
Forward-Secure Identity-Based Signature:
New Generic Constructions and Their Applications∗

Noura Al Ebri, Joonsang Baek†, Abdulhadi Shoufan
Khalifa University of Science, Technology and Research

Abu Dhabi, UAE
{noura.alebri, joon.baek, abdulhadi.shoufan}@kustar.ac.ae

Quang Hieu Vu
ETISALAT British Telecom Innovation Center

Abu Dhabi, UAE
quang.vu@kustar.ac.ae

Abstract

As modern cryptographic schemes rely their security on the secrecy of the private keys used in them,
exposing such keys results in a total loss of security. In fact, attackers have been developing var-
ious techniques to seize the secret keys rather than to cryptanalyze the underlying cryptographic
primitives. Digital signature schemes, which are widely employed in many applications, are not an
exception to the key exposure problem. A number of solutions for protecting signature schemes
from key exposure have been proposed, and one of them is a forward-secure signature. Informally,
forward-secure signature schemes can guarantee the unforgeability of the past signatures, even if the
current secret signing key is exposed. In this paper, we propose an efficient generic construction of
forward-secure identity-based signature (FSIBS) that retains unforgeability of past signatures in spite
of the exposure of the current signing key. Our construction, supported by formal security analysis,
brings about concrete FSIBS schemes which are more efficient than existing schemes in the litera-
ture. Especially, one of our instantiations of FSIBS based on discrete-log primitive turns out to be
the most efficient among existing ones. We extend our generic construction employing the technique
used in Merkle’s tree signature to reduce the size of public parameters. Additional contribution of
this paper is to refine the definition of security of FSIBS in such a way that users in the system can
freely specify time periods over which their signing keys evolve.

Keywords: Forward-Secure Identity-Based Signature, Key Exposure, Mobile Devices

1 Introduction

Recent years have seen explosive growth in use of mobile devices. As this trend broadens and deepens,
many people started to carry out their important tasks on mobile devices. Some of the tasks are so critical
that they need high level of security. While cryptographic solutions are usually employed to provide
strong protection for digital assets, their deployment in mobile devices is not an easy task. Although

Journal of Wireless Mobile Networks, Ubiquitous Computing, and Dependable Applications, volume: 4, number: 1, pp. 32-54
∗This paper is an extended version of the work originally presented at the 6th International Conference on Availability,

Reliability and Security (ARES’12), Prague, Chzech Republic, August 2012 , titled “Efficient Generic Construction of Forward-
Secure Identity-Based Signature” [1]. This version differs from our previous paper in that it contains an extension of our generic
construction of forward-secure identity-based signature using Merkle’s tree signature to achieve auxiliary storage reduction; it
also contains a full description of an instantiation of the generic construction from pairing-based cryptographic primitives.
†Corresponding author: Khalifa University of Science, Technology & Research (KUSTAR), P.O.Box 127788, Abu Dhabi,

UAE, Tel: +971-(0)2-5018587, Fax: +971-(0)2-4472442

32

GFSIBS Al Ebri, Baek, Shoufan and Vu

current advances in mobile technology make the emergence of cheap yet powerful small devices possible,
it would always be preferable to reduce intensive cryptographic computations that consume energy and
eventually affect battery life. In particular, in case public key cryptography is employed, managing
complex public key infrastructure (PKI) could be a problem. Furthermore, since mobile devices are
small, it is relatively easy for attackers to physically capture them, which can lead to key exposure.

Identity-based signature (IBS) [2] schemes can be a remedy to the problem of PKI management in
digital signature schemes. In IBS schemes, signatures can be checked solely using signers’ identities
like names or email addresses instead of randomly-generated public keys which need digital certificates
to be accompanied in order to map signers’ identities and the public keys. Moreover, as it has been
known (but has not been well iterated) since its invention, IBS schemes can be constructed without heavy
pairing operations. (Pairing, however, played a crucial role in constructing identity-based encryption [3].)
As exemplified in [4], very efficient IBS schemes without pairing can be constructed. The remaining
problem is how to provide protection against key exposure.

In a vast majority of cryptographic schemes, including identity-based signatures, security guarantees
last as long as secret keys remain unrevealed. Once the secret key is revealed, the security is compromised
for past and future signatures. Frequent key revocation could be a solution to the key exposure problem,
but it is inefficient and gives no guarantee on the security (unforgeability) of past signatures. Another
solution based on secret sharing schemes could be considered but it turns out to be costly in terms of
computational cost and communication overhead as mentioned in [5]. One of the promising solutions to
this problem is to combine the concepts of forward-secure signature (FSS) [5] [6] [7] and identity-based
signature (IBS) to obtain a notion of forward-secure IBS (FSIBS). To get an idea of this scheme, imagine
that Alice wants to authenticate a sensitive document using an IBS scheme implemented in her mobile
device. As it is an IBS scheme, once the document is signed by Alice using a signing key stored in her
device, Bob will verify the validity of the signature using Alice’s identity. Now, assume that Malice got
a hold of Alice’s signing key by stealing her mobile device. Malice can now forge signatures on any
messages. If Bob, a third party, knows that Alice’s signing key was stolen at some point, he will question
the validity of all Alice’s signatures created before the compromise because he cannot tell whether the
signature is created by Alice or by Malice. FSIBS schemes provide a guarantee that Bob can be sure that
Alice’s signatures created before the key exposure are genuine and not forgeries.

Interestingly, the key exposure problem of IBS schemes can be an issue not only in mobile devices
but also in several other applications and services. One example is the recent service model in cloud
computing, “Data-as-a-Service (DaaS)”, which is to provide data on demand in a so-called “data market-
place [8]” such as the ones introduced by Amazon [9] and Microsoft [10]: Assume that in DaaS, users
receive some valuable documents from a data provider and these documents are authenticated with IBS
schemes. But suppose that the provider’s secret signing key is exposed (or stolen). In this case, the users
will have a question as to whether the signatures on the data the provider generated previously are still
valid and not forgeries. We can employ FSIBS schemes to address the issue.

Mobile Ad hoc Networks (MANETs) where a trusted administrator exists that will distribute initial
system parameters to all nodes [11]. Also, the administrator can authenticate the identity of each node
and extract an initial private key. MANETs that require such features can utilize our proposed FSIBS
(e.g., sensor networks, military networks, emergency and disaster networks, etc). Since the nodes in
such networks are prone to be stolen or lost (their secret key is exposed), using our FSIBS will protect
the security of past communications.

1.1 Related Work

The concept of forward-secure signature (FSS) was first proposed by Back [6] and Anderson [7], and
formalized later by Bellare and Miner [5]. Since Bellare and Miner’s work, a number of FSS schemes

33

GFSIBS Al Ebri, Baek, Shoufan and Vu

have been proposed. One of the notable constructions was due to Krawczyk [12], who creates a FSS
scheme from any standard signature scheme and a forward-secure pseudo random generator (FSPRG).
Other works include [13, 14, 15, 16], [17] and [18]. (Readers are referred to [19] and [20] for excellent
surveys on FSS schemes.)

Compared with FSS, research on FSIBS seems to be relatively less active. It seems that more work
needs to be done to improve the efficiency and flexibility (in terms of the ability to be instantiated by
various primitives). For example, Yu et al.’s very recent FSIBS scheme [21] needs a number of bilinear
pairing operations, which could be too heavy for some mobile devices with limited computational ca-
pacity and battery life. Although Yu et al.’s scheme can be proven secure without resorting to random
oracles [22], it would be interesting to explore the possibility of constructing more efficient schemes that
provide provable security in the standard model.

We notice that more efficient FSIBS schemes can in fact be instantiated from Galindo et al.’s generic
construction of FSIBS [23] resulted from their elegant construction of IBS based on standard digital
signature schemes. However, we realized that their construction incurs some redundancy that inevitably
results in expansion of computation and bandwidth.

1.2 Our Contributions

In this paper, we make the following contributions:

• First, we propose a new efficient generic construction of FSIBS. This construction, which we call
“main scheme”, is based on secure IBS and standard digital signature (DS) as well as forward-
secure pseudorandom generator (FSPRG). It gives rise to very efficient FSIBS schemes when
it is instantiated using efficient IBS and DS schemes. Compared with Galindo et al.’s generic
construction [23], our construction turns out to yield a more efficient FSIBS scheme when both
IBS and DS schemes are instantiated using discrete-log-based primitive, (like Schnorr signature
[24]). To our knowledge, a forward-secure IBS scheme based on discrete-log-based primitive,
resulted from this construction (main scheme as described in Section 3.4.1) seems to be the most
efficient FSIBS scheme in the literature. When our main scheme is instantiated using pairing-based
primitive, it turns out that the majority of the sub-algorithms of the resulting instantiation are more
efficient than those of Yu et al.’s FSIBS scheme. (However, due to the difference in structure,
some algorithms of their scheme are inevitably more efficient. Nevertheless, our scheme is more
efficient in terms of total amount of computations.)

• Our second construction is an extension of the main scheme, which we call “extended scheme” to
dramatically reduce the size of “auxiliary information” required to verify every signature generated
while increasing the size of signature by factor of O(logT), where T is a maximum number of
periods. The technique used in the extended scheme is from Merkle’s signature scheme [25] that
utilizes the binary certification tree.

• Another contribution of this paper is to refine the formal definition of FSIBS. We found that the
previous definition given by Yu et al. [21] has a scalability issue on the number of time periods
that users in the system can choose for signing key update. Our definition of FSIBS resolves this
issue.

The rest of the paper is organized as follows. The next section presents a new formal definition of
FSIBS. Section 3 describes our generic construction of FSIBS and its extension. It also presents two
instantiations of the main scheme based on discrete-logarithm and pairing-based primitives respectively.
Security proofs for our constructions are provided in Section 4. Section 5 compares computational and
space efficiency of the with those of other schemes in the literature. We conclude in Section 6.

34

GFSIBS Al Ebri, Baek, Shoufan and Vu

2 Formal Definition of Forward-Secure Identity-Based Signature

In this section, we present a formal definition of FSIBS. The FSIBS schemes function similarly as FSS
schemes do. However, in FSIBS schemes, a signer needs to get a private key associated with her identity
from the Private Key Generator (PKG). Once the signer gets this private key from the PKG, she will
create an initial key out of it and derive a (secret) signing key for the first time period. (Note that the
initial key can be the same as the private key associated with the signer’s identity.) This current signing
key will be used to create a new signing key for the next time period and, once that key is created, the
key for the current time period will be deleted securely. The signer uses a signing key bound to each time
period to sign messages. Anyone who is in the possession of a signature, a message, the signer’s identity
and the time-period when the signature is created should be able to verify the signature.

A formal definition of FSIBS has been given in Yu et al.’s paper [21]. However, there is an important
difference between their definition and ours. In our definition, a pre-specified number of time periods T
over which the secret signing keys evolve, is determined by each user (signer) and is requested to the
PKG together with the signer’s identifier information to create an initial secret signing key. On the other
hand, in Yu et al.’s definition, T is given by the PKG as a public parameter. We note that this causes a
scalability issue. For example, there should be a conflict if some user wants T to be 365 while some other
user wants T to be 24. This contradicts the basic principle that the same PKG’s public parameter should
be shared by every party in the system. Thus, we argue that the public parameter should not contain the
user-specific information T .

We remark that while Galindo et al. [23] proposed a generic FSIBS scheme, formal definitions of
FSIBS and its security were not given explicitly. Rather, the security proof of their FSIBS scheme was
given as a corollary of the security proof of their generic IBS scheme with additional property, that is,
“forward-security”.

The following is our formal definition of FSIBS.

Definition 1 (FSIBS). A FSIBS scheme consists of six polynomial-time algorithms, each of which is
described in the following.

1. PKGSetup: Taking a security parameter λ ∈ N as input, this algorithm generates a secret master
key msk and public parameters params of the Private Key Generator (PKG). (Note that params is
provided as input to all the sub-algorithms in the scheme.)

2. UserKeyExt: Let id ∈ {0,1}∗ be an identity of the user. We assume that id consists of the user’s
identifier information ID and some pre-specified number of time periods T over which a signing
key evolves. That is, id = ID||T . Taking id and msk, this algorithm generates a private key skid
associated with the identity id, which will be sent to the user securely.

3. Initialize: Taking as input id and skid , this algorithm generates an initial signing key SK0 which
will evolve over time periods and some auxiliary parameters necessary to manage the Update
algorithm, which is described below.

4. Update: Taking as input id, an index of the current time period t < T and the signing key SKt−1
associated with the previous time period, this algorithm generates a singing key SKt for the current
time period t.

5. Sign: Taking as input an index of the time period t, id, the signing key SKt associated with the time
period t and a message m, this algorithm generates a signature s of m associated with id and t.

35

GFSIBS Al Ebri, Baek, Shoufan and Vu

Parameter Meaning
λ Security Parameter
msk Master secret key
params Public parameters
ID User’s identifier information
T Max. no. of time periods
id User identity id = ID||T
skid id-based private key
t Current time period index
SK0 Initial signing key
SKt Current signing key
SKt−1 Previous signing key
m Message
s Signature

Table 1: List of Parameters

6. Vrfy: Taking as input id, an index of the current time period t, a message m and a signature s, this
algorithm checks whether s is a valid signature of m or not. If s is valid, this algorithm outputs
valid. Otherwise, outputs invalid.

The list of the parameters used in the above definition is summarized in Table 1. Readers are referred
to Figure 1 for the general structure of FSIBS.

Note that since the identity id depends on the pre-specified number of time periods T , skid can be
used only for that “T ” periods of time. (In other words, if T periods of time elapse, the user needs to get
a new key that depends on “new” T . If the user wants to reuse T , we can index T producing T1, T2 and
so on. All these are determined by system policy.) Note also that how to set T is a trade-off between
security (e.g. vulnerability to forgery) and the performance (e.g. cost of the update operation).

FSIBS

m
s

k
,
p

a
ra

m
s

PKGSetup

λ

UserKeyExt Sign Vrfy

skid

Initialize
SK0 SKt

SKt-1

m

s

id t

V
a

li
d

?

VERIFIER
SIGNER PKG

m

id t

Update

id t id id

Figure 1: The General Structure of FSIBS

We remark that the time periods t is merely an index not an absolute time, so it does not have to be
synchronized between participating entities.

36

GFSIBS Al Ebri, Baek, Shoufan and Vu

3 Proposed Constructions

3.1 An Idea for the Construction

A basic idea of our construction is that we use a (secure) IBS scheme to authenticate auxiliary parameters
associated with time periods and use a (secure) standard signature scheme to sign messages under a
signing key of each time period. On the other hand, Galindo et al. [23] constructs a FSIBS scheme by
replacing one of the two (standard) signatures used in their IBS construction with a FSS scheme. Note
that both Galindo et al.’s and our constructions adopt Krawczyk’s idea of using the FSPRG primitive for
signing key update [12]. We have discovered, however, that Galindo et al.’s FSIBS scheme constructed
in this way results in some redundancy that causes increased computational overhead (especially, for
signature verification) and signature size.

3.2 Building Blocks

For constructing our FSIBS scheme, we need the following building blocks.
The first building block we need is a standard digital signature scheme, which can be defined as

follows [26] [27]. We note that even if a standard digital signature scheme is required to build our FSIBS
scheme, we do not need a certificate that contains an authenticated public key for signature verification.
The keys for signature generation/verification are generated for each time period and these keys are
signed by the underlying identity-based signature scheme which does not require certificates. (This will
be described shorlty.) As follows is a formal definition of the standard digital signature scheme.

Definition 2 (DS). A digital signature (DS) scheme consists of three algorithms, KG, Sig and Ver. The
user generates a secret signing key sk and a public key pk by running Setup. By running the Sig algorithm
under her signing key sk, the user generates a signature σ on a given message m. The validity of the
signature is verified by anyone using pk via the Ver algorithm.

The second one is an identity-based signature scheme, which can be defined formally as follows [28].

Definition 3 (IBS). An identity-based signature (IBS) scheme consists of four algorithms, Setup, Extract,
Sign and Vrfy. The Private Key Generator (PKG) generates a (secret) master key msk and a set of public
parameters params by running Setup. (Note that params is shared by any interested parties.) The
PKG uses its master key to generate a private key skid associated with the user’s identity id by running
the Extract algorithm. By running the Sign algorithm under her skid obtained from the PKG, the user
generates a signature σ on a given message m. The validity of the signature is verified using id via Vrfy.

Lastly, we need a forward-secure pseudo random generator, which can be defined as follows [12]
[29].

Definition 4 (FSPRG). Let FSPRG: {0,1}ι → {0,1}m, where ι < m, be a pseudo random generator
and k0 ∈ {0,1}ι be an initial random seed. Then forward-secure pseudo random generator (FSPRG)
recursively generates outputs as follows. (ri,ki)←FSPRG(ki−1) for i = 1, . . . ,n, where ri ∈ {0,1}mL and
ki ∈ {0,1}mR with mL +mR = m, mL > 0 and mR > 0.

Now we are ready to present our FSIBS construction.

3.3 Our Generic Constructions of FSIBS

3.3.1 Main Scheme

Let DS = (KG, Sig, Ver) and IBS = (Setup, Extract, Sign, Vrfy) be a standard digital signature scheme and
an identity-based signature scheme as per Definition 2 and Definition 3 respectively. Also, let FSPRG

37

GFSIBS Al Ebri, Baek, Shoufan and Vu

be a forward-secure pseudo random generator defined as per Definition 4. Based on these building
blocks, our main FSIBS scheme, denoted by FSIBS= (PKGSetup, UserKeyExt, Initialize, Update,
Sign, Vrfy), is constructed as follows:

• PKGSetup: The PKG generates a secret master key msk and public parameters params by running
the Setup algorithm of the IBS. That is,

(msk, params) R← Setup(λ).

• UserKeyExt: Upon receiving id = ID||T from the user, where ID denotes the identifier informa-
tion and T denotes the pre-specified number of time periods over which a signing key evolves, the
PKG generates skid , a private key associated with id, using its master key msk. That is,

skid
R← Extractmsk(id).

Then the PKG sends skid to the user in a secure manner.

• Initialize: Having obtained skid , the user conducts the following steps:

1. Select a random seed k0 ∈ {0,1}ι for FSPRG, where ι depends on the security parameter λ .

2. For i = 1 till T do

2.1 Compute (ri,ki)← FSPRG(ki−1).
2.2 Compute (ski, pki)← KG(λ ,ri).
2.3 Compute σi← Signskid

(id, i, pki).(Note that the algorithm Sign is from the IBS scheme.)
2.4 Set AUXi = (id, i, pki,σi).

3. Erase skid , ski, ki and ri for all i = 1, . . . ,T .

4. Set SK0 = k0.

5. Save SK0 in a secure storage.

6. Save AUXi for all i = 1, . . . ,T .

Importantly, note that AUXi does not need to be stored in a secure storage. (No information about
secret keys will be revealed from AUXi.)

• Update: Given (id, t,SKt−1), where id = ID||T , t is an index of the current time period and SKt−1
is the signing (or initial) key associated with the previous time period t−1, the user does performs
the following:

1. If t = 1, parse SKt−1 into kt−1. Otherwise, parse SKt−1 into (skt−1,kt−1).

2. Compute (rt ,kt)← FSPRG(kt−1).

3. Compute (skt , pkt)← KG(λ ,rt).

4. Retrieve AUXt and parse it to (A1,A2,A3,A4). Check if A1 = id, A2 = t and A3 = pkt . If any
of these tests fails, abort. If the checks succeed, test if Vrfyid,params((id, t, pkt),A4) = valid.
If it fails, abort, and continue otherwise. (Note that passing all of the checks implies that
A1 = id, A2 = t, A3 = pkt and A4 = σt .)

5. Set SKt = (skt ,kt).

38

GFSIBS Al Ebri, Baek, Shoufan and Vu

6. Save SKt in a secure storage and erase SKt−1. (SKt will serve as a signing key for the current
period t.)

• Sign: Given (id, t,m), where id is an identity, t is an index of current time period and m is a
message to be signed, the user does the following:

1. Retrieve current values of AUXt and SKt .

2. Parse SKt into (skt ,kt).

3. Compute σ ← Sigskt
(m) and output the signature s = (AUXt ,σ) (Note that Sig is the signing

algorithm of the standard signature scheme DS.)

• Vrfy: Given (id, t,m,s), where id is an identity, t is an index of time period, m is a message and s
is a signature, any party can verify the validity of s as follows:

1. Parse s to (AUXt ,σ).

2. Parse AUXt to (A1,A2,A3,A4).

3. Check if A1 = id and A2 = t.

4. Check if Vrfyid,params((A1,A2,A3),A4) = valid. (Note that passing the above tests implies
that A1 = id, A2 = t, A3 = pkt and A4 = σt .)

5. Check if VerA3(m,σ) = valid.

6. If all the above tests succeeded, output valid, otherwise output invalid.

3.3.2 Extended Scheme Based on Merkle’s Signature Scheme

In our main scheme, the auxiliary values AUX1, . . . ,AUXT need to be stored; in other words, the size
of them grow linearly with T . To reduce such public (but non-secret) storage, we can apply use a
similar technique used by Merkle’s signature scheme [25]. This technique is based on building a binary
certification tree where the leaves store the auxiliary value, which is (AUXt = (id, t, pkt)) denoted by At’s
in Figure 2 and the nodes store a hash value computed by applying a collision resistant hash function
“Hash” to the concatenation of its children’s values. The value of the root S will be signed using the
identity-based signature scheme under the user’s secret key skid . As a result, one can only store the S
value and the (identity-based) signature on it, thus reducing the storage. (The tree and the secret key skid
will be deleted.)

Notice that the signature size will be increased by a factor of O(logT) since a signature now should
include a list of O(logT) (the height of tree) hash values in a path called “authpath”. These hash values
are need to reconstruct a root value from a leaf node AUXt , denoted At , will be computed in a new Update
algorithm. Notice also that the time for verification and key update will increase since, at every key
update, the signer will have to recompute the partial hash tree that contains current and future auxiliary
information.

In Figure 2 we present a simple example of a binary certification tree with height = 3, which has
T = 23 = 8 periods.

As an example, assume that the signer will reconstruct a partial tree starting from period 5. Then
authpath5 = (Y6,Y7−8,Y1−4) and the root value S can be reconstructed as follows:

• Compute Y5−6 = Hash(A5||A6).

• Compute Y5−8 = Hash(Y5−6||Y7−8).

39

GFSIBS Al Ebri, Baek, Shoufan and Vu

Figure 2: Storage Reduction of Auxiliary Information Using Merkle’s Certification Tree

• Compute S = Hash(Y1−4||Y5−8).

In our extended scheme, a signature now becomes (t, At(= AUXt), authpatht , ψ , σ), where σ is a
signature on a message under the private key skt as described in the main scheme and ψ is a signature on
the root value S under the private key skid .

We now describe the extended scheme more formally as follows. Let IBS = (Setup, Extract, Sign,
Vrfy) and DS = (KG, Sig, Ver) be an identity-based signature scheme and a digital signature scheme
respectively. Also, let FSPRG be a forward-secure pseudo random generator. Based on these build-
ing blocks, our extended FSIBS scheme, denoted by FSIBSe= (PKGSetupe, UserKeyExte, Initializee,
Updatee, Signe, Vrfye), is constructed as follows:

• PKGSetupe: The same as PKGSetup algorithm in the main scheme.

• UserKeyExte: The same as UserKeyExt algorithm in the the main scheme. For the sake of
convenience, we assume that T = 2d for d ∈ Z+.

• Initializee: Having obtained skid , the user conducts the following steps:

1. Select a random seed k0 ∈ {0,1}ι for FSPRG, where ι depends on the security parameter λ .

2. For i = 1 till T do

2.1 Compute (ri,ki)← FSPRG(ki−1).
2.2 Compute (ski, pki)← KG(λ ,ri).
2.3 Set AUXi = (id, i, pki).
2.4 Set Ai = AUXi.

3. Erase ski, ki and ri for all i = 1, . . . ,T .

4. Build Merkle’s binary certification tree in which leaves are A1, . . . ,AT .
Each inner node of the tree, denoted Yi− j is the hash of the concatenation of its two children.
More precisely

Yi− j =

{
Hash(Ai||A j) for j = i+1
Hash(Yi−k||Y(k+1)− j) for k = 1, . . . ,T −1,

where Hash is a collision-resistant hash function.

5. Compute ψ ← Signskid
(S), where S = Y1−T . (Note that the algorithm Sign is from the IBS

scheme.)

40

GFSIBS Al Ebri, Baek, Shoufan and Vu

6. Set SK0 = k0 and erase skid .

7. Save SK0 in a secure storage.

8. Save ψ .

• Updatee: Given (id, t,SKt−1), where id = ID||T , t is an index of the current time period and SKt−1
is the signing (or initial) key associated with the previous time period t−1, the user does performs
the following:

1. If t = 1, parse SKt−1 into kt−1. Otherwise, parse SKt−1 into (skt−1,kt−1).

2. Compute (rt ,kt)← FSPRG(kt−1).

3. Compute (skt , pkt)← KG(λ ,rt).

4. Set At = AUXt = (idt , t, pkt)

5. Build an authentication path authpatht = [auth0, . . . ,authd−1], where authi’s are brother
nodes that are needed to build parents of At towards the root S.

6. Set SKt = (skt ,kt).

7. Save SKt in a secure storage and erase SKt−1. (SKt will serve as a signing key for the current
period t.)

We remark that the Merkle tree traversal algorithm for computing authentication path has been
improved, notably by Szydlo [30]. (A nice survey on certification tree and its traversal algorithms
are given in [31].)

• Signe: Given (id, t,m), where id is an identity, t is an index of current time period and m is a
message to be signed, the user does the following:

1. Retrieve current authentication path authpatht , At(= AUXt), ψ and SKt .

2. Parse SKt into (skt ,kt).

3. Compute σ ← Sigskt
(m) and output the signature s = (t,At ,authpatht ,σ) (Note that Sig is

the signing algorithm of the standard signature scheme DS.)

• Vrfye: Given (id, t,m,s), where id is an identity, t is an index of time period, m is a message and
s is a signature, any party can verify the validity of s as follows:

1. Parse s to (At ,authpatht ,σ).

2. Parse At to (W1,W2,W3).

3. Check if W1 = id and W2 = t.

4. Compute S using authpatht : S = Hash(authd−1||Yl−m) (or S = Hash(Yl−m||authd−1)) where
Yl−m is a brother of authd−1. Then check if Vrfyid,params(S,ψ) = valid.

5. Check if VerW3(m,σ) = valid.

6. If all the above tests succeeded, output valid, otherwise output invalid.

3.4 Instantiations

In this section, we provide two instantiations of our main scheme of generic FSIBS (presented in Section
3.3.1), one of which is based on “Schnorr-like lightweight IBS” [4] and the other one based on “Paterson-
Schuldt IBS” [32].

41

GFSIBS Al Ebri, Baek, Shoufan and Vu

3.4.1 An Instantiation from Schnorr-like lightweight IBS

One can instantiate our FSIBS construction using the Schnorr-like lightweight IBS scheme proposed
by Galindo and Garcia [4]. The underlying DS scheme in our generic construction will be instantiated
using a standard Schnorr signature scheme [24]. Note that these two schemes are built upon discrete-
log (DL)-based primitives. Also, the FSPRG used in our generic construction can be instantiated by
cryptographically-sound hash functions like SHA-1 and SHA-2, or a block cipher like AES as discussed
in [29]. The details of the scheme are as follows:

• PKGSetup: Given a security parameter λ , the PKG generates a secret master key msk and a set of
public parameters params as follows:

1. Choose a group G of prime order q = q(λ) with 2λ ≤ q < 2λ+1 . Pick a generator g of G.

2. G : {0,1}∗→ Zq, H : {0,1}∗→ Zq are descriptions of hash functions.

3. Pick z R← Zq. (Throughout this paper, a R← S means that a is picked uniformly at random from
S.)

4. Output

(msk, params) = (z,(G,g,q,gz,G,H)).

• UserKeyExt: Upon receiving id from the user, the PKG generates a private key associated with it
as follows:

1. Pick u R← Zq.

2. Compute y = u+ zH(gu, id).

3. Output skid = (y,gu) which is sent securely to the user.

• Initialize: After obtaining skid , the user performs the following:

1. Select a random seed k0 for FSPRG.

2. For i = 1 till T do

2.1 Compute (ki,ri)← FSPRG(ki−1).
2.2 Compute (ski, pki)← KG(λ ,ri), where

ski = ai
R← Zq and pki = gai = yi.

2.3 Compute σi← Signskid (id, i, pki).
2.4 Set AUXi← (id, i, pki,σi), where σi is computed using skid = (y,gu) as follows:

(a) Pick x R← Zq.
(b) f = x+ yG(id,gx,(id, i, pki)).
(c) Output σi = (gx, f ,gu).

3. Set SK0 = k0.

4. Save SK0 in a secure storage.

5. Erase skid and all ski,ki,ri for i = 1, . . . ,T .

6. Store AUXi for all i = 1...T .

• Update: Given (id, t,SKt−1), where id is an identity, t is an index of time period and SKt−1 is a
singing (or initial) key associated with the previous time period, the user does the following:

42

GFSIBS Al Ebri, Baek, Shoufan and Vu

1. If t = 1, parse SKt−1 into kt−1. Otherwise, parse SKt−1 into (skt−1, kt−1)

2. Compute (kt ,rt)← FSPRG(kt−1).

3. Compute (skt , pkt)← KG(λ ,rt) where
skt = at

R← Zq and pkt = gat = yt .

4. Retrieve AUXt and parse it to (A1,A2,A3,A4) and check if A1 = id, A2 = t and A3 = pkt . If
any of these checks fails, abort.

5. Check Vrfyid,params((id, t, pkt),A4) = valid, which is done as follows:

(a) Parse A4 into (B1,B2,B3).
(b) Check whether or not the equation gB2 = B1(B3(gz)c)d holds, where c = H(gu, id) and

d = G(id,B1,(id, t, pkt)). If this check fails, abort. Otherwise continue. (Note that if A4
is a valid signature, B1, B2 and B3 correspond to gx, f and gu respectively.)

6. Set SKt = (skt ,kt) = (at ,kt).

7. Store SKt in a secure storage and erase SKt−1.

• Sign: Given an identity id, an index of time period t and a message m to be signed, the user does
the following:

1. Retrieve current values of AUXt and SKt .

2. Parse SKt into (skt ,kt) = (at ,kt).

3. Compute σ ← Sigskt
(m). Here Sig is the signing algorithm of the standard Schnorr signature

scheme, which can be described as follows:

3.1 Pick j← Zq.
3.2 Compute l = g j.
3.3 Compute e = H(l,m).

3.4 Compute s = j+ eat .
3.5 Output σ = (e,s)

4. Output the signature s = (AUXt ,σ).

• Verify: Given an identity id, a message m, a time period t and a signature s, verification is done as
follows:

1. Parse s into (AUXt ,σ).

2. Parse AUXt into (A1,A2,A3,A4).

3. Parse A4 into (B1,B2,B3).

4. Check A1 = id and A2 = t.

5. Check if Vrfyid,params((A1,A2,A3),A4) = valid which can be done by checking whether
gB2 = B1(B3(gz)c)d holds, where c = H(gu, id) and d = G(id,B1,(id, t,A3)). (Note that pass-
ing this test implies that A3 = pkt(= yt).)

6. Check if VerA3(m,σ) = valid, done as follows:

6.1 Parse σ = (e,s).
6.2 Check whether e = H(gs/A3

e,m).

7. If all the above tests succeeded, output valid, otherwise output invalid.

43

GFSIBS Al Ebri, Baek, Shoufan and Vu

3.4.2 An Instantiation from Paterson-Schuldt IBS

To create a FSIBS scheme secure in the standard model, one can instantiate our generic construction
using primitives that are secure in the standard model like the Paterson-Schuldt IBS [32], and the short
signature scheme proposed by Boneh and Boyen [33] and the FSPRG is a hash function or AES as
mentioned before. The instantiation is as follows:

In the following instantiation, we assume that all identities and messages are bit strings of length
nu and nm, respectively. To construct a more flexible scheme which allows identities and messages of
arbitrary lengths, collision-resistant hash functions, Hu : {0,1}∗← {0,1}nu and Hm : {0,1}∗← {0,1}nm

will be used.

• PKGSetup:Choose groups G and Gl of prime order p such that an admissible pairing e : G×G←
Gl can be constructed and pick a generator g of G. Then select a secret α

R← Zp and compute

g1 = gα and pick g2
R← G. Also, pick elements u′ and m′ randomly from G and vectors U = (ui),

M = (mi) of length nu and nm, respectively, whose entries are random elements from G. Then, The
public parameters params = (G,Gl,e,g,g1,g2,u′,U,m′,M) and msk = g2

α .

• UserKeyExt: Let u be a bit string of order nu that represent an identity and let u[i] be the ith bit
of u. Set U → 1, ...,nu as the set of indices i such that u[i] = 1. To generate the private key skid ,
choose ru

R← Zp and compute:

skid = (g2
α(u′ ∏

i∈U
ui)

ru ,gru)

• Initialize: The user runs the KG algorithm of the standard signature scheme to get keys needed
for the FSIBS scheme, together with other values needed for the scheme. The following shows the
steps performed by the user before the start of period 1.

1. Select a random seed k0 for FSPRG.

2. For t = 1 till T do

2.1 (kt ,rt)← FSPRG(kt−1).
2.2 (skt , pkt)← KG(λ ,rt), done as follows:

i. G1, G2 and Gl are three cyclic groups of prime order p and e is a bilinear pairing
e : G1×G2→ Gl .

ii. Select random generators g1 ∈G1 and g2 ∈G2, and random integers xt ,yt ∈ Zp that
could be generated from rt or we set xt = rt .

iii. Compute u = g2
xt ∈ G1 and v = g2

yt ∈ G1. Also, compute z = e(g1,g2) ∈ Gl .
iv. Then, (skt , pkt) = ((g1,xt ,yt),(g1,g2,u,v,z)).

2.3 Compute σt = Signskid (id, t, pkt). Where σt is done using the Sign of the IBS scheme as
follows:

i. let the bit strings u represent the identity and m represent the message.
ii. Set U as before and likewise set M → 1, ...,nm as the set of indices j such that

m[j] = 1 and m[j] be the jth bit of m.

iii. To generate a signature choose rm
R← Zp.

iv. The message m = (id, t, pkt) which means we represent them as bit strings.
v. σt = (g2

α(u′ ∏
i∈U

ui)
ru(m′ ∏

j∈M
m j)

rm ,gru ,grm) ∈ G3

2.4 AUXt ← (id, t, pkt ,σt).

44

GFSIBS Al Ebri, Baek, Shoufan and Vu

3. Set SK0 = k0.

4. Save SK0 in a secure storage.

5. Erase skid and all skt ,kt ,rt for t = 1 till T .

6. Store AUXt for all t = 1...T .

• Update: At the start of each time period t the user does the following:

1. If t = 1, parse (skt−1) into kt−1. Otherwise, parse (SKt−1) into (skt−1, kt−1)

2. Compute (kt ,rt)← FSPRG(kt−1).

3. Compute (skt , pkt)← KG(λ ,rt).

4. Retrieve AUXt and parse it to (A1,A2,A3,A4) and check if A1 = id, A2 = t and A3 = pkt . If
any of these checks fails, abort.

5. Check Vrfyid,params((id, t, pkt),A4) = valid, which is done as follows:
Verification of A4 = (V,Ru,Rm) ∈ G3 is done by checking if the following equality holds
e(V,g) = e(g2,g1)e(u′ ∏

i∈U
ui,Ru)e(m′ ∏

j∈M
m j,Rm).

6. Set SKt = (skt ,kt).

7. Store secretly SKt and erase SKt−1.

• Sign: For a message m to be signed do as follows:

1. Retrieve current values of AUXt and SKt .

2. Parse SKt into (skt ,kt).

3. Compute σ ← Sigskt (m), as follows:

(a) Given a secret key (g1,xt ,yt) and a message m, pick a random r ∈ Zp/{− xt+m
yt
}.

(b) Compute σ ← g1
1/(xt+m+yt r) ∈ G1. Here, the inverse 1/(xt + m + ytr) is computed

modulo p. The signature σ = (σe,r).

4. Output the signature s = (AUXt ,σ) where σ = (σe,r).

• Vrfy: On inputs id, a message m, params and a signature string s, two verifications is needed. One
for the IBS signature in AUXt and the other one is for the DS signature on the message m.

Also, the size of the public parameters can be reduced by using the technique by Sarkar and Chatter-
jee [34], where message and the identity vectors are modified to reduce the number of group elements in
the public parameters to nu/s+nm/t +5 where nm/n′m = t and nu/n′u = s. For more details, readers are
refered to [32].

4 Security Analysis

4.1 Security Definitions

First, we define unforgeability of FSIBS against chosen message attack, called “UF-FSIBS-CMA”.

Definition 5 (UF-FSIBS-CMA). Let FFSIBS be a probabilistic polynomial-time forger that attacks a
(general) FSIBS scheme, “FSIBS”. (Readers are referred to Section 2.) UF-FSIBS-CMA for the scheme
FSIBS is defined using the following game to which a security parameter λ is provided as input.

45

GFSIBS Al Ebri, Baek, Shoufan and Vu

• Setup: The game runs PKGSetup providing λ as security parameter to get the PKG’s master key
msk and the set of public parameters params.

• Attack Phase: During this phase, the adversary FFSIBS makes the following queries, each of which
will be answered by the game.

– UserKeyExt: On receiving this query denoted by id(= ID||T), the game generates a user’s
private key skid associated with the identity id and sends it to FFSIBS.

– Sign: On receiving this query denoted by (id, t,m), where id = ID||T , the game generates a
signature s for a message m using a signing key SKt for period t, where 1≤ t ≤ T .

– Expose: On receiving this query denoted by (id, te) where id = ID||T and 1 ≤ te ≤ T , the
game returns a secret signing key SKte for period te.

• Forgery Phase: In this phase, FFSIBS outputs (id∗, t∗,m∗,s∗), where id∗(= ID∗||T), t∗, m∗ and s∗

denote an identity, a time period, a message and a signature respectively. A restriction here is that
1) 1 ≤ t∗ < te and 2) id∗ has not been issued as a UserKeyExt query and 3) (id∗, t∗,m∗) has not
been issued as a Sign query.

The FSIBS scheme is UF-FSIBS-CMA secure if for all FFSIBS, Pr[FFSIBS succeeds] is negligible in
λ .

From now on, we review the security definitions of the various building blocks we used in our FSIBS
construction.

First, unforgeability of a DS scheme against chosen message attack, called “UF-CMA” [35], can be
defined as follows.

Definition 6 (UF-CMA). Let FDS be a probabilistic polynomial-time forger that attacks a generic DS
scheme, “DS” as defined in Section 3.2. In the attack game which takes a security parameter λ as input,
FDS issues a (polynomially-bounded) number of Sign queries. At forgery phase, FDS outputs a message
m which has not been issued as a Sign query and a signature σ on m. The IBS scheme is UF-CMA secure
if for all FDS, Pr[FDS succeeds] is negligible in λ .

Unforgeability of an IBS scheme against chosen message attack, called “UF-IBS-CMA”, can be
defined as follows [28].

Definition 7 (UF-IBS-CMA). Let FIBS be a probabilistic polynomial-time forger that attacks a generic
IBS scheme, “IBS” as defined in Section 3.2. In the attack game to which the security parameter λ is
provided as input, FIBS issues a number (but polynomially-bounded) of Extract queries, each of which is
denoted by id, and Sign queries, each of which is denoted by (id,m). At forgery phase, FIBS outputs an
identity/message pair (id∗,m∗) such that id∗ has not been issued as an Extract query, (id∗,m∗) has not
been issued as a Sign query. The IBS scheme is UF-IBS-CMA secure if for all FIBS, Pr[FIBS succeeds]
is negligible in λ .

Finally, security of called “ROR (Real or Random)-FSPRG”, can be defined as follows [29].

Definition 8 (ROR-FSPRG). Let “FSPRG” be a (generic) FSPRG scheme as defined in Section 3.2. Let
t be an index of time period where an adversary DFSPRG wants to break in, where 1≤ t ≤ T for some T .
The game which takes a security parameter λ as input, first computes (r1,k1)← FSPRG(k0); (r2,k2)←
FSPRG(k1); · · · ; (rt ,kt)← FSPRG(kt−1) and sets µ1 = rt . Then the game picks µ0 ∈ {0,1}mL uniformly
at random, chooses γ ∈ {0,1} at random and gives (r1, . . . ,rt−1,µγ ,kt) to DFSPRG. DFSPRG outputs γ ′

which is a guess for γ . The FSPRG scheme is ROR secure if for all DFSPRG,
∣∣Pr[DFSPRG succeeds]− 1

2

∣∣
is negligible in λ .

46

GFSIBS Al Ebri, Baek, Shoufan and Vu

4.2 Security Proofs

Now we prove the following theorem.

Theorem 1. If the underlying DS, IBS and FSPRG schemes are UF-CMA, UF-IBS-CMA and ROR-
FSPRG respectively, our main scheme FSIBS is UF-FSIBS-CMA-secure.

Proof. We show that forgers for IBS and DS, and a distinguisher against FSPRG can be constructed
using a forger against FSIBS as subroutine.

1. Building a forger for DS

Let FFSIBS be a forger against our FSIBS scheme. We build a forger FDS against the underlying
scheme DS, which will use FSIBS as follows:

(a) Setup: Assume that FDS is given a public key pk of the DS scheme. Let sk be a matching
private key. FDS now runs the PKGSetup algorithm to create msk and params. Forger
FDS has access to a signing oracle Sigsk(.) which, given messages, returns corresponding
signatures created under sk.

(b) Attack Phase: Forger FDS runs forger FFSIBS against the FSIBS scheme. Upon receiv-
ing FFSIBS’s different queries (each of which can adaptively be created), FDS answers as
follows:

• UserKeyExt: FFSIBS queries identities, each of which is denoted by id = ID||T . Upon
receiving these queries, FDS will compute the corresponding skid (as it knows the master
key msk). Then for each id = ID||T , FDS chooses a period number t̂ at random between
1 and T and picks k0(= SK0) at random, which will be used as an initial seed for FSPRG.
It then generates SKi and AUXi for each period i = 1, . . . , t̂−1, t̂ +1, . . . ,T in exactly the
same way as the Initialize algorithm of the FSIBS scheme does. For period t̂, FDS sets
the public key pkt̂ in AUXt̂ to pk.
• Sign: FFSIBS queries, each of which is denoted by (id, t,m), where id = ID||T is an

identity, m is a message and t is a time period such that 1 ≤ t ≤ T . (Note that if t
does not satisfy this condition, FDS aborts.) Upon receiving (id, t,m) where t 6= t̂, FDS
retrieves matching SKt and AUXt . It then uses SKt (parsed into (skt ,kt)) to generate a
signature on m, which is denoted by σ(= Sigskt

(m)). FDS returns (AUXt ,σ) to FFSIBS.
Upon receiving (id, t,m) where t = t̂, FDS sends m to its signing oracle Sigsk(.) to get
the corresponding signatures and returns them to FFSIBS.
• Expose: FFSIBS asks for the signing key for a specified identity and time period (id, te).

Then FDS provides FFSIBS with the signing key SKte for that period. If te = t̂ then FDS
aborts its run.

(c) Forgery Phase: In this phase FFSIBS outputs an identity id∗, a message m∗, a time period
t∗ and a signature s∗, where s is parsed into (AUXt∗ ,σ

∗), where AUXt∗ is parsed further into
(id∗, t∗, pkt∗ ,σt∗). FFSIBS succeeds if

i. 1≤ t∗ < te.
ii. id∗ has not been issued as a UserKeyExt query.

iii. (id∗, t∗,m∗) has not been issued as a Sign query.
iv. Verpkt∗ (m

∗,σ∗) = valid and Vrfyparams,id∗((id∗, t∗, pkt∗),σt∗) = valid.

Now, if t∗ 6= t̂, FDS aborts its run. Otherwise, FDS outputs (m∗,σ∗) as its forgery.

47

GFSIBS Al Ebri, Baek, Shoufan and Vu

Analysis: Due to the restriction that (id∗, t∗,m∗) has not been a Sign query, FFSIBS needs to come
up with a valid signature σ∗ = Sigskt∗

(m∗) by itself. By returning (m∗,σ∗) as its signature, FDS

can succeed in forging a signature associated with the given public key pk (which is equal to
pkt∗ = pkt̂ if FDS does not abort). However, note that because of the aborting events, FDS’s
success probability is roughly 1/T times of that of FFSIBS.

2. Building a forger for IBS

Let FFSIBS be the forger against the FSIBS scheme. We build a forger FIBS against the underlying
IBS scheme as follows.

(a) Setup: Assume that FIBS is given the public parameters params. Then FIBS gives params
to FFSIBS. Forger FIBS has access to an Extract and a signing oracles.

(b) Attack Phase: FIBS chooses l ∈ {1, . . . ,qex} at random, where qex denotes the number of
UseKeyExt queries.
FIBS runs FFSIBS. Upon receiving FFSIBS’s different queries (each of which can adaptively
be created), FIBS responds to them as follows:

• UserKeyExt: FFSIBS queries identities, each of which is denoted by id = ID||T . FIBS
first chooses 1≤ t̂ ≤ T at random. Upon receiving these queries, FIBS does the follow-
ing.

If id is not l-th query, do the following.
Send id to its Extract oracle to get a corresponding private key and return it to
FFSIBS. Then pick k0(= SK0) at random, which will be used as an initial seed for
FSPRG and generates SKi and AUXi for each period i = 1, . . . ,T .

If id is l-th query, abort.
• Sign: FFSIBS queries, each of which is denoted by (id, t,m), where id = ID||T is an

identity, m is a message and t is a time period such that 1 ≤ t ≤ T . (Note that if t
does not satisfy this condition, FIBS aborts.) Upon receiving (id, t,m), FIBS does the
following.

– If id is not l-th query then do the following.
∗ Retrieve matching SKt and AUXt . It then uses SKt (parsed into (skt ,kt)) to gen-

erate a signature on m, which is denoted by σ(= Sigskt
(m)) and return (AUXt ,σ)

toFFSIBS.
– If id is l-th query then do the following.
∗ If t 6= t̂, pick k0(= SK0) at random, which will be used as an initial seed for

FSPRG and generate SKi = (skt ,kt) and pki for each period i = 1, . . . ,T . Then
generate a signature on m, which is denoted by σ(= Sigskt

(m)). Then query
(id, t, pkt) to its signing oracle to get signature σt(= Signskid

(id, t, pkt)). Set
AUXt ,= (id, t, pkt ,σt) and return (AUXt ,σ) toFFSIBS.
∗ If t = t̂, abort.

• Expose: FFSIBS asks for the signing key for a specified identity and time period (id, te).
Then FIBS provides FFSIBS with the signing key SKte for that period. If id is l-th query
and te = t̂ then FIBS aborts its run.

(c) Forgery Phase: In this phase FFSIBS outputs an identity id∗, a message m∗, a time period
t∗ and a signature s∗ which is parsed into (AUXt∗ ,σ

∗), where AUXt∗ is parsed further into
(id∗, t∗, pkt∗ ,σt∗). FFSIBS succeeds if

48

GFSIBS Al Ebri, Baek, Shoufan and Vu

i. 1≤ t∗ < te.
ii. id∗ has not been issued as a UserKeyExt query.

iii. (id∗, t∗,m∗) has not been issued as a Sign query.
iv. Verpkt∗ (m

∗,σ∗) = valid and Vrfyparams,id∗((id∗, t∗, pkt∗),σt∗) = valid.

Once FFSIBS outputs a forgery (AUXt∗ ,σ
∗), FIBS does the following: Check whether id∗ is

l-th query and t∗ = t̂. If any of the equalities does not hold, FIBS aborts its run. Otherwise,
FIBS outputs (id∗,(t∗, pkt∗),σt∗), where σt∗ is from AUXt∗ , as its forgery.

Analysis: Basically, if FIBS does not abort its run, the view of FIBS is perfectly simulated. Note
that σt∗ that FIBS returns at the end of the forgery phase is a valid signature on (id∗,(t∗, pkt∗))
under the key skid∗ , which FIBS tries to output as a forgery. We, however, lose some tightness of
the reduction by the order of O(1

qexT) due to handling (ruling out) aborting events.

3. Building an adversary for FSPRG

Let FFSIBS be a forger against the FSIBS scheme. We build an adversary DFSPRG that attacks
the FSPRG, where he will receive sequences (r1, . . . ,rt̂−1,µγ ,kt̂), where γ ∈ {0,1} is chosen at
random, and must tell whether γ = 1 or 0. (Note that when γ = 1, µγ is the next output of FSPRG,
i.e., rt̂ , otherwise, µγ is a truly random value.) DFSPRG will use the given sequence to create the
view of FFSIBS which DFSPRG will run to decide γ is 0 or 1.

(a) Setup: Given µ , DFSPRG runs the PKGSetup algorithm to create msk and params.

(b) Attack Phase: DFSPRG will respond to FFSIBS’s queries as follows.

• UserKeyExt: FFSIBS queries identities, each of which is denoted by id = ID||T . Upon
receiving these queries, DFSPRG will compute the corresponding skid (as it knows the
master key msk). After that, for each id = ID||T , DFSPRG provides its given sequence
(r1, . . . ,rt̂−1,µγ ,kt̂) as input to the KG algorithm of DS scheme to generate public keys
pk1, . . . , pkt̂−1 (and secret keys for sk1, . . . ,skt̂−1) for periods 1, . . . , t̂− 1. Then it gen-
erates (skt̂ , pkt̂) providing µγ as input to the KG algorithm of DS scheme. (Depending
on whether γ is 0 or 1, this key pair can be a right key pair for time period t̂ or not.)
Next, DFSPRG generates kt̂+1, . . . ,kT for FSPRG using the given kt̂ and generates public
keys pkt̂+1, . . . , pkT (and secret keys for skt̂+1, . . . ,skT) for periods t̂ +1, . . . ,T . It finally
generates AUXi for each period i = 1, . . . , t̂− 1, t̂ + 1, . . . ,T in exactly the same way as
the Initialize algorithm of the FSIBS scheme does.
• Sign: FFSIBS queries, each of which is denoted by (id, t,m), where id = ID||T is an

identity, m is a message and t is a time period such that 1 ≤ t ≤ T . Upon receiving
(id, t,m) where t 6= t̂, DFSPRG retrieves matching skt and AUXt . It then uses skt to gen-
erate a signature on m, which is denoted by σ(= Sigskt

(m)). DFSPRG returns (AUXt ,σ)
to FFSIBS. Upon receiving (id, t,m) where t = t̂, DFSPRG computes σ ← Sigskt̂

(m) and
returns it to FFSIBS.
• Expose: FFSIBS asks for the signing key for a specified time period te ≥ t̂. Then DFSPRG

provides FFSIBS with the signing key SKte = (skte ,kte) for that period. If te < t̂ then FDS
aborts its run.

(c) Forgery Phase: In this phase FFSIBS outputs an identity id∗, a message m∗, a time period
t∗ and a signature s∗ which is parsed into (AUXt∗ ,σ

∗), where AUXt∗ is parsed further into
(id∗, t∗, pkt∗ ,σt∗). FFSIBS succeeds if

i. 1≤ t∗ < te.

49

GFSIBS Al Ebri, Baek, Shoufan and Vu

ii. id∗ has not been issued as a UserKeyExt query.
iii. (id∗, t∗,m∗) has not been issued as a Sign query.
iv. Verpkt∗ (m

∗,σ∗) = valid and Vrfyparams,id∗((id∗, t∗, pkt∗),σt∗) = valid.

Now, if t∗ 6= t̂, DFSPRG aborts its run. Otherwise, DFSPRG decides that γ = 1, that is, µγ is a
real sequence generated by the FSPRG.

Analysis: The success probability of DFSPRG is the same as that of FFSIBS in forging a signature
except for losing tightness of reduction by O(1/T) due to handling of aborting events.

We have shown that by using a forger against the FSIBS scheme, forgers against DS and IBS and an
adversary for FSPRG can be constructed. This means that the advantage (success probability) of the
forger against the FSIBS scheme is bounded by the advantages of forgers and adversary against IBS, DS
and FSPRG respectively. Hence, if those advantages of the forgers and adversary against DS, IBS and
FSPRG are negligible, then the advantage of the forger against the FSIBS scheme is also negligible.

ut

Our extended scheme can also be proven secure in a very similar way. We only state the theorem
here:

Theorem 2. If the underlying DS, IBS, FSPRG schemes and Hash used in binary certification tree are
UF-CMA, UF-IBS-CMA, ROR-FSPRG and collision-resistant respectively, our extended scheme FSIBSe

is UF-FSIBS-CMA-secure.

5 Performance Analysis

In this section, we compare performance of various forward-secure IBS schemes instantiated from our
main scheme presented in Section 3.3.1 with that of other provably-secure FSIBS schemes. To do so,
we first instantiated our generic construction (main scheme) and Galindo et al.’s [23] generic construc-
tions using the same kind of cryptographic primitives: As described in Section 3.4.1, we instantiated
our generic construction using the “Schnorr-like lightweight IBS” [4] and standard Schnorr signature
schemes. We then instantiated Galindo et al.’s generic construction using the standard Schnorr signature
scheme. We assume that both schemes use the same FSPRG and the same group G of elliptic curve
points. We call our instantiation “FSIBSA”. Note that both schemes are DL (discrete-log)-based and
the security of both schemes is proven in the random oracle model [22]. Note also that the calculation
of three exponentiations (scalar multiplications on elliptic curves), which is needed in the verification
process of the “Schnorr-like lightweight IBS”, has a cost of about one and a half times that of a single
exponentiation, according to [36].

For a pairing-based instantiation, we create a scheme called “FSIBSB” which uses the Paterson-
Schuldt IBS scheme [32] and the Boneh-Boyen DS scheme [33] as described in Section 3.4.2. We
compare this scheme with Yu et al.’s FSIBS scheme [21] assuming that the same elliptic curve group
where pairings can be efficiently computed. Note that both FSIBSB and Yu et al.’s schemes are secure in
the standard model.

We summarized the computational overhead in Table 2. As can be seen from the table, all the sub-
algorithms of FSIBSA are more efficient than those of Galindo et al.’s. The PKGSetup, UserKeyExt,
Update and Singing algorithms of FSIBSB are more efficient than those of Yu et al.’s scheme. Although
no computation for the Initialize algorithm is required in Yu et al.’s scheme due to structural difference,
their Update algorithm needs significant computations proportional to T (while FSIBSB needs constant
amount of computations).

50

GFSIBS Al Ebri, Baek, Shoufan and Vu

Table 2: Computational Overhead (DL = Discrete-Log, RO = Random Oracle, T = Total number of
periods, S = Scalar multiplication on elliptic curves, P = Pairing.)

Type Scheme PKGSetup UserKeyExt Initialize Update Signing Verifying
DL-based Our FSIBSA 1S 1S T(2S) 2.5S 1S 3.5S
with RO Galindo et al. 1S 2S 2S+T(2S) 3S 2S 6S

Pairing-based Our FSIBSB 2S 2S T(3S) 2S+3P 1S 4P+1.5S
without RO Yu et al. 2S+1P 6S+T(4S) None 6S+T(4S) 2S 4P

Table 3: Communication Overhead (|G| = size of group in bits, |id| = max. length of identity in bits, |m|
= max. length of message in bits. Assume that the same symmetric pairing e : G×G→GT is used.)

Type Scheme Sig. size Sign. key size AUX Params

DL-based Our FSIBSA 6|G| T |G| 4T |G| 2|G|
with RO Galindo et al. 9|G| T |G| 4T |G| 2|G|

Pairing-based Our FSIBSB 10|G| 3T |G| 8T |G| (|id|+ |m|+5)|G|
without RO Yu et al. 4|G| log2 T |G| None (6+ |id|+ |m|+ |logT |)|G|+2|GT|

In Table 3, we summarized the communication overhead. As can be seen from the table, our FSIBSA

scheme is more efficient than Galindo et al.’s scheme in terms of bandwidth consumption. The bandwidth
cost resulted from using AUXt in our FSIBSB scheme can be reduced to be proportional to logT (not T)
at the expense of increasing cost to compute AUXt , using the binary certification tree method suggested
in [12] based on the work in [25], more details are present in the next section.

6 Conclusion

We proposed a provably-secure generic construction of FSIBS, which is based on secure IBS, DS and
FSPRG schemes. Different from the previous construction [23] in the literature, our construction is
greatly benefited from the underlying IBS scheme to yield efficient FSIBS schemes. For example, we
showed that a very efficient FSIBS scheme can be instantiated by employing Schnorr-like lightweight
IBS scheme [4]. We envision that especially this scheme could serve as a good security primitive for
resource-limited devices such as mobile devices. We also showed that other theoretical but efficient
FSIBS scheme based on pairing could emerge based on our generic construction. As an additional
contribution, we presented a refinement of the definition of generic FSIBS schemes. Furthermore, we
presented an extension of our main construction to reduce the size of public auxiliary information. (This
is a trade-off scheme as it increases the size of signatures.)

Our future work includes a construction of efficient FSIBS schemes with unbounded number of time
periods.

Acknowledgment

The authors are grateful to the anonymous referees of JoWUA for their helpful comments.

51

GFSIBS Al Ebri, Baek, Shoufan and Vu

References

[1] N. A. Ebri, J. Baek, A. Shoufan, and Q. H. Vu, “Efficient generic construction of forward-secure identity-
based signature,” in Proc. of the 7th International Conference on Availability, Reliability and Security
(AReS’12), Prague, Czech Republic. IEEE, August 2012, pp. 55–64.

[2] A. Shamir, “Identity-based cryptosystems and signature schemes,” in Proc. of the 4th Annual International
Cryptology Conference (CRYPTO’84), Santa Barbara, California, USA, LNCS, vol. 196. Springer-Verlag,
August 1985, pp. 47–53.

[3] D. Boneh and M. Franklin, “Identity-based encryption from the weil pairing,” in Proc. of the 21st Annual
International Cryptology Conference (CRYPTO’01), Santa Barbara, California, USA, LNCS, vol. 2139.
Springer-Verlag, August 2001, pp. 213–229.

[4] D. Galindo and F. D. Garcia, “A schnorr-like lightweight identity-based signature scheme,” in Proc. of the
2nd International Conference on Cryptology in Africa (AFRICACRYPT’09), Gammarth, Tunisia, LNCS, vol.
5580. Springer-Verlag, June 2009, pp. 135–148.

[5] M. Bellare and S. K. Miner, “A forward-secure digital signature scheme,” in Proc. of the 19th Annual Interna-
tional Cryptology Conference (CRYPTO’99), Santa Barbara, California, USA, LNCS, vol. 1666. Springer-
Verlag, August 1999, pp. 431–448.

[6] A. Back, “Non-interactive forward secrecy,” Cypherpunks Mailing List, 1996.
[7] R. Anderson, “Two remarks on public key cryptology (invited lecture),” in Proc. of the 1997 ACM Conference

on Computer and Communications Security (ACM CCS’97), Zurich, Switzerland. ACM, April 1997, pp.
135–147.

[8] F. Data, “Buy and sell data at data marketplace,” http://flowingdata.com/2010/03/22/
buy-and-sell-data-at-data-marketplace/., 2010.

[9] A. Voronkov, “Amazon data sets,” http://aws.amazon.com/publicdatasets/, 2012.
[10] Microsoft, “Microsoft data market,” https://datamarket.azure.com/., 2012.
[11] I. Chlamtac, M. Conti, and J. J.-N. Liu, “Mobile ad hoc networking: Imperatives and challenges,” Ad Hoc

Networks, vol. 1, no. 1, pp. 13–64, July 2003.
[12] H. Krawczyk, “Simple forward-secure signatures from any signature scheme,” in Proc. of the 7th ACM

conference on Computer and Communications Security (ACM CCS’00), Athens, Greece. ACM, November
2000, pp. 108–115.

[13] T. Malkin, D. Micciancio, and S. Miner, “Efficient generic forward-secure signatures with an unbounded
number of time periods,” in Proc. of the International Conference on the Theory and Applications of Cryp-
tographic Techniques: Eurocrypt’02, Amsterdam, The Netherlands, LNCS, vol. 2332. Springer-Verlag,
April-May 2002, pp. 400–417.

[14] B. Alomair, K. Sampigethaya, and R. Poovendran, “Efficient generic forward-secure signatures and proxy
signatures,” in Proc. of the 5th European PKI Workshop: Theory and Practice (EuroPKI’08), Trondheim,
Norway, LNCS, vol. 5057. Springer-Verlag, June 2008, pp. 166–181.

[15] B. G. Kang, J. H. Park, and S. G. Hahn, “A new forward secure signature scheme,” Cryptology ePrint Archive,
Report 2004/183, 2004.

[16] M. Abdalla and L. Reyzin, “A new forward-secure digital signature scheme,” in Proc. of the 6th International
Conference on the Theory and Application of Cryptology and Information Security (ASIACRYPT’00), Kyoto,
Japan, LNCS, vol. 1976. Springer-Verlag, December 2000, pp. 116–129.

[17] G. Itkis and L. Reyzin, “Forward-secure signatures with pptimal signing and verifying,” in Proc. of the 21st
Annual International Cryptology Conference (CRYPTO’01), Santa Barbara, California, USA, LNCS, vol.
2139. Springer-Verlag, August 2001, pp. 332–354.

[18] A. Kozlov and L. Reyzin, “Forward-secure signatures with fast key update,” in Proc. of the 3rd international
conference on Security in Communication Networks (SCN’02), Amalfi, Italy, LNCS, vol. 2576. Springer-
Verlag, September 2002, pp. 241–256.

[19] G. Itkis, “Forward security, adaptive cryptography: Time evolution,” Handbook of Information Security, vol.
3, Chapter 199, H. Bidgoli (Ed), Wiley Publishers, 2006.

[20] E. Cronin, S. Jamin, T. Malkin, and P. McDaniel, “On the performance, feasibility, and use of forward-

52

http://flowingdata.com/2010/03/22/buy-and-sell-data-at-data-marketplace/.
http://flowingdata.com/2010/03/22/buy-and-sell-data-at-data-marketplace/.
http://aws.amazon.com/publicdatasets/
https://datamarket.azure.com/.

GFSIBS Al Ebri, Baek, Shoufan and Vu

secure signatures,” in Proc. of the 10th ACM Conference on Computer and Communications Security (ACM
CCS’03), Washington D.C., USA. ACM, October 2003, pp. 135–147.

[21] J. Yu, R. Hao, F. Kong, X. Cheng, J. Fan, and Y. Chen, “Forward-secure identity-based signature: Security
notions and construction,” Information Sciences, vol. 181, no. 3, pp. 648–660, February 2011.

[22] M. Bellare and P. Rogaway, “Random oracles are practical: A paradigm for designing efficient protocols,”
in Proc. of the 1st ACM conference on Computer and Communications Security (ACM CCS’93), Fairfax,
Virginia, USA. ACM, November 1993, pp. 62–73.

[23] D. Galindo, J. Herranz, and E. Kiltz, “On the generic construction of identity-based signatures with additional
properties,” in Proc. of the 12th International Conference on the Theory and Application of Cryptology and
Information Security (ASIACRYPT’06), Shanghai, China, LNCS, vol. 4284. Springer-Verlag, December
2006, pp. 178–193.

[24] C. P. Schnorr, “Efficient identification and signatures for smart cards,” in Proc. of the 1989 Workshop on the
Theory and Application of Cryptographic Techniques (EUROCRYPT’89), Houthalen, Belgium, LNCS, vol.
434. Springer-Verlag, April 1989, pp. 688–689.

[25] R. C. Merkle, “A certified digital signature,” in Proc. of the 9th Annual International Cryptology Conference
(CRYPTO’89), Santa Barbara, California, USA, LNCS, vol. 435. Springer-Verlag, August 1989, pp. 218–
238.

[26] Y. Lindell and J. N. Katz, Introduction to Modern Cryptography. Chapman & Hall CRC, 2008.
[27] W. Mao, Modern Cryptography: Theory and Practice. Prentice Hall PTR, 2004.
[28] E. Kiltz and G. Neven, “Identity-Based Signatures,” in Cryptology and Information Security Series on

Identity-Based Cryptography, M. Joye and G. Neven, Eds. IOS Press, 2008, pp. 31–44.
[29] M. Bellare and B. S. Yee, “Forward-security in private-key cryptography,” in Proc. of the 2003 RSA con-

ference on The cryptographers’ track (CT-RSA’03), San Francisco, California, USA, LNCS, vol. 2612.
Springer-Verlag, April 2003, pp. 1–18.

[30] M. Szydlo, “Merkle tree traversal in log space and time,” in Proc. of the 2004 International Conference
on the Theory and Applications of Cryptographic Techniques (EUROCRYPT’04), Interlaken, Switzerland,
LNCS, vol. 3027. Springer-Verlag, May 2004, pp. 541–554.

[31] B. Ederov, “Merkle tree traversal techniques,” Ph.D. dissertation, Darmstadt University of Technology, April
2007.

[32] K. G. Paterson and J. C. N. Schuldt, “Efficient identity-based signatures secure in the standard model,” in
Proc. of the 11th Australasian Conference on Information Security and Privacy (ACISP’06), Melbourne,
Australia, LNCS, vol. 4058. Springer-Verlag, July 2006, pp. 207–222.

[33] D. Boneh and X. Boyen, “Short signatures without random oracles and the SDH assumption in bilinear
groups,” Journal of Cryptology, vol. 21, no. 2, pp. 149–177, February 2008.

[34] P. Sarkar and S. Chatterjee., “Trading time for space: Towards an efficient IBE scheme with short(er) public
parameters in the standard model,” in Proc. of the 8th International Conference on Information Security and
Cryptology (ICISC’05), Seoul, Korea, LNCS, vol. 3935. Springer-Verlag, December 2005, pp. 424–440.

[35] S. Goldwasser, S. Micali, and R. L. Rivest, “A digital signature scheme secure against adaptive chosen-
message attacks,” SIAM Journal on Computing - Special issue on cryptography, vol. 17, no. 2, pp. 281–308,
April 1988.

[36] B. B. Brumley, “Efficient three-term simultaneous elliptic scalar multiplication with applications,” in Proc.
of the 11th Nordic Workshop on Secure IT Systems (NordSec’06), Linköping, Sweden. IEEE, October 2006,
pp. 105–116.

53

GFSIBS Al Ebri, Baek, Shoufan and Vu

Noura Al Ebri1 obtained BSc in Information Systems from United Arab Emirates
University in 2009 And her MSc in Information Security from Khalifa University in
2012. She is currently an IT Engineer at EAI in UAE. Her research areas include
cryptographic algorithm design and analysis, computer and network security.

Joonsang Baek obtained his PhD from Monash University in 2004. He is currently an
assistant professor in information security at Khalifa University. Before joining Khal-
ifa University, he was a Research Fellow at Institute for Infocomm Research, ASTAR,
Singapore. His research interests are in the area of applied cryptography,focusing on
designing cost-efficient and highly-functional cryptographic schemes and protocols.
Joonsang Baek is an internationally-recognized cryptographer and his work has pre-
sented appeared in reputable journals and conference proceedings.

Abdulhadi Shoufan received the Dr.-Ing. degree from the Technische Universität
Darmstadt, Germany in 2007. Currently, he is an Assistant Professor for information
security and ECE at Khalifa University in Abu Dhabi. His research areas include
cryptographic hardware, embedded security, and engineering education. He was a
manager of the project Quantum-Computer-Resistant Cryptographic Systems funded
by the Federal Office of Information Security in German and leaded the hardware
security group at the Center for Advanced Security Research Darmstadt.

Quang Hieu Vu is a Senior Researcher in the Etisalat BT Innovation Centre (EBTIC),
Khalifa University for Science Technology and Research (KUSTAR), Abu Dhabi,
UAE. Quang Hieu Vu obtained his PhD degree from Singapore-MIT Alliance (SMA),
a collaboration program among three universities: Massachusetts Institute of Tech-
nology (MIT), National University of Singapore (NUS), and Nanyang Technological
University (NTU). Prior to joining EBTIC, he worked respectively at NUS in Singa-
pore, Imperial College London in UK, and Institute for Infocomm Research in Sin-

gapore (I2R). Quang Hieu Vu has research interests in Peer-to-Peer, Cloud Computing, Data Stream
Processing, Query Optimization, and Network Security. He joined and made major contributions to sev-
eral projects in these research areas. In addition to working in projects, he published several papers at top
conferences and journals such as SIGMOD, VLDB, ICDE, VLDB Journal and TKDE. He wrote a book
about P2P published by Springer-Verlag in 2009. Quanf Hieu Vu has received many awards including
the NUS Dean’s graduate award in 2005 and 2006, the prestigious Singapore President’s graduate award
in 2006 and 2007, and the best paper award at AP2PS conference in 2009 and 2010.

1No photo available

54

	Introduction
	Related Work
	Our Contributions

	Formal Definition of Forward-Secure Identity-Based Signature
	Proposed Constructions
	An Idea for the Construction
	Building Blocks
	Our Generic Constructions of FSIBS
	Main Scheme
	Extended Scheme Based on Merkle's Signature Scheme

	Instantiations
	An Instantiation from Schnorr-like lightweight IBS
	An Instantiation from Paterson-Schuldt IBS

	Security Analysis
	Security Definitions
	Security Proofs

	Performance Analysis
	Conclusion

