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Abstract—The field of Intelligent Transportation Systems has
raised increasing interest due to it socio-economic impact. The
aim of this work concerns developing efficient techniques for
traffic congestion prediction and visualization. We have designed
a simple, yet effective and scalable model to handle sparse data
from GPS observations and reduce the problem of congestion
in a binary classification problem (jam, non-jam). An attempt
to generalize the problem is performed by exploring the impact
of discriminative versus generative classifiers when employed to
produce results in a 30-minute interval ahead of present time. In
addition, we present a novel traffic jam visualization approach
based on cluster analysis that identifies dense congestion areas.
The results of our analysis provide insight for further research.

I. INTRODUCTION

Nowadays, there has been increasing interest in the field
of Intelligent Transportation Systems. The socio-economic
impact of traffic congestion is present in various real-life
problems. The aim of this paper lies in forming the problem
of predicting traffic jams, as well as visualizing congestion in
a meaningful comprehensive way.

Congestion prediction is a challenging task that is broadly
studied by several researchers [1]–[12]. In general, the con-
gestion prediction techniques face the following problems:

• Data Acquisition and Manipulation: acquiring data in
a particular form (e.g. loop detectors or probes) and
creating certain metrics, usually traffic flow/volume,
occupancy or even mean speed or travel time per link.

• Congestion Modeling: using the aforementioned met-
rics to define the jam and non-jam states of a road,
done in a heuristic manner.

• Congestion Prediction: predicting jams, accomplished
using classification algorithms, although regression
and heuristics are also present in current literature.

Apart from the above problems, in this paper the problem of
traffic congestion visualization is taken into account.

The rest of this paper is organized as follows. Section II
of this paper summarizes certain state-of-the-art techniques
of current literature, while denoting their approach on the

problems described here. The dataset used and the provided
metrics are described in Section III, while Section IV describes
the model used to form the congestion prediction problem.
Sections V and VI present the proposed approaches for the
congestion prediction and congestion visualization problems
respectively. The results of our evaluation are presented in Sec-
tion VII, while Section VIII summarizes the main conclusions
of this paper and suggests future directions.

II. STATE-OF-THE-ART CONGESTION PREDICTION

Several traffic congestion prediction techniques, such as the
approach by S. Yang [1] formulate the problem as a binary
classification task. The author draws data from 4000 loop
detectors, that each provide with the traffic volume, i.e. the
number of vehicles passing through the detector per time unit.
Upon defining an upper and a lower threshold, the state of a
road is defined as jammed if its volume is above the upper
threshold and non-jammed if it is below the lower threshold.
Thus, the dataset is split into two sets, one having jammed and
one having non-jammed roads, and those sets may be used to
train a binary classifier. However, using data from all sensors
to predict the class of a road’s state is not possible in terms of
dimensionality, thus the author also applies a p-test to identify
which features actually affect the state of the road [1]. Upon
identifying the most important features for each road (i.e. the
ones with the highest p-score), the classification is performed
assuming Gaussian distributions over the two datasets, so that
the final probability for the jams state of road j at time t is
given by the following equation:

Sjt,τ =
I∏
i=1

Pr{vit−τ ∈ Gaussian{µij , σij}}
Pr{vit−τ ∈ Gaussian{µ̄ij , σ̄ij}}

(1)

where the volume values for time t − τ are of course known
and I is the total number of sensors. Finally, the author uses
mean precision to evaluate the results and performs analysis
to determine the optimal number of features required. The
approach is quite effective since Gaussian models are generally
strong for low number of features. However, they seem to
struggle when there are many features. Thus, applying the
algorithm to a scenario with speed probes would probably be
both ineffective and inefficient.



A similar, yet less scalable approach is presented by
G. Huisken and M. V. Maarseveen in [3], upon prior research
in [2]. The authors collect data using 35 induction loops on the
motorway A10 of Amsterdam. The detectors are “on” when
a vehicle passes by them and they are “off” when no vehicle
passes. The number of vehicles passing the detector per time
unit (volume) as well as the percentage that the detector is “on”
(occupancy) are known. In addition, the average and standard
deviation of speed in a road segment is calculated using the
respective series of loop detectors. Finally, the authors claim
having an oracle indicating the presence of congestion. The
volume, mean speed, occupancy and standard deviation of
speed can be given as features to any classifier, whereas the
output class comprises of the binary congestion indicators for
the ring road, which were totally 6. The authors test different
classifiers, including multi-linear regression, an ARMA model,
a heuristic Fuzzy Logic classifier, and three neural network
implementations. Although their line of work is interesting,
the number of features is clearly not indicative of an urban
scenario. The method may be effective for ring roads, however
using it in a large road network is prohibitive.

A rather different approach by W. Labeeuw et al. [4] con-
cerns predicting congestion in different points of a ring road,
using a generated speed probe dataset. The authors initially
address the problem as a regression problem, attempting to
predict future velocity values using Bayesian regression over
Gaussian processes. Due to performance issues, the problem is
once again reduced to classification. Three different cases are
determined for each road as slowdown, congested, and normal.
Velocity data from each sensor and its local sensor are used
to formed the features and two classifiers are tested: an SVM
and a C4.5 tree classifier. The results indicate that the C4.5
classifier is quite faster while it has better precision concerning
the Congested and Slowdown sets. Finally, the paper hints
applying the algorithms in a distributed multi-agent manner.
Although the paper indicates that classification is actually a
viable option when considering jams, the dataset is small and
the algorithms do not seem to scale. As previously, since the
dataset is generated for a ring road, the approach is rather
problem-specific, while noise and sparse data are not taken
into account.

By contrast with the aforementioned approaches, the IEEE
ICDM Contest: TomTom Traffic Prediction for Intelligent GPS
Navigation [13] that took place in 2010 provided with inter-
esting insight concerning the raw form of the data and the
noise it may have. Despite relying on simulated data for the
city of Warsaw, the scenarios of the contest are quite realistic.
The 2nd task of the contest, described in [13], refers to jams.
The dataset consisted of sequences of road segments. In the
training set, the first 5 road segments reflected roads that are
closed due e.g. to roadwork, while the others are road segments
that where jammed during a 20-minute interval. The goal was
to create an algorithm that could identify the jams in the next
40-minute interval (of course given for the training set), as well
as the length of the output road sequence (number of jams).
The output road sequence should be ordered according to jam
appearance (from earlier to later).

The winning algorithm of the contest by L. Romaszko
was a modified version of the k-Nearest Neighbors (kNN)
algorithm. The algorithm compares sequences of the training

set with the respective ones in the test set. Intuitively, assum-
ing the most similar training sequences to a specific testing
sequence, the road jammed in training sequences are probably
jammed also for the testing sequence. The algorithm also
outputs jam probability for each road, considering its position
in the training sequences. The average length of the k nearest
training sequences determines the length of the test sequence.

The runner-ups of the competition, J. He et al. [5], created
an ensemble-based method which combines the scores of
different base predictors. Two types of predictors were created:
the geographic propagation predictors and the nearest neighbor
predictors. The former track the flow of a jam based on the
connectivity of the road segments while the latter are based on
comparing the training sequences with the testing sequence at
hand. Each of the tested predictors assigns every jammed road
with a score, which denotes its ranking, based on the distance
given by kNN as well as several heuristic parameters. The
scores of all predictors are combined in a linear fashion to
form the final sequences. Concerning the length of each testing
sequence, the authors use a simple average over the respective
nearest training sequences. Both this and the winning solution
were powerful. yet relatively inefficient since kNN has to store
data instead of the model and its execution time is rather slow.
Although both approaches are quite interesting, they are largely
specific to the dataset of the contest.

Finally, current literature in congestion prediction includes
several other lines of work, such as the one proposed by
G. Marfia et al. [6]–[9]. The authors suggest a distributed
Advanced Traveler Information System (ATIS), where cars send
in their travel times upon traversing each road. Upon defining
suitable thresholds, the authors employ univariate heuristics
to predict future states. Both this line of work and the one
by Y. Ando, O. Masutani et al. [10]–[12], where cars emit
pheromone proportional to the traffic, are mainly directed
towards distributed systems, thus deviate from the scope of
this paper.

III. DATA ACQUISITION

We used road network and traffic data for the city of Berlin,
in order to evaluate our methods. Modeling traffic jams implies
defining their nature with respect to the data given, which in
our case consists of instantaneous vehicle speeds in different
moments as well as free flow speeds, reported when road traffic
is quite sparse.

IV. MODELING TRAFFIC CONGESTION

According to current literature (see Section II), modeling
traffic congestion usually comes down to defining appropriate
heuristics with respect to the metrics provided. As described
in Section III, the metrics used in this paper are instantaneous
speed measurements for the roads of the network in different
moments in time. The model described in this section is not
only effective and efficient but also quite noise tolerant. This is
crucial since GPS observation data is sparse, thus a one-by-one
comparison with a system using loop detectors is impossible.
Thus, the speed probes for each road are not stored. Instead,
certain metrics such as their arithmetic average, their harmonic
average, their standard deviation, and the number of samples
are calculated for 5-minute time intervals. As a result, noise
tolerance and scalability are handled satisfactorily.



Let µr(t) be the mean speed for road r at time interval t
and σr(t) be its standard deviation, we define two thresholds
µT and σT respectively. Thus, the presence or not of a jam in
road r at time t is determined using the following equation:

Sr(t) =

Jam, if
100 · µr(t)
FFr

≤ µT and σr(t) ≤ σT
NonJam, otherwise

(2)

where FFr is the free flow speed of road r. Thus, the mean
speed threshold µT is defined as a percentage of the free flow
speed, while the standard deviation threshold σT in the order
of road speed.

Intuitively, equation (2) provides quite realistic distinc-
tion of jams. Assuming values 60 and 40 for µT and σT
respectively, any road is considered jammed if its current
average speed is 60% of its free flow speed as long as most
speed probes are close to this speed within an (approximate)
[−40,+40] range area. Hence, although simplistic, the model
is effective and realistic. Finally, note that all of the above
computations are performed in a real-time manner, e.g. running
mean and running standard deviation are calculated using
Welford’s method [14].

V. TRAFFIC CONGESTION PREDICTION

Following the congestion modeling procedure of Sec-
tion IV, the problem of congestion prediction is reduced in
a binary classification problem, with the class labels (jam,
non-jam). The selection of features to be used in the classifier
and the proposed approaches to the classification problem are
discussed in the following subsections.

A. Feature Selection

Proper feature selection is vital since the performance of
the classifier is highly dependent on it. Intuitively, multivariate
analysis should yield quite meaningful results since the state
of a road depends on its local neighborhood and possibly
on several other important roads all over the road network.
As proved also in [15], the effect of network-wide metrics
in forecasting is quite significant. Intuitively, this is rather
expected since e.g. a congestion on a ring road could affect
several major roads of the city even though they may not be
in its local neighborhood.

Thus, the problem is formulated as predicting congestion
for a road, given the time series of speed values for its
neighboring roads as well as time series drawn from global
roads of the network. Forecasting congestion, or traffic in
general, comes down to applying multivariate analysis using
both global and local features. However, real networks, such
as the one described in Section III, may contain thousands
of roads, and furthermore some roads may have sparse or
noisy data, or simply data that has no impact on traffic.
As a result, an important step of global multivariate traffic
prediction approaches is determining the roads that affect the
traffic of the road of interest. Current literature is directed
towards the use of correlation metrics such as Coefficient of
Determination (CoD) [15]–[17], or transformation procedures,
such as Principal Component Analysis (PCA) [18].

In terms of this paper, three series are constructed for
each road corresponding to three metrics for every interval:

the number of samples per interval, the arithmetic mean and
the standard deviation of speed. Upon performing PCA over
these three series, the most important global features for these
three dimensions are isolated. Hence, these are the first set of
features given to the classifier.

Apart from global features, the classifier is also given local
ones, containing arithmetic means of the time series of the
road to be predicted as well as its neighboring roads. Let
n1, n2, . . . , ns be the neighboring roads of road r, for each
time interval the number of local features is equal to the
number of neighboring roads plus one for the road itself (s+1).
The final feature set is shown in Figure 1.

Fig. 1. Feature set used to classify road state at time t+1 to Jam or NonJam.

Thus, Figure 1 actually illustrates the feature selection proce-
dure required by any classifier. As mentioned above, the three
global feature groups correspond to different metrics, and were
derived upon performing PCA. Local features contain only
the arithmetic mean of the road and its neighboring roads for
different time intervals.

Finally, the scenario can be defined as binary classification
with scalar features. Applying any classifier is straightforward.
The training set consists of data in the form depicted in
Figure 1, while the testing set is in the same form, excluding
the value of the class feature which has to be determined.

B. Classification

Classification is defined as the problem of determining the
class of a new observation, given a set of observations for
which the class is known (i.e. the training set). Classifiers are
divided into two different categories: generative and discrim-
inative classifiers. A generative classifier attempts to model
the probability distribution of the data in order to classify a
new observation. By contrast, discriminative classifiers classify
observations without creating such a model. For instance, using
a generative classifier to classify a text to a language would
include learning every possible language model and classifying
the text using the learned models. A generative classifier, on
the other hand, would determine the discriminating elements
among languages, and thus classify the text according to them.

The comparison of generative and discriminative classifiers
is a broadly studied topic in current literature [19], [20]. In
general, generative classifiers are known to perform better in
small datasets since they approach their asymptotic error much
faster. By contrast, since discriminative classifiers exhibit lower
asymptotic error, they are better suited towards large diverse
datasets. Since data of real-world classification scenarios are
usually rather large, there is strong preference for discrimina-
tive classifiers not only because of their effectiveness but also



due to their efficiency, since computational power is consumed
for classifying instead of constructing a model. Generative
classifiers, on the other hand, are preferable when data is
sparse, since their models exhibit better noise tolerance.

In terms of the problem at hand in this paper, both
generative and discriminative techniques can be expected to
perform satisfactorily, since the former would tolerate better
the sparse and noisy data, whereas the latter would be effective
concerning the large size of the dataset. Consequently, we
implemented four techniques, two of each kind, in order to in-
vestigate their effectiveness on the problem. These techniques
are analyzed in the following paragraphs.

1) Gaussian Bayes: Probably the most representative gen-
erative classifier is Naı̈ve Bayes. The classifier is a generaliza-
tion of the Bayes theorem for modeling beliefs and it is called
naı̈ve since conditional independence between the features is
assumed. Let the features be x1, x2, . . . , xn, a probability is
derived for each possible value yi of the class attribute1 y
according to the following equation:

P (yi|x1, x2, . . . , xn) =
∏
k

{
P (xk|yi)

} · P (yi)∑
j

{∏
k

{
P (xk|yj)

} · P (yj)
} (3)

Given the values of all attributes, P (xk|yi) is the probability of
an attribute having value xk given that the class is yi. Thus, the
nominator of the above equation is defined as the product of
those probabilities for all attributes, multiplied by P (yi) which
is the prior probability of the class being yi. The denominator
serves only as a normalizer so that the probabilities of all class
attribute values sum up to 1.

Since the Naı̈ve Bayes classifier is used when the attributes
of the dataset are nominal, using it in a scalar-attributes
scenario requires making an assumption about the distribu-
tion of the data. In other words, the problem is reduced to
approximating the P (xk|yi) term of equation (3). A common
technique involves assuming the data is distributed according
to a Gaussian distribution. Thus, the probability of an attribute
value when the class is yi can be computed as:

P (xk|yi) =
1√

2πσ2
yi

· e
−

(yi−µyi )2
2σ2
yi (4)

where µyi
and σyi

are the distribution’s mean and standard
deviation respectively. Finally, using equation (3) the proba-
bility for each class value is computed and the class of an
instance may be selected either as the one with the maximum
probability or even in a probabilistic way with respect to the
class attribute values.

2) Gaussian Mixture Models: As shown in the previous
technique, a generative classifier can be generally based on
defining models that fit the data and deriving probabilities
for new observations. Although assuming the data follows a
Gaussian distribution may seem naı̈ve, it can be noted that
using a mixture of Gaussians should satisfactorily model most
datasets. Given d-dimensional distributions of the form:

PG(~x) =
1

(2π)d/2 ·√|~σ| · e−
(~x−~µ)T ·~σ−1·(~x−~µ)

2 (5)

1The terms “feature” and “attribute” are used interchangeably.
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Fig. 2. A classification example with 2 sample dimensions (x1, x2) using
Gaussian Mixture Models, shown in (a) two and (b) three dimensions. The
blue Gaussian Mixture Model has two distributions starting at (1.5, 1.5)
and (2.5, 2.5), while their mean and standard deviation vectors are [1 0.5],
[1 1] and [1 1], [1 1.5] respectively. The red model has two distributions at
(−2.5,−2.5) and (−1.5,−3.5), with means and deviations [2 0.5], [1 1.5]
and [1 1], [1 1] respectively.

where ~µ is the mean and ~σ is the covariance matrix of the
distribution, the probability in a mixture of K Gaussians is:

P (~x) =
K∑
j=1

wj · PGj
(~x) (6)

where wj is the prior probability of the j-th Gaussian. A
modeling example using Gaussian Mixture Models (GMMs)
is shown in Figure 2 for two dimensions x1 and x2 and a
class feature y. Assuming the red ×’s correspond to a dataset,
the mixture of Gaussians corresponding to sample y2 seems
to successfully cover them. The model is probabilistic, thus
any new observation could be assigned to model y2 according
to the probability given by equation (6). Thus, as a result
of the above analysis, the problem is reduced to creating the
models for the two classes of data, y1 and y2. Upon having
constructed such models, the class of a new instance may be
selected using the probabilities derived from the two models,
once again either by selecting the maximum probability or
simply by returning a probabilistic result.

Given the sample ~x, equations (5) and (6) produce the
following optimization problem:

θ∗ = arg max
θ

log
(
P (~x|θ)) = arg max

θ

K∏
j=1

PGj (~x|θ) (7)

where θ contains all the parameters of the model, i.e. the
weights w1, w2, . . . , wK , the means ~µ1, ~µ2, . . . , ~µK and the
standard deviations ~σ1, ~σ2, . . . , ~σK . The optimal θ∗ is achieved
when the probability is maximized, so that it covers the sample
as much as possible. A popular approach of maximizing θ is
to use the Expectation-Maximization (EM) algorithm.

The EM algorithm is a two step procedure. The expectation
step calculates the probability of sample ~xi to belong to
mixture k using the available parameters:

PGk
(~xi|θ) =

wk · PGk
(~xi|~µk, ~σk)∑K

j=1 wj · PGj (~xi|~µj , ~σj)
(8)

The maximization step involves estimating the mixture pa-
rameters using the computed probabilities. Let N be the total



number of samples, the weight wk is approximated as follows:

wk =
∑N
i=1 PGk

(~xi|θ)
N

(9)

while the mean ~µk and the standard deviation ~σk are:

~µk =
∑N
i=1 PGk

(~xi|θ) · ~xi∑N
i=1 PGk

(~xi|θ)
(10)

~σk =
∑N
i=1 PGk

(~xi|θ) · (~xi − ~µk) · (~xi − ~µk)T∑N
i=1 PGk

(~xi|θ)
(11)

Continuously iterating over the two steps results in a usually
strong model, as long as the number of mixture models and the
number of iterations are carefully chosen to avoid overfitting
the algorithm. Finally, note that any step can be chosen as
the first one. When, however, the algorithm starts with the
maximization step, it is necessary to provide the algorithm
with a prior estimate over the sample (i.e. the initial values for
PGk

(~xi|θ), for every k).

3) k-Nearest Neighbors: The first discriminative classifier
that we implemented is the kNN classifier. The classifier
is initially given a training set in the form of features
xt1, xt2, . . . , xtn and the (known) class feature yt for all
different time moments t of the training set. Given a sample
x1, x2, . . . , xn to classify, the algorithm initially finds the
distances between the sample and each of the known training
samples, in our case using the Euclidian distance metric,
although other distance metrics may be used accordingly. The
k “nearest” samples are found and the output y is determined
using an average metric of their respective outputs (yt for all t
that belong to the k nearest samples). In our work, the output
of the classifier is given by the arithmetic mean, and is later
given the value 0 or 1 with respect to a given threshold.

4) Support Vector Machines: Support Vector Machines
(SVMs) have been widely used in literature for various classi-
fication tasks. The main idea is to construct a hyperplane that
sets apart the classes of a sample. A classification example is
shown in Figure 3.

x1

x2 H1 H2Ĥ

Fig. 3. A Support Vector Machine, separating blue ( ) from red ( ) data
points. H1 and H2 are two valid hyperplanes, and Ĥ is the optimal hyperplane
(dashed lines denote maximum distances).

The example of Figure 3 concerns a two-dimensional space
(with dimensions x1 and x2), i.e. the data instances are
classified according to two attributes. For two dimensions, the
hyperplanes are reduced to single lines. Although there may
be various hyperplanes that separate a dataset, SVMs attempt
to approximate the optimal hyperplane, i.e. the hyperplane

that has maximum distance from instances on both sides.
Maximizing the margin comes down to solving the Quadratic
Programming (QP) problem. Current state-of-the-art suggests
solving it using Sequential Minimal Optimization (SMO).

In classifying traffic jams, SVMs are initially given training
data in the form of attributes xt1, xt2, . . . , xtn and the class
attribute yt in order to construct the optimal hyperplane in a n-
dimensional space. Classifying a new instance is rather simple;
given the features x1, x2, . . . , xn, the SVM returns whether
the instance is on the Jam or on the NonJam side of the
hyperplane, as well as its distance from the hyperplane which
may be used as a quantitative metric of how discriminated
is the instance. Upon cross-validating, we decided to use a
Radial basis function (RBF) kernel with γ equal to 0.1, and
the penalty multiplier C of the SVMs was set to 10.

VI. TRAFFIC CONGESTION VISUALIZATION

Upon forecasting congestion, we present a novel traffic
jam visualization approach that illustrates congestion areas.
Intuitively, jams spread in an area-wise manner. If several roads
of an area are congested, then a small dense area covering them
should also be considered congested or at least under slow-
down. However, jam indications in sparse areas may indicate
noise in data or even insignificant micro-jams. Based on the
aforementioned intuitive remarks, we perform cluster analysis
using modifications of density-based clustering algorithms in
order to identify dense congestion areas. Our algorithm, which
is based on Density-Based Spatial Clustering of Applications
with Noise (DBSCAN) [21], is shown in Figure 4.

JAMS_DBSCAN(NeighOrder, MinRoads)
clusters = new Cluster[]
foreach road R

mark R as visited
if R is jammed

NeighRoads = GetJammedNeighbors(R, o)
if sizeof(NeighRoads) ≥ MinRoads
C = new Cluster
ExpandC(R, NeighRoads, C, o, MinRoads)
clusters.add(C)

ExpandC(R, NeighRoads, C, o, MinRoads)
C.add(R)
foreach road R’ in NeighRoads

if R′ is not visited
mark R′ as visited
NeighRoads′ = GetJammedNeighbors(R′, o)
if sizeof(NeighRoads′) ≥ MinRoads
NeighRoads = NeighRoads ∪ NeighRoads′

if R′ not in any cluster
C.add(R′)

GetJammedNeighbors(R, o)
return all neighbor roads of R within

maximum order o that are jammed

Fig. 4. The density-based clustering algorithm that accepts as input the
minimum number of roads that form a cluster (MinRoads) ad the order of
neighboring roads to be considered (o) and creates the clusters.

As shown in Figure 4, the algorithm initially defines a dynamic
array of type Cluster. Iterating over all roads, the algorithm
selects only the ones that are congested and finds also neigh-
boring roads that are congested. If the number of congested



(a) (b)

Fig. 5. Visualization of traffic congestion using convex hulls that encircle clusters of jammed roads. Real jams are shown in (a) and predicted jams are shown
in (b). The gradient level of each convex is proportional to the expected jam strength at the corresponding area, while its most strong area is at the centroid of
the cluster.

roads in the nearby area is higher than MinRoads, then a
new cluster is initialized and expanded using the function
ExpandC. ExpandC initially adds the road at hand (R) to
the cluster and then iterates over each of the neighboring roads
(NeighRoads) and adds both the neighboring road (R′) and
the latter’s new neighbors (NeighRoads′) as long as they
form a congested area with more than MinRoads.

Upon identifying dense congestion areas, the new prob-
lem lies in visualizing them comprehensively. At first, the
clusters are actually buckets holding nearby roads. These
roads have coordinates of the form (x1, y1) → (x2, y2),
i.e. from their start to their end point (node). Each clus-
ter contains the start and end points of all its roads, i.e.
(x1

1, y
1
1), (x1

2, y
1
2), (x2

1, y
2
1), (x2

2, y
2
2), . . . . The problem of find-

ing the smallest convex shape that contains these points is
known in literature as finding the convex hull of the points. We
used Graham Scan, a simple algorithm named after R. L. Gra-
ham [22], to find the points of the convex hull. The algorithm
initially finds the point with the lowest y coordinate and sorts
all points according to the angle of the line formed between
them and the lowest point with the x axis. Upon sorting, the
algorithm iterates counter-clockwise over all points (i.e. in the
way they were sorted) and discards any points that are inside
the hull by measuring their angle. The algorithm finalizes when
it returns to the initial point (more on this algorithm in [22]).

An example of the visualization of traffic jams is shown in
Figure 5. The congested areas are shown with red color, while
the gradience of the color is a metric of the concentration of
congestion in the specific area. Intuitively, the strongly-colored
areas are the ones close to the centroid of the cluster, which
is defined as the arithmetic mean position of all the points of
the cluster. Note that this is different from the centroid of the
convex shape we created, since the former corresponds to the
road coordinates that belong to the cluster, whereas the latter
corresponds to the convex hull.

VII. EVALUATION

This section presents the results of our evaluation for the
algorithms used to predict traffic congestion, as well as certain
qualitative comments for congestion visualization.

A. Prediction Evaluation

Concerning congestion prediction, the binary classifiers
analyzed in subsection V-B are evaluated against data for the
city of Berlin (see Section III). The data is split into two
weeks, thus data for one day of the first week (e.g. Thursday
of week 1) was used to train the algorithms and data from the
subsequent day on the next week (e.g. Thursday of week 2)
was used to test them. Note also that designing an appropriate
evaluation framework is not trivial, since the distribution of
the data is skewed. Congestion is expected to be rarer than
free flow conditions. Thus, the classifiers require appropriate
adaptation to the nature of the data.

As mentioned in subsection V-B, all classifiers can actually
produce scalar outputs in a pre-specified interval. For example,
Gaussian Bayes provides a probability of a road being con-
gested, i.e. a value between 0 and 1, while SVMs provide not
only the subspace (divide by the hyperplane) that the sample
belongs but also its distance from the hyperplane. Converting
this output to a nominal (Jam,NonJam) value involves
creating an appropriate threshold. Let θ be this threshold, θ
shall receive decimal values from 0 to 1 with step 0.1.

Given a value of θ, a classifier provides nominal values
(Jam,NonJam) for all the roads of the dataset. According
to Information Retrieval, evaluating the performance of the
algorithm initially involves defining the four metrics:

• True Positives (TP): the number of roads that are
predicted to be congested and actually are congested

• True Negatives (TN): the number of roads that are
predicted to be on free flow and traffic flows freely



• False Positives (FP): the number of roads that are
predicted to be congested but traffic flows freely

• False Negatives (FN): the number of roads that are
predicted to be on free flow but actually are congested

Given these metrics, one may devise useful conclusions for
the algorithms. Calculating the precision P and the recall R
of an algorithm is trivial:

P =
TP

TP + FP
(12)

R =
TP

TP + FN
(13)

Intuitively, precision denotes the percentage of predicted jams
that were correctly classified as jams, and recall denotes the
percentage of jams that were successfully predicted.

Although precision and recall are useful metrics, in a
skewed distribution scenario, such as the congestion prediction
one, they may easily be deceiving. Achieving high recall is
trivial; an algorithm may just classify all roads as congested.
In accordance, predicting few jams may result in very high
precision since false positives are minimized. The accuracy of
the algorithms, given as:

A =
TP + TN

N
(14)

where N is the total number of roads, is also rather skewed.
Classifying all roads as free flow achieves quite high accuracy
since congested roads are generally much fewer. A rather more
appropriate metric for such distributions is the F-measure2,
given using precision P and recall R:

F =
2PR
P +R

(15)

All of the above metrics were computed for the algorithms that
we implemented. The bar graph of Figure 6a illustrates their
values for θ = 0.4. As shown in that figure, the SVMs appear
to outperform all other algorithms in terms of accuracy. Their
precision is also the highest, while having rather satisfactory
recall. The kNN classifier is also satisfactory, with high accu-
racy and high precision. Thus, discriminative classifiers seem
to preform slightly better in terms of accuracy and precision. In
terms of recall, however, GMMs outperform other algorithms,
while the performance of Gaussian Bayes is also satisfactory.
The F-measure is rather too close to successfully discriminate
among the algorithms. In any case, comparing the algorithms
over only one theta value is rather hasty, since the θ’s are not
fully normalized, and their effect on the performance of the
algorithms is not fully compared.

Further investigating the relative effectiveness of the algo-
rithms involves analyzing the effect of θ on the performance
of the algorithms. This is accomplished using a Receiver
Operating Characteristic (ROC) curve. Drawing the curve
involves the calculation of sensitivity and specificity, given

2This is also known as the F1-measure, since it is originally defined as
Fβ = (1 + β2PR)/(β2P + R) for β = 1. Although other values of β are
also possible, the value 1 is usually preferred.

different values of θ. Sensitivity is defined equally to recall,
as in equation 13, and specificity is defined as:

Specificity =
TN

FP + TN
(16)

The x-axis of the ROC curve is 1−Specificity and the y-axis
is Sensitivity. The curve for the algorithms we implemented
is shown in Figure 6b. A metric of the performance of a
classifier is the distance of its curve from the random curve.

As shown in Figure 6b, the SVM classifier outperforms all
other algorithms, regardless of the value of theta. In addition,
kNN is very stable, clearly outperforming GMMs for low
values of 1 − Specificity, and achieving better performance
than Gaussian Bayes for high values of 1− Specificity. The
Gaussian Bayes classifier is strong only for low values of
1−Specificity, indicating its inability to identify jams above
a certain threshold. GMMs, on the other hand, appear to over-
generalize, thus not achieving high Sensitivity scores for low
values of 1−Specificity. Hence, the main conclusion dictates
that discriminative classifiers perform better than generative
ones. This is also indicated by the Area Under the Curve
(AUC) metric, which is shown in Figure 6c. Both kNN and
SVMs outperform the generative classifiers, with the latter’s
curve achieving to cover more than 75% of the total area.

B. Visualization Evaluation

Evaluating cluster analysis is a task well-known in litera-
ture. Although there are several metrics, selecting an appro-
priate metric is difficult, since problem specifics are usually
quite narrow. In this work, we evaluate the clustering algorithm
given in Figure 4 both internally, based on the data itself in a
quantitative manner, and externally, in a qualitative manner.

Internal evaluation should provide with an indication of
properly selected clusters in terms of density. A widely
used metric that determines whether the clusters are dense
enough and properly separated from each other, is the Davies
Bouldin (DB) index, named after its creators D. L. Davies and
D. W. Bouldin [23]. The DB index is calculated as follows:

DB =
1
N

N∑
x=1

max
x 6=y

(
d̄x + d̄y
d(cx, cy)

)
(17)

where x (and y) denote indexes of the x-th (and y-th) cluster
out of the total number of clusters N . Also, d̄x is the average
distance of all the points of cluster x from the centroid of the
same cluster cx, and d(cx, cy) is the distance between the cen-
troids of clusters x and y. When the nominator of equation (17)
is small, the clusters can be considered quite densely connected
since the intra-cluster distances are small, so the points are
quite close to each other. Concerning the denominator, the
larger it is the better, since it reflects the inter-cluster distances,
i.e. the distances between the clusters themselves. Thus, a low
DB index is considered generally satisfactory. In our case, the
value of the index is 0.37. This is actually a very low value
(indicatively most literature algorithms expect values higher
than 0.5), indicating our cluster analysis algorithm is effective.
Having such low DB index is rather expected, since jams
are mostly easily distinguishable. Congestion areas are dense
and our algorithm manages to identify whether a new cluster
should be formed in each case.
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Fig. 6. Evaluation metrics for the four classifiers. Precision, recall, accuracy and F-Measure for θ = 0.4 are shown in 6a. The ROC curve shown in (b) is
drawn using values of θ from 0 to 1 with step 0.1, and the total Area Under the Curve (AUC) is shown in (c).

Internal evaluation is certainly useful to provide with a
general measure of the performance of clustering algorithms.
However, since clustering is an unsupervised task, there is
no safe way to determine the effectiveness of an algorithm
without human interference. Thus, it is useful to evaluate the
results of our algorithm externally in a qualitative manner. An
example of the congestion areas found by the algorithm is
shown in Figure 5. As shown in this figure, our algorithm is
robust, constructing clearly distinguished clusters. In addition,
the visualization for each cluster convex indeed covers the
cluster and indicates its centroid.

VIII. CONCLUSION

Although congestion prediction has been analyzed by sev-
eral researchers, our approach in comparing generative versus
discriminative classifiers is novel and shall provide new insight
on the problem. Discriminative classifiers seem to outperform
generative ones. Although Gaussian Bayes and GMMs are
quite strong in certain time intervals, kNN and SVMs appear
much more robust with satisfactory results in the whole dataset.
The ROC curve actually indicates that discriminative classifiers
are more effective overall, both in a sensitive and an insensitive
scenario.

Concerning traffic jam visualization, our algorithm, based
on DBSCAN, yields quite satisfactory results. Apart from the
internal evaluation, the visualization seems informative and
comprehensive. Future work in congestion visualization in-
cludes devising new algorithms, based mainly but not restricted
to density-based cluster analysis. Furthermore, comparing the
algorithms in different datasets could also yield interesting
results.

Concerning traffic congestion prediction, the question
whether using discriminative over generative classifiers is
preferable requires further work. Performing evaluation on
different datasets could yield more distinguishing results. In
any case, this work sets an open question for further research
on this interesting problem.
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