
AllScale toolchain pilot applications: PDE based solvers

using a parallel development environment

Fearghal O’Donnchaa,∗, Roman Iakymchukb, Albert Akhrieva, Philipp
Gschwandtnerc, Peter Thomanc, Thomas Hellerd, Xavier Aguilarb, Kiril

Dicheve, Charles Gillane, Stefano Markidisb, Erwin Laureb, Emanuele
Ragnolia, Vassilis Vassiliadisa, Michael Johnstona, Herbert Jordanc,

Thomas Fahringerc

aIBM Research – Ireland
bKTH Royal Institute of Technology, 100 44 Stockholm, Sweden

cUniversity of Innsbruck, 6020 Innsbruck,Austria
dUniversity of Erlangen-Nurnberg, 91058 Erlangen, Germany

eQueens University of Belfast, Belfast BT7 1NN, United Kingdom

Abstract

AllScale is a programming environment targeting highly scalable parallel ap-
plications, simplifying application development in the ExaScale era by siloing
development responsibilities. The front-end AllScale API provides a simple
C++ development environment and a suite of parallel constructs denoting
tasks to be operated concurrently. Lower level tasks related to the machine
and system level are managed by the AllScale toolchain at the core level. We
present the development of two large-scale parallel applications within the
AllScale API, namely, an advection-diffusion model with data assimilation
and a Lagrangian space-weather simulation model based on a particle-in-cell

∗Corresponding author
Email addresses: feardonn@ie.ibm.com (Fearghal O’Donncha), riakymch@kth.se

(Roman Iakymchuk), albert_akhriev@ie.ibm.com (Albert Akhriev),
philipp.gschwandtner@uibk.ac.at (Philipp Gschwandtner),
peter.thoman@uibk.ac.at ( Peter Thoman), thomas.heller@fau.de (Thomas Heller),
xaguilar@pdc.kth.se (Xavier Aguilar), k.dichev@qub.ac.uk (Kiril Dichev),
c.gillan@qub.ac.uk (Charles Gillan), markidis@kth.se (Stefano Markidis),
erwinl@kth.se (Erwin Laure), eragnoli@ie.ibm.com (Emanuele Ragnoli),
vassilis.vassiliadis@ibm.com (Vassilis Vassiliadis), michaelj@ie.ibm.com (Michael
Johnston), herbert.jordan@uibk.ac.at (Herbert Jordan), tf@dps.uibk.ac.at
(Thomas Fahringer)

Preprint submitted to Computer Physics Communications November 22, 2018



method. Mathematical formulations and implementations are presented and
we evaluate parallel constructs developed using the AllScale API. The per-
formance of the applications from the perspective of both parallel scalability
and more importantly productivity are assessed. We demonstrate how the
AllScale API can greatly improve developer productivity while maintaining
parallel performance in two distinct applications. Code complexity met-
rics demonstrate reduction in application specific implementations of up to
30% while performance tests on three different compute systems demonstrate
comparable parallel scalability to an MPI version of the code.

Keywords: HPC, data assimilation, partial differential equation, numerical
solvers, advection-diffusion, particle-in-cell.

1. Introduction

The computational and data requirements of modern simulation tools for
applications such as weather, computational biology and computational fluid
dynamics (CFD) are a fundamental driving force for modern HPC systems.
Consequently, such systems consist of thousands of nodes, dozens of cores
and complex memory hierarchies and optionally-equipped with accelerators.
In order to fully exploit these systems applications typically require complex
parallelisation schemes to address the characteristics exhibited by coarse-
grained (inter-node) and by fine-grained (intra-node) parallelism.

Synchronization requirements, combined with multiple parallelisation sche-
mes enforced by performance considerations require development of efficient
code, placing very high skill demands on the application developer. The de-
veloper needs knowledge of sophisticated domain related algorithmic formu-
lation, together with advanced software engineering skills and understanding
of system architecture. These skill demands are accentuated as the degree of
parallelism increases and application codes are deployed on hundreds of thou-
sands to millions of computational cores. Developing programming models
that effectively exploit these systems typically requires a hybrid parallelisa-
tion scheme that separately addresses inter- and intra-node parallelism.

Several research projects aim to address the challenge of developing effec-
tive code on modern large-scale systems. A particular advocate of this ‘sep-
aration of concerns’ in application development is the firedrake framework
[1], which aims for an automated system for the portable solution of par-
tial differential equations (PDE) using the finite element method (FEM). It

2



builds on the Unified Framework Language (UFL) [2] employed by the FEn-
iCS project [3] to provide an API that enables scientists to express PDEs in a
high-productivity interpreted language. The PyOP2 framework [4] provides
an abstraction between the domain scientist concerned with implementing
the numerical methods for solution of PDEs numerics and the implementa-
tion of parallel execution over multi-core platforms.

In this paper we present AllScale (www.allscale.eu), a project funded
by the European Commission in its Frontiers and Emerging Technologies in
Horizon 2020 (FETHPC) Programme which aims to provide computational
paradigms to tackle extreme-scale ExaScale computing (1018 Flops). A key
component of these future systems is parallelism of the order of 105 – 106

cores. This degree of parallelism requires novel algorithmic structures to
improve efficiency together with decoupling of the specification of parallelism
from the associated management activities during program execution thereby
improving productivity and the development environment. These factors
impose significant challenges for developers aiming to efficiently utilise all
available resources. In particular, the development of such applications is a
complex and labour intensive task requiring management of parallel control
flows, data dependencies and underlying hardware resources, each of which
embodies challenging problems of its own.

In this paper we present the parallelisation of two PDE-based applications
using the novel AllScale toolchain that empowers development of highly-
scalable parallel applications. The design of this ExaScale development en-
vironment is based on three key principles:

1. Enabling the separation of responsibilities in the development of HPC
applications;

2. Utilizing industry standard programming languages and preserving com-
patibility with existing development and debugging tools;

3. Employing advanced programming language, compilation and runtime
system technology to transparently integrate sophisticated services into
parallel applications.

From the perspective of the application developer, the AllScale toolchain
promises highly increased productivity by hiding parallel constructs and pro-
viding a development API reminiscent of serial applications.

The paper provides a comprehensive evaluation of the AllScale toolchain
from the perspective of productivity (i.e. whether it simplifies the develop-
ment process) and performance (i.e. parallel scalability on large systems).

3



The two pilot applications consist of an advection-diffusion based model with
data assimilation (DA) and a particle-in-cell (PIC) method for space-weather
simulations.

DA is a central technique in many ocean and geoscientific modelling and
forecasting systems to optimally combine system physics and sensor measure-
ments. DA improves the accuracy of forecasts provided by physical models
and evaluates their reliability by optimally combining a priori knowledge
encoded in equations of mathematical physics with a posteriori information
in the form of sensor data. The situation being studied reduces to an inverse
problem, where one uses sensor observations to infer the set of parameters
or causal factors that produced them. Prediction, or the forward model,
then proceeds from this updated state. DA has been applied across a large
number of geoscientific domains including meteorology [5], oceanography [6],
hydrology [7] and ecology processes [8]. A comprehensive review of recent
developments in data assimilation for the study of ocean processes and events
is provided in [9].

Space weather [10] is the study of processes originating in the sun and
propagating through the solar system, with effects on people and technology
in space and on earth ranging from auroras in the polar regions to elec-
tromagnetic disturbances disrupting currents in power and communication
infrastructure. The shape of the Earth’s magnetosphere is determined by the
microscopic interaction phenomena between the solar wind and the dipolar
magnetic field of the planet. To describe these interactions correctly, we
need to model phenomena occurring over a large range of time and spatial
scales. In fact, magnetosphere comprises regions with different particle den-
sities and magnetic field intensities. One of the most widely used methods
for space weather simulations is the PIC method [11, 12]. In the PIC model,
plasma particles from solar wind are mimicked by computational particles.
At each computational cycle, the velocity and location of each particle are
updated, the current and charge density are interpolated to the mesh grid
and Maxwell’s equations are solved. In this work, we study the formation of
the Earth’s magnetic dipole by the PIC implementation within the AllScale
environment.

The paper is structured as follows: the next section details the AllScale
development environment and API; Section 3 describes the pilot applications
and their implementation within the AllScale environment; Section 4 outlines
the impact of the API on development productivity, assesses the quality of
numerical solvers adopted and presents experimental scalability results; and

4



finally, the conclusions section presents outcomes from the study and future
research steps.

2. AllScale Toolchain

This section outlines the AllScale programming environment and moti-
vations for its use. The AllScale programming environment aims to separate
responsibilities between domain scientists, HPC experts and system level
experts by offering a well-defined bridge between their worlds. The bridge
provided by the AllScale API consists of two parts that represent the basic
building blocks of every parallel algorithm:

• parallel control flow primitives;

• data structures.

The former are defined via a single, recursively parallel, higher-order op-
erator (prec) [13], whereas the latter fulfil the concept of a data item. Both
building blocks are part of the AllScale Core API and follow the open/close
principle of software engineering by being open for extension but closed for
modification. This technique allows any high-level operators and data struc-
tures needed by domain scientists (e.g. parallel loops, stencils, structured and
unstructured meshes) to be implemented by HPC experts in the extensible
AllScale User API. Domain scientists can use the AllScale User API without
requiring knowledge of the design of scalable operators, low-level data man-
agement and other aspects related to parallelism and synchronisation control
code that would obstruct an otherwise clear implementation of a high-level
algorithm. HPC experts likewise are relieved of the need for domain-specific
knowledge or low-level optimisations but can focus on the development of
efficient parallel operators offering domain-decomposition thereby reducing
overall development overheads. In addition, system level experts are not re-
quired to support any high-level components but only their common base in
the Core API, greatly reducing maintenance, optimisation and tuning effort.
Finally, as the AllScale API is implemented as an embedded DSL [14] in pure
C++14, compatibility with existing compilers, debuggers, and many other
toolchain tools required during the development process is preserved.

The parallelism exposed via the parallel primitives of the AllScale API
is controlled by the AllScale Runtime System – an extension of HPX, an
established task-based runtime system [15]. AllScale’s application runtime

5



model [16] is based on tasks, represented by calls to the prec operator. The
conversion of prec calls to runtime-compatible entities is done by the AllScale
Compiler. While it provides additional features, their discussion is omitted
for brevity as they are not used in this work. Each runtime task can be sent
to a so-called worker for processing or be split into two smaller tasks, which
in turn can be processed in parallel or be split again. This recursive nest-
ing of parallelism enables automatic control over the degree of parallelism
at runtime without any additional manual effort. It is the foundation for
sophisticated runtime system features such as automatic load balancing and
provides a clear advantage over application models where application devel-
opers are tasked with manually implementing such features per application.
In addition, the AllScale Runtime System includes a monitoring component
for real-time performance feedback. This information is used by the AllScale
Runtime System in its task scheduling process. Furthermore, the collected
performance data can be pipelined to an external server (to visualise sev-
eral metrics in real-time), thereby, giving application and system developers
real-time inspection of software performance and resource utilization. Some
real-time metrics include timing for tasks, task throughput, power, memory
usage, CPU load, idle rate and bytes sent and received through the network.
The AllScale Monitoring Component also can provide post-mortem reports,
i.e., logs, plots, and heat maps on simulations.

Developers implement code using the AllScale API, including its generic
library of parallel algorithms and data structures. The AllScale Compiler
turns applications into binaries that can be effectively managed and tuned
by the AllScale Runtime system to obtain efficient and resilient execution on
a large variety of medium to large scale parallel computer systems. At its
core, the AllScale programming model facilitates a separation of concerns in
application development, an aspect that distinguishes it from other state of
the art programming models. In these other models, application developers
are required to bear in mind a wide range of considerations related to the
execution environment. When that execution environment includes a very
large number of compute cores, then developers need to monitor hardware
resources in order to perform load balancing and correspondingly to imple-
ment resilience against node failures, known as hard faults. Our research
identified that dealing with these faults, as opposed to software failures, was
the key concern for all of the applications.

To address hard faults, a generic implementation of checkpoint restart is
available within the AllScale Toolchain and the efficiency of the technique

6



demonstrated using a particle in cell simulation code. In the presence of
hard faults, the AllScale resilience component of the AllScale runtime restarts
tasks and performs checkpoint/restarts with the support of the scheduler.

3. Methodology

This paper focuses on the development, performance and scalability of
the two pilot applications within the AllScale toolchain. Aspects related to
the development of the code within the user API are assessed while parallel
performance within the AllScale runtime system (based on the HPX parallel
standard library [15]) is compared against benchmark MPI simulations.

3.1. AMDADOS

The AMDADOS (Adaptive Meshing and Data Assimilation for Disper-
sion of Ocean Spills) model simulates conservative tracer transport in surface
flows. It resolves the simulation of transport within a domain, Ω, with some
initial concentration ugt(x, y, 0) at location pc and time t = 0 that is prop-
agated forward in time. Some sparse information, or ground-truth data is
available on the constituent concentration evolution over time from sensors
distributed within the domain (typically with some associated sensor uncer-
tainty level). The data assimilation problem for this case can be formulated
as follows: find a reasonably good approximation to the distribution of con-
taminant in the domain as a function of space and time given only a physical
model and sparse observations.

The physical model of transport over a spatial domain is described by the
following equation [17]:

∂u

∂t
=D

(
∂2u

∂x2
+
∂2u

∂y2

)
− vx

∂u

∂x
− vy

∂u

∂y
,

s.t. u|t=0 = δ(x−xc, y−yc), u|∂Ω = 0.

(1)

where D is the diffusion coefficient, vx = vx(x, y, t) and vy = vy(x, y, t) are
the flow (current) velocity components and the initial condition is defined as
point source at some location (xc, yc). Information external to the compu-
tational domain is specified by boundary conditions. Ideally, the absorbing
boundary condition should be applied at the outer border ∂Ω of the domain
Ω. In our case, a high density value is mostly obtained far from the boundary
and we can apply a Dirichlet condition [18]. The numerical solver used is the

7



implicit (or backward) Euler method; it is used for its unconditional stability
and ability to handle stiff problems [19, 20].

The DA scheme employed is the Kalman filter. The fundamental goal of
data assimilation methods is to integrate available observation data with a
dynamical model using an assimilation scheme. Since the data contains errors
and models are imperfect representations, the assimilation scheme needs to
consider confidence in both observations and model during the update phase.
The Kalman filter produces an estimate of the state-of-the-system as an
average of the system’s predicted state and of the new measurement using a
weighted average.

In this scheme the analysis in the assimilation cycle is computed by the
update equation [21]:

xa = x̂ + K(x◦ −Hx̂) (2)

where xa are the a posteriori state estimate (or the updated solution), x̂ are
the modelled data and x◦ are the observed data. H is an operator that maps
the forecasted data vectors into the observation space and K represents the
Kalman gain, which can be written as:

K =
PHT

HPHT + R
(3)

where P and R are the State Error Covariance Matrix and the Observation
Error Covariance Matrix, respectively. We see from equation 3 that as the
measurement error covariance R approaches zero, the gain weights the resid-
ual, (x◦−Hx̂), more heavily guiding the model towards the measured state.
On the other hand, as the a priori estimate of error covariance P approaches
zero, the gain K weights the residual less heavily.

Various methods of distributed Kalman filtering have been proposed, but
many still suffer from scalability issues or depend on the structure of the
problem. The common feature of those methods is that the distribution of
filters is done for a discrete model by decomposition of the corresponding
matrix. In this study, the global domain, Ω, is decomposed into a set of
smaller sub-domains, which are distributed across computational cores. Each
subdomain is implemented as a grid of nodal cells. Within each subdomain,
the filtering of model and observations, is implemented and at the end of
each iteration, neighbouring subdomain solutions are synchronized. At run
time, each subdomain is assigned to a worker, either an execution thread

8



or a process, in case of the distributed application. The assignment and
workload balancing is done automatically once the grid of subdomains have
been exposed to parallel AllScale operators.

3.2. iPIC3D

The iPIC3D (implicit Particle-In-Cell 3D) pilot [22] simulates the inter-
action between solar wind and the Earth magnetic field. The underlying PIC
method [11] is one of the most common and powerful numerical techniques
for the simulation of fusion, astrophysics, and space plasmas. For instance,
PIC simulations [23] are used to study the interaction of the Earth’s elec-
tromagnetic field with hot plasma emanated by the sun, the so-called solar
wind. The Earth’s magnetosphere is a large system with many complex phys-
ical processes, requiring realistic domain sizes and billions of computational
particles. In the PIC model, plasma particles from the solar wind are mim-
icked by computational particles. At each computational cycle, the velocity
and location of each particle are updated, the current and charge density
are interpolated to the mesh grid and Maxwell’s equations are solved. Since
the high-energy plasma in space can damage spacecrafts and endanger the
life of astronauts in space, it is important to enable efficient large-scale PIC
simulations capable of predicting phenomena in space.

In kinetic simulations of plasmas, the evolution of the distributions func-
tion f for a given species (electrons, protons or heavy ion species) is calculated
by solving numerically the transport equation without the collisional term,
the so-called Vlasov equation [11, 12]:

∂f

∂t
+ v · ∂f

∂r
+

q

m

(
E +

v ×B
c

)
· ∂f
∂v

= 0, (4)

where q and m are the charge and mass of the species, respectively; v is
the velocity dimension; r is the space; and B and E are the magnetic and
electric fields, accordingly. The Vlasov equation is solved in combination
with Maxwell’s equations:

∂B

∂t
= −c∇× E, (5)

∂E

∂t
= c∇×B − 4πJ. (6)

The coupling of the Vlasov equation and the Maxwell’s equations is provided
by the charge, ρ, and current, J , densities that are the moments of the

9



distribution function f

ρ =
∑

q

∫
fdv,

J =
∑

q

∫
vfdv.

One of the most successful approaches to solve the Vlasov-Maxwell system
is the PIC method. In the PIC method, the original distribution function,
f , is described by means of computational particles: particle positions and
velocities are randomly sampled according to the initial given distribution
function. At every computational cycle, particle positions and velocities can
be updated, solving numerically the equation of motion for each particle:

dx

dt
= v, (7)

dv

dt
=

q

m
(E + v ×B). (8)

At each computational step, it is possible to reconstruct the distribution
function using the computational particle positions and velocities.

In general, the workflow of iPIC3D can be summarized in two steps: 1)
electric E and magneticB fields as well as the particles velocity v and position
x are initialized on the grid using the set-up defined in the input file; 2) the
Maxwell equation and the equation of motion are calculated simultaneously
on the grid for several cycles. The number of cycles to run the simulation is
also specified in the input file.

Typically, parallel iPIC3D simulations divide the simulation box into sev-
eral domains that are equal in size. Each domain is assigned to a process
that carries out the computation for the particles in the domain. When a
particle exits the domain, it is communicated to a different domain. Because
of the non-uniform configuration of the electromagnetic field in space, com-
putational particles concentrate in relatively small spatial regions, while few
particles cover other spatial regions. The distribution results in having more
particles in certain simulation domains than others and results in the work-
imbalance problem: processes with fewer particles wait for other processes
with more particles to finish their computations at every time step.

iPIC3D represents a challenging HPC application as 1) the computation
of particle motion is expensive and 2) large variation in particle distribution

10



among cells leads to large load imbalances. Many PIC implementations try to
use explicit solvers such as leapfrog approximations or the explicit Tajima’s
scheme [24] to solve the equation of motion. In this work, we employ a
second order scheme, called the Boris mover [25].The Boris scheme suits
much better task-based parallelism for many-core computation due to its
local nature. Additionally, in case of the PIC simulations, there are no direct
interaction among particles, which makes computations on each particle non-
overlapping. Note that AllScale automatically manages work distribution
and load balancing thought its parallel constructs like pfor.

3.3. Experimental procedure

The experimental set-up considered three factors: 1) the computed so-
lution is correct and appropriate algorithmic sophistication is supported, 2)
whether the AllScale API improves developer productivity and code main-
tainability and 3) the parallel scalability of the application on increasing
number of nodes.

Domain decomposition based approaches are applicable in simulation due
to the promise of reduced computational demand (by distributing across com-
pute resources, reducing the size of matrices, etc.). An important considera-
tion, however, is to ensure fidelity of the solution (i.e. the computed solution
should be qualitatively (if not quantitatively) equivalent to that computed if
modelled as a single global domain). To provide a benchmark of correctness,
we first run the simulation as a single global domain from which we extract
‘observations’ for the data assimilation scheme. This simulation also serves
as the true solution against which the computed result from the distributed
model can be readily compared.

Developer productivity considered the ease of development and maintain-
ability of the application. Porting to the AllScale API exploited the domain
or data decomposition paradigm of the applications to leverage recursive
parallelism. For AMDADOS, parallelism was implemented by distributing
individual subdomains across cores, while iPIC3D essentially used a set of
parallel loops iterating over all cells in the 3D-space grid. Such parallel
instructions are directly mapped to a recursive formulation of the pfor or
stencil operator provided by the AllScale API. For both pilot applications,
synchronization and latency remain hidden to the user. Contrary to an MPI
parallel application, where synchronization must be handled by the user via
repeated MPI calls, the AllScale implementation has a much closer feel to a
serial application.

11



Parallel scalability experiments were conducted on a number of different
infrastructures, namely:

• Cray XC40 system at the PDC Center for High Performance Comput-
ing in KTH (”Beskow” system);

• Megware manufactured system based on Intel Xeon E5-2630v4 proces-
sors at the Friedrich-Alexander University (FAU) (”Meggie” system);

• Intel Xeon based system at TU Wien (”VSC-3” system).

The Beskow system is a Cray XC40 system, based on Intel Xeon E5-
2698v3 Haswell and Intel Xeon E5-2695v4 Broadwell processors, and Cray
Aries interconnect technology. It has 2 Intel processors per node, for a to-
tal of 32 cores in the Haswell nodes, and 38 cores in the Broadwell nodes.
Haswell nodes have 64 GB of memory per node, and Broadwell nodes 128 GB.
The Meggie cluster is a high-performance compute resource with high speed
interconnect. Each node contains two Intel Xeon E5-2630v4 ”Broadwell”
chips running at 2.2 GHz connected by an Intel OmniPath interconnect with
up to 100 GBit/s bandwith. The VSC-3 system provides 2020 nodes, each
equipped with 2 processors (Intel Xeon E5-2650v2, 2.6 GHz, 8 cores from
the Ivy Bridge-EP family), 64 GB of main memory and internally connected
with an Intel QDR-80 dual-link high-speed InfiniBand fabric.

4. Results

4.1. Correctness of solution

Experimental tests evaluated the capabilities of the pilot applications to
accurately resolve representative test cases. Did the AMDADOS application
accurately reconstruct a contaminant spread given initial conditions, user
defined flow field and sparse set of observation data across the domain? Did
the iPIC3D numerical solution outputs compare to an analytical solution.

Figure 1 shows how relative error fades away for the AMDADOS applica-
tion as simulation progresses. Starting from time t = 0, the evolution of the
simulated field closely tracks the correct solution, which is exposed to the
model in terms of assimilated sensor data. The relative error is computed as
a ratio between L2-norm of flatten field of density difference and L2-norm of
flatten ground-truth density: ε = ‖ugt − u‖2/‖ugt‖2. The data-assimilation
solver ‘nudges’ the solution towards the correct solution, catching up with

12



Figure 1: Relative difference (ε = ‖ugt − u‖2/‖ugt‖2) between the ground-truth density
and data-assimilation solution, as a function of “relative time”: τ = 100 t/T , where t is a
physical time in seconds, and T is an integration period.

the true distribution when sufficient sensor information on the true state is
ingested directing error towards zero over time.

-100000

-80000

-60000

-40000

-20000

 0

 20000

 40000

 60000

 80000

 100000

-6x10
-5

-4x10
-5

-2x10
-5  0  2x10

-5
 4x10

-5
 6x10

-5

v
el

o
ci

ty

position

theory
numerical

Figure 2: Results obtained for the v×B rotation: the analytical result is a closed circular
orbit at the Larmor radius, which is shown by the solid blue line; the numerical results
computed using the AllScale Toolchain, which is shown by the square points.

Figure 2 compares the computed numerical results of iPIC3D’s particle
mover against an analytical solution and demonstrates a correct representa-
tion of system dynamics for relatively small problems such as the v×B (or v
cross B) rotation. The v × B rotation is a known example used for correct-
ness as it tests particles rotation about the field line in the absence of the

13



electric field E in (5)-(6). For medium size simulations, we compare particles
density (number of particles) per cell, recorded with certain intervals (e.g.
every 10 time steps) for both the parallel runs against the sequential exe-
cution. For real world simulations, we record the final aggregated results of
the simulation – such as the total electric and magnetic energy as well as the
total kinetic energy – and analyze them according to the energy preserving
law, permitting a small deviation due to round-off errors.

4.2. Developer productivity

The AllScale environment is directed at improving developer productivity
by separating algorithmic (domain science) aspects from HPC aspects. By
providing a clean separation, it aims to ease the development of numerical
solvers while decreasing maintenance effort, and allowing the independent
optimisation of system-level components without changing application code.

A cumbersome development task in many-core applications is parallel
constructs required to synchronize solution across cores and nodes. Within
the AllScale API, synchronisation aspects are managed at the core API level
facilitating trivial implementation of boundary exchange operations. List-
ing 1 schematically outlines how boundary exchange were implemented for
the AMDADOS application. Neighbouring domains (if they exist) are iden-
tified via Boolean data types. On each of the four boundaries, the overlap-
ping local boundary is updated by the computed values from the neighbour-
ing, remote boundary. All additional synchronization considerations, such
as send/receive orderings, computational overlapping, load balancing etc.,
are managed at the level of the core API and runtime and hidden from the
application developer. Further, by separating parallel aspects from the appli-
cation development, shared or distributed memory parallel simulations via
simple command line instructions specifying locality and threads agnostic
of architecture is allowed. Code maintainability is greatly improved while
making transition between different architectures seamless.

Listing 1: AllScale boundary exchange implementation

// for each subdomain update boundaries in each direction

pfor(Point{0,0}, Point{M,N}, [&](const Point_2D & idx) {

// init A with current state

A = state[idx]

// update boundaries

14



for(Direction dir :{Up,Down,Left,Right}){

// obtain the local boundary

auto local_boundary = A[idx].getBoundary(dir);

// obtain the neighboring boundary

auto remote_boundary =

(dir == Up) ? A[idx+{-1,0}].getBoundary(Down ) :

(dir == Down) ? A[idx+{1,0}].getBoundary(Up ) :

(dir == Left) ? A[idx+{0,-1}].getBoundary(Right) :

(dir ==Right) ? A[idx+{0,1}].getBoundary(Left ) ;

// compute updated boundary

assert(local_boundary.size() == remote_boundary.size());

local_boundary = remote_boundary;

state.setBoundary(dir,local_boundary);

});

To better quantify the potential to streamline application code, we eval-
uated the code complexity of both applications against the standard MPI
implementation. We used the open source tool CMetrics [26] to measure sev-
eral widely used code complexity metrics on the code bases for the AllScale
and MPI versions of the pilots.

The four metrics considered were: 1) source lines of code (SLOC – without
spaces/comments); 2) Halstead’s Mental Discriminations (H MEN D) [27];
3) McCabe’s average cyclomatic complexity [28] across all modules (AVG
CY); and 4) the sum total cyclomatic complexity across the entire code base
(TOT CY). Figure 3 compares each metric normalized to its AllScale result.

Despite enabling a larger feature set – none of the MPI versions compared
here support dynamic load balancing, monitoring interface or resilience sup-
port – the AllScale version contains lower application code complexity in all
metrics. The largest relative difference is observed in the average cyclomatic
complexity comparison for iPIC3D producing a reduction of 30% compared
to the benchmark. This is primarily due to MPI context management having
a significant impact on this metric.

A further and more subjective, estimate considered the complexity of code
necessitated by parallel constructs, namely, statements in user code which
can be attributed directly to introducing parallelism or to managing parallel
data. For AllScale, this would include calls to parallel operators, and for MPI
it would include all ”MPI *” calls. Analysis demonstrates that for both pilot
applications, there were between 2.5 and 3.5 times more parallel constructs

15



Figure 3: Code metric comparisons for AllScale and MPI implementation of pilot applica-
tions. The y-axis represents each metric normalised to the AllScale implementation (i.e.
AllScale metric = 1.0 for each metric)

in the MPI version than that developed using the AllScale API.

4.3. Parallel scalability

A fundamental objective of the AllScale environment is parallel scalabil-
ity. Figure 4 presents scaling performance running the AMDADOS pilot ap-
plication using the AllScale API on three different systems, namely Beskow,
Meggie and VSC-3 cluster described in section 3.3. Computational perfor-
mance is evaluated in terms of the total throughput (here defined as the
number of subdomains computed) as compute resources increase (in a weak
scaling implementation) and compared to the benchmark MPI implementa-
tion.

16



Figure 4: AllScale scalability results compared to an MPI implementation for the AMDA-
DOS pilot application on three different compute systems, namely Beskow, Meggie and
VSC-3 (see Section 3.3. Throughput on the y-axis denotes the number of subdomains
processed per second

AllScale gives excellent performance on two of the three systems evalu-
ated. The AllScale implementation gives up to 2x speedup compared to the
manually tuned, MPI version. For both VSC-3 and Meggie cluster, through-
put is similar, up to approximately 16 nodes. Beyond this, the AllScale
version significantly outperforms MPI, leading to a performance speedup of
2.67x and 1.92x on the Meggie and VSC-3, cluster respectively. Profiling of
the application code demonstrates this to result from the significant commu-
nication overhead in the pilot applications. The recursive parallelism of the
AllScale system that overlaps communication and computations significantly
improves on the flat profile of the MPI implementation.

Figure 5 presents weak scaling performance obtained for the iPIC3D pi-
lot application using the AllScale environment on the same infrastructure.
Computational throughput is defined in terms of the number of particles com-
puted per second as a function of the number of nodes, following the weak
scaling paradigm. The AllScale implementation of iPIC3D shows comparable
performance results against its MPI counterpart on Meggie and VSC-3 com-
puting infrastructure. For small node count, the AllScale version slightly out-
performs MPI, however, on larger node counts, MPI provides higher through-
put, particularly on the Beskow system.

17



Figure 5: AllScale scalability results compared to an MPI implementation for the iPIC3D
pilot application on three different compute systems, namely Beskow, Meggie and VSC-3
(see Section 3.3. Throughput on the y-axis denotes the number of particles computed per
second

On the Beskow system, MPI significantly (by 1.7x and 1.99x for AMDA-
DOS and iPIC3D, respectively) outperforms AllScale. This results from two
cumulative factors:

• For the Beskow Cray system, our implementation does not fully utilize
the networking capabilities, resulting in parallel degradation;

• The highly optimised Cray MPI implementation significantly reduces
the overheads of communication in MPI, thereby degrading some of the
performance advantage observed on the other systems.

This reflects the challenges of introducing new programming environ-
ments to compete with well-established, mature products. Results demon-
strate that by using the AllScale environment, applications can be easily
ported to different architectures and executed with no manual interventions.
However, to achieve full performance, further tuning is necessary on the
Beskow system to achieve parity with MPI.

18



5. Conclusions

This study demonstrates the capabilities of the AllScale toolchain and its
feasibility as part of the next generation of HPC programming environments.
Application development using the AllScale API provides many advantages
to the scientist. User productivity is greatly enhanced as parallel structures
are hidden at the core level of the API. All programming is done in pure
C++, eliminating the need to learn any specific parallel tools and avoiding
the MPI+X burden of having different parallel languages for different archi-
tectures. Code maintainability is improved by separating computer science
and domain science aspects, while the architecture agnostic design eliminates
any need for multiple code bases. A number of additional features such as
dynamic load-balancing, monitoring interface and hard fault resilience are
automatically provided to the user.

We present the development, porting and execution of two application
codes, namely a data assimilation framework leveraging localised filtering
and domain decomposition (AMDADOS), and a particle in cell code for sim-
ulation of space-weather (iPIC3D). Using real-world applications, we eval-
uate code complexity and parallel simulation constructs qualitatively and
quantitatively to evaluate the potential benefits provided by the AllScale en-
vironment for developer productivity. Parallel synchronization aspects are
greatly simplified resulting in reduction in code complexity of up to 30%
compared to the MPI code.

Parallel scalability demonstrates the potential impact for HPC applica-
tions. The AllScale implementation achieves comparable performance to
manually-tuned versions using industry-standard MPI parallel libraries. The
AllScale version of the AMDADOS application significantly outperforms the
MPI version, possibly due to the greater control provided by the fine-grained
stencil implementation for recursive parallelism in space-time. On the Beskow
system, performance degradation largely results from inefficient usage of net-
working implementation imposing a significant penalty on parallel scalability.
To promote further experimentation and scientific replication, the AllScale
environment and pilot applications are publicly available
(https://github.com/allscale). Full details on installation of the environment
and integration of pilot applications is provided in [29], while a Python script
is provided in the AllScale GitHub repository to run and collate all scalability
experiments presented in this paper.

This paper presents parallel scalability on systems up to 8,192 cores using

19



X86 type architectures. To promote uptake amongst modern HPC comput-
ing applications, work is ongoing to understand and tune application per-
formance on larger systems up to 50,000 cores. Furthermore, modern HPC
systems generally encompass heterogeneous architectures combining CPU
and GPU cores to maximise performance. Research is ongoing to to provide
support for CPU and GPU integration using the AllScale API

Acknowledgements

This project has received funding from the European Union’s Horizon 2020
research and innovation programme as part of the FETHPC AllScale project
under grant agreement No 671603.

References

[1] F. Rathgeber, D. A. Ham, L. Mitchell, M. Lange, F. Luporini, A. T. T.
Mcrae, G.-T. Bercea, G. R. Markall, P. H. J. Kelly, Firedrake, ACM
Transactions on Mathematical Software 43 (3) (2016) 1–27. doi:10.

1145/2998441.
URL http://dl.acm.org/citation.cfm?doid=2988516.2998441

[2] M. Alnæs, A. Logg, K. Ølgaard, M. Rognes, G. Wells, Unified form lan-
guage: A domain-specific language for weak formulations of partial dif-
ferential equations, ACM Transactions on Mathematical Software 40 (2).
URL https://dl.acm.org/citation.cfm?id=2566630

[3] A. Logg, K.-A. Mardal, G. Wells (Eds.), Automated Solution of Differ-
ential Equations by the Finite Element Method, Vol. 84 of Lecture Notes
in Computational Science and Engineering, Springer Berlin Heidelberg,
Berlin, Heidelberg, 2012. doi:10.1007/978-3-642-23099-8.
URL http://link.springer.com/10.1007/978-3-642-23099-8

[4] F. Rathgeber, G. R. Markall, L. Mitchell, N. Loriant, D. A. Ham,
C. Bertolli, P. H. Kelly, PyOP2: A High-Level Framework for
Performance-Portable Simulations on Unstructured Meshes, in: 2012
SC Companion: High Performance Computing, Networking Storage and
Analysis, IEEE, 2012, pp. 1116–1123. doi:10.1109/SC.Companion.

2012.134.
URL http://ieeexplore.ieee.org/document/6495916/

20

http://dl.acm.org/citation.cfm?doid=2988516.2998441
http://dx.doi.org/10.1145/2998441
http://dx.doi.org/10.1145/2998441
http://dl.acm.org/citation.cfm?doid=2988516.2998441
https://dl.acm.org/citation.cfm?id=2566630
https://dl.acm.org/citation.cfm?id=2566630
https://dl.acm.org/citation.cfm?id=2566630
https://dl.acm.org/citation.cfm?id=2566630
http://link.springer.com/10.1007/978-3-642-23099-8
http://link.springer.com/10.1007/978-3-642-23099-8
http://dx.doi.org/10.1007/978-3-642-23099-8
http://link.springer.com/10.1007/978-3-642-23099-8
http://ieeexplore.ieee.org/document/6495916/
http://ieeexplore.ieee.org/document/6495916/
http://dx.doi.org/10.1109/SC.Companion.2012.134
http://dx.doi.org/10.1109/SC.Companion.2012.134
http://ieeexplore.ieee.org/document/6495916/


[5] P. L. Houtekamer, H. L. Mitchell, P. L. Houtekamer, H. L. Mitchell,
A Sequential Ensemble Kalman Filter for Atmospheric Data As-
similation, Monthly Weather Review 129 (1) (2001) 123–137.
doi:10.1175/1520-0493(2001)129<0123:ASEKFF>2.0.CO;2.
URL http://journals.ametsoc.org/doi/abs/10.1175/

1520-0493{%}282001{%}29129{%}3C0123{%}3AASEKFF{%}3E2.0.

CO{%}3B2

[6] J. A. Carton, B. S. Giese, J. A. Carton, B. S. Giese, A Reanal-
ysis of Ocean Climate Using Simple Ocean Data Assimilation
(SODA), Monthly Weather Review 136 (8) (2008) 2999–3017.
doi:10.1175/2007MWR1978.1.
URL http://journals.ametsoc.org/doi/abs/10.1175/

2007MWR1978.1

[7] Y. Liu, H. V. Gupta, Uncertainty in hydrologic modeling: Toward an in-
tegrated data assimilation framework, Water Resources Research 43 (7).
doi:10.1029/2006WR005756.
URL http://doi.wiley.com/10.1029/2006WR005756

[8] M. Williams, P. A. Schwarz, B. E. Law, J. Irvine, M. R. Kurpius,
An improved analysis of forest carbon dynamics using data assimila-
tion, Global Change Biology 11 (1) (2005) 89–105. doi:10.1111/j.

1365-2486.2004.00891.x.
URL http://doi.wiley.com/10.1111/j.1365-2486.2004.00891.x

[9] C. A. Edwards, A. M. Moore, I. Hoteit, B. D. Cornuelle, Regional
Ocean Data Assimilation, Annual Review of Marine Science 7 (1)
(2015) 21–42. doi:10.1146/annurev-marine-010814-015821.
URL http://www.annualreviews.org/doi/10.1146/

annurev-marine-010814-015821

[10] G. Lapenta, Particle simulations of space weather, J. Comput. Phys.
231 (2012) 795821.

[11] C. Birdsall, A. Langdon, A. Langdon, Plasma Physics via Computer
Simulation, Plasma Physics Via Computer Simulations, 2004. doi:10.

1201/b16827.
URL https://www.taylorfrancis.com/books/9781482263060

21

http://journals.ametsoc.org/doi/abs/10.1175/1520-0493{%}282001{%}29129{%}3C0123{%}3AASEKFF{%}3E2.0.CO{%}3B2
http://journals.ametsoc.org/doi/abs/10.1175/1520-0493{%}282001{%}29129{%}3C0123{%}3AASEKFF{%}3E2.0.CO{%}3B2
http://dx.doi.org/10.1175/1520-0493(2001)129<0123:ASEKFF>2.0.CO;2
http://journals.ametsoc.org/doi/abs/10.1175/1520-0493{%}282001{%}29129{%}3C0123{%}3AASEKFF{%}3E2.0.CO{%}3B2
http://journals.ametsoc.org/doi/abs/10.1175/1520-0493{%}282001{%}29129{%}3C0123{%}3AASEKFF{%}3E2.0.CO{%}3B2
http://journals.ametsoc.org/doi/abs/10.1175/1520-0493{%}282001{%}29129{%}3C0123{%}3AASEKFF{%}3E2.0.CO{%}3B2
http://journals.ametsoc.org/doi/abs/10.1175/2007MWR1978.1
http://journals.ametsoc.org/doi/abs/10.1175/2007MWR1978.1
http://journals.ametsoc.org/doi/abs/10.1175/2007MWR1978.1
http://dx.doi.org/10.1175/2007MWR1978.1
http://journals.ametsoc.org/doi/abs/10.1175/2007MWR1978.1
http://journals.ametsoc.org/doi/abs/10.1175/2007MWR1978.1
http://doi.wiley.com/10.1029/2006WR005756
http://doi.wiley.com/10.1029/2006WR005756
http://dx.doi.org/10.1029/2006WR005756
http://doi.wiley.com/10.1029/2006WR005756
http://doi.wiley.com/10.1111/j.1365-2486.2004.00891.x
http://doi.wiley.com/10.1111/j.1365-2486.2004.00891.x
http://dx.doi.org/10.1111/j.1365-2486.2004.00891.x
http://dx.doi.org/10.1111/j.1365-2486.2004.00891.x
http://doi.wiley.com/10.1111/j.1365-2486.2004.00891.x
http://www.annualreviews.org/doi/10.1146/annurev-marine-010814-015821
http://www.annualreviews.org/doi/10.1146/annurev-marine-010814-015821
http://dx.doi.org/10.1146/annurev-marine-010814-015821
http://www.annualreviews.org/doi/10.1146/annurev-marine-010814-015821
http://www.annualreviews.org/doi/10.1146/annurev-marine-010814-015821
https://www.taylorfrancis.com/books/9781482263060
https://www.taylorfrancis.com/books/9781482263060
http://dx.doi.org/10.1201/b16827
http://dx.doi.org/10.1201/b16827
https://www.taylorfrancis.com/books/9781482263060


[12] Y. Grigoryev, V. Vshivkov, M. Fedoruk, Numerical Particle-In-Cell
Methods: Theory and Applications, VSP BV, AH Zeist, 2005.

[13] H. Jordan, P. Thoman, P. Zangerl, T. Heller, T. Fahringer, A Context-
Aware Primitive for Nested Recursive Parallelism, in: Euro-Par 2016:
Parallel Processing Workshops, Springer, Cham, 2017, pp. 149–161.
doi:10.1007/978-3-319-58943-5_12.
URL http://link.springer.com/10.1007/

978-3-319-58943-5{_}12

[14] P. Zangerl, H. Jordan, P. T. . I. . . . , U. 2018, Exploring the Semantic Gap
in Compiling Embedded DSLs, in: 2018 International Conference on
Embedded Computer Systems: Architectures, Modeling, and Simulation
(SAMOS)., 2018.
URL https://doi.org/10.5281/zenodo.1309475

[15] H. Kaiser, T. Heller, B. Adelstein-Lelbach, A. Serio, D. Fey, HPX: A
Task Based Programming Model in a Global Address Space, in: Pro-
ceedings of the 8th International Conference on Partitioned Global Ad-
dress Space Programming Models - PGAS ’14, ACM Press, New York,
New York, USA, 2014, pp. 1–11. doi:10.1145/2676870.2676883.
URL http://dl.acm.org/citation.cfm?doid=2676870.2676883

[16] H. Jordan, T. Heller, P. G. . I. . . . , U. 2018, The AllScale Runtime
Application Model, in: 2018 IEEE International Conference on Cluster
Computing (CLUSTER), 2018, pp. 445–455.
URL https://ieeexplore.ieee.org/abstract/document/8514904/

[17] W. Hundsdorfer, J. G. Verwer, Numerical solution of time-dependent
advection-diffusion-reaction equations, Vol. 33, Springer Science & Busi-
ness Media, 2013.

[18] T. Y. Miyaoka, J. F. d. C. A. Meyer, J. M. R. SOUZA, A General
Boundary Condition with Linear Flux for Advection-Diffusion Models,
TEMA (São Carlos) 18 (2) (2017) 253–272.

[19] T. Sauer, Numerical Analysis (2nd), Addison-Wesley, New Jersey, 2012.

[20] J. C. Butcher, Numerical methods for ordinary differential equations,
John Wiley & Sons, 2016.

22

http://link.springer.com/10.1007/978-3-319-58943-5{_}12
http://link.springer.com/10.1007/978-3-319-58943-5{_}12
http://dx.doi.org/10.1007/978-3-319-58943-5_12
http://link.springer.com/10.1007/978-3-319-58943-5{_}12
http://link.springer.com/10.1007/978-3-319-58943-5{_}12
https://doi.org/10.5281/zenodo.1309475
https://doi.org/10.5281/zenodo.1309475
https://doi.org/10.5281/zenodo.1309475
http://dl.acm.org/citation.cfm?doid=2676870.2676883
http://dl.acm.org/citation.cfm?doid=2676870.2676883
http://dx.doi.org/10.1145/2676870.2676883
http://dl.acm.org/citation.cfm?doid=2676870.2676883
https://ieeexplore.ieee.org/abstract/document/8514904/
https://ieeexplore.ieee.org/abstract/document/8514904/
https://ieeexplore.ieee.org/abstract/document/8514904/


[21] G. Welch, G. Bishop, An Introduction to the Kalman filter. University of
North Carolina at Chapel Hill, Department of Computer Science, Tech.
rep., TR 95-041 (2004).

[22] S. Markidis, G. L. Simulation, R. Udin, Multi-scale simulations of
plasma with iPIC3D, Elsevier 80 (7) (2010) 1509 –1519.
URL https://www.sciencedirect.com/science/article/pii/

S0378475409002444

[23] G. Lapenta, S. Markidis, S. Poedts, D. Vucinic, Space weather prediction
and exascale computing, Computing in Science and Engineering 15 (5)
(2013) 68—-76.
URL https://ieeexplore.ieee.org/abstract/document/6244803/

[24] T. Tajima, Computational Plasma Physics, Westview Press, 2004. doi:
10.1201/9780429501470.
URL https://www.taylorfrancis.com/books/9780429501470

[25] P. Boris, Relativistic plasma simulation-optimization of a hybrid code,
in: Proc. 4th Conf. Num. Sim. Plasmas, 1970, pp. 3–67.
URL https://ci.nii.ac.jp/naid/10009996893/

[26] I. Herraiz, cmetrics (2007).
URL https://github.com/MetricsGrimoire/CMetrics

[27] M. Halstead, Elements of Software Science (Operating and programming
systems series), Elsevier Science Inc., New York, NY, 1977.

[28] T. McCabe, A Complexity Measure, IEEE Transactions on Software
Engineering SE-2 (4) (1976) 308–320. doi:10.1109/TSE.1976.233837.
URL http://ieeexplore.ieee.org/document/1702388/

[29] F. O’Donncha, D6.9 Installation, integration and deployment of the
AllScale environment and pilot applications, Tech. rep., IBM Research
– Ireland, Dublin (2018).

23

https://www.sciencedirect.com/science/article/pii/S0378475409002444
https://www.sciencedirect.com/science/article/pii/S0378475409002444
https://www.sciencedirect.com/science/article/pii/S0378475409002444
https://www.sciencedirect.com/science/article/pii/S0378475409002444
https://ieeexplore.ieee.org/abstract/document/6244803/
https://ieeexplore.ieee.org/abstract/document/6244803/
https://ieeexplore.ieee.org/abstract/document/6244803/
https://www.taylorfrancis.com/books/9780429501470
http://dx.doi.org/10.1201/9780429501470
http://dx.doi.org/10.1201/9780429501470
https://www.taylorfrancis.com/books/9780429501470
https://ci.nii.ac.jp/naid/10009996893/
https://ci.nii.ac.jp/naid/10009996893/
https://github.com/MetricsGrimoire/CMetrics
https://github.com/MetricsGrimoire/CMetrics
http://ieeexplore.ieee.org/document/1702388/
http://dx.doi.org/10.1109/TSE.1976.233837
http://ieeexplore.ieee.org/document/1702388/

	Introduction
	AllScale Toolchain
	Methodology
	AMDADOS
	iPIC3D
	Experimental procedure

	Results
	Correctness of solution
	Developer productivity
	Parallel scalability

	Conclusions

