslatency andmakesthissystem
unsuitablefor environmentswherevideoeditingis performed,or wherefull quality is needed.

The University of Washingtonhave demonstrateda systemfor transportof HDTV over IP [14]. This
systemusesSony HDCAM compressionat270Mbps.This is aproprietaryproductionqualitycompression
scheme,supportinga limited numberof edit cycleswithout significantqualitydegradation.

A prototypedevelopedby Tektronix [23] usescustomhardware to deliver HDTV over an OC-48 POS
interface. The systemperformscircuit emulationof SMPTE-292Mover IP at 1.5 Gbpsusing an RTP
payloadformat[6] developedin conjunctionwith theUniversityof Washingtonandourselves.Thissystem
wasalsodemonstratedat theSuperComputing2001conference.

Most similar to our work is the systembuilt by NTT Laboratories,which was demonstratedin Tokyo,
October2001[12]. This systemis built arounda multi-processorPC runningLinux, with a commercial
HDTV capturecard,but usesacustomnetwork interface.

Theselatter two systemssuffer from beingimplementedusingcustomhardware. This makesthemexpen-
sive andinflexible, comparedto a systembuilt usingoff theshelfcomponents.Their advantageis thatthey
have betterperformanceat present,althoughweexpectthatMoore’s law will closethisgaprapidly.

8 Conclusions

We have successfullydemonstrateda prototypesystemfor transportof uncompressedHDTV over IP net-
works, which we believe is the first built usingcommoditycomponents.The systemcurrentlysupports
SMPTE-296Mformat picturesat a reducedrateof 45 framesper second,with colour sub-sampledto 24
bits. An enhancedversionis underdevelopment,whichweexpectto supportthefull 60 framespersecond,
andwe furtherplanto extendthesystemto deliver full qualityuncompressedvideo.

Therearea numberof challengesto supportingfull uncompressedHDTV, primarily dueto limitationsof
theendsystem.We have describeda numberof areaswhereperformancemaybe improved; furtherwork
will implementsomeof theseideas.Many of thesetechniquesarealsovalid for high bit ratecompressed
video, transportof HDTV over IP providesanappropriatetested,but is not theonly applicationthatmay
benefitfrom thiswork.

50

Acknowledgements

This work is supportedby DARPA ITO underthe Next GenerationInternetprogram,and by hardware
donatedby Intel corporation.TheMAX gigapopandAbileneNOC providedassistancein conductingthe
wide-areatests.JuniperNetworksloanedequipmentfor ourdemonstrationatSuperComputing2001.

References

[1] 2netFX.Thundercastipadvancedmediaserver. http://www.2netfx.com/.

[2] J. C. R. Bennett,C. Partridge,and N. Shectman. Packet reorderingis not pathologicalnetwork behavior. IEEE/ACM
Transactions on Networking, 7(6):789–798,December1999.

[3] E. BlantonandM. Allman. On makingTCP morerobust to packet reordering. ACM Computer Communication Review,
January2002.

[4] D. D. ClarkandD. Tennenhouse.Architecturalconsiderationsfor anew generationof protocols.Computer Communications
Review, 20(4):200–208,September1990.

[5] S.Floyd, M. Handley, J.Padhye,andJ.Widmer. Equation-basedcongestioncontrolfor unicastapplications.In Proceedings
of ACM SIGCOMM 2000, Stockholm,Sweden,2000.

[6] L. Gharai,G. Goncher, C. S. Perkins,D. Richardson,andA Mankin. RTP PayloadFormat for SMPTE292M. Internet
EngineeringTaskForce,July 2001.Work in progress.

[7] O. HodsonandC. S.Perkins.Robust-audiotool, version4. http://www-mice.cs.ucl.ac.uk/multimedia/software/rat/.

[8] D. Hoffman,G. Fernando,V. Goyal, andR. Civanlar. RTP PayloadFormatfor MPEG1/MPEG2Video,January1998. RFC
2250.

[9] Iperf. http://dast.nlanr.net/Projects/Iperf/.

[10] ISO/IEC. Genericcodingof moving picturesandassociatedaudioinformation:Systems,1996. ISO/IEC13818-1.

[11] ISO/IEC. Genericcodingof moving picturesandassociatedaudioinformation:Video,1996. ISO/IEC13818-2.

[12] NTT Innovation Laboratories.UncompressedHDTV transmissionsystemover the internet. NTT PressRelease,October
2001.http://www.ntt.co.jp/news/news01e/0110/011026.html.

[13] Societyof Motion PictureandTelevision Engineers.Bit-serialdigital interfacefor high-definitiontelevision systems,1998.
SMPTE-292M.

[14] Universityof Washington.Internethdtv. http://www.washington.edu/hdtv/.

[15] V. Paxson.End-to-endinternetpacket dynamics.IEEE/ACM Transactions of Networking, 7(3),June1999.

[16] C. S.Perkins,O. Hodson,andV. Hardman.A survey of packet lossrecovery techniquesfor streamingmedia.IEEE Network
Magazine, September/October1998.

[17] TheInternet2project.http://www.internet2.edu/.

[18] SuperNetLandSpeedRecord.http://www.ngi-supernet.org/wan-speed.html.

[19] J.Rosenberg andH. Schulzrinne.An RTPpayloadformatfor genericforwarderrorcorrection,December1999.RFC2733.

[20] H. Schulzrinne.RTPprofile for audioandvideoconferenceswith minimal control,January1996.RFC1890.

[21] H. Schulzrinne,S.Casner, R. Frederick,andV. Jacobson.RTP:A transportprotocolfor real-timeapplications,January1996.
RFC1889.

[22] DVS Digital VideoSystems.Hdstationoemcard.http://www.dvs.de/english/products/HDStationPRO/HDStationOEM.htm.

[23] Tektronix. Universalnetwork accesssystem.http://www.tektronix.com/Measurement/commtest/darpa/darpa.html.

[24] TheDARPA SuperNettestbed.http://www.ngi-supernet.org/.

[25] D. Tynan.RTPPayloadFormatfor BT.656VideoEncoding,October1998.RFC2431.

51

52

Applied Techniques for High Bandwidth Data Transfers across Wide Area Networks

Jason Lee, Dan Gunter, Brian Tierney
Computing Sciences Directorate

Lawrence Berkeley National Laboratory
University of California, Berkeley, CA 94720

{jrlee,dkgunter,bltierney}@lbl.gov

Bill Allcock, Joe Bester, John Bresnahan, Steve Tuecke
Mathematics and Computer Science Division

Argonne National Laboratory
9700 South Cass Ave., IL, 60439

 {allcock,bester,breshaha,tuecke}@mcs.anl.gov

Abstract

Large distributed systems such as Computational/Data Grids require large amounts of data to be co-located with the
computing facilities for processing. Ensuring that the data is there in time for the computation in today’s Internet is a
massive problem. From our work developing a scalable distributed network cache, we have gained experience with
techniques necessary to achieve high data throughput over high bandwidth Wide Area Networks (WAN). In this paper,
we discuss several hardware and software design techniques and issues, and then describe their application to an
implementation of an enhanced FTP protocol called GridFTP. We also describe results from two applications using
these techniques, which were obtained at the Supercomputing 2000 conference.

1.0 Introduction
Large distributed systems such as Computational/Data Grids [10] require large amounts of data to be co-located with

the computing facilities for processing. Ensuring that the data is there in time for the computation to start in today’s
Internet is a massive problem. At LBNL we developed a high-performance striped data cache called the Distributed
Parallel Storage System (DPSS)[29]. The idea behind the striped server is shown in Figure 1: several disks on several
hosts operate in parallel to supply a very high-speed data stream to one or more clients. The DPSS was specifically
optimized for access to large data objects by remote clients over a wide area network.

In the course of designing and using the DPSS we have gained experience with some techniques to achieve high data
throughput over the WAN. In addition, some general lessons have been learned on the proper configuration of
hardware. The following is a brief summary of these techniques, several of which are described in more detail in later
sections of this paper:

Figure 1: Striped Data Server Architecture

Client Application

"master" server

Parallel

Disks

data server

Parallel

Disks

data server

Parallel

Disks

data server

data blocks

data blocks

data blocks

Logical Block
Requests

forwarded
data block
requests

53

• use parallel everything (i.e.: servers, disks, SCSI controllers, network cards)
• use tuned TCP buffers, optimally set for each client
• use parallel streams, but only if the receive host is powerful enough
• use asynchronous and overlapped network and disk I/O
• no user-space data copying allowed (manipulate all data buffers via pointers)
• provide a simple client API that is as similar to the POSIX I/O interface as possible.

LBNL and ANL worked together to abstract these techniques from the DPSS and apply them to the development of
a high-throughput striped server which interfaces to the outside world using an enhanced version of the File Transfer
Protocol (FTP)[21] called GridFTP [11]. In this paper, we will use both the DPSS and GridFTP to illustrate
implementation issues related to the techniques, and the preliminary results from a very high bandwidth WAN test of
both storage servers at SuperComputing 2000.

1.1 Motivation
In scientific computing environments, small clusters of PC's running Linux are becoming more common, and these

will likely become an important part of the future data intensive computing landscape. Large PC clusters running data
intensive applications will likely use a Storage Area Network (SAN) with multiple high performance Redundant Array
of Inexpensive Disk (RAID)[20] systems as data servers. Although considerably cheaper than the previous large
RAID-based solutions, this type of hardware configuration is still relatively expensive because it requires the purchase
of Fibre Channel switches and interface cards[7]. For large clusters the costs will be amortized over many nodes, and
perhaps their required performance will be unattainable by other means, but sites with small clusters will probably not
be able to afford this.

Although small clusters most likely cannot afford an expensive SAN/RAID system, they do need better performance
than that provided by the typical solution today, which is a medium strength (e.g. 4 CPU) NFS server connected to a
single RAID system. This is certain to be a bottleneck for some data intensive applications. In order to attain the
necessary performance at a low cost, we argue that a set of striped servers composed of commodity hardware and
software, and running over the existing high-speed LAN, should be used. The scalability and price/performance ratio of
striped commodity servers make them an excellent solution for this environment

For example, a one terabyte data set might be staged from a tape system such as HPSS to a striped cache system. If
the data is striped across 8 data cache hosts, then a 32 node cluster would receive up to 8 times more I/O bandwidth than
it would using a single data server.

In addition to high-throughput from data cache to cluster, high-throughput from data cache to data cache across a
WAN is also very important. There are several scientific research communities that need the ability to copy and/or
replicate data quickly between disk caches at multiple sites [5][14]. A striped data server that is optimized for WAN
data transfers is ideal for this environment.

2.0 Techniques for High Performance
Several techniques for achieving high-performance from storage servers in a WAN environment are presented

below. It is important to note that these techniques are not additive, but rather complementary. Applying a single
technique may have little or no effect, because the absence of any one of the techniques can create a bottleneck.

2.1 Tuned TCP Buffers
The standard transport layer in use today is the Transport Control Protocol (TCP) [27]. TCP uses what it calls the

“congestion window”, or CWND, to determine how many packets can be sent before waiting for an acknowledgement.
The larger the congestion window size, the higher the throughput. This follows directly from Little’s Law[17] that
(average throughput)*(delay) = window size. The TCP “slow start” and “congestion avoidance” algorithms determine
the size of the congestion window [16]. The maximum congestion window is proportional to the amount of buffer space
that the kernel allocates for each socket. For each socket, there is a default size for this buffer, which can be changed by
the program (using a system library call) just before opening the socket. There is also a kernel-enforced maximum
buffer size. The buffer size can be adjusted for both the send and receive ends of the socket.

To get maximal throughput it is critical to use optimal TCP send and receive socket buffer sizes for the link you are
using. If the buffers are too small, the TCP congestion window will never fully open up. If the buffers are too large, the
sender can overrun the receiver, and the TCP window will shut down. The optimal buffer size of a link is (bandwidth) *
(round trip time (RTT)), where RTT equals twice the one-way delay on the link. For an explanation of why this is true,
see [22] and [29].

For example, if your RTT is 50 ms, and the end-to-end network consists of all 100BT ethernet or higher, the TCP
buffers should be 0.05 sec * 10 MB/sec = 500 KBytes. Two TCP settings need to be considered: The default TCP send

54

and receive buffer size, and the maximum TCP send and receive buffer size. Note that most of today’s UNIX operating
systems ship with a maximum TCP buffer size of only 256 KB (and the default maximum for Linux is only 64 KB!).
The maximum buffer size need only be set once. However, since setting the default TCP buffer size greater than 128
KB will adversely affect LAN performance, the UNIX setsockopt call should be used in your sender and receiver to set
the optimal buffer size for the link you are using. For more information on setting the default, maximum, and optimal
TCP buffers, consult the LBNL “TCP Tuning Guide”[26].

2.2 Parallel Streams
The design of TCP has been influenced much less by the high-performance community than by the demands of the

Internet, and in particular by the need to enforce fair sharing of precious network resources. For this reason, TCP’s
behavior is unnecessarily conservative for data-intensive applications on high bandwidth networks.

TCP probes the available bandwidth of the connection by continuously increasing the window size until a packet is
lost, at which point it cuts the window in half and starts “ramping up” the connection again. The higher the
bandwidth-delay product, the longer this ramp up will take, and less of the available bandwidth will be used during its
duration. When the window of the bottleneck link is large enough to keep the pipe full during the ramp up, performance
does not degrade. However this requires large buffers on all intervening routers. Furthermore, when there is random

loss on the connection, it has been shown [16] that the link utilization is proportional to , where q is the
probability of loss and is the bandwidth-delay product.

In order to improve this situation where the network becomes the bottleneck, parallel streams can be used. This
technique is implemented by dividing the data to be transferred into N portions and transferring each portion with a
separate TCP connection. The effect of N parallel streams is to reduce the bandwidth-delay product experienced by a
single stream by a factor of N because they all share the single-stream bandwidth (). Random packet losses for
reasonable values of q (<0.001) will usually occur in one stream at a time, therefore their effect on the aggregate
throughput will be reduced by a factor of N. When competing with connections over a congested link, each of the
parallel streams will be less likely to be selected for having their packets dropped, and therefore the aggregate amount
of potential bandwidth which must go through premature congestion avoidance or slow start is reduced. It should be
noted, however, that if the bandwidth is limited by small router buffers in the path, all the streams are likely to
experience packet loss in synchrony (when the buffer fills, arriving packets from each stream are all dropped) and thus
gain little advantage over a single stream.

Experience has shown that parallel streams can dramatically improve application throughput, (see [23] and [29]),
and can also be a useful technique for cases where you don’t have root access to a host in order to increase its maximum
TCP buffer size. However, parallel streams can drastically reduce throughput if the sending host is much faster than the
receiving host. For example, we have seen a 50% loss in aggregate throughput of 2 streams versus 1 stream on a Linux
2.2.14 receive host with a NetGear 1000BT card using a multi-threaded receiver.

2.3 Striped Disks and Servers
In order to aggregate the potential throughput of numerous hosts, each with one or more disk controllers and several

disks per controller (see Figure 2), the data being transferred should be subdivided into “stripes” and spread evenly
across the servers and disks. Different software or hardware systems may be responsible for striping at different levels
of the storage hierarchy. For example, a RAID system may stripe across the file system on a host, while a separate
server stripes across all the hosts. The important point is to make sure that the striping occurs at all levels. Thus the
disks can saturate the disk controllers, the disk controllers can saturate the network interface card (NIC), and the NICs
can saturate the router.

Placement algorithms affect the parallelism of the system. A good stripe placement for sequential operations, i.e. for
data access patterns with a high temporal locality, is round-robin. For random-access data sets with a high spatial
locality (i.e. several widely spaced areas of the dataset are accessed in parallel), partitioning the file into one contiguous
sequence of stripes per disk may improve performance.

The size of the stripe must balance the need to evenly distribute the data across the storage resources (smaller is
better) with the need to perform efficient low-level I/O to both disk and network (bigger is better). Although the exact
size of the stripe may not be critical, small numbers might lead to a horrible bottleneck. For example, see the results in
Table 1. For random access, large disk reads can dramatically improve disk throughput.

It is important to have enough parallel disks on each server to saturate the network under non-sequential access
patterns. For example, if you are using a 64KB stripe size and the same SCSI disk that was used for the results in Table

q(µ τ)2

µτ

µ

55

1, and your server network card has a maximum throughput of 40 MB/s, then you will need 8-9 parallel disks to saturate
the NIC.

3.0 Hardware Configuration Issues
The simple employment of these techniques in an application does not guarantee the absence of performance

bottlenecks. Interaction patterns across the hardware can play an important role in creating performance problems in an
application. In the following sections we will try to examine and summarize some of the technical issues that were
encountered during the development of the techniques.

3.1 Disks and Controllers
In today’s high-speed computing environment it is important to ensure that both your disks and controllers are not

simply fast enough, but well matched (properly configured and tuned). Improperly configured hardware can cause
unnecessary thrashing of system resources. In a bottom up approach to tuning the I/O subsystem one should first start
by testing the disks, then the controllers and then move up through the system till you reach host adapters.

The disks should be of equal size and speed. The state of the system is limited by its slowest component, therefore a
slower disk will constrain the performance of a striped file system. Smaller disks will skew the striping performance
because the larger disk will be accessed more often, instead of striping the data equally across all the disks.

Once a decision has been made on the which hardware to use, each component of the system should be tested. First,
test the speed of a single disk, in isolation. Next, add a second disk and check the speed of the two disks being accessed
simultaneously. With the addition of each disk, the aggregate speed should increase by the speed of a single disk. Once
the aggregate throughput stops increasing, the limit of the disk controller has probably been reached; if the throughput
is not enough to saturate the NIC, another disk controller will need to be added, and the process of adding disks should
continue.

For example, with a NIC on Gigabit Ethernet (~300Mb/s), a SCSI controller at 160Mb/s, and SCSI disks as shown in
Table1 above, to saturate the NIC for random access reads there will have to be 2 controllers and at least 2 disks per
controller.

3.2 Networking and Processors
As the network, disk and memory speeds all increase, the speed, power and number of CPU’s in the system become

an increasingly important factor. Many of the newer high-speed network cards now require a significant amount of
CPU power to drive them. The number of interrupts that are delivered to the OS when running at gigabit speeds can
overwhelm slower CPU’s. There are several ways to lower the load on the CPU:

• Interrupt coalescing; the network card packages several TCP packets together before interrupting the OS

Table 1

Access Method 1 KB blocks 8 KB blocks 64 KB blocks 128 KB blocks

sequential 18.2 MB/s 18.5 MB/s 22.7 MB/s 22.7 MB/s
random .08 MB/s 2.2 MB/s 4.6 MB/s 8.0 MB/s
speedup 231 13.3 4.9 2.7

Controller

NIC

HostDisks

Controller

NIC

HostDisks

...

data
Figure 2: Disk, controller, and network parallelism

56

• TCP checksumming on the network card, instead of in software on the host computer
• Larger Maximum Transmission Unit (MTU)
All three of these techniques attempt to accomplish the same goal: reduce the per-packet processing overhead. From

[6], “Smaller frames usually mean more CPU interrupts and more processing overhead for a given data transfer size.
Often the per-packet processing overhead sets the limit of TCP performance...”.

It should be noted that not all gigabit network interfaces support all these options, or will interoperate with other
cards or switches. Most notably when using a larger MTU (sometimes referred to as a Jumbo Frame) packets may not
be able to cross some networks or interoperate with some switches.

We tested several different vendors’ cards, and found a large degree of variance in how they performed, depending
on variables such as the PCI bus width (64 vs. 32bit), how much memory was on the card, what driver/OS were used to
drive the card. For instance, by changing from Linux kernel version 2.2 to version 2.4, our local area iperf throughput
values rose from approximately 320 Mb/s to just over 500 Mb/s using the same hardware. In conclusion, one should
always test out the specific cards in the environment that will be used in production.

3.3 Implementation
We have made two very different implementations of the various techniques that we have described in this paper.

The first one is the DPSS, which uses a custom API and was created especially for use in a WAN environment.
Secondly, groups at ANL and LBNL worked together to design a system that uses techniques learned while developing
the DPSS and applies these techniques to build a more general purpose high-performance FTP server. This ‘enhanced’
version of FTP. called GridFTP, supports striped servers, parallel streams, and tuned TCP window buffers, and was
developed in conjunction with ANL’s data transfer libraries [8].

Both the DPSS and the GridFTP server operated on an identical hardware configuration. Typical striped server
implementations consist of several low-cost Unix workstations as data block servers, each with several disk controllers,
and several disks on each controller. A four-server system with a capacity of one Terabyte (costing about $10-$12K in
late-2000) can produce throughputs of over 70 MB/s by providing parallel access to 20-30 disks.

3.4 DPSS
The main features of the DPSS are described in the first section and include but are not limited to: highly parallel,

tunable TCP buffers, and asynchronous I/O. During DPSS usage, requests for blocks of data are sent from the client to
the “DPSS master” process, which determines which “DPSS block servers” the blocks are located on, and forwards the
requests to the appropriate servers. The server then sends the block directly back to the client.

The application interface to the DPSS is through either a low level “block” API, or a higher level POSIX-like API.
The data layout on the disks is completely up to the application, and the usual strategy for sequential reading
applications is to write the data round-robin, striping blocks of data across the servers. The DPSS client library is
multi-threaded, where the number of client threads is equal to the number of DPSS servers. Therefore, the speed of the
client is scaled with the speed of the server, assuming the client host is powerful enough.

3.5 GridFTP
GridFTP consists of extensions to the FTP protocol to provide features necessary for a Grid environment. Use of a

common protocol provides interoperability: GridFTP can communicate with any existing FTP server, or any new
implementation that follows the extended FTP protocol.

Most current FTP implementations support only a subset of the features defined in the FTP protocol and its accepted
extensions. Some of the seldom-implemented features are useful to Grid applications, but the standards also lack
several features Grid applications require. We selected a subset of the existing FTP standards and further extended
them, adding the following features: Security (both Grid Security Infrastructure (GSI) and Kerberos support),
Parameter set/negotiate, which allows interoperability with existing FTP implementations, Third party transfers (server
to server), parallel transfers (multiple TCP streams per transfer), striped transfers (multiple host to multiple host),
partial file transfers, and flexible reliability / recovery functionality via a plug-in interface. The actual protocol
extensions are beyond the scope of this paper, but a proposed draft submitted to the Grid Forum may be reviewed at
http://www.gridforum.org.

GridFTP can be used for bulk data transfer as in this application, or can be used as a data access mechanism with
semantics very similar to Unix open/close/seek/read/write from an application perspective. For this implementation, the
physical mechanism employed is essentially a map of the file into a pool of 64KB blocks. The distribution of these
blocks is user selectable and may be either partitioned (the file is divided into n pieces and one piece is stored on each
node, where n is the number of nodes) or round robin.

57

To initiate a transfer, third party in this case, a control connection is established between the application and the
master server at each site. These master servers form control connections to the back end servers. Once these
connections are established, a fairly standard FTP protocol exchange takes place between the application and the master
servers. The master forwards the commands to the back end servers and condense the individual responses into a single
response that is then sent to the application. The back end servers check a local database to determine which blocks, if
any, they have, they then establish data connections with the appropriate source/destination server, with the specified
level of parallelism, and execute the transfer.

4.0 Results
Gaining access to the next generation of high-speed networks in order to explore the techniques outlined above is

difficult. We were able to participate in a contest called the “Bandwidth Challenge” at SuperComputing 2000, which
used a time-shared OC-48 (2.4 Gb/s) network path over NTON [19] and SuperNet [24] from LBNL in Berkeley, CA to
the conference show floor in Dallas, TX, as shown in [3]. Both the DPSS -- as a server for an application called Visapult
[3] -- and GridFTP participated in the contest, and each had exclusive access to this network path for a one hour run. We
were able to monitor the router in Berkeley during both runs. In this section, we will briefly describe each application,
and analyze their results. Due the transient nature of the network, we did not have time to run more controlled
experiments, so the degree to which these results characterize general performance characteristics of either the DPSS or
GridFTP is uncertain, and will be the subject of future work.

The servers for both the DPSS and GridFTP were identical hardware, which consisted of: 4 dual-processor Linux
boxes and 4 single-processor Solaris boxes, all with SCSI disks and a single controller, running over Gigabit Ethernet.

4.1 Visapult / DPSS Results
The LBNL entry in the challenge was a visualization application, Visapult, that transforms scientific simulation data

in parallel on a compute node, then transmits it in parallel over the network for rendering. The dataset, 80GB in size,
was stored on the DPSS at LBNL and the compute cluster, an 8-processor SGI Origin with 4 Gigabit Ethernet
interfaces, was in Dallas. This process of parallel reading of a large dataset from a distant location while transforming it
on a powerful compute node is common in high energy physics (HEP) applications. During the course of the contest,
background DPSS get operations were run to use up the spare DPSS bandwidth (roughly 500 Mb/s) due to a bottleneck
at Visapult’s rendering engine. The DPSS obtained a peak of 1.48 Gb/s and sustained throughput of 582 Mb/s, as
measured at the ingress router to the show floor.

A graph of 5-second polls of the router packet counts is shown in Figure 4. The graph shows the router throughput
over time. Because the test had 64 streams (8 nodes x 8 processors on the SGI), the CWND was only about 200KB,
instead of the 13MB a single stream would have required. This allowed us to better utilize the network and adapt to it.

NTON

8 node Storage
Cluster

85 ms RTT
C

om
pu

te
 C

lu
st

er
 (8

 n
od

es
)

Berkeley Lab:
.75 TB, 8 striped data

servers

ANL Booth
 Linux Cluster

OC-48OC-48

2 x 1000
BT

HSCC

SGI Origin (8 CPU)

SC 2000 Network
Challenge Application

1.5 Gb/s

4 x
1000BT

Qwest
ASCI Booth:

SGI Origin (8 CPU)

4 x
1000BT

Visapult Visualization
Application

File Transfer
Application

Figure 3: SC2000 Network Challenge Application Configuration

58

4.2 GridFTP Results
The ANL entry in the network challenge was a climate modeling application. This application is representative of a

wide range of data intensive applications. These applications require large amounts of data and, to reduce network
overhead, often employ replication to make the data access more efficient and less costly. ANL, through the Globus
project, provides the infrastructure required for such applications. During our hour of dedicated network access we were
transferring data to create a new replica of climate data at LBNL. We were able to transfer 230.8 GB of data, for an
agregrate data transfer rate of 512.9 Mb/s, with peaks of greater than 1 Gb/s over 5 second intervals.

On the show floor we had an eight node single CPU Linux cluster each equipped with 4 SCSI disks and a Gigabit
Ethernet adapter. These were connected to a Cisco switch with dual bonded GigE out to the show floor routers, then via
OC-48 to LBNL. The data files were 2 GB in size and were arranged using the partitioned layout on both source and
destination. Each node used a parallelism of four (4 TCP streams for its share of the data), and there were as many as
four files being transferred simultaneously. This resulted in a maximum of 128 total data streams (8 nodes x 4 streams x
4 files).

We performed 5-second polls to the LBNL router. A graph of the router throughput, smoothed with a 10-point
averaging window to make trends in the data clearer, is shown below in Figure 5

The data transfer for this application was very uneven and “bursty” for two reasons. One is the nature of the transfer.
A 2 GB file can be transferred in about 20 seconds and then the data connections must be torn down and a new transfer
started. This causes spikes in the data transmission rate, especially when all four files ended at approximately the same
time. We also had a several minute period where one of the receiving servers had crashed and we had to reboot, and
restart the transfer.

5.0 Conclusions
The techniques described in this paper and implemented in both GridFTP and the DPSS will be needed to realize the

potential of next generation high bandwidth networks. However, use of these techniques still requires extra effort and
knowledge usually not available to the application programmer. We feel that the example implementations here show
not only how to use these techniques, but also how these techniques can be accessed in a fashion that is not much
different then that of a local standard file access, while at the same time taking full advantage of a high speed wide area
network.

The basic functionality of GridFTP is currently in place. The code is in late alpha testing and should be going to beta
soon. When released it will be available under the Globus public license at http://www.globus.org. As a result of our
experiences at SC 2000 we have already made 2 small, but important improvements to our current implementation. We
have added 64 bit file support for larger than 2 GB files, and we have added data channel caching. The data channel
caching will be particularly useful since it will avoid the overhead of setup and tear down of the sockets, which can be
significant, particularly when authentication is enabled on the data channels. We are also going to explore the
possibility of implementing our striped server on top of a parallel virtual file system.

The DPSS project is now fully functional and can be downloaded from http://www-didc.lbl.gov/DPSS. While we are
still making minor adjustments to the DPSS, we are mostly interested in looking at how high bandwidth data transfer
needs can be integrated with higher-level services. We are investigating integration efforts in the areas of file

Figure 4: Throughput at SC 2000 router during Visapult Bandwidth Challenge run

59

replication, staging, caching, and location transparency. In addition, we are considering the use of dynamic data from
performance monitoring as a feedback mechanism to a live transfer. We feel that monitoring data can contribute on
several levels, such as what link to use, what storage resource to use in a replicated data set, and whether to move the
data to the computation or vice-versa.

6.0 Acknowledgments
This work was supported by the Director, Office of Science. Office of Advanced Scientific Computing Research.

Mathematical, Information, and Computational Sciences Division under U.S. Department of Energy Contract No.
DE-AC03-76SF00098. This is report no. LBNL-47183.

7.0 References

[1] B. Bershad et. al., “The Scalable I/O Initiative”, white paper, available through the Concurrent Supercomputing Consortium,
CalTech, Pasadena, CA Feb. 1993, http://www.cacr.caltech.edu/SIO/

[2] Bethel, et. al., “Bandwidth Statistics Reported by SciNet Router”, http://www-didc.lbl.gov/presentations/SC00.LBNL.netch-
allenge.pdf, Slide 5, November 2000

[3] Bethel, W., Tierney, B., Lee, J., Gunter, D., Lau, S., “Using High-speed WANs and Network Data Caches to Enable Remote
and Distributed Visualization”, Proceedings of the IEEE SuperComputing 2000 Conference, Nov. 2000, LBNL-45365

[4] Carns, P., Ligon III, Ross, R., Thakur, R., “PVFS: A Parallel File System For Linux Clusters”, Proceedings of the 4th Annual
Linux Showcase and Conference, Atlanta, GA, October 2000, pp. 317-327

[5] The DataGrid Project: http://www.cern.ch/grid/

[6] Dykstra, P., “Gigabit Ethernet Jumbo Frames”, http://www.columbia.edu/acis/networks/advanced/jumbo/jumbo.html

[7] “Fibre Channel · Overview of the Technology”, Fibre Channel Industry Association (FCIA), http://www.fibrechan-
nel.com/technology/overview.html

[8] Globus: http://www.globus.org

[9] Goland, Y. et. al, “HTTP Extensions for Distributed Authoring -- WEBDAV”, IETF RFC 2518, Feb. 1999

0 500 1000 1500 2000 2500 3000

GridFTP Throughput at LBNL Router

ACKs Into LBNL router To LBNL servers

T
hr

ou
gh

pu
t

server
crashconnection

tear-down/restart

Time (seconds)

Figure 5: Throughput at LBNL router during GridFTP Bandwidth Challenge run, smoothed

60

[10] The Grid: Blueprint for a New Computing Infrastructure”, edited by Ian Foster and Carl Kesselman. Morgan Kaufmann, Pub.
August 1998. ISBN 1-55860-475-8.

[11] GridFTP: Universal Data Transfer for the Grid, White Paper, http://www.globus.org/datagrid/deliverables/C2WPdraft3.pdf

[12] Hartman, J., Murdock, I., Spalink, T., “The Swarm Scalable Storage System”, Proceedings of the 19th IEEE International
Conference on Distributed Computing Systems, June 1999.

[13] Hartman, J., Ousterhout, J, “The Zebra Striped Network File System”, ACM Transactions on Computer Systems 13, 3,
August 1995, 279-310.

[14] Hoschek, W., J. Jaen-Martinez, A.Samar, H. Stockinger, K. Stockinger, “Data Management in International Data Grid
Project”, to IEEE, ACM International Workshop on Grid Computing (Grid'2000), Bangalore, India, 17-20 Dec. 2000.

[15] Hwang, K, J. Jin, P. Novaux, “RAID-x: A New Distributed Disk Array for I/O Centric Cluster Computing”, In Proc. 9th
IEEE Symp. on High Performance Distributed Computing, Aug 2000

[16] Jacobson, V., “Congestion Avoidance and Control,” Proceedings of ACM SIGCOMM ‘88, August 1988.

[17] Kleinrock, L., Queueing Systems, Vols. I&II, J. Wiley and Sons, 1975.

[18] Lakshman, T., Madhow, U., “The performance of TCP/IP networks with high bandwidth-delay products and random loss”,
IEEE Transactions on Networking, vol. 5 no 3, pp. 336-350, July 1997

[19] National Transparent Optical Network (NTON) http://www.ntonc.org/

[20] Patterson, David A., G. Gibson, R. Katz, “A Case for Redundant Arrays fo Inexpensive Disks (RAID). In International Con-
ference on Management of Data (SIGMOD), pages 109-116, June 1988

[21] Postel, J. and Reynolds, J., “File Transfer Protocol (FTP)”, IETF RFC 959, October 1985

[22] Semke, J. Mahdavi, M. Mathis, “Automatic TCP Buffer Tuning,” Computer Communication Review, ACM SIGCOMM,
volume 28, number 4, Oct. 1998.

[23] Sivakumar, H, S. Bailey, R. L. Grossman, “PSockets: The Case for Application-level Network Striping for Data Intensive
Applications using High Speed Wide Area Networks”, Proceedings of IEEE Supercomputing 2000, Nov., 2000.
http://www.ncdm.uic.edu/html/psockets.html)

[24] SuperNet Network Testbed Projects: http://www.ngi-supernet.org/

[25] Shen, X, A. Choudhary, “A Distributed Multi-Storage Resource Architecture and I/O Performance Prediction for Scientific
Computing”, In Proc 9th IEEE Symp. on High Performance Distributed Computing, Aug 2000

[26] “TCP Tuning Guide”, http://www-didc.lbl.gov/tcp-wan.html

[27] Transmission Control Protocol (TCP), IETF RFC 793, September 1981

[28] Tierney, B., Johnston, W., Crowley, B., Hoo, G., Brooks, C., Gunter, D., “The NetLogger Methodology for High Perfor-
mance Distributed Systems Performance Analysis”, Proceedings of the IEEE High Performance Distributed Computing con-
ference (HPDC-7), July 1998, LBNL-42611

[29] Tierney, B. J. Lee, B. Crowley, M. Holding, J. Hylton, F. Drake, “A Network-Aware Distributed Storage Cache for Data
Intensive Environments”, Proceeding of IEEE High Performance Distributed Computing conference (HPDC-8), August
1999, LBNL-42896. http://www-didc.lbl.gov/DPSS/

[30] Watson, R., Coyne, R.,“The Parallel I/O Architecture of the High-Performance Storage System (HPSS)”, IEEE MS Sympo-
sium, 1995

61

Abstract
Many high performance distributed applications use
only a small fraction of their available bandwidth. A
common cause of this problem is not a flaw in the
application design, but rather improperly tuned net-
work settings. Proper tuning techniques, such as set-
ting the correct TCP buffers and using parallel
streams, are well known in the networking commu-
nity, but outside the networking community they are
infrequently applied. In this paper, we describe a
service that makes the task of network tuning trivial
for application developers and users. Widespread
use of this service should virtually eliminate a com-
mon stumbling block for high performance distrib-
uted applications.

1.0 Introduction
Internet backbone speeds have increased considerably in

the last few years due to projects like Internet II and NGI.
At the same time, projects like NTON [25] and SuperNet
[34] are providing a preview of the near future of wide area
networks. Unfortunately, distributed applications often do
not take full advantage of these new high-speed networks.
This is largely due to the fact that the applications use the
default parameters for TCP, which have been consciously
designed to sacrifice optimal throughput in exchange for
fair sharing of bandwidth on congested networks. In order
to overcome this limitation, distributed applications
running over high-speed wide-area networks need to
become “network-aware” [32][36], which means that they
need to adjust their networking parameters and resource
demands to the current network conditions.

There exists a large body of work showing that good
performance can be achieved using the proper tuning
techniques. The most important technique is the use of the
optimal TCP buffer size, and techniques for determining the
optimal value for the TCP buffer size are described in [35].
Another important technique is to use parallel sockets, as
described in [31]. Using a combination of these techniques,
applications should be able to utilize all the available
network bandwidth, which is demonstrated in [4], [1], and
[16].

However, determining the correct tuning parameters can
be quite difficult, especially for users or developers who are
not network experts. The optimal TCP buffer size and
number of parallel streams are different for every network
path, vary over time, and vary depending on the
configuration of the end hosts. There are several tools that
help determine these values, such as iperf [14], pchar [26],
pipechar [27], netspec [23], and nettest [22], but none of
these include a client API, and all require some level of
network expertise to use. Another tool is NWS [38], which
applications can use to determine upper bounds on
throughput from the network, but it does not tell the
applications how to achieve that throughput. Other groups
are addressing this problem at the kernel level, such as the
web100 project [37], Linux 2.4 [17], and others [9], as
described below. Still others are addressing this within the
application. The autoftp file transfer service from NCSA
[19] attempts to determine and set the optimal TCP buffer
size for each connection.

In this paper we describe a service which provides
clients with the correct tuning parameters for a given
network path. We call this service Enable, because it
enables applications to optimize their use of the network
and achieve the highest possible throughput. The goal of
the Enable service is to eliminate what has been called the
“wizard gap” [21]. The wizard gap is the difference

Enabling Network-Aware Applications

Brian L. Tierney, Dan Gunter, Jason Lee, Martin Stoufer

Computing Sciences Directorate
Lawrence Berkeley National Laboratory

University of California, Berkeley, CA, 94720

Joseph B. Evans
Information & Telecommunication Technology Center

 University of Kansas, Lawrence, KS 66045

This paper published in the proceedings of the Tenth IEEE
International Symposium on High Performance Distributed
Computing, August, 2001, San Francisco, CA.

62

between the network performance that a network “wizard”
can achieve by doing the proper tuning, compared to the
performance of an untuned application. The Enable service
can act as that wizard. Enable hides the details of gathering
the data from multiple network monitoring tools behind an
intuitive, easy to use interface. From the application
developer’s perspective, Enable provides advice on the
correct tuning parameters without requiring knowledge
about how these are obtained. Thus, the selected algorithms
and tools for computing these parameters can be changed
transparently to the application. This frees the distributed
application developer from needing to understand the wide
variety of available monitoring tools.

The Enable service works as follows: An Enable server
is co-located on every system that is serving large data files
to the wide-area network (e.g.: an FTP or HTTP server).
The Enable service is then configured to monitor the
network links to a set of client hosts from the perspective of
that data server. Network monitoring results are stored in a
database, and can be queried by network-aware distributed
components at any time. The Enable service runs the
network tests on some pre-configured time interval (e.g.:
every 6 hours, or whenever a new client connects). The
Enable service API makes it very easy for application or
middleware developers to determine the optimal network
parameters. To take advantage of the Enable tuning service,
distributed applications must be modified to be support
network tuning such as the ability to set the TCP buffer size
[35] or the ability to create and use multiple data streams to
transfer data in parallel.

The network tuning parameters that the Enable service is
initially concentrating on are those required by large bulk
data transfer applications, such as the various “Data Grid”
[5] projects. These include the Particle Physics Data Grid
[28], GriPhyn [10], the Earth Systems Grid [7], and the EU
DataGrid [12]. These projects all require the efficient
transfer of very large scientific data files across the
network. We are not yet addressing the tuning requirements
of other types of applications, such as latency-sensitive
applications.

2.0 Background
TCP uses what it calls the “congestion window” to

determine how many packets can be sent at one time. The
larger the congestion window size, the higher the
throughput. The TCP “slow start” and “congestion
avoidance” algorithms determine the size of the congestion
window [20]. The maximum congestion window is related
to the amount of buffer space that the kernel allocates for
each socket. For each socket, there is a default value for the
buffer size, which can be changed by the program using a
system library call just before opening the socket.

The buffer size must be adjusted for both the send and
receive ends of the socket. To get maximal throughput it is
critical to use optimal TCP send and receive socket buffer
sizes for the link you are using. If the buffers are too small,
the TCP congestion window will never fully open up. If the
buffers are too large, the sender can overrun the receiver,
and the TCP window will shut down. The optimal TCP
window size is the bandwidth delay product for the link.
For more information, see section 5, and [30] and [36].

As network throughput speeds have increased in recent
years, operating systems have gradually changed the
default buffer size from common values of 8 kilobytes to as
much as 64 kilobytes. However, this is still far too small for
today’s high speed networks.

For example, there are several hosts which are part of the
Particle Physics Data Grid [28] with 1000 BT network
interfaces which are connected via an OC12 (622 Mbit/sec)
WAN, with typical round-trip network latencies of about 50
ms. For this type of network, the bandwidth delay product,
and hence the TCP buffer, should be roughly 3.75 MBytes.
Using a default TCP buffer of 64 KB, the maximum
utilization of the pipe will only be about 2% under ideal
conditions. Furthermore, 10 Gbit/sec ethernet and OC192
WAN’s (9.6 Gbit/sec) are just becoming available, which
will require TCP buffer sizes of roughly 62 MBytes per
connection to fully utilize the link! (However, typical
workstations today can, at best, drive the network at about 1
Gbit/sec, so TCP buffers requirements of this size are still a
couple of years away)

As the awareness of the importance of TCP buffer
tuning has increased, several data transfer tools now
include the ability for the user to set this value. For example
the gsiftp [1][11], bbftp [3], SRB [2], HPSS [13], and DPSS
[36] all provide this ability. Additionally, some systems,
such as DPSS and gsiftp, also support the ability for users
to request parallel data streams. The psockets library from
the University of Illinois makes it easy for applications
developers to add parallel sockets to their applications [31].

Figure 1 shows the advantage of using tuned TCP
buffers and parallel streams in the gsiftp program for 100
MByte data transfers between Lawrence Berkeley National
Lab in Berkeley, CA, and CERN in Geneva, Switzerland.
The round trip time (RTT) on the connection was measured
with ping to be 180 ms and the bottleneck link was
measured with pipechar to be 45 Mbit/sec. With different
tuning parameters, actual measured transfer speeds spanned
more than an order of magnitude. Tuned TCP buffers alone
provided a 9x performance increase, and parallel sockets
alone yielded a 12x performance improvement. Using
parallel streams with tuned TCP buffers we were able to
saturate the network. This combination of techniques
provided a 15x performance increase, which was an

63

additional 40% improvement over just tuned buffers and a
26% improvement over just parallel streams.

The use of parallel streams provides an increase over
optimally tuned single stream TCP because TCP is rather
sensitive to any loss or congestion, and slows down
whenever any loss is detected. Our testing has shown that it
is extremely rare that a TCP stream keeps its congestion
window at the optimal bandwidth delay product size for
very long. The use of multiple streams allows one to utilize
a greater fraction of the network. Note that this may be
considered a “rude” thing to do, depending on how
congested the network is and whether or not you are
slowing down others by doing this.

However, as with all systems that provide the ability to
tune the TCP buffer size or the number of parallel streams,
the gsiftp user must set these values by hand, and
determining what values to use is not simple. In general,
using large TCP buffers and parallel streams improves
throughput, so it may be tempting for users or developers to
simply use big buffers and some parallel streams by default.
However this is not a good idea. Besides wasting operating
system resources, under certain circumstances overly large
TCP buffers or too many parallel streams can significantly
decrease performance, as shown in the Tables 1 and 2.

Table 1 shows the result of tests between two 333 MHz
Sun Ultra 1 hosts running Solaris 2.7, connected by a
Gigabit Ethernet LAN with a 1500 byte MTU (maximum
transmission unit). Note that setting the TCP buffer too
large results in a large performance loss. This is because
when the buffers are too large, the sender can overrun the
receiver, and the TCP window will shut down. Not all
operating systems have this behavior (e.g.: Linux does not),
but this reemphasizes that taking the simple approach of
just setting large buffers everywhere is not a good idea.

Table 2 shows the result of tests between a Sun Ultra 1
(333 Mhz) sender and a 450 MHz Pentium II Linux 2.2
receiver also over a OC-12 WAN with a 1500 byte MTU. In
this case we see a large performance penalty using parallel
data streams. This is because a 450 MHz PII processor is
not powerful enough to handle load from the Gigabit
network interface card. It requires most of the CPU just to
read one stream, and multiple streams just step on each
other.

The Enable service makes it easy for applications to use
the correct settings and avoid these types of problems.

3.0 Related Work
There are a number of tools to help determine the

optimal TCP parameters for a given network path. For
example, one can run a series of iperf tests with a range of
buffer sizes and numbers of parallel data streams to
determine the optimal values. Other tools such as pchar
[26], pipechar [27], and pathrate [6] can be used to
estimate the bandwidth and latency characteristics of the
network, providing information needed to estimate the
optimal TCP buffer size. However, these tools do not
include a client API, and require some level of network
expertise to use. The Enable service can be used to run any
of these tools, collect and store the results, and make the
results available to network-aware applications.

Additionally, there are some other projects that are also
working on eliminating the “wizard gap”. The web100
project is developing a version of the Linux kernel which
will perform dynamic, transparent, automatic TCP tuning
for user level processes. If successful, this has the potential
to eliminate the TCP buffer tuning issue. Fisk and Feng [9],
have also demonstrated promising results with Linux kernel

0

5

10

15

20

25

30

no tuning tuned TCP
buffers

10 parallel
streams,
no tuning

tuned TCP
buffers, 3

parallel
streams

T
h

ro
u

g
h

p
u

t
(M

b
it

s/
se

c)

Figure 1: gsiftp results using tuned TCP buffers
and parallel streams

Table 1 : Sender overruns receiver

TCP Buffer
Size (MB)

Throughput
(Mbits/sec)

0.125 246

1 195

4 105

8 32

Table 2 : Parallel streams

Number of
Streams

Total
Throughput
(Mbits/sec)

1 250

2 100

4 50

64

modifications that autotune the TCP buffer size by
estimating link bottleneck bandwidth for each socket
connection.

The Linux 2.4 kernel also includes an option for TCP
buffer autotuning, and initial testing shows that this helps
quite a bit, but is still not as good as hand tuning (see the
results section below). Unfortunately the developers of this
code are not part of the IETF or any TCP research
community, and any solution they come up with is not
likely to be standardized or adopted very quickly.

Therefore, while there is some hope that automatic TCP
buffer tuning will be built into some operating systems in
the future, it will probably not be built into most operating
systems in the near future.

4.0 The Enable Service
The Enable service has three distinct components. First,

there is the Enable Server, which keeps an up-to-date record
of network parameters between itself and other hosts. The
second component is a protocol for clients to communicate
with the servers. Finally, there is a simple API that makes
querying the Enable Servers trivial for application
developers. A primary design goal for the Enable service
was ease of installation, configuration, and use.

The architecture of Enable is shown in Figure 2. The
simplicity of the design is its strength. An Enable Server is
installed on every data server host, such as an FTP server,
and that Enable server is responsible only for determining
the optimal network parameters between clients and itself.
Other monitoring systems, such as NWS, can be configured
to monitor an arbitrary mesh, or “clique” of hosts. This
design, while very powerful, makes these systems more
complicated to deploy and configure, as it requires software
to be installed on every host in the clique. We have decided
to sacrifice this functionality for ease of deployment and
configuration. In return, we avoid the problems of

centralized coordination and location of the Enable servers,
as they are always co-located with the data server.

The following section describes the functionality and
implementation of the Enable Service.

4.1 Functionality
The Enable Server will periodically run tests between

itself and a number of “client hosts”. These client hosts may
have been read at start-up from a configuration file,
manually added using an API or command-line utility, or
automatically added by monitoring log files from the data
server, such as HTTP or FTP logs. The results of the
network tests will be stored in a database. The selection and
scheduling of tests for each client is dynamically
configurable.

Clients can query the Enable server, which is listening
on a well-known port, for network parameters, also called
“network advice”. The protocol for doing this is XML-RPC
[39], a standard XML-based protocol that performs remote
procedure calls over HTTP. Use of a standard protocol
means that third parties can easily interface with Enable
without using the Enable API or libraries.

There is a simple API that clients can use to query the
Enable Server. For example:

tcp_buffer_size =
EnableGetBufferSize(ftp_hostname)

returns the optimal buffer size between itself and the
FTP server host, and:

net_info =
EnableGetNetInfo(ftp_hostname)

returns the result of all network tests for that network
path. One could also wrap an application in a script that
called the Enable Server, and then set the buffer size via a
command line argument. For example, we have written a
script that automatically finds and sets the “-B” flag (which
sets the TCP receive buffer) for the ncftpget FTP client
program [24].

Currently the Enable server supported network tests are
ping, pipechar, pchar, and iperf, but only ping and pipechar
are run by default.

Since the network tests are run periodically, there is the
possibility that one of the tests will be run during some
unusual network problem, and the results of this test will
not lead to useful results for tuning applications. Therefore,
a trimmed mean, in which the top and bottom 10% of
values are discarded before calculating the mean of the
most recent N values (N is configurable, default is 10), is
reported to the client.

In order to more quickly detect a long-term shift in
network behavior, the mean and standard deviation of the
last N values if also calculated. If three successive values
are farther than 2.5 standard deviations from the mean, it is

Figure 2: Enable Service Architecture

network

Client Host

Data Server
 (e.g. FTP)

results
DB

Enable
Service

Data Server Host

results
DBData Server

 (e.g. FTP)

Enable
Service

Data Server Host

Client Host

Client Host

Network tests are run between
servers and clients (but not
between clients), e.g.: ping,
pipechar, pchar, iperf

Enable data base: contains results
of all tests from the server host to
all its clients.

65

assumed that the network behavior has changed, and the
older N-3 values are discarded. This approach is based on
the assumption that the distribution of test results closely
approximates a normal distribution. More testing is needed
to validate this method for handling data fluctuations.

4.2 Use-case
In this section we illustrate the use of the Enable service

with a simple use-case in a Data Grid application. In the EU
DataGrid project [8], huge volumes of high-energy physics
data must be replicated at several sites around the world.
For example, five sites may wish to create a replica of a
particular set of data that is stored on a data server at CERN
in Geneva, Switzerland. In this project, gsiftp, a data
transfer utility based on FTP that provides TCP buffer
tuning and parallel stream support is used to transfer data
between CERN and each of the other sites.

In this environment, there is a large variability in delay
and bandwidth to each of the replication sites, as shown in
Figure 3. Note that no statically configured TCP buffer size
will work well for all the clients: a buffer of 256 KBytes
will penalize clients A, B and E while a buffer of 1-2
MBytes will penalize A, C, and D (due to effects shown in
Table 1). Data Grid file transfer tools such as gsiftp allow
the users to specify a buffer size. However this solution is
far from optimal, as it requires too much knowledge and
work on the part of the users. Instead, the gsiftp client can
be wrapped in a script that uses the Enable service find the
optimal TCP buffer size for each path.

4.3 Implementation
The Enable server is implemented using the Python

language [29], and uses XML-RPC [39] for client-server
communication. The use of Python with XML-RPC greatly
simplified the development of the server, as Python
includes very powerful built in modules for threads, queues,
databases, regular expressions, configuration file parsing:
i.e. almost everything required by this service. XML-RPC

was chosen rather than SOAP [33] because the current
SOAP implementations are still evolving, and because
XML-RPC is simpler and provides everything we need.

The server uses a thread pool of worker threads for
running the network tests, and a scheduler thread to feed
jobs to the workers. By limiting the number of worker
threads it is easy to limit the amount of load generated by
the testing. There is also a thread for scanning log files (e.g.
FTP logs) for new hosts to monitor. We have developed
client APIs for the Python, Java, and C languages.

Enable was designed for the easy addition of new tests,
and each test is realized by a class instance in Enable.
Enable requires only 3 specific methods in the new class to
be implemented: “init”, “can_I_run” (is it safe to start this
test), and “run”.

We have tested an Enable server that was configured to
monitor 500 hosts, running each test every 4 hours using 8
worker threads, on a 500 MHz PIII Linux host. While
running tests, the Enable server consumed at most 9% of
the CPU, and used an average of only 130 Kbits/sec of
network bandwidth. (By default, 10 ping tests are run in
parallel, and use 12 Kbits/sec each, and only 1 pipechar can
run at a time, which generates only about 100 Kbits/sec of
network traffic). There are still some scalability issues to
address, as discussed in the section on future work below.

5.0 Results
To test the results of the Enable service, we used iperf as

a client/server pair over four different network paths: LBL
(Berkeley, CA) to CERN (Geneva, Switzerland); LBL to
ISI (Arlington, VA) over SuperNet; LBL to the University
of Kansas (Lawrence, KS), and ANL (Chicago, IL) to SRI
in Menlo Park, CA. Characteristics of these network paths
are summarized in Table 3. iperf was chosen for testing
because it is a simple tool that only performs network
transfers, thus ensuring that we are only measuring network
performance, and not some combination of network, disk,
and application performance.

The results are shown in Table 4. All testing used Linux
2.4 as a sending host. The first row is the results with no
tuning (with the default TCP buffers set to 64 KBytes, and
Linux 2.4 autotuning disabled). The second row shows
results for the Linux 2.4 autotuning option, with autotuning

Figure 3: Data Grid Use Case

45 Mbits/sec
180 ms RTT

buffer = 1000KB

100 Mbits/sec
100 ms RTT

buffer = 1250KB

100 Mbits/sec
13 ms RTT

buffer = 170KB

200 Mbits/sec
20 ms RTT

buffer = 500KB

site A

site B site C site D

site E

100 Mbits/sec
20 ms RTT

buffer =
250KB

Enable
Server

Data Server

Table 3 Test network path characteristics.

Path
Round Trip
Time (RTT)

Bottleneck Link
Bandwidth

LBL-CERN 180 ms 45 Mbits/sec

LBL-ISI East 80 ms 1000 Mbits/sec

LBL-ANL 60 ms 45 Mbits/sec

LBL-KU 50 ms 45 Mbits/sec

66

parameters set to allow up to 4 MByte TCP buffers. The
third row is hand-tuned iperf, meaning that iperf was run
with a range of TCP buffer settings, and the setting which
gave the maximum throughput is shown here. The fourth
row is the result from iperf using the TCP buffer size value
returned by the Enable service, which used ping and
pipechar to estimate the optimal TCP buffer size using the
following standard formula, as described in [35]:

optimal TCP buffer = RTT x (speed of
bottleneck link)

 The Enable server runs a ping test, sending a 1500 byte
packet 5 times. The round trip time is estimated to be the
average time for ping packets 2-5. The Enable server also
runs pipechar with the -bot option, which gives the speed of
the bottleneck hop in the network path between the Enable
server host and the client.

From this table one can see that Linux 2.4 autotuning
helps considerably, but not as much as hand tuning and
Enable tuning. Hand-tuned and Enable-tuned clients both
had nearly identical results. Note that when doing this type
of testing on production networks, the variability of the
results is very high, and these numbers are all just rough
estimates. However, the overall improvements from tuning
are quite clear.

6.0 Scalability Issues
We are currently addressing a number of scalability

issues that arise when running active network test tools.

6.1 Aggregation for Measurement Efficiency
In order to scale the Enable service to networks with

many clients, measurements need to be aggregated to avoid
redundant tests for hosts on the same subnet. Aggregation
involves the abstraction of a set of individual pairwise
performance behaviors by a single performance
characteristic. This is a widely used method to improve the
scalability of routing and quality of service schemes.
Unfortunately, there is a fundamental trade-off between
precision and scalability in any such aggregation technique.
The Enable service is implementing several schemes,
discussed below, which may be selected based on the
preferred policy.

The default, and likely most precise, approach is to
measure each pairwise path with a reasonably high rate of

repetition. The approaches that follow attempt to improve
efficiency while maintaining a reasonable level of
precision.

A fairly conservative policy is to measure all clients at
least once to insure precision. This approach allows a
reasonably reliable database of paths and bottlenecks to be
developed. By measuring the pairwise behavior at least
once, some network pathologies can be avoided. For
example, two clients might appear to be on the same subnet,
but one might be directly connected via Ethernet, while the
other is connected via a (relatively slow) dialup server. The
bottleneck in the former case would likely be somewhere in
the wide area network, while the dialup link would be the
constraint in the latter case. Direct measurement would
clearly identify the differing bottleneck locations.

Once the performance of a client/server pair is measured
and a bottleneck link is identified, a table of clients and
bottlenecks can be created. The Enable service then
suppresses additional redundant testing to clients with the
same bottleneck link, and sets a time after which further
pairwise testing might be performed. Tests to one of the
clients behind the bottleneck can still be performed more
frequently to update the state of the constraining link.

An example appears in Table 5. In this example, it can
be seen that the bottleneck for clients 129.237.116.6 and
129.237.127.152 is the same, that is, 164.113.232.202.
Occasional testing to one of 129.237.116.6 or
129.237.127.152, but not both, would be performed to
update the state of the performance constraint.

The Enable service also implements more aggressive,
less precise schemes for aggregation of measurements.

A simple approach is to base the decision on the
bottleneck characteristics. Tools such as pipechar provide

Table 4 . Experimental throughput using four tuning methods.

Tuning Method LBL-CERN LBL-ISI east LBL-ANL LBL-KU

No Tuning 2 Mbits/sec 5 Mbits/sec 5 Mbits/sec 6 Mbits/sec

Linux 2.4 Autotuning 6 Mbits/sec 110 Mbits/sec 12 Mbits/sec 9 Mbits/sec

Hand Tuning 18 Mbits/sec 266 Mbits/sec 17 Mbits/sec 27 Mbits/sec

Enable Tuning 18 Mbits/sec 264 Mbits/sec 16 Mbits/sec 26 Mbits/sec

Table 5 Bottlenecks to Clients

Client Bottleneck Router

129.237.116.6 164.113.232.202

129.237.127.152 164.113.232.202

131.243.2.12 131.243.128.100

131.243.2.91 131.243.128.100

192.195.6.68 144.232.0.171

67

both bottleneck identification and traceroute information
from server to client. If pipechar indicates that a host is
behind a known bottleneck with particular characteristics
(perhaps below a certain bandwidth threshold), any
subsequent clients appearing behind that bottleneck might
receive like treatment. For example, if the bottleneck is
below T1 rates, it might be assumed that all other clients
behind that bottleneck, as determined by traceroute, are
limited by that particular link and that no additional tests
are necessary within a certain time frame.

Another scheme is based upon identification of subnets.
In particular, a client sharing an IP address prefix with
another client already in the table gets similar treatment.
The extent of the client network might be based on routing
advertisements, and determined by querying a Looking
Glass [18] server. This obviously abstracts away the
internal details of the client networks in favor of simplicity.

The choice of aggregation policies can be determined
when the service is configured.

6.2 Measurement Frequency
Sophisticated mechanisms for controlling the test

frequency are also needed to provide scalability.
The Enable service can base these decisions on the

measurements themselves and on the client requests. In
particular, the measurements on a particular path will likely
be correlated in time. The degree of time correlation can be
used to determine the valid period for a particular
measurement, and hence the time at which testing should be
resumed. This can also be combined with the client requests
(specifically the size of transfer requested) to determine if
additional measurements need to be derived from the
transfer itself and the parameters need to be updated
accordingly.

In addition, it is necessary that the service implement an
aging and purging mechanism to remove old clients so that
the database size does not increase monotonically.

6.3 Other Scaling Issues
There are other ways in which scalability can be

improved. For example, the Enable service should have the
ability to monitor the load that all its tests are placing on the
network, to ensure that its total load does not exceed some
predefined threshold. The Enable architecture allows a
single server to implement this in a straightforward fashion.
Future work might investigate ways in which Enable
servers on the same network might coordinate to control
testing loads on shared paths.

7.0 Future Work
A great deal of work remains to be done on the Enable

service. The next scheduled addition is the ability to give
advice on the number of parallel streams to use. Our tests

have shown that the optimal number of streams depends on
a number of factors, including host load / processing power,
and congestion of the network. The Enable server will base
its estimate on both the client library’s estimate of the host
CPU speed and the server’s network testing results.

We also plan to do more detailed analysis of the results
of the various network tests, so that we can detect
anomalies and make better TCP window estimates. When
we can accurately identify results that lie outside the realm
of normal measurement error, we might throw out the
value, flag the result as a “temporary anomaly”, generate an
email message to a network administrator, and so on.

Another issue we need to address is that of asymmetric
paths. Internet routing data has shown that as many as 20%
of the paths are asymmetric, especially very long paths
[15]. Any measurements or tuning based on round-trip time
on an asynchronous path may be meaningless. We want to
explore this issue further.

The other future work that we have planned is to add
support for providing network Quality of Service (QoS)
advice. There are many predictions that soon networks will
support various levels of QoS, and applications will be able
to request a given QoS level depending on application
requirements. We envision that the decision of which QoS
level to request will be even more difficult than determining
the optimal TCP buffer setting, and we believe the Enable
service has the potential to help applications with this
decision.

8.0 Conclusions
Network tuning is critical for applications to fully utilize

high-speed networks, yet determining the proper tuning
parameters can be quite difficult, especially for users who
are not network “wizards”. The Enable service described
here can help applications achieve the same performance as
hand-tuned applications. We believe the most valuable use
of the Enable Service will be in Data Grid applications,
where by installing an Enable Server on each Data Grid file
server, applications can easily maximize their throughput to
or from those servers.

The Enable server and client libraries are available for
download at http://www-didc.lbl.gov/ENABLE/.

9.0 Acknowledgments
This work was supported by the Director, Office of

Science. Office of Advanced Scientific Computing
Research. Mathematical, Information, and Computational
Sciences Division under U.S. Department of Energy. The
LBNL work is under Contract No. DE-AC03-76SF00098,
and the University of Kansas work is under Contract No.
DE-FC03-99ER25399. This is report no. LBNL-47611.

68

10.0 References
[1] Allcock B., Bester, J., Bresnahan, J., Chervenak, A., Fos-

ter, I., Kesselman, C., Meder, S., Nefedova, V., Quesnel,
D., Tuecke, S., “Secure, Efficient Data Transport and Rep-
lica Management for High-Performance Data-Intensive
Computing”, http://www.globus.org/

[2] Baru, C., R. Moore, A. Rajasekar, M. Wan, “The SDSC
Storage Resource Broker,” Proc. CASCON'98 Conference,
Nov.30-Dec.3, 1998, Toronto, Canada.

[3] bbftp: http://ccweb.in2p3.fr/bbftp/

[4] Bethel, W., B. Tierney, J. Lee, D. Gunter, S. Lau, “Using
High-Speed WANs and Network Data Caches to Enable
Remote and Distributed Visualization”, Proceeding of the
IEEE Supercomputing 2000 Conference, Nov. 2000.

[5] Chervenak, A., Foster, I., Kesselman, C., Salisbury, C. and
Tuecke, S. “The Data Grid: Towards an Architecture for
the Distributed Management and Analysis of Large Scien-
tific Data Sets”. Journal of Network and Computer Appli-
cations, 2000.

[6] Dovrolis, C., Ramanathan P., Moore. D., “What Do Packet-
Dispersion Techniques Measure?”, Proceedings of the
2001 Infocom, Anchorage AK, April 2001.

[7] Earth Systems Grid Project: http://www.scd.ucar.edu/
css/esg/

[8] EU DataGrid Project, http://www.eu-datagrid.org/

[9] Fisk, M., Feng, W., “Dynamic Adjustment of TCP Window
Sizes”, LANL Report: LA-UR 00-3221.

[10] GriPhyN Project: http://www.griphyn.org/

[11] “GridFTP: Universal Data Transfer for the Grid”, White
Paper, http://www.globus.org/datagrid/

[12] Hoschek, W., Jaen-Martinez, J., Samar, A., Stockinger, H.
and Stockinger, K., Data Management in an International
Data Grid Project. In Proc. 1st IEEE/ACM International
Workshop on Grid Computing, 2000, Springer Verlag
Press. Bangalore, India, December 2000.
http://www.cern.ch/grid/

[13] HPSS, “Basics of the High Performance Storage System”,
http://www.sdsc.edu/projects/HPSS/

[14] iperf: http://dast.nlanr.net/Projects/Iperf/index.html

[15] Kalidindi, S., Zekauskas, M., “Surveyor: An Infrastructure
for Internet Performance Measurements”, Proceedings of
INET ‘99, http://www.isoc.org/inet99/4h/4h_2.htm

[16] Lee, J., D. Gunter, B. Tierney, W. Allock, J. Bester, J. Bre-
snahan, S. Tuecke, “Applied Techniques for High Band-
width Data Transfers across Wide Area Networks”, Dec.
2000, http://www-didc.lbl.gov/publications.html

[17] Linux 2.4 autotuning: http://www.linuxhq.com/ker-
nel/v2.4/doc/networking/ip-sysctl.txt.html

[18] Looking Glass: http://www.traceroute.org/

[19] Lui J., and Ferguson, J., “Automatic TCP socket buffer
tuning”, in Supercomputing 2000 Research Gems, Nov.
2000, http://dast.nlanr.net/Features/Autobuf/.

[20] Jacobson, V., “Congestion Avoidance and Control,” Pro-
ceedings of ACM SIGCOMM ‘88, August 1988.

[21] Mathis, M., “Pushing Up Performance for Everyone”, Talk
Slides, http://www.ncne.nlanr.net/news/workshop/1999/
991205/Talks/mathis_991205_Pushing_Up_Performance/

[22] Nettest: “Secure Network Testing and Monitoring”,
http://www-itg.lbl.gov/nettest/

[23] “NetSpec: A Tool for Network Experimentation and Mea-
surement”, Information & Telecommunication Technology
Center, University of Kansas,
http://www.ittc.ukans.edu/netspec/

[24] NCFTP: http://www.ncftp.org/

[25] National Transparent Optical Network (NTON);
http://www.ntonc.org/

[26] pchar: http://www.employees.org/~bmah/Software/pchar/

[27] Jin, G., Yang, G., Crowley, B., Agarwal, D., “Network
Characterization Service”, Proceedings of the IEEE High
Performance Distributed Computing conference, August
2001, http://www-didc.lbl.gov/NCS/

[28] Particle Physics Data Grid: http://www.ppdg.org/

[29] python: http://www.python.org/

[30] Semke, J. Mahdavi, M. Mathis, “Automatic TCP Buffer
Tuning,” Computer Communication Review, ACM SIG-
COMM, volume 28, number 4, Oct. 1998.

[31] Sivakumar, H, S. Bailey, R. L. Grossman, “PSockets: The
Case for Application-level Network Striping for Data
Intensive Applications using High Speed Wide Area Net-
works”, Proceedings of IEEE Supercomputing 2000, Nov.,
2000. http://www.ncdm.uic.edu/html/psockets.html

[32] Steenkiste, P., “Adaptation Models for Network-Aware
Distributed Computations,” 3rd Workshop on Communi-
cation, Architecture, and Applications for Network-based
Parallel Computing, Orlando, January, 1999.

[33] http://www.w3.org/TR/SOAP/

[34] SuperNet Network Testbed Projects: http://www.ngi-super-
net.org/

[35] Tierney, B. “TCP Tuning Guide for Distributed Applica-
tion on Wide Area Networks”, Usenix ;login, Feb. 2001
(http://www-didc.lbl.gov/tcp-wan.html).

[36] Tierney, B. Lee, J., Crowley, B., Holding, M., Hylton, J.,
Drake, F., “A Network-Aware Distributed Storage Cache
for Data Intensive Environments”, Proceeding of IEEE
High Performance Distributed Computing conference
(HPDC-8), August 1999, LBNL-42896.

[37] “The WEB100 Project, Facilitating Effective and Trans-
parent Network Use”, http://www.web100.org/

[38] Wolski, R., N. Spring, J. Hayes, “The Network Weather
Service: A Distributed Resource Performance Forecasting
Service for Metacomputing,” Future Generation Comput-
ing Systems, 1999. http://nws.npaci.edu/NWS/.

[39] XML-RPC: http://www.xmlrpc.org/

ble

ts. We
ys high
 for the

oughput
y pipe-
m the

ication,
orridor

 result-
re com-

nes, has
 aggrega-

e visual-
e data,
nderable
osed by
f pri-
 to the
Using High-Speed WANs and Network Data Caches to Ena
Remote and Distributed Visualization

Wes Bethel1, Brian Tierney2, Jason Lee2, Dan Gunter2, Stephen Lau1

Lawrence Berkeley National Laboratory
University of California, Berkeley

Berkeley, CA 94720

1.0 Abstract

Visapult is a prototype application and framework for remote visualization of large scientific datase
approach the technical challenges of tera-scale visualization with a unique architecture that emplo
speed WANs and network data caches for data staging and transmission. This architecture allows
use of available cache and compute resources at arbitrary locations on the network. High data thr
rates and network utilization are achieved by parallelizing I/O at each stage in the application, and b
lining the visualization process. On the desktop, the graphics interactivity is effectively decoupled fro
latency inherent in network applications. We present a detailed performance analysis of the appl
and improvements resulting from field-test analysis conducted as part of the DOE Combustion C
project.

2.0 Introduction

As computing power increases, scientific simulations and instruments grow in size and complexity,
ing in a corresponding increase in output. During recent years, the increases in speed of infrastructu
ponents that must absorb this output, including storage systems, networks and visualization engi
not paced the increases in processor speeds. In response, solutions have tended toward parallel
tions of slower, serial components, such as file systems striped across disk units.

FIGURE 1. Visualization and Rendering Pipeline

In particular, visualization and rendering pose interesting challenges as data sizes increase. In th
ization and rendering pipeline (Figure 1), abstract scientific data is first transformed into renderabl
such as geometry and image-based data, through the process of visualization. The resultant, re
data is then transformed into a viewable image by a “draw” or rendering process. The challenges p
large-model visualization stem from the sheer size of the data; it often won’t fit within the confines o
mary or secondary storage on a typical desktop workstation. Movement of large amounts of data

1. [ewbethel, slau]@lbl.gov,Visualization Group.

2. [bltierney, jrlee, dkgunter]@lbl.gov, Distributed and Data Intensive Computing Group.

Visualization
O b ject

D ata
Source

D ata
Source

U serD atabase R endering
U.S. Government Work Not Protected By U.S. Copyright1 69

ms of

he first
 same

ho views
-
oblems
bination

,”
rkstation

raints
k band-

h. One
ted Par-
lel data
 block
llelism
onomi-
nts of

0 Mbps

number
es the

et test-
 Mbps)
ese net-

it possi-
es the

r and a
ing por-
ates, as
ed soft-
ility to

 viewer.
 effec-
ough
workstation over typical network links is impractically slow, but even if practical, the graphics syste
even high-end workstations quickly become overwhelmed.

Traditionally, visualization of large models has been approached using one of two strategies. In t
strategy, which we’ll call “render remote,” images are created on a large machine, preferably the
machine that has direct access to the data source (local filesystem), then transmitted to the user w
them on a workstation. In Figure 1, the link between Rendering and User would be over a network connec
tion. In this configuration, a high-capacity resource has the potential to be applied to larger-sized pr
than could be addressed with desktop resources, but graphics interactivity suffers due to the com

of latency and high bandwidth requirements3. In the second strategy, which we’ll call “render local
smaller portions of the data, subsets or decimated versions of the raw data, are sent to the wo
where visualization and rendering take place. The network connection in this case is between Data Source
and Visualization. Increasing graphics capacity mitigates concerns about interactivity, but the const
encountered when moving remote data to the local workstation are exacerbated by limited networ
width and local storage capacity.

In recent years, two key developments have motivated us to explore a slightly different approac
development is a network data cache that is tuned for wide-area network access, called the Distribu
allel Storage System [1], or DPSS. The DPSS is a scalable, high-performance, distributed-paral
storage system developed at Lawrence Berkeley National Laboratory (LBL). The DPSS is a data
server, built using low-cost commodity hardware components and custom software to provide para
at the disk, server, and network level. This technology has been quite successful in providing an ec
cal, high-performance, widely distributed, and highly scalable architecture for caching large amou
data that may potentially be used by many different users. Current performance results are 98
across a LAN and 570 Mbps across a WAN.

The other key development is a proliferation of high-speed, testbed networks. There are currently a
of Next Generation Internet networks whose goal is to provide network speeds of 100 or more tim
current speed of the Internet. These include NSF’s Abilene [2], DARPA’s Supernet [3], and the ESn
beds [4]. Sites connected to these networks typically have WAN connection at speeds of OC12 (622
or OC48 (2.4 Gbps); speeds that are greater than most local area networks (LANs). Access to th
works enables new options for remote, distributed visualization.

The combined capabilities of emerging high speed networks and scalable network storage makes
ble to consider remote, distributed scientific visualization from a new perspective, one which combin
best of both traditional methods.

3.0 Visapult: A Remote, Distributed Visualization Application Prototype

The Visapult application and framework consists of two distributed components (Figure 2): a viewe
back end. In the following sections, we discuss the architecture of these components. The render
tion of the viewer is built upon a scene graph model that proves useful for both asynchronous upd
well as acting as a framework for the display of divergent types of data. The back end is a paralleliz
ware volume rendering engine that uses a domain-decomposed partitioning, including the capab
perform parallel read operations over the network to a storage cache as well as parallel I/O to the
Together, the viewer and back end implement a novel form of volume visualization that is fast but
tive. More importantly, this novel form of volume visualization has been completely parallelized thr

3. 1K by 1K, RGBA images at 30fps requires a sustained transfer rate of 960Mbps.
 LBNL-45365
70

e of the
rom the

ualize
 virtual
aliza-

r a high-
 desktop
subtle,
 format
to view-

 problem
second,
 desktop

ploy a
tes, the
end, we
at pro-

 a
n of
sly, the
nder-
the visualization and rendering pipeline, from the data source to the display. We describe our us
DPSS as a network storage cache, as well as our methodology for obtaining performance data f
application.

FIGURE 2. Visapult Architecture

3.1 Visualization and Rendering Pipeline Architecture

The fundamental goal of Visapult, from a visualization perspective, is to provide the means to vis
and render large scientific data sets with interactive frame rates on the desktop or in an immersive
reality (VR) environment. In our design, we wanted the best of both worlds: performing as much visu
tion and rendering as possible on a parallel machine with either tera-scale data storage capacity, o
speed network link to such a storage resource, while leveraging the increasing graphics capacity of
and deskside workstations. A primary Visapult design goal, graphics interactivity, is a crucial, but
part of the visualization process; studies have shown that motion parallax and a stereo display
increase cognitive understanding of three dimensional depth relationships by 200%, as compared
ing the same data in a still image [7].

One troublesome dilemma is the speed difference between the infrastructure components and the
size: disk transfer and network bandwidth rates are typically on the order of tens of megabytes per
but data sizes are on the order of hundreds of gigabytes. How does one achieve interactivity on the
without moving all the data to the desktop?

Considering the visualization and rendering pipeline from Figure 1, we observe that in order to de
visualization tool on the desktop which is capable of rendering large data sets at interactive ra
“object database” used by the renderer must be small enough to fit on the display platform. To that
have implemented a relatively new technique for volume rendering with a unique architecture th

duces a relatively small object database, or scene graph4. As will be discussed later in the paper, we use
unique combination of task partitioning and parallelism to perform interactive volume visualizatio
large scientific data sets. Since visualization and rendering are pipelined and occur asynchronou
viewer, which is “downstream” from the parallel software volume renderer, can interact with the re

PE 0

PE 1

PE n

�

�

�

T hread 0

T hread 1

T hread n

�

�

�

D ata
S ource(s)

R end er

Visapu lt View erVisapu lt B ack E nd

O bject
D atab ase/
Scene G raph
 LBNL-4536 71

ynchro-

 also an
menta-
s, poly-
ites and
eous
density
d by the

h mod-
ering
-
me data
rategies
cessors
o a final
 a pre-
m pro-
y other

age-
able objects at interactive rates. Updates of the scene graph through the visualization pipeline as
nously from rendering, and occur at whatever rate the underlying infrastructure can provide.

A scene graph interface provides not only the means for parallel and asynchronous updates, but
“umbrella” framework for rendering divergent data types. The scene graph system used in our imple
tion [8] supports storage and rendering of surface-based primitives (triangles, triangle strips, quad
gons, etc.), vector-based primitives (lines, line strips), image-based data (volumes, textures, spr
bitmaps), and text. The flexibility of this underlying infrastructure layer allows us to perform simultan
rendering of volume and geometric data. Figure 3 is an image containing both volume rendering of
data, along with vector geometry (line segments) representing the adaptive grid created and use
combustion simulation.

FIGURE 3. Visapult Rendering of Combustion Data and Adaptive, Hierarchical Grids

3.2 Parallel Volume Rendering Algorithm Taxonomy

Since volume rendering [9] is a computationally expensive and time consuming operation even wit
est amounts of data, it is a likely candidate for parallelization. Algorithms for parallel volume rend
can be classified into two broad categories, image order and object order, based upon how the volume ren
dering task is decomposed across the pool of processors [10]. In an object order algorithm, the volu
is distributed across the processors using one of a number of different domain decomposition st
(Figure 4). Each processor then renders its subset of the volume, producing an image. After all pro
have finished rendering, the images from each processor must be gathered, then recombined int
image. Recombination consists of image compositing using alpha blending [11], and must occur in
scribed order (back-to-front or front-to-back). Note that each processor in an object order algorith
duces an intermediate image that may overlap in screen space with the images produced b
processors.

4. The term scene graph refers to a set of specialized data structures and associated services that provide man
ment of displayable data and rendering services.
 LBNL-4536 72

ssor. The
 ordered
 of data
ms. The
tation
ork. In

equiring

t years.
f pre-
 low
gitized
lending

 more
ractive
r each

ndered
sets of
ndering
 data par-

e pre-
rom the
 quadri-
 is texture
pping,
. As the
mpres-
turing,
 algo-
om the
ch of the
isapult
FIGURE 4. Slab, Shaft and Block Decomposition

Image order algorithms, on the other hand, assign some region of screen space to each proce
resulting images produced by each processor do not overlap, so recombination is not subject to an
image composition step. Depending upon the view, image order algorithms require some amount
duplication across the processors, so do not scale as well with data size as the object order algorith
performance of image order parallel volume rendering algorithms is more sensitive to view orien
than the object order counterparts. In some views, there may be some processors with little or no w
addition, as the model moves, the source volume data required at a given processor will change, r
data redistribution as a function of model and view orientation.

3.3 Image Based Rendering Assisted Volume Rendering

Image based rendering (IBR) methods [12, 13] have been the subject of much attention in recen
IBR methods are used primarily for generating different views of an environment from a set o
acquired imagery. The properties of IBR which make it attractive include interactive viewing with
computational cost irrespective of scene complexity, and the ability to use images from either di
photographs or rendered models. Common among IBR methods is a process of warping and b
images from known views to represent what would be seen from an arbitrary view.

The concepts and principles of IBR model were recently applied to volume rendering [14]. Like the
conventional IBR counterparts, IBR assisted volume rendering (IBRAVR), seeks to achieve inte
rendering by avoiding the time-consuming process of completely rerendering the volume data fo
frame. Instead, renderings of a model at arbitrary orientations are “computed” from “nearby” prere
images. The prerendered images for the IBRAVR algorithm are obtained by volume rendering sub
the entire volume. Using a slab decomposition, each source image would be obtained by volume re
the slab of data. The total number of source images is equal to the number of data slabs created by
titioning.

The per-frame, incremental rendering, or IBR component of IBRAVR, is implemented by using th
computed imagery as two dimensional textures which are texture-mapped onto geometry derived f
geometry of the slab decomposition, then rendered in depth order. In the basic algorithm, a single
lateral representing the center of the slab is used as the base geometry, and the computed imagery
mapped using alpha blending upon that geometry. With multiple slabs, there are multiple, overla
base geometries that are textured by the graphics hardware with the semi-transparent textures
model is rotated, the multiple textures correspondingly rotate in three dimensions, producing the i
sion of interactive volume rendering. As nearly all graphics hardware supports two-dimensional tex
the IBRAVR viewer can be deployed on a wide variety of graphics platforms. An extension to this
rithm, described in [14], is replace the single quadrilateral with a quadrilateral mesh using offsets fr
base plane for each point in the quad mesh. This enhancement will add a depth component to ea
IBR images, thereby enhancing the visualization process. We have included this extension in the V
implementation, but the details are omitted in this paper.
 LBNL-4536 73

m an
 view,
y from
 a cone

tends
r-frame
nd. The
 use in

-

FIGURE 5. IBR Assisted Volume Rendering

As described in [14], the IBRAVR model exhibits visual artifacts as the model is rotated away fro
axis-aligned view (Figure 6). These artifacts result from volume subdivision along an axis-aligned
but rendered using a view or orientation that is not “closely” axis aligned. As the model rotates awa
an axis-aligned view, the artifacts become more pronounced. [14] reports that objects viewed within
of about sixteen degrees will appear to be relatively free of visual artifacts.

FIGURE 6. IBRAVR Artifacts

Our implementation does not provide any remedies to this fundamental artifact of IBRAVR, but ex
the base algorithm in a different manner that is useful for the purposes of visualization. On a pe
basis, the Visapult viewer computes the best view axis, and transmits this information to the back e
back end uses this information in order to select from either X-, Y-, or Z-axis aligned data slabs for
volume rendering.

The source volume is subdivided into some number
of slabs, each of which is volume rendered. The
resulting images, along with geometric information
derived from the original volume, are used as the
source data for an IBR rendering engine. The final IBR model can be interactively

transformed without the need to perform
costly volume rendering on each frame.

Using a nearly axis-aligned view, the IBRAVR method produces a high-fidelity image (left). When the
model is rotated off-axis, visual artifacts can be seen (right). For the right image, we disabled axis-switch
ing within Visapult, otherwise we would be viewing slices along the X-axis of the data.
 LBNL-4536 74

e. Our
with an
 frame-
rallel

images,
y.

nd each
oint. The
), then

ioned,
ing pro-
endering
ork to a

ith a
 is much

er-
 multi-

cated to
rk con-
amount
on, so all
ctural

ualiza-
arge to fit
 typically
 perfor-

 a local
etwork

e issues;
need to
y DPSS

puting
cks. It
ompo-
rvers.
3.4 Visapult: Parallel and Remote IBRAVR

Visapult is a parallel and distributed implementation of an IBR assisted volume rendering engin
implementation can be thought of as a blend of an object-order parallel volume rendering engine
IBRAVR viewer that uses a parallel, network-based data gathering model as an image assembly
work. The fundamental IBRAVR algorithm decomposes nicely into a distributed, pipelined and pa
architecture: a parallel object-order, parallel I/O capable volume rendering engine that produces
and a parallel viewer that uses IBR techniques to assemble the individual images into a final displa

The Visapult back end reads raw scientific data from one of a number of different data sources, a
back end process performs volume rendering on some subset of the data, regardless of the viewp
resulting images are transmitted to the Visapult viewer for final assembly into a model (scene graph
rendered to the user. Owing to the IBRAVR design, the raw scientific data is distributed, or partit
amongst the back end processors using a slab-based decomposition (Figure 4). During the partition
cess, data is read into each processor in parallel. Each processor then performs software volume r
upon its subset of the data. The resulting image from each processor is transmitted over the netw
peer receiver in the Visapult viewer, where it is inserted into the scene graph as a 2D texture.

On the viewer side, graphics interactivity results from a combination of the IBRAVR viewer model w
decoupling of scene graph updates from rendering. The amount of viewer-side data to be rendered

smaller than the size of the raw volume data5, so even software-only graphics systems are not ov
whelmed. To implement the decoupling of rendering from scene graph updates, the viewer itself is a
threaded application, with one thread dedicated to interactive rendering, and other threads dedi
receiving data from the Visapult back end visualization processes over multiple simultaneous netwo
nections (implemented with a custom TCP-based protocol over striped sockets). Except for a small
of scene graph access control with semaphores, I/O and rendering occur in an asynchronous fashi
pipes are full, making effective use of network and computational resources. Additional archite
details of the Visapult back end and viewer are presented in Appendix A.

3.5 Visapult’s Use of the LBL DPSS as a Data Cache

In its role as data collector, the Visapult back end fetches raw scientific data for the purpose of vis
tion. One source of data is the DPSS, which is used as a storage cache for data sets that are too l
on the workstation. These data sets, generated on supercomputers or clusters of workstations, are
on the order of 30 to 100 GB, and are often stored on archival systems such as HPSS [15], a high
mance tertiary storage system. Clearly, it is impractical to transfer data sets of this magnitude to
disk for processing. Also, archival systems such as the HPSS are not typically tuned for wide-area n
access, and only provide full file, not block level, access to data. The DPSS addresses both of thes
it is optimized for wide-area access to large files, and provides block level access, eliminating the
transfer the entire file across the network. Therefore, we can migrate the files from HPSS to a nearb
cache.

The DPSS provides several important and unique capabilities for data intensive distributed com
environments. It provides application-specific interfaces to an extremely large space of logical blo
offers the ability to build large, high-performance storage systems from inexpensive commodity c
nents. It also offers the ability to increase performance by increasing the number of parallel disk se

5. Where the size of the raw volume data is O(n3), the amount of data to be rendered in the viewer is O(n2).
 LBNL-45365 75

ch with
 of one
 second
ure 7.

ke I/O
 dpssL-
ads is
e server,
dering

velop-
compo-
 from

 to pro-
w the

 in net-
d appli-

re placed
unched
on exe-
mulated
.

ulated
mples
Typical DPSS implementations consist of several low-cost workstations as DPSS block servers, ea
several disk controllers, and several disks on each controller. A four-server DPSS with a capacity
Terabyte (costing about $15K in mid-2000) can thus deliver throughput of over 150 megabytes per
by providing parallel access to 15-20 disks. The overall architecture of the DPSS is illustrated in Fig

FIGURE 7. DPSS Architecture

The application interface to the DPSS cache supports a variety of I/O semantics, including Unix-li
semantics, through an easy-to-use client API library (e.g., dpssOpen(), dpssRead(), dpssWrite(),
Seek(), dpssClose()). The DPSS client library is multi-threaded, where the number of client thre
equal to the number of DPSS servers. Therefore the speed of the client scales with the speed of th
assuming the client host is powerful enough. This parallelism is leveraged by the parallel volume ren
performed by the Visapult back end.

3.6 Profiling and Performance Analysis - NetLogger

Profiling and analysis of an application’s behavior and performance is an important part of the de
ment process, but can prove challenging when the application consists of cooperative, distributed
nents. In our project, we made use of the NetLogger profiling toolkit for obtaining performance data
the application [16]. NetLogger includes tools for generating precision event logs that can be used
vide detailed end-to-end application and system level monitoring, and for visualizing log data to vie
state of the distributed system. NetLogger has proven to be invaluable for diagnosing problems
works and in distributed systems code. This approach is novel in that it combines network, host, an
cation-level monitoring, providing a complete view of the entire system.

The NetLogger system has a procedural interface: subroutine calls to generate NetLogger events a
inside the source code of the application. Prior to running the application, a NetLogger daemon is la
on a host accessible to all components of the distributed application. During the course of applicati
cution, the NetLogger subroutine calls communicate with the daemon host, where events are accu
into an event log. This event log is then used as input for NetLogger visualization and analysis tools

NLV, the NetLogger visualization tool, generates two dimensional plots from the raw data accum
during a run. NetLogger and NLV were used extensively in Visapult field testing, and numerous exa
of NLV output appear later in upcoming sections.

Client Application

Parallel
Disks

DPSS Server

Parallel
Disks

DPSS Server

Parallel
Disks

DPSS Server

DPSS Master

data blocks

data blocks

data blocks

Logical Block
Requests

logical to physical
block lookup
access control
load balancing

Physical Block
Requests
 LBNL-45365 76

nts sug-
part of a
m spon-
g
rojects
fic com-
and large

reflect-
SNL)

r at
) and

tational
LBL and
on the
eley at
rmore,
s pro-

ic

eering,
.

4.0 Visapult Field Testing and Evolution

In this section, we present several field testing experiments along with performance enhanceme
gested by subsequent analysis. An early Visapult implementation was first presented at SC99 as
Research Exhibit. Since then, Visapult has become the reference application for a research progra
sored by the U.S. Department of Energy called The Combustion Corridor, and has been field-tested usin
several configurations of high speed testbed WANs using several different facilities. Research p
such as The Combustion Corridor seek to harness distributed resources for the purpose of scienti
puting, such as high speed testbed networks, network storage systems, computational resources
scale scientific data.

4.1 SC99 Research Exhibit

A preliminary version of Visapult was demonstrated at the SC99 conference in Portland, Oregon,
ing a collaborative effort involving several research institutions: LBL, Sandia National Laboratory (

and Argonne National Laboratory (ANL). Data from a cosmology hydrodynamic simulation6 and a reac-

tive chemistry combustion simulation7 were transmitted over a WAN and visualized on the show floo
SC99. The demonstration required the use of NTON (National Transparent Optical Network
SciNet99, the SC99 show floor network, to connect all of the resources (Figure 8).

FIGURE 8. Visapult SC99 Configuration

During the course of SC99, we used several different configurations of data sources, compu
engines and networks as illustrated in Figure 8. Cosmology data was stored on DPSS systems at
in the Argonne National Laboratory booth. Combustion data was stored on a parallel file system
Cray T3E at the National Energy Research Scientific Computing Center (NERSC), located in Berk
LBL. Cosmology data was processed by a Visapult back end on the SNL CPlant [17] located in Live
California, or on the Babel Cluster [18] located in the LBL booth at SC99. The combustion data wa

6. Cosmology data courtesy of Julian Borrill, Scientific Computing Group, National Energy Research Scientif
Computing Center (NERSC), Lawrence Berkeley National Laboratory.

7. Combustion data courtesy of Vince Beckner and John Bell, Center for Computational Sciences and Engin
National Energy Research Scientific Computing Center (NERSC), Lawrence Berkeley National Laboratory

Berkeley Lab:
.75 TB, 4 server

DPSS

SC'99 Show
Floor,

Portland, OR

Sandia Livermore,
32 Node Linux

Cluster

Visualization
Workstation

NTON Oakland
POP

SciNet
1000 BT

NTON (OC-48)

OC-48OC-12

1000 BT
1000 BT

1000 BT

1000 BT

ANL Booth
DPSS

8 node
Alpha
Linux

Cluster

LBNL Booth
 LBNL-4536
77

ple dis-
a tiled
reo. The
t format

etwork
tween
ack end
ystem.
all sub-
mitted

ack end

BL and
ence in
oor and

 project,
is work
ich

bus-
m data
 common
 possi-
rements

ains,

g net-
paign
n, we
cientific

 CPlant
cessed by a Visapult back end running on the Cray T3E at NERSC in Berkeley. We also used multi
play devices for final rendering at SC99, including an ImmersaDesk located in the LBL booth, and
surface display, located in the SNL booth. The ImmersaDesk allowed us to render the results in ste
tiled display system allowed us to demonstrate Visapult using a large-screen, theater-sized outpu
suitable for larger audiences.

We performed some preliminary analysis of the behavior of the system at SC99 using different n
topologies and facilities. Our preliminary results showed that the majority of communication was be
the DPSS (the network data cache) and the Visapult back end, with the link between the Visapult b
and viewer requiring much less bandwidth. This behavior is expected from the architecture of the s
Since the Visapult back end performs parallel volume visualization to reduce the data down to a sm
set of images, it is expected that the amount of data resulting from the visualization and trans
between the back end and viewer will be significantly less than the amount of data moved to the b
from the data source.

FIGURE 9. Visualization of Hydrodynamic Cosmology Simulation Results at SC99

We were capable of sustaining a data transfer rate of 250Mbps between the DPSS located at L
CPlant, and a rate of 150Mbps between the DPSS at LBL and the LBL cluster at SC99. The differ
transfer rates was based upon the different network topologies. The link between the SC99 show fl
LBL required resource sharing over SciNet.

4.2 Combustion Corridor First Light Campaign

More recently, we have undertaken field testing using many of the same resources as for the SC99
but with an eye towards careful instrumentation and profiling analysis, and with larger data sets. Th
is part of a project called The Combustion Corridor, sponsored by the U. S. Department of Energy, wh
is a collaborative research effort that includes LBL, ANL and SNL-CA. The term Combustion Corridor
refers to the process of remote and collaborative visualization of large, scientific data sets for the Com
tion Research community. The term “corridor” has been coined to refer to the metaphorical path fro
source to human consumer, where the path spans geographical and system boundaries. A theme
across “corridor” projects is that many endeavors that were once possible only over LANs are now
ble over WANs using a wider array of distributed resources. To a large extent, the needs and requi
of the Combustion Corridor are sufficiently general to be applicable to a wide variety of problem dom
including medicine, physics, and the geosciences.

Within the Combustion Corridor effort, we have performed several end-to-end runs using differin
work topologies and platform configurations, which we refer to as “campaigns.” The first such cam
took place on 12 April 2000, and was a collaboration between LBL and SNL-CA. In this campaig
used resources connected by NTON, a high speed testbed network. For this example, the raw s
data was located on a DPSS at LBL in Berkeley, while the Visapult back end was located on the
 LBNL-4536 78

. The
as rep-
tep for
ection

ance
ck end

3
onstra-

. The
ications
band-
 about

verlap-
cation
entify-

,

s, in
 back
ng the
m to
 to
Linux/Alpha cluster at SNL-CA. The Visapult viewer was running on a desktop machine at SNL-CA
combustion simulation used for this example was from a 640x256x256 grid, and each grid value w
resented with a single IEEE floating point number, for a total of 160 megabytes of data per time s
each of the 265 time steps. The theoretical limit of the network link is 622 Mbps, or the OC-12 conn
between LBL and NTON.

FIGURE 10. NetLogger Instrumentation/Profiling of Visapult

In Figure 10, we wish to draw attention to the performance profile of the Visapult back end perform
shown by NetLogger instrumentation. The time required to load 160 megabytes of data into the ba

from the DPSS over NTON was approximately three seconds8, for an approximate throughput rate of 43
megabits per second, which is in excess of the network performance realized during the SC99 dem
tion over the same network link, reflecting improvements in the underlying Visapult implementation
improvement in raw network performance was the result of a change to data staging and commun
streamlining within Visapult. This amounts to a respectable 70% utilization rate of the theoretical
width limit of the network while data was being transferred. The software rendering then consumed
eight or nine seconds on four processors of the CPlant cluster.

From this campaign, one significant design modification is suggested by the performance data - o
ping network transfers with rendering could have a significant positive impact upon the overall appli
performance. NetLogger performance profiles, such as that shown in Figure 10, are invaluable for id
ing potential performance bottlenecks in distributed applications.

8. Displacement along the horizontal axis, time, between the tags BE_FRAME_START and BE_LOAD_END
which bracket the process of moving data from the DPSS into the Visapult back end on CPlant.

For this image, profile data was collected from both the Visapult back end and viewer. The top row of trace
green, represent the profile data from the viewer, while the bottom row of traces were obtained from the
end. The horizontal axis represents elapsed time from the start of the application. Each of the entries alo
vertical axis of the code are strings associated with specific events, which occurred in order from botto
top. The viewer events are prefixed with “V_”, while the back end events have a “BE_” prefix. Refer
Appendix A for additional details that will aid in interpretation of this data.

B E _F R A M E _S T A R T

B E _L O A D _E N D

B E _R E N D E R _E N D

B E _H E A V Y _S E N D

B E _H E A V Y _E N D

B E _F R A M E _E N D

V _F R A M E _S T A R T

V _L IG H T P A Y L O A D _S T A R T

V _L IG H T P A Y L O A D _E N D

V _H E A V Y P A Y L O A D _S T A R T

V _H E A V Y P A Y L O A D _E N D

V _F R A M E _E N D

65 70 75 80 85 90 95 100 105

L B L /C P lan t (N T O N) A p ril 12 , 2000

backend-w orker backend-m aster v iew er-m aster v iew er-w orker
time/sec.
 LBNL-4536 79

then vol-
 a two-
 render-

 perfor-

ral-
 we use
ng are
g
te that

ment as

 The
tion

on

dup

ng
could
 nearly

ations
rocessor

er-
4.3 Overlapped I/O and Rendering

Each processing element (PE) in the Visapult back end loads a subset of a large scientific dataset,
ume renders it’s subset of data. The resulting image is then transmitted to the viewer for use as
dimensional texture in a scene graph. Then, the process repeats, looping over time. If loading and
ing were overlapped, so as to occur simultaneously, then we would expect the overall application
mance to significantly increase.

FIGURE 11. Overlapped I/O and Rendering Timing Diagram

In the discussion that follows, we refer to a serial implementation as one in which, in each PE of the pa
lel Visapult back end, rendering and data loading occur in a serial fashion. Note that even though
the term serial, the back end is in fact a parallel job. Serial refers to how rendering and data loadi
executed within each back end process. On the other hand, overlapped means that the process of renderin
and data loading is implemented in a pipeline-parallel fashion, and occur simultaneously. Also, no
while the data for frame N is being rendered, data for frame N+1 is being loaded.

We can capture the behavior of both serial and overlapped versions, and estimate overall improve
follows: let R be the time spent in each PE performing rendering for each of N timesteps of data (the red
zones in Figure 11, above), and let L be the time spent by each PE loading data for each time step.
amount of time, Ts, required for N time steps’ worth of data using the serial implementa

is: . In contrast, the time required for N time steps using an overlapped implementati

is: .

For illustrative purposes, if we assume that L and R are approximately equal, then the theoretical spee
realized using an overlapped implementation over one that is serial is Ts/To, or 2N/(N+1), which is nearly a
100 percent improvement. As the difference between L and R increases, the effective speedup resulti
from an overlapped implementation will diminish. At one extreme, the overlapped implementation
be as much as nearly twice as fast as a serial implementation. At the other extreme, they will be
equal in performance.

The following two figures show the profiling results that compare serial and overlapped implement
of the Visapult back end data loading and rendering tasks. These tests were run using an eight p

Sun Microsystems E4500 server9 connected to the LBL DPSS via gigabit ethernet (LAN), and were p

tim e

�������������������������
�������������������������
�������������������������

Tim e spen t perfo rm ing load ing (netw ork I/O) fo r a g iven data fram e (b lue).

T im e spen t perfo rm ing rendering fo r a g iven data fram e (red).

I /O tim e

�����������������������
�����������������������
�����������������������

�������������������������
�������������������������
�������������������������

������������������������
������������������������

�������������������������
�������������������������
�������������������������

����������������������
����������������������
����������������������

�����������������������
�����������������������
����������������������� R endering tim e

Ser ia l I /O and R en der in g

O ver lap ped I/O and R en der in g

Ts N L R+()⋅=

To N max L R,()⋅ min L R,()+=
 LBNL-4536 80

pproxi-
 case,

ict and
se Fig-
are blue

.

formed using ten timesteps from a large scientific data set. The serial implementation required a
mately 265 seconds, while the overlapped version required approximately 169 seconds. In eachL
was approximately 15 seconds, while R was approximately 12 seconds.

FIGURE 12. Execution Profile of Non-Overlapped I/O and Rendering

Figures 12 and 13 were created using the NetLogger visualization tool, NLV, and graphically dep
contrast the performance of serial and overlapped implementations of the Visapult back end. In the
ures, the profile traces for the back end are colored according to data frame number; odd frames
while even frames are red.

FIGURE 13. Execution Profile for Overlapped I/O and Rendering

Note that in Figure 13, data loading for frame N+1 and rendering for frame N commence simultaneously
In both the serial and overlapped tests, the time required for each of L and R are approximately equal. As

9. Eight, 336Mhz UltraSparcII processors.

B E _L O A D _ S T A R T

B E _ L O A D _E N D

B E _ R E N D E R _ S T A R T

B E _ R E N D E R _E N D

B E _ H E A V Y _ S E N D

B E _ H E A V Y _E N D

V _ F R A M E _ S T A R T

V _ L IG H T P A Y L O A D _ S T A R T

V _ L IG H T P A Y L O A D _E N D

V _ H E A V Y P A Y L O A D _ S T A R T

V _H E A V Y P A Y L O A D _E N D

V _ F R A M E _E N D

0 2 0 4 0 60 8 0 1 0 0

S eria l L + R (d ie se l)

b ac ke nd -m aste r-ev en
b ack en d -w orke r-ev en

b ac ke nd -m aste r-o d d
ba ck en d -w orke r-o d d

v ie w er-m aste r
v iew er-w o rk e r

time/sec.

B E _ L O A D _S T A R T

B E _ L O A D _E N D

B E _ R E N D E R _S T A R T

B E _ R E N D E R _E N D

B E _H E A V Y _S E N D

B E _H E A V Y _E N D

V _ F R A M E _S T A R T

V _L IG H T PA Y L O A D _S T A R T

V _ L IG H T P A Y L O A D _E N D

V _ H E A V Y PA Y L O A D _S T A R T

V _H E A V Y P A Y L O A D _E N D

V _F R A M E _E N D

0 2 0 40 60 8 0 100

O verlapp ed L + R (d iesel)

b ackend -w ork er-even
backend-m aster-even

b ackend-w ork er-o dd
backend-m aster-o dd

v iew er-m aste r
v iew er-w orker

time/sec.
 LBNL-4536
81

-
ion are

WANs
d test-
op an
sist of a
etwork
 uses a

rs of the
nd to

ifferent

rmed
 ESnet.
nd did

rast the
file of a

to load
s. From

e have
s been
mposi-
we shall see in the next section, the time required for each of L and R in serial and overlapped implementa
tions can vary as a function of the underlying architecture. Details of the overlapped implementat
presented in Appendix B.

4.4 Further Combustion Corridor Testing

In this section, we present performance results obtained while executing Visapult over two different
and using two different compute platforms on the back end. One of the WANs, NTON, is a high-spee
bed network that includes an OC12 path from LBL to SNL-CA. The other network, ESnet, is built at
OC-12 backbone between LBL and ANL, but is a shared resource. The two compute platforms con
distributed memory Linux-Alpha cluster, and a large SMP. Each cluster node contains a pair of n
interfaces: one for inter-node communication, and the other for external network access. The SMP
single gigabit ethernet interface for external network access, which is shared amongst all processo
SMP. Our goals in the following tests are to obtain an estimate of network bandwidth utilization, a
compare the effect of serial and overlapped implementations of the Visapult back end on two d
compute platforms.

4.4.1 LBL to CPlant over NTON

In the following two tests, we read data from a DPSS at LBL into CPlant nodes over NTON, perfo
parallel volume rendering on CPlant, then transmitted the resultant imagery to a viewer at LBL over
In the earlier campaign that used the LBL DPSS/CPlant/NTON combination (Figure 10), the back e
not yet support overlapped data loading and rendering. The profiles that follow compare and cont
effect of serial and overlapped data loading and rendering. Figure 14 shows the performance pro
serial implementation.

FIGURE 14. Serial L+R on Eight CPlant Nodes

In this example, we used eight nodes of CPlant, a Linux-Alpha cluster. Note that the time required
160 MB of data using eight nodes is approximately equal to the time required when using four node
this, we observe that the use of additional nodes will not necessarily improve data throughput, as w
completely consumed all available network bandwidth. On the other hand, rendering time ha
reduced to approximately half the time required when using four processors. Given the domain deco

B E _L O A D _S T A R T

B E _L O A D _E N D

B E _R E N D E R _S T A R T

B E _R E N D E R _E N D

B E _ H E A V Y _SE N D

B E _H E A V Y _E N D

V _F R A M E _S T A R T

V _L IG H T P A Y L O A D _S T A R T

V _L IG H T PA Y L O A D _E N D

V _H E A V Y P A Y L O A D _S T A R T

V _ H E A V Y PA Y L O A D _E N D

V _ FR A M E _E N D

0 10 20 30 40 50 60

L B L /S N L -C A /L B L (N T O N) Seria l L + R

backend -w orker-even
backend -m aster-even

b ackend -w orker-odd
backend -m aster-odd

v iew er-m aste r
v iew er-w orke r

time/sec.
 LBNL-4536 82

ocessors

d data
, is the
p. We
 variabil-
ility in

omes
een the
 a single
s to be a
ntation

ivers
e gigabit
ncur

metric

g
ender-
a higher

ately

,
er.
tion of the volume data, we expect linear speedup in the rendering process as the number of pr
increases.

FIGURE 15. Overlapped L+R on Eight CPlant Nodes

The performance profile in Figure 15 was obtained by running a Visapult back end with overlappe
loading and rendering. One feature in Figure 15 that was expected, but difficult to characterize
increased time required for data loading, and the variability in load times from time step to time ste
can presume, based upon the results shown in Figure 15, there may be a relationship between the
ity in completion times of transmission of image data from the back end to the viewer and the variab

data loading times10. The results indicate that as completion of transmission of outbound images bec
more staggered, inbound data loading is delayed. Another area of interest is CPU contention betw
rendering and data loading processes. On CPlant, both rendering and data loading activities share
CPU. While the render task is CPU intensive and the data loader is an I/O process, there appear
significant CPU demand incurred by the data loading process. This may be due in part to impleme
details of the underlying network interface card (NIC) driver. It is widely known that some NIC dr
generate more interrupts than others, and these interrupts incur a cost in terms of CPU load. Som
ethernet cards provide the option for using “jumbo frames” (9KB MTUs vs. 1.5KB MTUs), which i
lower interrupt overhead. However, using jumbo frames over a WAN is problematic.

4.4.2 LBL to ANL over ESnet

The following two tests contrast serial and overlapped load and render operations on a large sym

multiprocessing platform with shared memory (SMP)11 located at ANL. The Visapult back end, runnin
on the SMP at ANL read data from the DPSS at LBL over ESnet, then transmitted partial volume r
ing results to a viewer located at LBL, also connected via ESnet. The ESnet link in these tests has
latency than the NTON link between LBL and SNL, and delivers an average bandwidth of approxim

100Mbps as measured with commonly available network tools, such as iperf12.

10.BE_LOAD_START and BE_LOAD_END bracket movement of data from the DPSS into each back end PE
while BE_HEAVY_SEND and BE_HEAVY_END bracket image transmission from the back end to the view

11.A sixteen processor SGI Onyx2.

B E _L O A D _ST A R T

B E _L O A D _E N D

B E _R E N D E R _ST A R T

B E _R E N D E R _E N D

B E _H E A V Y _SE N D

B E _H E A V Y _E N D

V _FR A M E _ST A R T

V _L IG H T PA Y L O A D _ST A R T

V _L IG H T PA Y L O A D _E N D

V _H E A V Y PA Y L O A D _ST A R T

V _H E A V Y PA Y L O A D _E N D

V _FR A M E _E N D

0 10 20 30 40 50

L B L /SN L /L B L (N T O N) O verlapped L + R

backend-w orker-even
backend-m aster-even

backend-w orker-odd
backend-m aster-odd

v iew er-m aster
v iew er-w orker

time/sec.
 LBNL-45365 83

s of the
ta frame

 Note
e are

TON/
plemen-
e able
Figure 16 shows the performance profile of a serial Visapult back end running on eight processor
SMP. We observe that approximately ten seconds is required to move 160 megabytes of data per da
from the DPSS at LBL to ANL over ESnet, yielding a bandwidth consumption of about 128Mbps.
that data loading time dominates in this case, owing to the significantly lower network capacity. W
able to achieve slightly better bandwidth utilization than a tool like iperf owing to the highly parallelized
nature of our data loading.

FIGURE 16. Serial L+R on an SMP

Performance profile for the overlapped Visapult back end is shown in Figure 17. Similar to the N
CPlant tests, average elapsed time for overlapped data loading is slightly higher than the serial im
tation. After the first time step’s worth of data was loaded and the TCP window fully opened, we wer
to steadily consume in excess of 100Mbps between the LBL DPSS and ANL over ESnet.

FIGURE 17. Overlapped L+R on an SMP

12.http://dast.nlanr.net/Projects/Iperf/

B E _L O A D _ST A R T

B E _L O A D _E N D

B E _R E N D E R _ST A R T

B E _R E N D E R _E N D

B E _H E A V Y _SE N D

B E _H E A V Y _E N D

V _FR A M E _ST A R T

V _L IG H T P A Y L O A D _ST A R T

V _L IG H T P A Y L O A D _E N D

V _H E A V Y P A Y L O A D _ST A R T

V _H E A V Y P A Y L O A D _E N D

V _FR A M E _E N D

0 20 40 60 80 100

L B L /A N L /L B L (E S net/C lipper) Seria l L + R

backend -m aste r-even
backend -w orke r-even

backend -m aster-odd
backend -w orker-odd

v iew er-m aster
v iew er-w orker

time/sec.

B E _L O A D _ST A R T

B E _L O A D _E N D

B E _R E N D E R _ST A R T

B E _R E N D E R _E N D

B E _H E A V Y _S E N D

B E _H E A V Y _E N D

V _FR A M E _ST A R T

V _L IG H T P A Y L O A D _ST A R T

V _L IG H T P A Y L O A D _E N D

V _H E A V Y P A Y L O A D _ST A R T

V _H E A V Y P A Y L O A D _E N D

V _FR A M E _E N D

0 20 40 60 80 100

L B L /A N L /L B L (C lipper/E S net) O verlapped L + R

backend -w orker-even
backend -m aster-even

backend -w orker-odd
backend -m aster-odd

v iew er-m aste r
v iew er-w orke r

time/sec.
 LBNL-4536 84

ry plat-
ly onto a
f the two
terfaces
an the

ble high
d mem-
 testbed
 mul-
ck end

erve to

ergent
t is clear
nction
h, the
. To put
abytes)

he time
te would
 times

 points
ies in
nfigu-
ensitive
ion.

lume
tes the
ed IBR

ng accel-
tecture
ne graph
question
sapult
twork-
D web-
 storage
eb3D

rs” that
 doesn’t
ough
g future
d from
It appears that the SMP platform is better suited for the Visapult back end than a distributed memo
form: when each back end process, consisting of a rendering and a data loading thread, map direct
CPU, there appears to be less contention and context switching. In contrast, on the cluster, each o
components of a single back end process must share a single CPU. In addition, the multiple NIC in
present on clusters present the possibility of achieving higher aggregate bandwidth utilization th
common SMP configuration of a single NIC shared by all nodes.

5.0 Future Work

We have obtained performance numbers for only a subset of contemporary architectures and availa
speed testbed networks: large SMPs over a relatively slow and high latency network, and distribute
ory systems with single CPU nodes as the compute platform over NTON, a high speed, low latency
network. Testing on additional compute platforms, particularly distributed memory architectures with
tiple CPUs and shared memory on a single node, as well as an MPI-only implementation of the ba
would serve to explore a significant portion of the platform-specific parameter space, and would s
reveal additional strengths and weaknesses in the overall Visapult architecture.

Access to additional testbed networks is not a trivial task, and often requires the coordination of div
research and operational groups. From the performance numbers shown in the previous section, i
that Visapult completely saturated all of the networks tested, and application throughput will be a fu
of the capacity of the underlying network. Despite completely using all available network bandwidt
networks we tested do not have sufficient capacity to meet the challenges of terascale visualization
the problem into perspective, the time required to move our 265-timestep dataset (a total of 41.4 gig
over NTON is on the order of eight minutes (a new timestep every 3 seconds), while over ESnet, t
required is on the order of 44 minutes (a new timestep every 10 seconds). A reasonable target ra
be, for this problem, five timesteps per second, requiring effective bandwidth on the order of fifteen
faster than our OC12 connection to NTON; approximately a dedicated OC192 link. This application
out the importance of having Quality of Service (QoS) (including bandwidth reservation) capabilit
future networks. In our testing we were able to completely saturate the WAN link in each network co
ration. QoS is needed to insure that this application does not adversely affect other bandwidth-s
applications using the link, and to provide some minimum bandwidth guarantees to a Visapult sess

As a parallelized and pipelined implementation of IBRAVR capable of performing interactive vo
visualization of large scientific data sets, Visapult’s use of IBR-like rendering techniques corrobora
experiences of others who have sought to apply IBR to large model visualization. One such effort us
representations of complex geometry as the basis for distance-based model switching as a renderi
eration aid for navigation through complex CAD models [19]. From a graphics perspective, an archi
built around an embedded scene graph core has proven to be successful in this project. As sce
technology has been targeted at retained mode rendering of primarily geometric-based data, the
remains as to the applicability of this technology to general IBR techniques. More importantly, the Vi
implementation highlights the relevance of embedded rendering technology within the context of ne
based 3D graphics and visualization. Although there are many examples of emerging commercial 3
based applications, these tend to use VRML [20] as a medium for data exchange. VRML is a data
format with an emphasis upon surface and vector geometry. More recently in the VRML97 and W
efforts, the VRML base extends geometric modeling to include sound and asynchronous “senso
generate events to be consumed and processed by the VRML browser. VRML as a data format
appear to readily lend itself for use by distributed IBR applications: IBR allows for navigation thr
environments where the source is either precomputed or acquired imagery. We envision interestin
3D, web-based applications that use the notion of navigating through environments constructe
acquired, rather than computed imagery.
 LBNL-4536 85

 endeavor.
tage of
out spe-

fications
ce; and
ts to suc-
dge of
able diffi-
s want
will be
 which

onomical
omput-
apabil-
efit a
uld be a

f-line
atasets

tion of
ibility of
tational

a proto-
ntific

stest high
 are still
me, and
th reser-

e U.S.
n, Jim
Plant

iments
ERSC
also at
 of the
In our experience, remote resource access and management can be a troublesome and tedious
One of the appealing themes in Corridor projects is the ability of a user to transparently take advan
remote and distributed resources, such as network storage caches and computational facilities, with
cialized knowledge about the distributed resources: access to testbed networks may require modi
to routing tables; the ability to launch a parallel job likely requires shell access to the remote resour
access to DPSS systems is typically provided on an as-needed basis. In order for research scientis
cessfully use a tool like Visapult, they may need detailed technical knowledge of networks, knowle
the existence of and access to the remote resources, and must be capable of diagnosing the inevit
culties that arise when attempting to launch multiple components of a distributed application. User
tools that are easy to use and help them accomplish their work. A good deal of our future work
focused upon simplifying the access to and use of the remote and distributed resources upon
Visapult is built.

In this project, the DPSS has proven to be a useful tool. Storage systems of this type present an ec
and scalable storage solution that will assume an increasingly important role in a network-centric c
ing environment. We expect that by augmenting the block data services with additional processing c
ities, the DPSS will become even more useful. For example, “wire level” compression would ben
wide array of applications. In the case of lossy compression techniques, the degree of lossiness co
function of network line parameters and under application control. Additional possibilities include of
visualization services, such as the offline and automatic creation of thumbnail representations of d
or metadata.

6.0 Conclusion

Remote and distributed visualization and rendering algorithms increasingly depend upon a founda
data management and data movement. As a Corridor project, Visapult has demonstrated the feas
using combinations of distributed resources, such as parallel network data caches and compu
resources. A unique combination of data staging, parallel rendering and parallel I/O has produced
type application and framework that is capable of performing interactive visualization of large scie
data sets. Several instrumented test cases have shown that Visapult is capable of saturating the fa
speed testbed networks available today. Despite these results, we conclude that these networks
inadequate for the purposes of tera-scale visualization. Access to the networks can be troubleso
applications such as Visapult can benefit from related research projects, such as QoS and bandwid
vation to streamline access to and use of these emerging resources.

7.0 Acknowledgement

This work was supported by the Director, Office of Science, Office of Basic Energy Sciences, of th
Department of Energy under Contract No. DE-AC03-76SF00098. Special thanks to Helen Che
Brandt, Pete Wyckoff, and Mike Hertzer at Sandia National Laboratories for providing access to C
and for providing extraordinary support for this project. The scientific data sets used in our exper
were generated by and used with the permission of Julian Borrill, Scientific Computing Group, N
and Vince Beckner and John Bell at the Center for Computational Science and Engineering,
NERSC. Access to computing facilities at Argonne was provided by Rick Stevens and Mike Papka
Math and Computing Sciences Division at Argonne National Laboratory.
 LBNL-4536 86

e, J.,
Com-

are

 Com-

om-

puter

ased

gs of

l

s”, B.
ance

r/

User
ble at
8.0 References

[1] “A Network-Aware Distributed Storage Cache for Data Intensive Environments”, Tierney, B. Le
Crowley, B., Holding, M., Hylton, J., Drake, F., Proceedings of IEEE High Performance Distributed
puting conference, August 1999, LBNL-42896. see: http://www-didc.lbl.gov/DPSS/

[2] Abilene: http://www.internet2.edu/abilene/

[3] Supernet: http://www.ngi-supernet.org/

[4] ESnet: http://www.es.net/

[5] National Transparent Optical Network (NTON): http://www.ntonc.org/

[6] The Message Passing Interface (MPI) Standard, http://www.mcs.anl.gov/mpi/

[7] “Evaluating Stereo and Motion Cues for Visualizing Information Nets in Three Dimensions,” C. W
and G. Franck, ACM Transactions on Graphics, 15, 2, April 1996, pp. 121-140.

[8] OpenRM Scene Graph, http://openrm.sourceforge.net/

[9] “Volume Rendering,” R. Drebin, L. Carpenter, P. Hanrahan, in Proceedings of Siggraph 1988,
puter Graphics, Volume 22, Number 4, pp. 65-74.

[10] “Communication Costs for Parallel Volume Rendering Algorithms,” Ulrich Neumann, IEEE C
puter Graphics and Applications, Volume 14, Number 4, pp 49-58, July 1994.

[11] “Compositing Digital Images,” T. Porter and T. Duff, in Proceedings of Siggraph 1984, Com
Graphics 18, Volume 3, pp. 253-260.

[12] “Modeling and Rendering Architecture from Photographs: A Hybrid Geometry- and Image-B
Approach,” P. Debevec, C. Taylor, and J. Malik, Proceedings of Siggraph 1996, In Computer Graphics
Proceedings, Annual Conference Series, 1996, ACM SIGGRAPH, pp. 11-20.

[13] “Light Field Rendering,” M. Levoy and P. Hanrahan, Proceedings of Siggraph 1996, In Computer
Graphics Proceedings, Annual Conference Series, 1996, ACM SIGGRAPH, pp 31-40.

[14] “IBR Assisted Volume Rendering”, K. Mueller, N. Shareef, K. Huang, R. Crawfis, in Proceedin
IEEE Visualization 1999, Late Breaking Hot Topics, October 1999, pp 5-8.

[15] The High Performance Storage System (HPSS), http://www.sdsc.edu/projects/HPSS/hpss1.htm

[16] “The NetLogger Methodology for High Performance Distributed Systems Performance Analysi
Tierney, W. Johnston, B. Crowley, G. Hoo, C. Brooks, D. Gunter, Proceedings of IEEE High Perform
Distributed Computing Conference, July 1998, LBNL-42611. see: http://www-didc.lbl.gov/NetLogge

[17] CPlant (Computational Plant), http://www.cplant.ca.sandia.gov/.

[18] “Production Linux Clusters: Architecture and System Software for Manageability and Multi-
Access”. W. Saphir, P. Bozeman, R. Evard and P. Beckman. SC ‘99 Tutorial on 11/14/99. Availa
http://www.nersc.gov/research/ftg/tribble/production_linux_clusters_v1.pdf
 LBNL-4536 87

ccel-

viewer

ights
e coop-
[19] “MMR: An Integrated Massive Model Rendering System Using Geometric and Image-Based A
eration,” D. Aliaga, et. al., in Proceedings of 1999 ACM Symposium on Interactive 3D Graphics.

[20] http://www.vrml.org/

9.0 Appendix A - Visapult Internal Architecture

In this Appendix, we provide technical details about the internals of both the Visapult back end and
relevant to interpreting the plots of NetLogger profile data.

We begin with a flowchart-like depiction of the Visapult viewer and back end. The flowchart highl
coarse-grained tasks for both the viewer and back end, as well network communication between th
erative processes.

FIGURE 18. Visapult Architecture

In itia lize

E nd o f D ata?

L oad
Volum e
D ata

C om pute
M etaD ata

Softw are
R ender

Send
M etaD ata

Send
Textures

B arrier

Yes

N o

In itia lize

E nd o f D ata?

Yes

N o

R eceive
M etaD ata

B uild /U pdate
D ata S tructu res

R eceive
Textures

Th read 0
S ignals
R ender T hread

B arrier

I/O Serv ice
T hread

E x it

R ender
T hread
E vent
L oop

Id le?

D one?

A pply
Transform ,
R ender

S igna l?

U pdate
Scene,
R ender

A

A

B

B

E xit

Yes

Ex it

C

Yes

C

C

N o

N o

N oYes

M ultip le
D ata I/O
T hreads

S ing le
R ender
Thread

E xchange
C onfig
D ata

T C P /IP N etw ork transm ission o f da ta S em aphore-p ro tec ted sta te va riab le

D PSS

Visapu lt v iew erVisapult back end
 LBNL-4536 88

s gen-

ack
set

-
ce

h. In
the
sin-
of
 per

le,
n

s

tric

The following two tables provide additional detail about each of the tags present in the profile graph
erated by NetLogger. These tags are used in Figures 10, 12, 13, 14 and 15.

TABLE 1. Visapult Viewer NetLogger Tags in NLV Figures

Tag Remarks

V_FRAME_START Top of loop inside each thread that services an I/O connection with the b
end. In the current implementation, the number of time steps, or loops, is
before each of these threads is launched at initialization time.

V_LIGHTPAYLOAD_START Beginning of receipt of visualization metadata. Visualization metadata con
sists of texture size, bytes per pixel, and geometric information used to pla
the texture in a 3D scene. Visualization metadata is on the order of 256
bytes, hence the name “light payload.”

V_LIGHTPAYLOAD_END Visualization metadata received.

V_HEAVYPAYLOAD_START Beginning of receipt of visualization data. This data consists of raw pixel
data, as well as any geometric data, such as triangles, boxes, and so fort
our tests thus far, the size of this data is also relatively small compared to
size of the source volume. In this implementation, each thread receives a
gle texture, and while the size of the texture is a function of the resolution
the source volume, a typical size is on the order of 0.25 to 1.0 megabytes
texture. Geometric data is typically tens of kilobytes for the AMR grid data
per timestep.

V_HEAVYPAYLOAD_END All visualization data received.

V_FRAME_END End of processing of this time step’s worth of data.

TABLE 2. Visapult Back End NetLogger Tags in NLV Figuresa

a. There are many more NetLogger tags present in the Visapult back end. Many were omitted from this tab
and from the figures, for brevity. These additional tags are useful for more detailed analysis of executio
profiles within each large-grained task (e.g., “load data”).

Tag Remarks

BE_LOAD_START Each back end PE is about to load it’s subset of volume data.

BE_LOAD_END Volume data load and format conversion completed. In our examples, thi
step includes loading of AMR species and grid data.

BE_LIGHT_SEND Start transmitting visualization metadata to the viewer.

BE_LIGHT_END Metadata transmission complete.

BE_RENDER_START Start of parallel volume rendering process.

BE_RENDER_END All rendering complete.

BE_HEAVY_SEND Start transmitting visualization data. In this implementation, the visualiza-
tion data consists of a single texture per back end PE, and optional geome
data representing the grid, and an optional elevation/offset map which the
viewer will use to create a quadmesh.

BE_HEAVY_END End of visualization data transmission.
 LBNL-4536 89

 PE of
, and for

de was
s
 MPI

is thread

h reader
 a suffi-
d.

ack end
er thread.
r all MPI
he
m

waiting
 step
 reader
the
d activ-

nce that
ss begins
er, then

ed to the

d render
ading.
ta,
s from
osition.
ader and

ry model
n-num-
10.0 Appendix B - Overlapped Visapult Back End Implementation Details

The Visapult back end is implemented using MPI as the multiprocessing and IPC framework. Each
the back end is responsible for reading a subset of the volume data, for rendering its subset of data
transmitting the rendering results to the Visapult viewer.

To implement overlapped data loading and rendering in each back end PE, the base MPI co
extended to launch a detached execution thread. We chose to use pthreads as the threading API due to it
portability and wide availability. In the discussion that follows, we refer to the combination of a single
process and its associated detached, reader thread as a process group for the sake of clarity. The reader
thread is the detached, freely-running pthread, and the render process is the MPI process. A flowchart of
these cooperative processes is shown in Figure 19.

Upon entry, each MPI PE launches a detached, freely-running execution thread (reader thread). Th
logically executes concurrently with the MPI process. Concurrent logical execution means that we yield
scheduling control to the host system. On distributed memory systems, such as Linux clusters, bot
thread and render process share a single CPU, thereby inviting contention. On SMP systems with
cient number of CPUs, in our experience, CPU contention appears to be minimized, if not eliminate

In our implementation, the reader thread is a worker, and controlled by the render process. Each b
render process creates a pair of SystemV shared memory semaphores prior to launching the read
Each of the semaphore pairs is shared by each render/reader process group, with one such pair fo
PEs. One of the semaphores, which we’ll call semaphore A, is considered as an execution barrier from t
perspective of the reader thread, while the other, semaphore B, is considered as an execution barrier fro
the perspective of the render process.

Upon entry to the reader thread, after some internal initialization occurs, the reader thread blocks
to gain access to semaphore A. The render process will request that either data from a specific time
will be read, or will request reader thread termination due to completion of all time steps. Once the
thread gains access to semaphore A, it will examine the control variable (in shared memory) and take
appropriate course of action, either reading more data or exiting. Upon completion of the requeste
ity, the reader thread will post to semaphore B, then block awaiting access to semaphore A.

On the render process side, data from time step zero is first requested from the reader thread. O
data has been loaded and is available, data from time step one is requested, and the render proce
to render data from time step zero. Once rendering is complete, results are transmitted to the view
the render process will block while attempting to gain access to semaphore B. Upon gaining access to
semaphore B, the render process requests the next time step’s worth of data, and posts to semaphore A.
This process continues until all the time varying data has been read, rendered and results transmitt
viewer.

In addition to the control semaphores, a large block of memory is shared between reader thread an
process. The reader thread will load the raw scientific data into this large memory block during re
This memory is considered to be double-buffered: its size is twice that of a single time step’s worth of da
and the reader thread will use one half of the buffer for writing into, while the render process read
the other half. Access control is implicit as a function of the time step using an even-odd decomp
Due to the control architecture of the reader thread and render process, we are guaranteed that re
render threads will not access the same odd/even data buffer at the same time.

We chose to extend the MPI base using pthreads in order to take advantage of the shared-memo
employed by threaded code. An alternative would be to use MPI-only constructs. For example, eve
 LBNL-4536
90

nization
 greater
der pro-
n doing
chitec-
bered processes would render, while odd-numbered processes would read data. The synchro
between the two would be similar, but using MPI constructs rather than SystemV semaphores. Of
concern would be the need to transmit large amounts of scientific data between reader and ren
cesses. We consciously chose to avoid incurring this additional cost by using a threaded model. I
so, we may have incurred a penalty in the form of increased contention on distributed memory ar
tures with single-CPU nodes.

FIGURE 19. Architecture of Overlapped Visapult Back End

In itia lize

Set t= 0
Sem _post A
Sem _w ait B

E nd o f D ata?
Yes

N o
Ex it

A

Set t=n+ 1
Sem _post A

Softw are
R ender

Send
M etaD ata

Send
Textures

B arrier

A

In itia lize

F in ished?
Yes

N o
E x it

B

R ead data
N o

B

R ead
D ata a t t

Sem _post B

Sem _w ait A

B

com m and?

Sem _w ait B

B ack End D ata R eader T hreadB ack E nd R ender P rocess

D oub le-buffe red m em ory shared betw een
reader th read and render process.

C om m unication betw een the Visapu lt
back end and v iew er.

System V IPC sem aphore,”read-on ly ”
to reader th read.

System V IPC sem aphore, “ read on ly ”
to render process.
 LBNL-4536
91

jo
hn

.fr
an

k@
m

et
ac

ar
ta

.c
om

61
7-

66
1-

63
82

M
et

aC
ar

ta
G

eo
gr

ap
hi

c
T

ex
t S

ea
rc

h

92

jo
hn

.fr
an

k@
m

et
ac

ar
ta

.c
om

61
7-

66
1-

63
82M
et

aC
ar

ta
 p

in
po

in
ts

 te
xt

 m
es

sa
ge

s g
eo

gr
ap

hi
ca

lly
.

In
iti

al
ly

 fu
nd

ed
 b

y
D

A
R

PA
, M

et
aC

ar
ta

 a
llo

w
s

de
ci

si
on

 m
ak

er
s a

nd
 a

na
ly

st
s t

o
qu

ic
kl

y
vi

su
al

iz
e

an
d

m
an

ip
ul

at
e

in
te

lli
ge

nc
e.

A
ll-

So
ur

ce
 In

te
lli

ge
nc

e
+

M
et

aC
ar

ta

=
 S

uc
ce

ss
.

+
+

93

jo
hn

.fr
an

k@
m

et
ac

ar
ta

.c
om

61
7-

66
1-

63
82

94

jo
hn

.fr
an

k@
m

et
ac

ar
ta

.c
om

61
7-

66
1-

63
82

B
lo

ck
 D

ia
gr

am

•
A

ut
om

at
ic

al
ly

 ta
g

ge
og

ra
ph

ic
 re

fe
re

nc
es

.
•

In
de

x
do

cu
m

en
ts

 a
nd

 d
at

ab
as

es
 fo

r f
as

t m
ap

se
ar

ch
.

•
Ex

pl
or

e
pr

ev
io

us
ly

un
m

ap
pa

bl
e

da
ta

 w
ith

 a
 m

ap
.

R
ic

h
Te

xt
So

ur
ce

s
M

ap
 G

U
Is

M
ap

 S
ea

rc
h

Te
xt

 In
de

x
G

eo
gr

ap
hi

c
Ta

gg
er

95

jo
hn

.fr
an

k@
m

et
ac

ar
ta

.c
om

61
7-

66
1-

63
82

Fr
an

ce
…

A
ix

-e
n-

Pr
ov

en
ce

…
St

. S
au

ve
ur

…
(4

3.
53

45
41
˚,

5.
43

83
29
˚,

88
%

)

A
ut

o
Ta

gg
in

g
of

 G
eo

 R
ef

er
en

ce
s

Th
e

M
et

aC
ar

ta
 G

eo
gr

ap
hi

c
Ta

gg
er

au
to

m
at

ic
al

ly
 e

xt
ra

ct
s g

eo
gr

ap
hi

c
re

fe
re

nc
es

 fr
om

 ri
ch

 te
xt

 to
 c

re
at

e
la

tit
ud

e,
 lo

ng
itu

de
, a

nd
 c

on
fid

en
ce

ba

se
d

on
 li

ng
ui

st
ic

 c
on

te
xt

.

96

jo
hn

.fr
an

k@
m

et
ac

ar
ta

.c
om

61
7-

66
1-

63
82St
an

da
rd

 g
az

et
te

er
s d

o
no

t h
av

e
al

l t
he

 n
am

es
 w

e
ne

ed
, s

o
w

e
us

e
m

ac
hi

ne

le
ar

ni
ng

 to
 e

xt
ra

ct
 n

ew
 n

am
es

 fr
om

 m
as

si
ve

 o
pe

n
so

ur
ce

s.
 F

or
 e

xa
m

pl
e:

•“
K

ar
te

 B
ok

ht
i”

=
(7

4.
75

34
9°

, 4
3.

75
99

3°
, 9

5%
),

ne
ig

hb
or

ho
od

M
az

ar
-I

-S
ha

rif

•“
V

ol
pe

 C
en

te
r”

=
(4

2.
36

99
70

°,
-7

1.
10

52
49

°,
10

0%
),

D
O

T
fa

ci
lit

y
C

am
br

id
ge

, M
A

•“
jr

f@
m

it.
ed

u”
=

(4
2.

39
31

61
°,

-7
1.

11
55

77
°,8

0%
),

ho
m

e
ad

dr
es

s u
se

d
in

 n
ew

sg
ro

up
s

W
ha

t’s
 so

 h
ar

d
ab

ou
t g

eo
-ta

gg
in

g?

N
ew

 in
fo

rm
at

io
n

m
in

ed
 fr

om
op

en
 so

ur
ce

s.

M
et

aC
ar

ta
 G

az
et

te
er

•“
M

ed
ia

”
is

 a
 p

la
ce

 in
 M

or
oc

co
, B

an
gl

ad
es

h,
 L

ib
er

ia
, U

ga
nd

a,
 P

hi
lip

pi
ne

s.

•W
hi

ch
 “

Pa
ris

”
di

d
yo

u
m

ea
n?

 P
ar

is
, T

ex
as

?

97

jo
hn

.fr
an

k@
m

et
ac

ar
ta

.c
om

61
7-

66
1-

63
82W

ha
t c

an
 y

ou
 d

o
w

ith

ge
o-

ta
gg

ed
 m

es
sa

ge
s?

In
de

x
th

em
 fo

r s
ea

rc
h!

98

jo
hn

.fr
an

k@
m

et
ac

ar
ta

.c
om

61
7-

66
1-

63
82

Fu
ll-

Te
xt

 In
de

xi
ng

 fo
r S

ea
rc

h

H
ea

d
N

od
e

O
ut

pu
t f

ro
m

 th
e

G
eo

gr
ap

hi
c

Ta
gg

er
ca

n
be

 st
or

ed
 in

 th
e

pa
te

nt
-

pe
nd

in
g

M
ap

 S
ea

rc
h

Te
xt

 In
de

x.
 T

he
se

 re
vo

lu
tio

na
ry

al

go
rit

hm
s c

om
bi

ne
 m

ap
s a

nd
 fu

ll-
te

xt
 in

fo
rm

at
io

n
w

ith
ou

t
sl

ow
 d

at
ab

as
e

jo
in

s.

Th
e

M
ap

 S
ea

rc
h

Te
xt

 In
de

x
is

 p
ar

al
le

liz
ed

 in
to

 d
at

ab
as

e
sl

ic
es

to

 su
pp

or
t u

nl
im

ite
d

vo
lu

m
es

 o
f d

at
a.

 S
lic

es
 c

an
 ru

n
on

 a

ph
ys

ic
al

ly
 se

pa
ra

te
d

m
ac

hi
ne

.

G
eo

gr
ap

hi
c

Ta
gg

er
ou

tp
ut

U
se

r Q
ue

rie
s

99

jo
hn

.fr
an

k@
m

et
ac

ar
ta

.c
om

61
7-

66
1-

63
82

Pl
ug

-n
-P

la
y

B
ro

w
se

r S
ea

rc
h

G
U

I

Fl
ex

ib
ly

 c
om

bi
ne

 re
po

rts
, m

ap
s,

an
d

ov
er

he
ad

.

100

jo
hn

.fr
an

k@
m

et
ac

ar
ta

.c
om

61
7-

66
1-

63
82

101

jo
hn

.fr
an

k@
m

et
ac

ar
ta

.c
om

61
7-

66
1-

63
82

En
te

r a
 lo

ca
tio

n
to

 v
ie

w
.

102

jo
hn

.fr
an

k@
m

et
ac

ar
ta

.c
om

61
7-

66
1-

63
82

103

jo
hn

.fr
an

k@
m

et
ac

ar
ta

.c
om

61
7-

66
1-

63
82

En
te

r s
ea

rc
h

te
rm

s t
o

fin
d

do
cu

m
en

ts
.

104

jo
hn

.fr
an

k@
m

et
ac

ar
ta

.c
om

61
7-

66
1-

63
82

105

jo
hn

.fr
an

k@
m

et
ac

ar
ta

.c
om

61
7-

66
1-

63
82

Se
e

re
su

lts
 in

 th
e

m
ap

.

106

jo
hn

.fr
an

k@
m

et
ac

ar
ta

.c
om

61
7-

66
1-

63
82

A
ny

 D
oc

um
en

t C
ol

le
ct

io
ns

(N
ew

s,
Em

ai
l,

W
eb

, A
rc

hi
ve

s,
U

pl
oa

ds
)

G
eo

gr
ap

hi
c

T
ex

t S
ea

rc
h

D
es

kt
op

 A
pp

lic
at

io
ns

W
eb

 B
ro

w
se

r,
A

rc
G

IS
, o

th
er

s

G
eo

gr
ap

hi
c

T
ag

ge
r

M
ap

 S
ea

rc
h

T
ex

t I
nd

ex

M
ap

 S
er

ve
r

W
eb

 S
er

vi
ce

s +
 G

U
I

(S
O

A
P/

X
M

L
)

M
et

aC
ar

ta
™

G
T

S
A

pp
lia

nc
e

C
om

pl
et

e
pl

ug
-n

-p
la

y
sy

st
em

 w
ith

•B
ro

w
se

r-
ba

se
d

G
U

I
•W

eb
 S

er
vi

ce
 fo

r d
es

kt
op

 a
pp

lic
at

io
ns

.
•M

ap
se

rv
er

w
ith

 b
as

ic
 v

ec
to

r d
at

a.
(A

sk
 u

s a
bo

ut
 c

on
ne

ct
in

g
to

 o
th

er
 m

ap
s/

im
ag

er
y.

)

-o
r -

G
eo

gr
ap

hi
c

Ta
gg

er
m

od
ul

e
fo

r
cu

st
om

 in
te

gr
at

io
n

(S
O

A
P/

X
M

L)

107

jo
hn

.fr
an

k@
m

et
ac

ar
ta

.c
om

61
7-

66
1-

63
82O
ut

 o
f t

he
 b

ox
 in

 th
re

e
st

ep
s:

1.
M

ou
nt

 y
ou

r a
rc

hi
ve

 d
at

a
di

sk
.

2.
O

ne
 c

om
m

an
d

la
un

ch
es

 g
eo

-ta
gg

in
g

an
d

in
de

xi
ng

.
3.

D
ire

ct
 b

ro
w

se
r t

o
ht

tp
://

m
et

ac
ar

ta
.m

yn
et

w
or

k.
ic

.g
ov

/

108

jo
hn

.fr
an

k@
m

et
ac

ar
ta

.c
om

61
7-

66
1-

63
82

Se
ve

ra
l M

od
es

 o
f A

na
ly

si
s

•
H

ot
sp

ot
s o

f i
nt

en
si

ty
 li

gh
t u

p
fo

r p
at

te
rn

 d
et

ec
tio

n.

•
R

ed
uc

e
cu

to
ff

 fo
r h

ig
h

re
ca

ll
on

 se
ns

iti
ve

 se
ar

ch
es

.

•
C

or
re

la
te

 re
po

rts
 a

nd
 o

ve
rh

ea
d

im
ag

er
y

fo
r o

pe
ra

tio
ns

.

•
A

nd
 m

uc
h

m
or

e…

109

jo
hn

.fr
an

k@
m

et
ac

ar
ta

.c
om

61
7-

66
1-

63
82

H
ot

sp
ot

s b
ec

om
e

vi
si

bl
e.

110

jo
hn

.fr
an

k@
m

et
ac

ar
ta

.c
om

61
7-

66
1-

63
82

Fo
r e

xa
m

pl
e,

le
t’s

 lo
ok

 a
tL

ac
kl

an
d

A
FB

.

111

jo
hn

.fr
an

k@
m

et
ac

ar
ta

.c
om

61
7-

66
1-

63
82

112

jo
hn

.fr
an

k@
m

et
ac

ar
ta

.c
om

61
7-

66
1-

63
82

113

jo
hn

.fr
an

k@
m

et
ac

ar
ta

.c
om

61
7-

66
1-

63
82

114

jo
hn

.fr
an

k@
m

et
ac

ar
ta

.c
om

61
7-

66
1-

63
82

115

jo
hn

.fr
an

k@
m

et
ac

ar
ta

.c
om

61
7-

66
1-

63
82Le

t’s
 z

oo
m

 in
 fo

r a
 c

lo
se

r l
oo

k.

116

jo
hn

.fr
an

k@
m

et
ac

ar
ta

.c
om

61
7-

66
1-

63
82

117

jo
hn

.fr
an

k@
m

et
ac

ar
ta

.c
om

61
7-

66
1-

63
82

C
om

in
g

so
on

…
Se

ar
ch

 b
y

tim
e

ra
ng

e.

118

jo
hn

.fr
an

k@
m

et
ac

ar
ta

.c
om

61
7-

66
1-

63
82

119

jo
hn

.fr
an

k@
m

et
ac

ar
ta

.c
om

61
7-

66
1-

63
82

120

jo
hn

.fr
an

k@
m

et
ac

ar
ta

.c
om

61
7-

66
1-

63
82

W
he

re
 c

an
 M

et
aC

ar
ta

ta
ke

 y
ou

?

121

jo
hn

.fr
an

k@
m

et
ac

ar
ta

.c
om

61
7-

66
1-

63
82

G
eo

gr
ap

hi
c

T
ex

t S
ea

rc
h

W
he

re
 c

an
 M

et
aC

ar
ta

 ta
ke

 y
ou

?

C
al

l a
bo

ut
 d

ep
lo

ym
en

ts
, u

pc
om

in
g

fe
at

ur
es

,
cu

st
om

 d
ev

el
op

m
en

t,
an

d
in

te
gr

at
io

n.

61
7-

66
1-

63
82

jo
hn

.fr
an

k@
m

et
ac

ar
ta

.c
om

122

	all appendices.pdf
	visapult-sc00.pdf
	Using High-Speed WANs and Network Data Caches to Enable Remote and Distributed Visualization
	Wes Bethel, Brian Tierney, Jason Lee2, Dan Gunter2, Stephen Lau1
	Lawrence Berkeley National Laboratory
	University of California, Berkeley
	Berkeley, CA 94720
	1.0 Abstract
	2.0 Introduction
	FIGURE 1. Visualization and Rendering Pipeline

	3.0 Visapult: A Remote, Distributed Visualization Application Prototype
	FIGURE 2. Visapult Architecture

	3.1 Visualization and Rendering Pipeline Architecture
	FIGURE 3. Visapult Rendering of Combustion Data and Adaptive, Hierarchical Grids

	3.2 Parallel Volume Rendering Algorithm Taxonomy
	FIGURE 4. Slab, Shaft and Block Decomposition

	3.3 Image Based Rendering Assisted Volume Rendering
	FIGURE 5. IBR Assisted Volume Rendering
	FIGURE 6. IBRAVR Artifacts

	3.4 Visapult: Parallel and Remote IBRAVR
	3.5 Visapult’s Use of the LBL DPSS as a Data Cache
	FIGURE 7. DPSS Architecture

	3.6 Profiling and Performance Analysis - NetLogger
	4.0 Visapult Field Testing and Evolution
	4.1 SC99 Research Exhibit
	FIGURE 8. Visapult SC99 Configuration
	FIGURE 9. Visualization of Hydrodynamic Cosmology Simulation Results at SC99

	4.2 Combustion Corridor First Light Campaign
	FIGURE 10. NetLogger Instrumentation/Profiling of Visapult

	4.3 Overlapped I/O and Rendering
	FIGURE 11. Overlapped I/O and Rendering Timing Diagram
	FIGURE 12. Execution Profile of Non-Overlapped I/O and Rendering
	FIGURE 13. Execution Profile for Overlapped I/O and Rendering

	4.4 Further Combustion Corridor Testing
	4.4.1 LBL to CPlant over NTON
	FIGURE 14. Serial L+R on Eight CPlant Nodes
	FIGURE 15. Overlapped L+R on Eight CPlant Nodes

	4.4.2 LBL to ANL over ESnet
	FIGURE 16. Serial L+R on an SMP
	FIGURE 17. Overlapped L+R on an SMP

	5.0 Future Work
	6.0 Conclusion
	7.0 Acknowledgement
	8.0 References
	9.0 Appendix A - Visapult Internal Architecture
	FIGURE 18. Visapult Architecture
	TABLE 1. Visapult Viewer NetLogger Tags in NLV Figures
	TABLE 2. Visapult Back End NetLogger Tags in NLV Figures

	10.0 Appendix B - Overlapped Visapult Back End Implementation Details
	FIGURE 19. Architecture of Overlapped Visapult Back End

	LBNL-45365-VisapultSC00.pdf
	Using High-Speed WANs and Network Data Caches to Enable Remote and Distributed Visualization
	Wes Bethel, Brian Tierney, Jason Lee2, Dan Gunter2, Stephen Lau1
	Lawrence Berkeley National Laboratory
	University of California, Berkeley
	Berkeley, CA 94720
	1.0 Abstract
	2.0 Introduction
	FIGURE 1. Visualization and Rendering Pipeline

	3.0 Visapult: A Remote, Distributed Visualization Application Prototype
	FIGURE 2. Visapult Architecture

	3.1 Visualization and Rendering Pipeline Architecture
	FIGURE 3. Visapult Rendering of Combustion Data and Adaptive, Hierarchical Grids

	3.2 Parallel Volume Rendering Algorithm Taxonomy
	FIGURE 4. Slab, Shaft and Block Decomposition

	3.3 Image Based Rendering Assisted Volume Rendering
	FIGURE 5. IBR Assisted Volume Rendering
	FIGURE 6. IBRAVR Artifacts

	3.4 Visapult: Parallel and Remote IBRAVR
	3.5 Visapult’s Use of the LBL DPSS as a Data Cache
	FIGURE 7. DPSS Architecture

	3.6 Profiling and Performance Analysis - NetLogger
	4.0 Visapult Field Testing and Evolution
	4.1 SC99 Research Exhibit
	FIGURE 8. Visapult SC99 Configuration
	FIGURE 9. Visualization of Hydrodynamic Cosmology Simulation Results at SC99

	4.2 Combustion Corridor First Light Campaign
	FIGURE 10. NetLogger Instrumentation/Profiling of Visapult

	4.3 Overlapped I/O and Rendering
	FIGURE 11. Overlapped I/O and Rendering Timing Diagram
	FIGURE 12. Execution Profile of Non-Overlapped I/O and Rendering
	FIGURE 13. Execution Profile for Overlapped I/O and Rendering

	4.4 Further Combustion Corridor Testing
	4.4.1 LBL to CPlant over NTON
	FIGURE 14. Serial L+R on Eight CPlant Nodes
	FIGURE 15. Overlapped L+R on Eight CPlant Nodes

	4.4.2 LBL to ANL over ESnet
	FIGURE 16. Serial L+R on an SMP
	FIGURE 17. Overlapped L+R on an SMP

	5.0 Future Work
	6.0 Conclusion
	7.0 Acknowledgement
	8.0 References
	9.0 Appendix A - Visapult Internal Architecture
	FIGURE 18. Visapult Architecture
	TABLE 1. Visapult Viewer NetLogger Tags in NLV Figures
	TABLE 2. Visapult Back End NetLogger Tags in NLV Figures

	10.0 Appendix B - Overlapped Visapult Back End Implementation Details
	FIGURE 19. Architecture of Overlapped Visapult Back End

