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CHAPTER 1

Questions about the Topology of Manifolds

firstchap
This is a book about the topology of manifolds. One of the most important discoveries

in topology — one that was the work of many mathematicians in the third quarter of the
twentieth century — is that there is a systematic procedure for answering many natural
questions about manifold topology, provided that the manifolds in question are sufficiently
high-dimensional. Alexandroff wrote in 1932

Let it be remarked here that, at present, in contrast to the two-dimensional
case, the problem of enumerating the topological types of manifolds of
three or more dimensions is in an apparently hopeless state. We are not
only far removed from the solution, but even from the first step toward
a solution, a plausible conjecture.

The natural expectation, which seems to be expressed by Alexandroff here, is that the
topology of manifolds will become more and more complicated as the dimension of the
manifold increases. Forty years after Alexandroff wrote it had become clear that this is true
only up to a point. The topology of two, three, and four dimensions does indeed seem to
require special geometrical techniques. However in dimensions five and up there is finally
sufficient room for the flabbier techniques of differential topology to get to work and to
provide, in a sense, a complete classification. A key geometric construction involved in
this procedure is known as surgery, and the entire subject has taken on this name and is
therefore often called ‘surgery theory’.

Let’s begin by reminding ourselves of the definitions of the objects that we want to
study.

1.1. DEFINITION. A topological n-manifold M is a metrizable topological space that
is locally homeomorphic to Euclidean space Rn — there is a cover of M by open sets Uα
and there are homeomorphisms ϕα : Uα → Rn. (Such a cover {(Uα, ϕα)} is called an
atlas.)

The transition functions of an atlas are the functions ϕαβ = ϕαϕ
−1
β , which are

homeomorphisms between open subsets of Rn. An atlas is smooth if its transition functions
are smooth (infinitely differentiable).

1.2. DEFINITION. A smooth structure on a topological manifold is a maximal smooth
atlas. A smooth manifold is a manifold with a smooth structure.

Already some natural questions arise: Does every topological manifold admit a smooth
structure? Is such a structure unique? As we shall see, the answers to both these questions
are in general negative.

A natural way to focus attention is to think about the classification problem — give
a complete set of invariants which allows one to determine whether two manifolds are
diffeomorphic, and give a list of representatives for the diffeomorphism classes. Of course,
there is much more to differential topology than this, just as there is much more to group
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8 1. QUESTIONS ABOUT THE TOPOLOGY OF MANIFOLDS

theory than trying to give a list of finite groups up to isomorphism; one wants to use the
theory to say interesting things about non-trivial and natural examples. But classification
is a good point at which to start our thinking. To solve a classification problem one needs
to produce a list of invariants of the structure under consideration. What kind of invariants,
then, are given to us by the statement that M is a smooth manifold?

Given any finite group presentation, one can effectively construct a compact n-manifold, n > 4, whose
fundamental group is given by the presentation. An effective classification of manifolds up to diffeomorphism (or
even up to homotopy equivalence) would thus in particular include a classification of the groups given by finite
presentations. It is known that there is no algorithm to accomplish such a classification. To avoid these logical
issues, and for other reasons, one traditionally1 formulates the classification problem in terms of classification of
manifolds within a given a homotopy type: for some specified space X , how many ‘essentially different’ smooth
manifolds are there homotopy equivalent to X?

In this chapter we want to review some of the invariants that can be used to approach
this problem. We will also describe some key examples from the fifties and early sixties.
These examples illustrate a number of mechanisms whereby the homotopy, homeomorph-
ism and diffeomorphism of manifolds can be distinguished. Surgery theory proper tells
us, in essence, that these mechanisms account for all the differences that there are between
these various classifications.

1.1. Algebraic topology

To begin with, we of course have the usual invariants of algebraic topology: homology,
cohomology and homotopy groups. As a reference for these objects we suggest the texts
by Bredon [8] or Hatcher [13].

When the homology groups of a space X (or rather the associated numerical invariants — Betti numbers
and torsion coefficients) were first defined by Poincaré and others, the definitions made use of a triangulation
of X (that is, a representation of X as a simplicial complex). This led to the question whether homeomorphic
polyhedra (or manifolds) are combinatorially equivalent (piecewise-linearly homeomorphic). The hypothesis
that this is the case was known as the ‘Main Conjecture’ or Hauptvermutung. In fact the Hauptvermutung turned
out to be false, even for manifolds — that is part of the story we have to tell in this book. However, long before
these examples topologically invariant definitions of homology and cohomology had appeared (singular and C̆ech
theories, for example). Thus the Hauptvermutung was no longer needed to prove the topological invariance of
(co)homology.

When we deal with a smooth manifold M , it is also relevant to consider the de Rham
cohomology groups. These are the cohomology groups of the complex

Ω0(M)→ Ω1(M)→ Ω2(M)→ · · ·

of differential forms on M . The de Rham theorem says that the de Rham cohomology
of M is isomorphic to the usual cohomology with real coefficients. The usual proof of
this establishes an isomorphism between de Rham and C̆ech cohomology; for this, and
other matters relating to de Rham theory, our reference will be the book of Bott and
Tu [7]. Cohomology has a ring structure (the cup product, given in de Rham theory by
exterior product of forms) and this feature of cohomology will be crucially important in
the discussion that follows.

One of the most notable features of the homology and cohomology of manifolds is
Poincaré duality. Already in his 1895 memoir Analysis Situs [?], which founded the
subject of topology, Poincaré had drawn attention to the fact that the Betti numbers of

1Thus surgery theory (as presented in this book) addresses a relative classification problem, diffeomorphism
type relative to homotopy type. This assumes of course that information about the homotopy types of manifolds
is supplied initially. It is however also possible to apply surgical methods to investigate these homotopy types; if
one wishes to do this, the ‘modified surgery theory’ of Kreck [?] organizes matters more conveniently.
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a compact oriented manifold exhibit a certain symmetry: bp = bn−p, if n is the dimension.
Poincaré’s ‘proof’ of this fact was severely criticized by Heegard, and in response he
offered a second proof in [?]. This proof made use of dual cell decompositions in a manner
that is still recognizable today. Poincaré also drew attention to the special rôle of the middle
dimension in terms of duality. If n = 2k, then the k-dimensional homology of M carries
a nondegenerate bilinear form, the intersection form, which is symmetric if k is even but
skew-symmetric if k is odd. In particular, Poincaré pointed out, the middle Betti number
of a (compact oriented) 4l + 2-dimensional manifold must be even. This is because the
intersection form is nondegenerate and skew-symmetric, and such a form on a real vector
space is a direct sum of copies of the form ( 0 −1

1 0 ); in particular, such a form can exist only
on an even-dimensional space.

pd-sketch 1.3. REMARK. Here is an outline of a proof of Poincaré duality using de Rham theory. The de Rham
homology groups of a manifold M are the homology groups of the complex of (compactly supported) currents
on M — a k-current is, by definition, a continuous linear functional on the space of k-forms on M (equipped
with its natural locally convex topology). If Mn is oriented we can define integration for n-forms on M , and we
can interpret this as a map D : Ω∗(M)→ Ωn−∗(M) from the complex of forms to the complex of currents:

D(α)(β) =

∫
M
β ∧ α.

Stokes’ theorem shows that this is in fact a chain map. The Poincaré duality theorem now states that for
a closed manifold D induces an isomorphism H∗(M ;R) → Hn−∗(M ;R) from de Rham cohomology to
homology. To prove it, observe thatD can be defined whether or notM is compact, so long as we use compactly
supported cohomology. Moreover, direct calculation with the Poincaré lemma (see 3.3) shows that this map is
an isomorphism when M is Euclidean space. Now cover a closed manifold M by finitely many open sets each
of which, together with all their possible intersections, is either empty or diffeomorphic to Euclidean space. A
Mayer-Vietoris ‘assembly’ argument completes the proof.

If n = 2k is even the intersection form is the bilinear form

(x, y) 7→ (D−1(x))(y)

on Hk(M ;R). Since D is an isomorphism, the form is nondegenerate, as we asserted above.

1.4. REMARK. We shall ultimately need a sharper form of Poincaré duality than this — in particular we
shall need to know that it gives an isomorphism from cohomology to homology with integer (not just real)
coefficients. We return to the topic in Chapters 6 and 9.

intersect-remark 1.5. REMARK. The intersection form has an appealing geometric interpretation in the
case of homology classes represented by closed oriented submanifolds N1 and N2 having
dimN1+dimN2 = dimM : it simply counts (with sign) the number of points of intersec-
tion of N1 and N2 — possibly after a small perturbation to put them in ‘general position’
with respect to one another. This geometry will be developed in detail in Chapters 6 and 9.

In the case n = 4l the intersection form is nondegenerate and symmetric. It is an
elementary fact of linear algebra (“Sylvester’s Law of Inertia”) that any symmetric bilinear
form over a finite-dimensional real vector space can be reduced, by a change of basis, to
the form

B(x,y) = x1y1 + · · ·+ xpyp − xp+1yp+1 − · · · − xp+qyp+q,

and the number p of positive signs and q of negative signs appearing here are invariants
of the form (in fact, they are the maximal dimensions of subspaces restricted to which the
form is positive or negative definite).

1.6. DEFINITION. The difference p − q is called the signature of the form, or of the
manifold from which it arises.
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1.7. EXERCISE. What is the signature of the complex projective space CP2k? Show
that this space does not possess any orientation-reversing diffeomorphism.

even-remark 1.8. REMARK. Notice that in defining the signature we have neglected any finer arithmetic structure which
arises from the fact that the intersection form is defined over Z, not simply over R. The classification of symmetric
bilinear forms over Z is a much more subtle matter. For instance, a symmetric bilinear form over Z is called even
if the diagonal entries in a matrix representation are even integers; equivalently,B(x,x) is even for every integer
vector x. This notion is invariant under change of (integer) basis.

LetX be a space with basepoint. The homotopy groups ofX are the groups πn(X) :=
[Sn, X] of homotopy classes of maps from the n-sphere to X (all maps and homotopies
are required to be basepoint-preserving). These groups are abelian when n > 1.

The notation Sn of course denotes the n-sphere {x ∈ Rn+1 : ‖x‖ = 1}; it is a smooth manifold, the
boundary of the (n + 1)-disk Dn+1 = {x ∈ Rn+1 : ‖x‖ 6 1}. We shall also require the relative homotopy
groups of a pair (X,A), or more generally of a map i : A → X . An element of πn(X,A) is a homotopy class
of commuting diagrams

Sn−1 //

��

A

i

��
Dn // X

The definition is so arranged that there is an exact sequence

. . . πn(A)→ πn(X)→ πn(X,A)→ πn−1(A)→ . . .

In general, homotopy groups are much more mysterious that homology groups. The
following example was known in the 1930s.

1.9. EXERCISE (The Hopf fibration). Regard S3 as the group of unit quaternions
and obtain a group homomorphism S3 → SO(3) by sending a quaternion q to the
transformation x 7→ qxq̄ of the purely imaginary quaternions. Since SO(3) acts on S2

by rotations, we obtain a map S3 → S2. This map is called the Hopf fibration. Show that
it represents a nonzero element in π3(S2). (In fact, π3(S2) = Z and the Hopf map is the
generator.)hopf-fibration

1.10. EXERCISE. Following on from the above exercise, show that the Hopf fibration is a principal S1-
bundle over S2. Give a complete classification of such bundles. (Any such bundle is trivial over the upper and
lower hemispheres, so that it is determined by its clutching function, which is the map S1 → S1 which shows
how these two trivial bundles are joined together over the equator. Thus these bundles are classified by an integer
k ∈ π1(S1) = Z. This is an example of a characteristic class, in fact an Euler class; see Chapter 3. The Hopf
fibration corresponds to k = 1.)

1.11. EXERCISE. From a principal S1-bundle over S2 one can build an S2-bundle over S2 by fiberwise
suspension. Show that the resulting S2-bundles are classified by the residue class mod 2 of the integer k
introduced in the previous exercise. (This is a matter of the homomorphism π1(SO(2)) = Z→ π1(SO(3)) =
Z/2.)

1.12. EXERCISE. Show that the total space of the S2-bundle over S2 obtained in the previous section
with k = 1 is diffeomorphic to the connected sum CP2#(−CP)2, where −CP2 is the complex projective
plane with the opposite of the standard orientation. (First show that the complement of a small 4-disk in CP2 is
diffeomorphic to the total space of the complex line bundle associated to the Hopf bundle.)projsum-exercise

We will need a number of key facts about the relationship between homotopy and
homology. First notice the obvious map (the Hurewicz map) hn : πn(X) → Hn(X;Z),
given by sending a map f : Sn → X to f∗(x), where x ∈ Hn(Sn;Z) = Z is a canonical
generator.

1.13. THEOREM (Hurewicz Theorem). Suppose that πn(X) = 0 for n < N . Then
Hn(X;Z) = 0 for n < N also, and moreover the Hurewicz map in dimension N ,
πN (X)→ HN (X;Z), is an isomorphism.
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relhu 1.14. REMARK. There is also a relative form of the Hurewicz theorem, but it is
slightly more complicated: if πn(X,A) = 0 for n < N then Hn(X,A) = 0 for
n < N also and the Hurewicz map πn(X,A)→ Hn(X,A) is an epimorphism with kernel
generated by the action of π1(A) on πn(X,A); in particular if A is simply connected the
Hurewicz map is an isomorphism.

1.15. THEOREM (Whitehead Theorem). Let f : X → Y be a map of connected CW -
complexes inducing an isomorphism on all homotopy groups, or equivalently2 inducing an
isomorphism on π1 and on all homology groups. Then f is a homotopy equivalence.

The reader will find the proofs of these results in [13, Chapter 4].

1.16. EXERCISE. Let M be a manifold of dimension 2k or 2k + 1. Show that if M
is k-connected, then it is a homotopy sphere (i.e., homotopy equivalent to a sphere). (Use
Poincaré duality and the Hurewicz and Whitehead theorems.)homotopy-sphere

1.17. EXERCISE. Show that the smooth 4-manifolds S2 × S2 and CP2#(−CP2)
have isomorphic homotopy groups (in all dimensions), but are not homotopy equivalent.
This shows that the condition of Whitehead’s theorem cannot be weakened to abstract
isomorphism of homotopy groups; it is necessary that the isomorphisms be induced by a
map of spaces.

One way to show that these manifolds are not homotopy equivalent is to show that S2 × S2 has even
intersection form but CP2#(−CP2) does not. On the other hand, one can represent CP2#(−CP2) as the total
space of an S2-bundle over S2 which admits a cross section (see Exercise 1.12). Then its homotopy groups can
be computed using the long exact homotopy sequence of a fibration.

Let X and Y be spaces with basepoint. Their wedge X ∨ Y is obtained from the
disjoint union by identifying the basepoints. One can regard it as the subspaceX×•∪•×Y
ofX×Y . The smash product ofX and Y is the identification spaceX∧Y = X×Y/X∨Y .
The (reduced) suspension of Y is the space ΣY = S1 ∧ Y .

Standard homological machinery produces an identification H̃r(X) = H̃r+1(ΣX)
(using reduced homology here). The effect of suspension on homotopy is less straightfor-
ward. There is a natural suspension homomorphism

E : πr(X)→ πr+1(ΣX),

but it is not an isomorphism in general. It follows from a theorem of Freudenthal, however,
that E is an isomorphism provided that X is sufficiently highly connected (roughly 1

2r-
connected). In particular the sequence of groups

πr(X)→ πr+1(ΣX)→ πr+2(Σ2X)→ . . .

eventually stabilizes; the common limit is the stable homotopy group πsr(X).
In the 1950s, Serre proved the following basic result using the then-new method of

spectral sequences.

serresthm 1.18. PROPOSITION. The stable homotopy groups of spheres, πsr = πsr(S
0), are finite

for r > 0.

Here is a table of the stable homotopy groups for small values of r.

r 0 1 2 3 4 5 6 7 8
πsr Z Z2 Z2 Z24 0 0 Z2 Z240 Z2 ⊕ Z2

Much more extensive tables can be found in [].

2The equivalence follows from the Hurewicz theorem.
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1.2. Pontrjagin classes

If M is a smooth manifold then its smooth structure provides a canonical (real) vector
bundle, the tangent bundle TM over M . One can think of this as follows: let {Uα} be
a coordinate cover of M ; then the differentials of the transition functions of this cover
provide maps ϕαβ : Uα ∩ Uβ → GL(n,R) that satisfy the cocycle condition

ϕαβϕβγϕγα = 1

where defined. Such a cocycle with values in GL(n,R) can be used to construct a vector
bundle by using the isomorphisms ϕαβ to patch together trivial Rn-bundles over Uα and
Uβ . Any cocycle with values in GL(n,R) is cohomologous to one with values in the
maximal compact subgroup O(n) (one then speaks of a reduction of structure group to
O(n)); this corresponds to the fact that every manifold can be given a Riemannian metric.

Diffeomorphic smooth manifolds have isomorphic tangent bundles. Therefore, in-
variants of smooth structure will be found from the characteristic classes of the tangent
bundle.

Recall that a characteristic class for a certain category of bundles (the categories of real vector bundles
and of complex vector bundles are the immediate examples) is just a natural map which associates, to each such
bundle E over a base space B, a cohomology class c(E) ∈ H∗(B), in such a way that isomorphic bundles
E and E′ have equal characteristic classes c(E) = c(E′). The classic reference for the theory is the book of
Milnor and Stasheff [26]. Notice that the term ‘natural’ which appears above is a technical one: it means that if
f : X → Y is a map and E is a vector bundle over Y , then c(f∗(Y )) = f∗(c(Y )).

The most important characteristic classes for real vector bundles are the Pontrjagin
classes. For a real vector bundle E over base B, these classes pk(E) ∈ H4k(B;Z),
k = 1, 2, . . . vanish for k > 1

2 dimE, all vanish for a trivial bundle, and satisfy the
Whitney sum formula: if we denote by p(E) the ‘total Pontrjagin class’

p(E) = 1 + p1(E) + p2(E)+ ∈ H∗(B;Z)

then
p(E1 ⊕ E2) = p(E1) · p(E2) modulo 2-torsion.

(The dot of course denotes the cup-product in the cohomology ring.)
Here is a very abbreviated account of the construction of the Pontrjagin classes.

In classical differential geometry one encounters the Gauss map of an embedded k-
submanifold M ⊆ Rn. This is the map which to each point m ∈ M associates the
tangent plane to M at m, translated so as to pass through the origin in Rn. It is a map from
M to the Grassmannian Gk,n(R) of k-dimensional subspaces of Rn. The Grassmannian
carries a ‘universal’ k-dimensional vector bundle, whose fiber over a point p representing
a k-dimensional subspace of Rn just is that k-dimensional subspace; by construction,
the tangent bundle of M is the pull-back of this tautological bundle via the Gauss map.
More generally, it is possible to show that any real vector bundle (at least over a compact
base) is pulled back by some map from the universal bundle over some Grassmannian, and
moreover the map is uniquely determined up to homotopy by the isomorphism class of the
original bundle. This argument (sometimes called the Yoneda lemma) reduces the problem
of finding characteristic classes to that of computing the cohomology of Grassmannians.

We denote the limit limn→∞Gk,n(R) by BO(k) and call it the classifying space for bundles with
structure group O(k), that is k-dimensional real bundles. This construction is in fact a homotopy-theoretic one:
for any topological group G, a space BG is defined uniquely up to homotopy equivalence by the requirement
that it carry a universal principal G-bundle, one from which any other G-bundle is pulled back. (It turns out to
be equivalent to require that the total space, denoted EG, of the universal bundle is contractible.) For similar
reasons we denote by BU(k) the limit limn→∞Gk,n(C), using the Grassmannian of k-dimensional complex
subspaces of Cn.
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1.19. EXAMPLE. The spaces BO(1) and BU(1) are the infinite-dimensional real and
complex projective spaces RP∞ and CP∞.

Although our interest is ultimately in real vector bundles, it turns out to be important to
focus first on the classifying spaceBU(1) = CP∞ for complex line bundles. This has a cell
structure with cells only in even dimensions, and so its cohomology is Z in even dimensions
and 0 in odd dimensions. Moreover, the cup-product of the generators in dimensions 2m
and 2n is the generator in dimension 2(m + n) (geometric interpretation: in projective
geometry the intersection of a codimension-m linear subspace and a codimension-n linear
subspace is always a codimension-(m+ n) linear subspace). Thus

1.20. PROPOSITION. The integral cohomology ring H∗(BU(1);Z) is a polynomial
ring Z[c] on one 2-dimensional generator.

What this means for characteristic classes is that every complex line bundle L over a
space X has a first Chern class c1(L) ∈ H2(X;Z), and every other characteristic class for
complex line bundles is just a polynomial in the first Chern class.

There are many other ways to define c1(L). For instance, the exponential map gives a short exact sequence
of sheaves

0→ Z→ O(R)→ O(S1)→ 0;

and the associated Bockstein homomorphismH1(X;O(S1))→ H2(X;Z) maps a line bundle to its first Chern
class.

What can be said about k-dimensional complex vector bundles? A simple example of
such a bundle is a direct sum of k line bundles. It is a surprising fact that, for the purpose of
characteristic class theory, one need only consider bundles that split in this way. Here is the
reason: Consider the product BU(1) × · · · × BU(1) (k copies). The cohomology of this
space is a polynomial ring Z[x1, . . . , xk], where x1, . . . , xk are the first Chern classes of
the canonical line bundles over the various factors. The direct sum of all these line bundles
is a k-dimensional vector bundle and this gives us a map

BU(1)× · · · ×BU(1)→ BU(k)

which classifies it. Now one has

sprinc 1.21. PROPOSITION (Splitting Principle). The map displayed above induces an injec-
tion on cohomology, whose image is the ring of symmetric polynomials in x1, . . . , xk.

It is a theorem of algebra [17, reference] that the ring of symmetric polynomials in
x1, . . . , xk is itself a polynomial ring, generated by the elementary symmetric polynomials

c1 = x1 + · · ·xk
c2 = x1x2 + · · ·+ xk−1xk

· · ·
ck = x1 · · ·xk

which are defined in general by

1 + c1t+ c2t
2 + · · ·+ ckt

k =

k∏
i=1

(1 + txi).

Thus H∗(BU(k);Z) = Z[c1, . . . , ck] where the generators ci (of degree 2i) are called
the i’th Chern classes. These are the fundamental characteristic classes for k-dimensional
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complex vector bundles. Notice that the construction immediately gives us the Whitney
sum formula for Chern classes,

c(V1 ⊕ V2) = c(V1) · c(V2),

where the total Chern class is defined by c(V ) = 1 + c1(V ) + c2(V ) + · · · .

1.22. EXERCISE. Show that c1(L1⊗L2) = c1(L1)+c1(L2) for complex line bundles
L1 and L2.

1.23. EXERCISE. The Chern character is the characteristic class defined by the sum
ex1+· · ·+exk (this is a symmetric formal power series rather than a symmetric polynomial,
but things work in the same way). Using the previous exercise, show that the Chern
character is a ‘homomorphism’ in the sense that

ch(E1 ⊕ E2) = ch(E1) + ch(E2), ch(E1 ⊗ E2) = ch(E1) · ch(E2).

Now let us think about real rather than complex vector bundles. The process of
complexifying (tensoring with C) turns real vector bundles into complex ones and there-
fore provides a map BO(k) → BU(k). This pulls back the Chern classes to certain
characteristic classes in H∗(BO(k);Z). It turns out that the pullbacks of the odd Chern
classes are 2-torsion elements (this is because the complexification of a real vector bundle
is isomorphic to its complex conjugate bundle) but the pullbacks of the even Chern classes
are significant and up to sign give the Pontrjagin classes

pi(V ) = (−1)ic2i(V ⊗ C)

which generate a polynomial subring Z[p1, p2, . . .] of H∗(BO(k);Z). Note that pi has
degree 4i.

1.24. REMARK. When M is a smooth manifold, we refer to the ‘Pontrjagin classes of
M ’ instead of the Pontrjagin classes of the tangent bundle of M . By construction, these
are diffeomorphism invariants of M .

complex-projective-pont 1.25. EXAMPLE. Let us calculate the Pontrjagin classes of M = CPn, considered as a real 2n-manifold.
We recall that the cohomology of CPn is a truncated polynomial ring Z[x]/(xn+1), where x ∈ H2(M ;Z) is
the first Chern class of the tautological line bundle L over M .

First we need

1.26. EXERCISE. Let T be the complex tangent bundle to M . Then one has an isomorphism of bundles
T ⊕C = (n+ 1)L̄ = L̄⊕ · · ·⊕ L̄. (Hint: Identify sections of L̄ with homogeneous functions on Cn+1, that is
functions f : Cn+1 → C such that f(λx) = λf(x) for all λ ∈ C. Identify sections of the bundle T ⊕ C with
homogeneous vector fields on Cn. Choose a basis of Cn to get the desired isomorphism.)

It follows from the Whitney sum formula that c(T ) = (1 + x)n+1. Now the complexification of the real
tangent bundle to M (which is just the real vector-bundle underlying T ) is isomorphic (as a complex vector-
bundle) to T ⊕ T , and thus has total Chern class

c(T ⊕ T ) = (1− x2)n+1.

By definition, then, the k’th Pontrjagin class pk(M) is equal to (−1)k times the degree 2k term in the above
polynomial, so it is equal to

(n+1
k

)
x2k . For instance, p1(CP2) = 3x2, p1(CP4) = 5x2, p2(CP4) = 10x4.

qpp-pont 1.27. EXERCISE. Calculate the Pontrjagin classes of quaternion projective space by a similar method. You
should find that the total Pontrjagin class p(HPn) equals (1 + x)2k+2(1 + 4x)−1, where x is the generator of
H4(HPn;Z); in particular, p1(HPn) = (2n − 2)x. See [5, page 519] or [26, Problem 20A]. Deduce that if
n > 1, HPn does not admit any orientation-reversing diffeomorphism.



1.3. COBORDISM 15

1.3. Cobordism

IfM is a compact, oriented manifold we define the Pontrjagin numbers ofM to be the
integers obtained by evaluating polynomials in the Pontrjagin classes on the fundamental
homology class3 [M ]. Thus there is one Pontrjagin number for each polynomial in
Z[p1, p2, . . .] of total degree equal to dimM .

pont-cobord 1.28. LEMMA. If the compact, oriented manifold M is the boundary of a compact
manifold W , then all its Pontrjagin numbers vanish.

PROOF. See 7.31, or the reader can do it now as an exercise. �

This simple result shows the connection between Pontrjagin numbers and cobordism.

1.29. DEFINITION. Two compact oriented manifolds M and M ′ are cobordant if
M t (−M ′) is the boundary of a compact oriented manifold. The oriented cobordism ring
Ω∗ is the graded ring of cobordism classes of compact oriented manifolds: addition is by
disjoint union, and multiplication is by Cartesian product.

From lemma 1.28 we see that each Pontrjagin number gives a group homomorphism
Ω∗ → Z. Thom’s computations of cobordism [?] (which we will review in Chapter 7)
showed that the Pontrjagin numbers are sufficiently rich to separate points on Ω∗ ⊗Q. To
put this another way, every group homomorphism Ω∗ → Z is a Pontrjagin number with
rational coefficients (an element of Q[p1, p2, . . .]).

Now there is a completely different way to obtain a homomorphism from Ω∗ to Z:
make use of Poincaré duality. We’ve seen above that every compact oriented manifold has
a signature, defined using the intersection form on middle-dimensional cohomology, and
it is not hard to check4 that this quantity is cobordism invariant, so it defines a functional
Ω∗ → Z. According to Thom’s results, then, the signature is a Pontrjagin number. What
number is it?

In low dimensions we can do some computations by hand. For instance, in dimension 4, the only Pontrjagin
numbers are multiples of p1. But for M = CP2 the signature is 1, whereas the Pontrjagin number p1(M) is 3,
by the calculations of Example 1.25. Consequently we obtain

(1.30) Sign(M) =
1

3
p1(M)

for any compact oriented 4-manifold M .
In dimension 8 there most general Pontrjagin number is ap2

1 + bp2, for some coefficients a, b ∈ Q. Using
the calculations of Example 1.25 again we obtain the equations

25a+ 10b = 1, 18a+ 9b = 1

by considering the 8-manifolds M = CP4 and M = CP2 × CP2 respectively. These equations can be solved
to yield a = −1/45, b = 7/45 and thus the formula

sig-8sig-8 (1.31) Sign(M) =
1

45
(7p2 − p2

1)[M ]

for any compact oriented 8-manifold.

The general result was found by Hirzebruch — see his own account in [14]. The
Hirzebruch Signature Theorem gives an explicit procedure, in terms of certain power
series, to build a characteristic class L(M) = L(p1, p2, . . .), which in each degree is a
polynomial in the Pontrjagin classes, such that

Sign(M) = 〈L(M), [M ]〉

3Since the fundamental homology class depends on the choice of orientation, the Pontrjagin numbers
depend on the choice of orientation, even though the Pontrjagin classes do not.

4See Proposition 6.29.



16 1. QUESTIONS ABOUT THE TOPOLOGY OF MANIFOLDS

for any compact oriented manifold M . The signature theorem expresses a deep and
unexpected link between the algebra of intersection forms and the geometry of the tangent
bundle. As we will see in a moment, it has very strong geometrical consequences.

1.32. REMARK. The L-class has components in degrees 0, 4, 8, . . .. Moreover, by examining its explicit
form one sees that, in rational cohomologyH∗(M ;Q), the Pontrjagin classes can be recovered from the L-class.
On the other hand, by the signature theorem the L-class determines not only the signature of M but also the
signature of any submanifold N of M that has trivial normal bundle. (For then the Pontrjagin classes of M
restrict to those of N .) Using arguments from homotopy theory (specifically Serre’s theorem about the finiteness
of the higher homotopy groups of spheres) it can be shown that there is also a converse here: to know the
signatures of submanifolds with trivial normal bundle (in M and in certain ‘stabilizations’ of M ) recovers the
rational L-class. The conclusion is that the rational Pontrjagin classes determine and are determined by a list of
signatures of submanifolds. Many of the deeper properties of Pontrjagin classes in differential topology depend
on this fact.

1.33. REMARK. Analogous to the connection between oriented cobordism and the
Pontrjagin classes, there is a relationship between unoriented cobordism and the Stiefel-
Whitney classes; these are characteristic classes of real vector bundles which live in
cohomology with Z2 coefficients. However, there is an important distinction to be drawn:
as we shall see in Theorem 5.35, the Stiefel-Whitney classes of the tangent bundle of a
manifold in fact depend only on its homotopy type. By contrast, the Pontrjagin classes
reflect the differentiable structure. We shall see an explicit example a little later in this
chapter.

1.4. The Poincaré conjecture

In the middle 1950s, shortly after the publication of the Hirzebruch signature theorem,
Milnor was trying to understand the structure of (n−1)-connected manifolds of dimension
2n. (His paper [19] gives some of the history.) Classical examples would be the complex
projective plane CP2 of dimension 4, the quaternionic projective plane HP2 of dimension
8, and the Cayley projective plane of dimension 16. Each of these has πn(M) = Z, and
πn(M) is generated by a single embedded n-sphere Sn in M . In an effort to generalize
this construction, Milnor considered n-dimensional real vector bundles V over Sn. Taking
the disk bundle of such a V gives a compact 2n-manifold with boundary, say W ; and if
the closed (2n− 1)-manifold ∂W happens to be a sphere, then we can attach a 2n-disk to
it and thus obtain a possibly exotic closed 2n-manifold M .

The bundles V are classified by their ‘clutching functions’, which are maps Sn−1 →
SO(n) (or equivalently maps Sn → BSO(n), using the theory of classifying spaces
discussed in the previous section). To begin his study Milnor asked for what choices of
clutching function would the manifold ∂W constructed above have the homotopy type of a
sphere.

Consider first the case n = 2. In this case the 2-plane bundles V over S2 are completely determined by a
single integer k in π1SO(2) = Z (that is the Euler class). The manifold ∂W is the total space of an S1-bundle
over S2, and part of the homotopy exact sequence associated to this is

π2(S2)
×k // π1(S1) // π1(∂W ) // π1(S2) = 0.

We see that ∂W is simply-connected (and thus a homotopy sphere) if and only if k = ±1. In this case the
resulting 4-manifold M is simply ±CP2, so the construction yields nothing new.

Look now at the case n = 4. The bundles V are 4-plane bundles over S3, classified
up to isomorphism by the homotopy class of the clutching map S3 → SO(4), that is an
element of the homotopy group π3(SO(4)). One knows that the simply connected double
cover of SO(4) is S3 × S3 (to see how an element of S3 × S3 gives rise to a rotation,



1.4. THE POINCARÉ CONJECTURE 17

think of the points of S3 as unit quaternions and associate to (u, v) ∈ S3×S3 the rotation
x 7→ uxv of H = R4). This gives us the calculation

π3(SO(4)) = π3(S3 × S3) = Z⊕ Z.

So the possible bundles V are classified by pairs of integers i, j.
Now investigate what is the condition on i, j for the manifold ∂W constructed as

above to be a homotopy sphere. W is the total space of an S3-bundle over S4 and part of
the homotopy exact sequence associated to this is

π4(S4)
×(i+j)// π3(S3) // π3(∂W ) // π3(S4) = 0.

Thus we conclude that W will be 3-connected (and therefore a homotopy sphere, see
Exercise 1.16) if and only if i+ j = ±1. In contrast to the case n = 2, this gives infinitely
many possibilities. Let us fix i + j = 1 and consider the corresponding 8-manifolds Wi

and their boundaries, the homotopy 7-spheres ∂Wi.
If i = 1, then ∂Wi = S7; in fact, the 8-manifold M obtained by attaching a disk to

W1 is simply quaternion projective space. If i = 2, though, something strange happens.
To see this, suppose for a moment that ∂Wi is also (diffeomorphic to) the 7-sphere, and let
Mi be the closed 8-manifold obtained by attaching a disk. We ask: What are the Pontrjagin
classes of Mi? Since the generator of H4(M ;Z) is just the sphere S4 that we started with,
the Pontrjagin class p1(Mi) can be computed in a neighborhood of S4, and thus from the
data i, j = 1− i alone.

1.34. EXERCISE. Show that in the above situation we have p1(Mi) = 2(i − j) =
2(2i − 1) times the generator of H4(M ;Z) = Z. Check that this fits with the calculation
of Pontrjagin classes for the quaternionic projective plane (Exercise 1.27). To do: More
hints, especially about the 2 To do

The signature of M must be 1 (if we choose the orientation suitably) so the signature
theorem for 8-manifolds, equation 1.31, yields

p2[M ] =
p2

1[M ] + 45

7
=

4(2i− 1)2 + 45

7
.

If i=1 this gives p2[M ] = 7, consistent with the calculations earlier (Exercise 1.27) for
the quaternionic projective plane. But if i = 2 then we get p2[M ] = 81/7, which is
ridiculous; Pontrjagin numbers are integers! The same integrality problem arises for any i
not congruent to 0 or 1 modulo 7.

What can be the problem? The supposed smooth 8-manifold M cannot exist, and this
means that the homotopy 7-sphere Σ = ∂W cannot, after all, be the standard 7-sphere S7.
At this point two possibilities present themselves:

(a) Perhaps Σ is a homotopy 7-sphere which is not homeomorphic to the standard
7-sphere S7 (and thus a counterexample to the Poincaré conjecture in dimension
7, see below)?

(b) Or, perhaps Σ is a smooth manifold homeomorphic but not diffeomorphic to S7

— an ‘exotic sphere’?

Milnor has recorded that he at first inclined to the view that (a) was true, but in fact
the solution turned out to be (b), a conclusion that he announced in the revolutionary
paper [20].

This is an appropriate point to state the Poincaré conjecture.
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Size: 60 mm

FIGURE 1. The gradient flow provides a diffeomorphism to a cylinder grad-flow-fig

1.35. CONJECTURE (Generalized Poincaré Conjecture). Every smooth homotopy n-
sphere (that is, every smooth manifold homotopy equivalent to Sn) is homeomorphic to
Sn.

To do: Write a historical section about the PC. See Dieudonné, etcTo do
In order to prove the Poincaré Conjecture one needs some mechanism for recognizing

smooth manifolds homeomorphic to Sn. Such a mechanism is provided by the following
theorem of Reeb.

1.36. THEOREM. Let M be a compact smooth manifold. Suppose that f : M → R is
a smooth function having no critical points except for a single non-degenerate maximum
and a single non-degenerate minimum. Then M is homeomorphic to a sphere.

A critical point of f is a point where its gradient vanishes, and such a critical point is
non-degenerate if the matrix of second derivatives of f has full rank there.

SKETCH PROOF. It is known that around a non-degenerate minimum point one can
choose local coordinates so that

f(x1, . . . , xn) = c+ x2
1 + · · ·+ x2

n

where c = f(0, . . . , 0) is the minimum value of f . (This is part of the Morse Lemma 7.5.)
Consequently, for sufficiently small ε > 0 the region {x : f(x) 6 c + ε} is a closed
n-disk in M . If we remove from M the interior of this disk, and of the corresponding
disk around the maximum point, the part of M that remains can be given the structure of
a cylinder Sn−1 × I by making use of the gradient flow of f (see Figure 1). Thus M
can be obtained by attaching two disks, by diffeomorphisms, to the ends of a cylinder.
Since every homeomorphism of the boundary of a closed disk extends, by ‘coning’, to
a homeomorphism of the whole disk, the resulting manifold is homeomorphic to the n-
sphere. �

1.37. REMARK. The process of extending a homeomorphism of a sphere to a homeo-
morphism of the disk that it bounds is called the Alexander trick. Note carefully that
even if we start with a diffeomorphism of the sphere, the homeomorphism produced by the
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Alexander trick need not be smooth at the cone point (though of course it will be smooth
everywhere else).

1.38. EXERCISE. Consider the Milnor 7-manifold M described above. Show that it
can be obtained by identifying two copies of R4 × S3 in the following explicit way: the
point (u, v) in the first copy of (R4 \ {0}) × S3 is identified with (u′, v′) in the second
copy, where

u′ = u/‖u‖2, v′ = uivuj/‖u‖
(using quaternion multiplication). Check that, if i+ j = 1, the function

f(u, v) = <v/(1 + ‖u‖2)

extends smoothly to the whole of M and has precisely two critical points, both non-
degenerate. Deduce that M is homeomorphic to S7.

A few years after Milnor’s work, Smale proved the Poincaré conjecture in high
dimensions. (His famous remark that the proof occurred to him ‘on the beaches of Rio’
caused some upset back in the USA, see [29].) The idea of the proof is to study manifolds-
with-boundary which have the homotopy-theoretic properties of the middle, cylindrical,
region in the proof of Reeb’s theorem above.

hcobord-def 1.39. DEFINITION. LetW be a cobordism, that is, a compact manifold with boundary,
whose boundary has two components ∂−W and ∂+W . It is said to be an h-cobordism if
the inclusions ∂−W →W and ∂+W →W are both homotopy equivalences.

To do: Bibliographic references for h-cobordism theorem. A simple example of To do
an h-cobordism is M × [0, 1], where M is compact without boundary. This is called a
product cobordism. Smale proved

1.40. THEOREM (h-cobordism theorem). Any simply-connected h-cobordism W of
dimension > 6 is diffeomorphic to a product. In particular, ∂−W and ∂+W are diffeo-
morphic to one another.

The proof works with a smooth real-valued function f : W → R, constant on the two
boundary components and having only non-degenerate critical points — a Morse function.
If f has no critical points at all then we can use the gradient flow as in Reeb’s proof to
show that W is a product; so the idea is to modify f by ‘canceling’ its critical points until
none are left. To give a simple example of how this might work, the cubic function on R
given by x 7→ x3 + 3x2 has critical points at 0 and −2; as one varies the function in the
family x3 + 3x2 + 3λx, λ ∈ [0, 2], the two critical points coalesce (at λ = 1) and then
both disappear. In order to carry out this cancellation in general there are some topological
necessary conditions that must be satisfied (the h-cobordism condition) and the main part
of the proof is to show geometrically that when these necessary conditions are satisfied,
cancellation can always be carried out. We shall sketch the proof of the h-cobordism
theorem in the appendix.

Granted the h-cobordism theorem, the proof of the Poincaré conjecture, at least in
dimensions 6 and above, is easy. We just follow the outline of the proof of Reeb’s theorem,
above. Let Σ be a homotopy sphere. Remove two small, disjoint disks. The resulting
manifold-with-boundary is a simply-connected h-cobordism, hence a product. Gluing the
disks back in gives a homeomorphism to the standard sphere, via the Alexander trick.

1.41. EXERCISE. Poincaré at first asked whether every homology sphere (a manifold
having the same homology groups as Sn) is a standard sphere. However, he soon produced
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an example to show that the answer is ‘no’ in general [?]. Let us look at manifolds of the
form M = S3/Γ, where Γ is a discrete subgroup of SO(4) acting freely on S3. Show that
if the group Γ is equal to its commutator subgroup [Γ,Γ] (this is what is called a ‘perfect’
group), then M is a homology 3-sphere.

To get an explicit example, regard S3 = Sp(1) as the group of unit quaternions, which
is the double cover of SO(3). The inverse image of the symmetry group of the icosahedron,
under this double cover, is a subgroup of Sp(1) of order 120, called the binary icosahedral
group. Show that the binary icosahedral group is perfect (use the fact that the symmetry
group of the icosahedron is nonabelian and simple). Thus we obtain a homology sphere by
dividing S3 by Γ acting by group multiplication.

To do: refer to paper by Kirby and Schnarlemann, 8 faces of the Poincaré
homology sphere. Connection with plumbing? (later)To do

1.5. Variation of Pontrjagin classes
pont-vary-sect

The Poincaré conjecture shows that for spheres, homotopy type determines homeo-
morphism type. This is not always true for more complicated manifolds. In this section we
shall construct an example of a homotopy equivalence f : M → M ′ of smooth manifolds
which does not preserve the Pontrjagin classes:

f∗(p1(M ′)) 6= p1(M) ∈ H4(M ;Q).

It follows immediately that f cannot be homotopic to a diffeomorphism.
Once again the construction uses bundle theory. Let us consider 5-dimensional ori-

ented vector bundles V over S4. These are classified up to isomorphism by the homotopy
classes of their clutching maps, which are elements of π3(SO(5)). It is known that this
group is the integers, Z. Moreover, the integer k ∈ π3(SO(5)) that classifies the bundle is
just the Pontrjagin class p1(V ) ∈ H4(S4).

One way to see this is to start with π3(SO(4)) = Z ⊕ Z (see previous section) and calculate homotopy
groups using the long exact sequence of the fibration SO(4) → SO(5) → S4. Alternatively, the result is a
special case of the Bott periodicity theorem for the orthogonal group. The statement about the Pontrjagin class
follows from the rational Hurewicz isomorphism π4(BSO)⊗ Q = H4(BSO;Q).

Taking the boundary of the disk bundle associated to V ⊕ R, where R denotes a
1-dimensional trivial line bundle, we obtain a family Mk of closed 9-manifolds param-
eterized by integers k ∈ π3(SO(5)) = Z. The classification of these manifolds Mk up to
homotopy type depends on the homotopy class of the clutching map, now considered as
a map from S3 × S5 → S5. Basepoints are preserved (if we take the basepoint in S5 to
be the ‘north pole’ associated to the added trivial line bundle) so that the clutching map is
actually a map from S8 = S3 ∧ S5 to S5, and its homotopy class is an element of π8(S5).
Serre’s results show that this group is Z/24, so that if k is divisible by 24 the manifold Mk

is homotopy equivalent to M0 = S4 × S5.

j-hom 1.42. REMARK. Lurking just beneath the surface of this discussion is a famous and
important construction of homotopy theory, the J-homomorphism, which is the map
πk(SO(m)) → πm+k(Sm) obtained by making SO(m) act on Sm by rotations about
the polar axis.

On the other hand, the trivial bundle factor gives a cross section to the fibration S5 →
M → S4. This cross section is a copy N of S4 which generates H4(M), and its normal
bundle νN in M is just the original vector bundle V . Thus, evaluating on [N ] and using
the Whitney sum formula

p1(M) = p1(νN ) + p1(TN) = p1(V ) + 0 = k
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since the tangent bundle to N (as to any sphere) is stably trivial. We conclude that
M0 = S4 × S5 and M24 are homotopy equivalent, but their first Pontrjagin classes are
different. The homotopy equivalence between them therefore cannot be homotopic to a
diffeomorphism.

1.43. REMARK. We have chosen to work with a particular example here, but it is clear
that similar constructions could be based on any element of the kernel Ker J .

As in the previous section, two possibilities now present themselves.
(a) Perhaps M0 and M24 are homotopy equivalent but not homeomorphic?
(b) Or, perhaps M24 is a smooth manifold homeomorphic but not diffeomorphic to

S4 × S5 — an ‘exotic product of spheres’?
This time however it is (a) that is the true statement; M24 is not even homeomorphic

to S4 × S5. This follows from a deep theorem of Novikov:

1.44. THEOREM ([27, 28]). If f : M → M ′ is a homeomorphism between smooth
manifolds, then f∗(pi(M

′)) = pi(M) as elements of the rational cohomology groups
H∗(M ;Q).novikovstheorem

This result, proved in the middle 1960s, lies much deeper than anything else we
have mentioned in this introduction. To prove it, Novikov devised an elaborate inductive
technique for applying the methods of surgery theory, on non-simply-connected smooth
manifolds, to problems about homeomorphisms. We will return to the study of Novikov’s
theorem in Chapter 19.

To do: In fact anything that is not ‘nailed down’ by the signature theorem
can be modified by a homotopy equivalence — we need to discuss this explicitly
somewhere. To do





CHAPTER 2

Classification of exotic spheres

exoticsphere-chapter
In our first chapter we saw how Milnor used the Hirzebruch signature theorem to give

examples of non-standard smooth structures on the 7-sphere. The surgery method was
developed a few years later by Milnor and Kervaire [16] who wanted to refine this construc-
tion into a complete classification of the exotic spheres in any sufficiently high dimension.
In order to produce such a classification, what was needed was a sort of ‘converse’ to
the signature theorem, which would say that (subject to certain conditions) two exotic
spheres which have the same signature-type invariants are actually diffeomorphic. This is
what surgery theory does: it gives a systematic procedure for passing from signature-like
algebraic invariants to topological conclusions.

In this chapter we will describe a part of the Kervaire-Milnor classification, and use it
as an introduction to the more general ideas of surgery theory. The full story of the exotic
spheres will be taken up again in Chapter 16.

2.1. The group of homotopy spheres

Throughout this chapter we will take the dimension n to be large enough for the h-
cobordism theorem to apply.

2.1. DEFINITION. A homotopy n-sphere is a closed (oriented) n-manifold homotopy
equivalent to Sn. It is an exotic sphere if it is not diffeomorphic to Sn.

2.2. DEFINITION. Let Θn denote the collection of h-cobordism classes of homotopy
n-spheres.

The notion of h-cobordism was defined in 1.39. By the h-cobordism theorem, two
homotopy spheres are h-cobordant if and only if they are diffeomorphic, so that we could
equivalently have defined Θn in terms of diffeomorphism classes. However, the definition
that we gave fits better with the following more general one, which is central to surgery
theory:

2.3. DEFINITION. Let X be a topological space. A manifold structure on X is a
homotopy equivalence from a closed manifold to X . The structure set of X , S(X), is the
collection of h-cobordism classes of manifold structures on X: two manifold structures
f0 : M0 → X and f1 : M1 → X are h-cobordant if there are an h-cobordism M , with
∂M = M1 t (−M0), and a map F : M → X which is a homotopy equivalence and
restricts to f0, f1 on the ends.

2.4. EXERCISE. Show that Θn is just the structure set S(Sn).

A special property of Θn which is not shared by structure sets in general is

2.5. THEOREM. The operation of connected sum makes Θn into an abelian group.

23
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Size: 34 mm

FIGURE 1. Connected sum connectsum

PROOF. Recall that the connected sum of two connected oriented n-manifolds M and
M ′ is defined by removing a small disk from each of M and M ′, and then joining the
boundaries of the resulting manifolds by means of a cylindrical tube Sn−1 × D1. See
Figure 1. It is not hard to see that this operation is well-defined (up to diffeomorphism),
commutative, and associative. Moreover, the connected sum M#Sn is diffeomorphic
to M , so Sn gives an identity element for the connected sum operation. It remains to
show that Θn has inverses. In fact, the inverse of a homotopy sphere M is the sphere
−M with the opposite orientation. To prove this we appeal to the h-cobordism theorem,
which implies that M is the union of two n-discs glued along their boundary by some
g ∈ Diff(Sn−1). Then −M is the union of two discs glued by g−1, and M#(−M) =
Dn ∪g Sn−1 × I ∪g−1 Dn is plainly diffeomorphic to the standard sphere. �

2.6. EXERCISE. Show directly (without appealing to the h-cobordism theorem) that
the inverse operation in Θn is given by reversing the orientation. (See Lemma 2.4 of [16].)

2.7. EXERCISE. Show that Θn is isomorphic to the quotient of Diff(Sn−1) by the
subgroup consisting of those diffeomorphisms that extend to diffeomorphisms of the disk
Dn.

2.8. EXERCISE. Think carefully about why the connected sum operation is well-
defined. You will need results such as the transitivity of the action of Diff(M) on M ,
and the uniqueness of tubular neighborhoods for submanifolds.

connsum-rmk 2.9. REMARK. The operation of connected sum can be described as follows: from the
disconnected manifold M t M ′ we removed a subset diffeomorphic to Dn × S0. The
boundary of the removed piece, Sn−1×S0, can also be viewed as the boundary of the tube
Sn−1 × D1. We reinsert this tube, thus obtaining a new closed manifold which has now
been made connected.

If we look at connected sums this way it is natural to seek a generalization based on
the identity

∂(Dk × Sn−k) = Sk−1 × Sn−k = ∂(Sk−1 ×Dn−k+1).

This generalization is the procedure of surgery.

2.2. Spheres that bound parallelizable manifolds

2.10. DEFINITION. A manifold M is parallelizable if its tangent bundle is trivial.

Milnor and Kervaire’s analysis begins by singling out a certain subgroup of Θn.
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2.11. DEFINITION. The subgroup bPn+1 ⊆ Θn consists of those homotopy spheres
which are the boundaries of parallelizable manifolds.

To motivate the definition, observe that a contractible manifold is certainly paralleliz-
able; and, if a homotopy sphere bounds a contractible manifold M , then removing a small
disk from M gives an h-cobordism to the standard sphere.

Implicit in this definition is the assertion that bPn+1 actually is a subgroup. Suppose M1 and M2 are
homotopy spheres, bounding parallelizable manifolds M1 and M2 respectively. Join a disk in ∂M1 to a disk
in ∂M2 by a tube D4k−1 × D1. You obtain a parallelizable manifold M whose boundary is M1#M2. Thus
bPn+1 is closed under the group operation.

Remember our mnemonic for surgery theory: manifolds = bundles + handles? The
exact sequence

mini-seqmini-seq (2.12) 0→ bPn+1 → Θn → Θn/bPn+1 → 0

displays two reasons why a homotopy sphere Σ might be exotic. Firstly, Σ might not bound
any parallelizable manifold at all. This phenomenon is related to the tangent bundle of Σ
and ultimately to the J-homomorphism (Remark 1.42); it is measured by the quotient group
Θn/bPn+1. We shall take this part of the story up again in Chapter 7 and in particular
we shall show that Θn/bPn+1 is a finite group. Secondly, however, Σ might bound a
parallelizable manifold but not bound a contractible one. The obstructions here have to do
with signatures, and can be explored by attaching and detaching handles, using surgery.
For the rest of this chapter we will be concerned with this calculation. Its conclusion is that
bPn+1 is a finite cyclic group; moreover, its order is 1 or 2 except in the case n = 4k − 1,
when the order can be large. We will therefore focus attention on the group bP4k.

2.3. A signature invariant

Suppose that M is a parallelizable 4k-manifold with boundary ∂M = Σ a homotopy
(4k − 1)-sphere, k > 2. We know from the Poincaré conjecture that Σ is homeomorphic
to S4k−1 and therefore that we can build a closed topological manifold M∗ by attaching a
disk D4k to Σ via this homeomorphism. By definition, the signature of M is the signature
of the closed manifold M∗.

2.13. EXERCISE. Show that the signature could have been defined directly in terms
of Poincaré-Lefschetz duality for the pair (M,∂M) (so we did not really need to appeal to
the Poincaré conjecture here.)

We are going to prove two results.

sig-a 2.14. PROPOSITION. The signature of M is always a multiple of 8.

sig-b 2.15. PROPOSITION. If ∂M = Σ is a standard 4k − 1-sphere, the signature of M is
a multiple of tk, where

tk = 22k−1(22k−1 − 1)
3− (−1)k

2k
Bk| Im J4k−1|

where Bk denotes the k’th Bernoulli number and J is the stable J-homomorphism. More-
over, any multiple of tk can occur as the signature of such a M .

Here is a table of the numbers tk for some small values of k.

k 2 3 4 5
tk 224 7936 65024 1046528
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Adams calculated the size of Im J in terms of Bernoulli numbers, so that all terms in the
expression for tk are known.

Together, these results give a homomorphism (one-eighth of the signature) from bP4k

to a cyclic group of order tk/8. In the next section, we shall construct a specific example of
a manifold M with signature 8; this will show that our homomorphism is surjective. In the
section after that,we shall use surgery to show that if Σ bounds a parallelizable manifoldM
with signature a multiple of tk, then it is standard; this will show that our homomorphism
is injective. Thus, the final conclusion will be that bP4k is cyclic of order tk/8.

2.16. EXERCISE. Check that the signature does, as stated above, give a homomor-
phism.

PROOF OF PROPOSITION 2.14. We are going to show that the intersection form of
M is even in the sense of Remark 1.8. A result on integral quadratic forms due to van der
Blij [31] then implies that its signature is divisible by 8. We shall give a proof of van der
Blij’s lemma in Proposition 8.48.

To show that the intersection form is even it is enough, of course, to show that
for every x ∈ H2k(M ;Z2) = H2k(M,∂M ;Z2) the cup-square x ^ x vanishes in
H4k(M,∂M ;Z2) = Z2. Recall now that squaring is a linear operation over the field
of 2 elements (the Frobenius map!); the map x 7→ x ^ x can therefore be considered as a
linear functional on H2k(M ;Z2), and therefore there exists some y ∈ H2k(M ;Z2) such
that

x ^ x = x ^ y

for all x ∈ H2k(M ;Z2).
The class y ∈ H2k(M ;Z2) is called the (2k’th) Wu class of M . In Chapter 5 we shall

see that it is a characteristic class for the tangent bundle of M , expressible as a certain
combination of Stiefel-Whitney classes (Theorem 5.35). But the tangent bundle of M is
trivial by assumption, so y = 0 and thus x ^ x = 0 mod 2 for all x and the intersection
form is even. �

In the next proof we will use the following notion.

framing-def 2.17. DEFINITION. Let V be an n-dimensional vector bundle over a space X . A
framing of V is a set of n continuous sections that form a basis for the fiber at every point.
A stable framing is a framing for V ⊕ εm for some trivial bundle εm.

Thus TM admits a framing if and only if M is parallelizable. We will usually assume
that framings are orthonormal with respect to some metric.

PROOF OF PROPOSITION 2.15. Let M have boundary the standard sphere S4k−1.
Since M is parallelizable, we can find a stable framing of the tangent bundle TS4k−1

which is compatible with the framing of TM . Such a stable framing may not be the same
as the usual stable framing coming from the embedding S4k−1 ⊆ R4k. The difference
between the framings is measured by an element u of the homotopy group π4k−1(SO).

The homotopy groups of the stable orthogonal groups were calculated by Bott at the
end of the 1950s. The Bott periodicity theorem states that the groups πr−1(SO) are 8-
periodic in r and are given by the following table

bottgroupsbottgroups (2.18)
r modulo 8 0 1 2 3 4 5 6 7
πr−1(SO) Z Z2 Z2 0 Z 0 0 0

In particular, π4k−1(SO) is infinite cyclic. The generator b of this group (the Bott genera-
tor) defines a vector bundle over S4k and its topmost Pontrjagin class pk ∈ H4k(S4k) = Z
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can be calculated: the result is

pontspherepontsphere (2.19) pk(b) = (2k − 1)!(3− (−1)k)/2.

Return now to our parallelizableM with ∂M = S4k−1. Let u = mb ∈ π4k−1(SO) =
Zb be the element defined above. The manifold M∗ obtained by attaching a disk to ∂M
is now smooth. The (stable) tangent bundle of M∗ is obtained by clutching together two
trivial bundles, one over M and one over D4k, by means of the element u. Therefore, we
have the equation T (M∗) = f∗(mb) of stable tangent bundles, where f : M∗ → S4k is
the degree one map defined by crushing M to a point and b is the Bott generator.

The number m is not arbitrary. Consider the following geometrical construction:
regard S4k−1 as an equatorial sphere in some SN , for N large. Since the tangent bundle to
SN has a canonical (stable) framing, the stable framing u of TS4k−1 gives rise to a stable
framing of the normal bundle of S4k−1 in SN , and therefore to a product structure on a
tubular neighborhood U of S4k−1 in SN . Using this product structure we can identify the
one-point compactification U+ as

U+ = (S4k−1 × RN−4k+1)+ = ΣN−4k+1(S4k−1 t •).
Crushing the exterior of U to a point, and then crushing S4k−1 to another point, gives a
composite map

pteqnpteqn (2.20) SN → U+ = ΣN−4k+1(S4k−1 t •)→ ΣN−4k+1(S0) = SN−4k+1

which defines an element of the stable homotopy group πs4k−1(S0). In fact, it is not hard
to identify this element; it is simply the image of u under the stable J-homomorphism
π4k−1(SO) → πs4k−1(S0). The point about this way of realizing it is that if N is large
enough we may assume that not only is S4k−1 embedded (with framed normal bundle) in
SN but that M is similarly embedded in DN+1. (This is a consequence of the embedding
theorems that we will discuss in Chapter 4.) Applying the construction toM then shows us
that J(u) = 0. In other words, u is in the kernel of the stable J-homomorphism. Since the
domain of this J-homomorphism is infinite cyclic generated by b, it follows that u = mb
where m is a multiple of the order | Im(J)|. Moreover, a more detailed analysis of this
Pontrjagin-Thom construction, which we shall carry out in Chapter 7, will show1 that any
element of Ker J can be realized by a framed manifold M in this way. Thus, any multiple
of tk can arise as a signature.

The final step in the argument is to apply the Hirzebruch signature theorem to the
smooth manifold M∗. One needs to know in detail what are the coefficients of the
L-classes appearing in that theorem; this will be investigated in Chapter 7. The result,
Proposition 7.40, is

Sign(M) =
22k(22k−1 − 1)Bk

(2k)!
pk(u)

(note that the lower Pontrjagin classes of u are all zero.) Combining this with Equation 2.19
and the fact that m is a multiple of | Im(J)|, we get the desired result. �

2.21. REMARK. For the original proof of Bott periodicity, using Morse theory, see [22]
as well as the wonderful overview in [6]. The connections between K-theory and elliptic
operator theory gave rise to a variety of new proofs of periodicity using various kinds of
analysis, see [3] for the most elegant formulation and [18] for a full-scale account of the
connections between periodicity, spin geometry, Clifford algebras, K-theory, and index
theorems for the Dirac operator.

1This is a transversality argument like that in Theorem 2.57.
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2.22. EXERCISE. Verify equation 2.19. To do: Hints for thisTo do

rohlin 2.23. REMARK. The theme of this section is that if Σ is standard, M∗ is a closed 4k-
dimensional smooth manifold, and in that case there are stricter constraints on its signature
than if it were merely a topological manifold. This idea is still very interesting for k = 1,
although the dimension is now too low for surgery to function smoothly. If M4 is a
closed 4-dimensional smooth manifold whose first two Stiefel-Whitney classes vanish2

then the Wu class vanishes also and thus the signature is a multiple of 8, by the argument
of Proposition 2.14. But Rochlin drew the sharper conclusion that in this case the signature
is actually a multiple of 16. One can see this as an application of the Atiyah-Singer index
theorem [4]; the condition w1 = w2 = 0 implies that M admits a spin structure; an
application of the index theorem shows that for a spin 4-manifold the signature is 8 times
the index of the Dirac operator associated to the spin structure; the Dirac index is even
because of the quaternionic structure on spinor bundles in dimensions congruent to 4 mod
8. All this is discussed in detail in [18]. It was for long an open question whether the
signature of a topological 4-manifold with w1 = w2 = 0 must be a multiple of 16. This
question was answered negatively by an example of Freedman, see [11] and the book [12].
As this example suggests, four-dimensional topology is extremely subtle. We won’t discuss
it in any further detail in this book.

2.4. The Milnor manifold

In this section we shall explain Milnor’s process of plumbing, which allows one
to construct parallelizable manifolds with homotopy sphere boundary and with suitably
prescribed intersection form.

Suppose given a finite graph Γ (for us, it will usually be a tree) each of whose vertices
is labelled by an integer. We can regard this as a prescription for defining a symmetric
bilinear form on Zp, p being the number of vertices, as follows: the (i, j) entry in the
matrix defining our form is the label on the i’th vertex if i = j, and is i 6= j the entry is the
number (0 or 1) of edges joining the i’th to the j’th vertex. Thus for instance the graph

2 2 2 2 2 2 2

2

corresponds to the ‘E8 matrix’

e8matrixe8matrix (2.24)



2 1 0 0 0 0 0 0
1 2 1 0 0 0 0 0
0 1 2 1 0 0 0 0
0 0 1 2 1 0 0 0
0 0 0 1 2 1 1 0
0 0 0 0 1 2 0 0
0 0 0 0 1 0 2 1
0 0 0 0 0 0 1 2


.

The importance of this matrix is that the associated symmetric bilinear form is even,
positive definite and unimodular (determinant is +1).

2.25. EXERCISE. Prove these facts using elementary row and column operations.
(Browder [9] devotes several pages of his surgery book to this calculation.)

2This hypothesis substitutes for the parallelizability of M .
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The building blocks for plumbing are disk bundles over spheres. The disk bundle
associated to a vector bundle over a compact base is the bundle of vectors of length 6 1
in some metric. If the base is a manifold, then the disk bundle may be considered to be a
manifold with boundary.

Now let V be a m-dimensional oriented vector bundle over Sm. It is classified up
to isomorphism by its clutching function, which is an element of πm−1(SO(m)). The
fibration

SO(m− 1)→ SO(m)→ Sm−1

gives a homomorphism πm−1(SO(m))→ πm−1(Sm−1) = Z.

euler-num-pre 2.26. DEFINITION. The integer invariant associated to V by this construction is the
Euler number e(V ) of V .

By construction, e(V ) vanishes if and only if V has a nowhere vanishing section. In
fact, the Euler number e(V ) is precisely the number of zeroes (counted according to sign)
of a ‘generic’ section of V . See Proposition 3.20. This leads to an important relation
between the Euler number and self-intersections.

euler-lem1 2.27. LEMMA. Let M be the disk bundle associated to an m-dimensional oriented
vector bundle over Sm. Let x ∈ Hm(M ;Z) be the homology class associated to the
zero-section Sm ⊆ M . Then the self-intersection number x · x is equal to the Euler
number of the bundle.

PROOF. To define the self-intersection number of a submanifold N of M we take a
small perturbation N ′ of N , in the same isotopy class, and count the points of intersection
of N ′ and N . Here we may take N ′ to be a generic section of the bundle, and our count of
intersection points is precisely the count of the zeroes of this section. �

The Euler number plays a double rôle in surgery theory: as well as its connection
with self-intersections it is also relevant to the problem of destabilizing a stable framing
of a vector bundle over a sphere. Suppose that V is a stably framed vector bundle (that
is, V ⊕ εk is framed for some k). A framing of V is compatible with the given stable
framing if the two framings that can be constructed on V ⊕ εk are homotopic; if V admits
a compatible framing we shall say that the given stable framing of V is destabilized.

obstruct 2.28. PROPOSITION. Suppose that V is an n-dimensional vector bundle over a k-
dimensional CM -complex X , k < n. and that V ⊕ ε1 admits a framing. Then any stable
framing of V admits a destabilization.

PROOF. Inductively we may assume that V ⊕ ε1 is framed. We try to construct the
desired framing of V by induction over the cells. The inductive step is then this: given an
i-cell (Di, ∂Di), and a framing of V ⊕ ε1 over Di which arises on ∂Di from a framing
of V , deform rel boundary to obtain a framing of V on Di. If we trivialize V over Di the
problem becomes one of filling in the dotted arrow in the diagram

∂Di

��

// SO(n)

��
Di

::

// SO(n+ 1)

The possibility of doing this is controlled by the relative homotopy group πi(SO(n +
1), SO(n)); however, the homotopy sequence of the fibration SO(n)→ SO(n+1)→ Sn
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shows that this group is Z if i = n and 0 if i < n. Since i 6 k < n there is no
obstruction. �

In Chapter 3 we shall prove the following result for even-dimensional spheres.

destab-even 2.29. PROPOSITION. Let V be an m-dimensional oriented vector bundle over Sm, m
even. Then

(a) If V admits a stable framing then its Euler number is even.
(b) Stably framed bundles exist realizing all even Euler numbers.
(c) Two stably framed bundles are isomorphic (respecting the stable framing) if and

only if their Euler numbers are the same. In particular, a stable framing for V
can be destabilized if and only if the Euler number of V is zero. �

The tangent bundle TSm, which is stably trivial and has Euler number 2, is an
important example.

2.30. EXERCISE. Give an example of an oriented 4-dimensional vector bundle over
S4 which has Euler number 0 but is not framed (even stably).

Suppose now that we are given two m-disk bundles M1 and M2 over m-spheres S1

and S2. Pick points p1 ∈ S1 and p2 ∈ S2. Then in eachMi there is a product neighborhood
of pi diffeomorphic to Dm ×Dm.

2.31. DEFINITION. The plumbing M = M1 � M2 of M1 to M2 is obtained by
identifying the product neighborhoods of the pi in Mi, in such a way that ‘fiber disks’
in M1 are identified with ‘base disks’ in M2 and vice versa.

See Figure 2 for a graphical representation of plumbing. The plumbing M1 �M2 is
a manifold with ‘corners’, but there is a natural way of blowing up the corner points so
as to regard it as, in fact, a manifold with boundary. (Similar issues arise in defining the
connected sum, and many other important operations of surgery theory.)

bend-remark 2.32. REMARK. A manifold with corners is a space locally modeled on an open subset of (R+)n; the
corner set is the set of points where two or more coordinates are zero in the local model. To be more precise,
M has ‘boundaries’ ∂SM , possibly empty, for each subset S of {1, . . . , n}, where ∂SM is modeled locally
by {(x1, . . . , xn) ∈ Rn : xi = 0 ⇐ i ∈ S}. The transition functions are of course required to be smooth.
Apart from their use in defining plumbing, connected sum, and so on, manifolds with corners will also have to be
considered when we deal with cobordisms of manifolds with boundary.

Corners are a nuisance of the smooth category: in the topological or piecewise-linear categories, (R+)n is
homeomorphic to Rn−1×R+, so that manifolds with corners are the same thing as manifolds with boundary. We
won’t have occasion to consider manifolds with worse than second-order corners, so that ∂SM = ∅ whenever
|S| > 3. The corner set of such a manifold is then itself a closed manifold, and it has a tubular neighborhood
which is fibered (trivially) by quarter-spaces. We may turn such a manifold into an ordinary manifold with
boundary by excising the tubular neighborhood of the corners, doubling all the angles (thus turning the quarter-
space into a half-space), and re-attaching the resulting bundle of half-spaces. This process is called unbending
the corners. Conversely, suppose that we are given an ordinary manifold M with boundary, and a codimension
zero submanifold X (with boundary) of the closed manifold ∂M . Then we may bend the manifold M along M ,
obtaining a manifold Mc with corners such that ∂1Mc = X and ∂2Mc = ∂M \X◦.

It is a non-trivial matter to make this precise (in particular to prove the required tubular neighborhood
theorems) and to show that ‘unbending’ and ‘bending’ are well-defined operations (up to the appropriate notion
of diffeomorphism in each case). For a detailed treatment, see the lecture notes of Wall [32].

2.33. EXERCISE. In plumbing one must take account of the orientations. Show that
the plumbing operation is symmetric if m is even (M1 �M2 has the same orientation as
M2 �M1), but skew-symmetric if m is odd.
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FIGURE 2. Plumbing plumb-fig

2.34. DEFINITION. Let Γ be a labeled graph, as was considered above, all of whose
vertex labels are even, and let k > 2. The Milnor manifold M4k

Γ is obtained as follows: to
each vertex of Γ associate the unique stably framed disk bundle with the prescribed Euler
number (Proposition 2.29) and plumb them together as prescribed by the edges of Γ (two
disk bundles are plumbed if and only if the corresponding vertices are joined by an edge.)

plumbing-theorem 2.35. THEOREM (Plumbing Theorem). Suppose that the graph Γ is a tree. Then the
plumbed manifold M built from Γ and k > 2 has the following properties:

(i) Both M and its boundary ∂M are simply connected;
(ii) The middle-dimensional cohomology H2k(M,∂M) = Zp, where p is the num-

ber of vertices of Γ, and the symmetric form given by the cup-product is the one
associated to Γ;

(iii) M is parallelizable;
(iv) If Γ defines a unimodular form, then ∂M is a homotopy sphere.

PROOF. (i) Use the van Kampen theorem.
(ii) By Poincaré duality, the cohomology groupH2k(M,∂M) is isomorphic toH2k(M).

Now each disk bundle over S2k deformation retracts onto S2k, so it is easy to see that M
has the homotopy type of a wedge

∨p
S2k, and thus its 2k-dimensional homology is Zp

generated by the base spheres of the plumbed disk bundles. Each homology generator
has self-intersection given by the associated Euler number, by lemma 2.27; and, by the
construction, distinct homology generators have intersection +1 if the corresponding disk
bundles have been plumbed together, and 0 otherwise.

(iii) All of the disk bundles used in the plumbing are themselves stably trivial. Since
the tangent bundle to a sphere is stably trivial, one easily deduces that the tangent bundle
to each disk bundle, and therefore the tangent bundle to M itself, are stably trivial. But M
has the homotopy type of a 2k-dimensional CM-complex and therefore stable triviality of
the tangent bundle implies triviality (by Proposition 2.28).

(iv) M is (2k − 1)-connected, because it is homotopy equivalent to a wedge of 2k-
spheres, and similarly it is not hard to see that ∂M is (2k − 2)-connected. Using Poincaré
duality one sees that the only non-trivial part of the long exact homology sequence of the
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pair (M,∂M) is

0 // H2k(∂M) // H2k(M) // H2k(M,∂M) // H2k−1(∂M) // 0

Hom(H2k(M),Z)

The vertical isomorphism uses H2k(M,∂M) ∼= H2k(M) (Poincaré duality) together
with H2k(M) ∼= Hom(H2k(M),Z) (the universal coefficient theorem using the fact that
H2k(M) is free abelian). The middle arrow, considered as a bilinear form on H2k(M), is
just the intersection form; so, if the intersection form is unimodular, this arrow is a bijection
and H2k(∂M) = H2k−1(∂M) = 0. Thus ∂M is a homology sphere. Since it is simply
connected, it is a homotopy sphere. �

2.36. REMARK. To do: plumbing in dim 4 and Poincaré homology sphereTo do

2.5. Surgery and the calculation of bP4k
surgery-section1

In this section we shall use surgery to prove the following result.

surgery-sphere 2.37. PROPOSITION. Let Σ be a homotopy sphere bounding a parallelizable manifold
M4k, k > 2. If M has signature zero, then Σ is standard.

The idea of the proof is to modify M (keeping the boundary fixed) by a sequence of
surgeries until it becomes contractible. If Σ bounds a contractible manifold, then it will
certainly be h-cobordant to a standard sphere.

surgery-def 2.38. DEFINITION. Let Mn be a smooth manifold and let i : Sm → M be a framed
embedding of a m-sphere in M (that is, an embedding together with a specific framing of
its framed normal bundle). The operation of surgery on i is defined as follows: identify a
closed tubular neighborhood U of i(Sm) with Sk ×Dn−m (this uses the given framing);
remove this tubular neighborhood and replace it with Dm+1 × Sn−m−1 (which has the
same boundary), thus obtaining a new smooth n-manifold M ′ called the effect of the
surgery.

Compare our discussion of connected sums, Remark 2.9. In fact, a connected sum is
just a surgery on an embedded 0-sphere.

If M is a manifold with boundary, we can still do surgery on framed embeddings of
spheres in the interior of M . The boundary makes no difference.

sutracep 2.39. PROPOSITION. Let M ′ be obtained from M by a surgery. There is a natural
cobordismW ′ fromM toM ′ (which we call the trace of the surgery). IfM has a boundary,
the trace of the surgery is a product along the boundary.

PROOF. The cobordism is constructed by attachingDm+1×Dn−m toW = M×[0, 1]
along Sm ×Dn−m ⊆M × {1}. See figure 3. �

The process of attaching Dm+1 × Dn−m to a framed sphere in the boundary (of
M × [0, 1] in this instance) is called handle attachment, and the product Dm+1 ×Dn−m

itself is a handle.
Some bending and unbending (compare Remark 2.32) is needed to accomplish handle attachment smoothly.

Suppose that W is a manifold with boundary, and that ∂W contains an embedded sphere Sq with trivial normal
bundle. Let X = Dp × Sq be a tubular neighborhood of Sq in ∂W ; it is a codimension-zero submanifold with
boundary. Bend along ∂X , to obtain a manifold Wc with corners, having ∂1Wc = Dp × Sq . Now consider
the product H = Dp × Dq+1; it is in a natural way a manifold with corners, having ∂1H = Dp × Sq and
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FIGURE 3. Trace of a surgery sutrace-fig

∂2H = Sp−1×Dq+1. GlueH toWc along ∂1; the corners fit together smoothly and we obtain a new manifold
with boundary W ′ = W ∪X H . The trace of the surgery in Proposition 2.39 above is obtained in this way from
W = M × [0, 1].

2.40. REMARK. It follows that the signature of M ′ is equal to the signature of M .
(This will also follow from our calculations of the effect of surgery on homology.) To do:
Make exercise To do

ds-remark 2.41. REMARK. It is important to observe that the surgery process is reversible. IfM ′

is obtained from M by surgery on a framed embedding of Sm, then M ′ is provided (by
construction) with a framed embedding of Sn−m−1. Carrying out the dual surgery on this
embedding recovers M once more.

Suppose now that M is parallelizable, and choose a framing of its tangent bundle. An
embedding i : Sm →M is compatibly framed if its normal bundle is framed and the direct
sum of this framing of the normal bundle and the canonical stable framing of T (Sm) is
compatible with the chosen framing on TM|i(Sm).

2.42. PROPOSITION. Suppose that M is parallelizable. If we do surgery on a com-
patibly framed embedding i : Sm → M , then the effect of the surgery, M ′, is also
parallelizable. Furthermore, the trace of the surgery is parallelizable (compatibly with
M and M ′).

PROOF. �

In the proof of Proposition 2.37 one carries out a sequence of surgeries on stably
framed embeddings Sm → M4k, hoping that the final effect of all these surgeries will be
contractible. The process falls naturally into two stages:

(a) Surgery below the middle dimension: we carry out successive surgeries on
compatibly framed embeddings of Sm for m = 0, 1, . . . , 2k − 1. The overall
effect of these surgeries is to produce a (2k − 1)-connected M ′, parallelizable
and with Σ as boundary. This process can always be carried out whatever the
signature of M .

(b) Surgery in the middle dimension: we carry out surgeries on compatibly framed
2k-spheres whose effect is to produce a 2k-connected parallelizable manifold
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M ′′ with boundary Σ. A Poincaré duality argument shows that M ′′ is con-
tractible.

2.43. EXERCISE. Show that, as asserted above, a 2k-connected M4k with homotopy
sphere boundary is contractible. (Modify the idea of Exercise 1.16 to take into account the
presence of the boundary.)cont-ex

Surgery below the middle dimension can always be carried out; this is proved in
Chapter 13. To simplify our discussion we shall assume this result for now, which is to
say that we shall assume that the M appearing in Proposition 2.37 is already (2k − 1)-
connected. We ask the reader to take on trust for now that this is the ‘easy part’ of surgery
theory, in which no obstructions occur, and that the main point will still be clear when we
think about the final stage: passing from (2k − 1)-connectivity to 2k-connectivity.

For the rest of this section let us therefore assume that M4k is (2k − 1)-connected,
parallelizable, and has homotopy sphere boundary Σ and signature 0.

2.44. LEMMA. The middle-dimensional homology group H2k(M) = H2k(M,∂M)
is free abelian.

PROOF. We have

H2k(M) ∼= H2k(M) ∼= Hom(H2k(M),Z),

the first isomorphism by Poincaré duality and the second by the Universal Coefficient
Theorem. But the group on the right is free. �

The intersection form B of M is therefore a symmetric bilinear form on a free Z-
module N . Moreover, the intersection form is even (see the proof of Proposition 2.14.)

indef-decomp 2.45. PROPOSITION. There is a basis for N such that the matrix of B with respect to
this basis is a direct sum of copies of the 2× 2 matrix(

0 1
1 0

)
.

The assumption that the signature is zero is crucial here, of course! The 2× 2 matrix
shown above is said to define a hyperbolic form.

PROOF. We need a deep fact from number theory. Since the intersection form has
signature 0, it must represent zero over the reals: there must be a nonzero real vector v
such that B(v, v) = 0. We use

zrepthm 2.46. THEOREM. If a unimodular integral quadratic form represents zero over the
reals, then it represents zero over the integers. �

What this tells us is that there exists an x ∈ N (an integer vector) such that B(x, x) =
0. Clearly there is no loss of generality in assuming that x is indivisible (unable to be
written as a nontrivial integer multiple of some other vector), and it is easy to see that if
x is indivisible then Zx is a direct summand in N . Since B is unimodular there is now
y′ ∈ M such that B(x, y′) = 1. Consider B(y′, y′) = 2p (since B is even); replacing
y′ by y = y′ − px gives two elements x, y ∈ M such that B(x, x) = B(y, y) = 0 and
B(x, y) = 1. Now it is easy to see thatN = N1⊕N2, whereN1 is the submodule spanned
by x and y and N2 is its orthogonal complement with respect to the formB; the result then
follows by induction. �
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2.47. REMARK. Here are a few indications about the proof of Theorem 2.46. If the rank of N is 6 4

one can work ‘by hand’ to classify all unimodular integral quadratic forms (the condition on the rank implies
that there is a vector x ∈ N with |B(x, x)| < 2). On the other hand, for rank > 5 one can appeal to a
result of algebraic number theory, the Hasse-Minkowski theorem, which states that a quadratic form with rational
coefficients represents zero over Q if and only if it represents zero over R and over each p-adic completion Qp.
In rank > 5 the p-adic condition is satisfied automatically, so B represents zero over the rationals and thus
by clearing denominators it represents zero over the integers. Notice that we did not use unimodularity in this
argument; on the other hand unimodularity is essential for small ranks since, for example, the form x2 − 2y2

certainly does not represent zero over Z.
For more about these matters, see the book of Milnor and Husemoller [24]. One can also find in this book

a proof of Theorem 2.46 which avoids algebraic number theory — see Corollary 2.6 in Chapter IV of [24].

So far we have shown that, relative to a suitable basis, the middle-dimensional homol-
ogy of M is a direct sum of 2-dimensional pieces on each of which the intersection form
is hyperbolic. We now need to understand geometrically how this can have come about.

An example of a manifold with hyperbolic intersection form is the product S2k ×S2k

(see Figure 4). Thus, if M is any manifold, the intersection form of the connected sum
M#(S2k×S2k) has a hyperbolic direct summand. We aim to show that this is the only way
that a hyperbolic direct summand can arise in the intersection form of M (parallelizable,
(2k − 1)-connected, with homotopy sphere boundary).

trivsurg-ex 2.48. EXERCISE. Show that connected sum with S2k×S2k is just the effect of surgery
on a trivial S2k−1 in M (that is, an S2k−1 that bounds an embedded disk D2k, and is
framed in a way that extends to a framing of that disk).

2.49. EXERCISE. In the situation of the preceding exercise, suppose that we carry out
surgery on an S2k−1 that bounds an embedded disk, but that we use a possibly nontrivial
framing on the S2k−1. Show that the effect of this surgery is a connected sum with the
total space of a possibly nontrivial S2k-bundle over S2k.

The reverse process (removing the S2k × S2k) can therefore be accomplished by a
dual surgery (Remark 2.41). That is the idea of the following proof.

kill-hyp 2.50. PROPOSITION. Let M4k be parallelizable, (2k − 1)-connected, and have ho-
motopy sphere boundary. Suppose that the intersection form of M has a hyperbolic direct
summand. Then one can find a compatibly framed embedding S2k → M such that, if M ′

denotes the effect of surgery on this embedding, then
(a) the intersection form of M ′ is the complement of the hyperbolic summand in the

intersection form of M , and
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(b) M is diffeomorphic to M ′#(S2k × S2k).

PROOF. Let x, y ∈ H2k(M) span the hyperbolic direct summand that we are consid-
ering. Since M is (2k − 1)-connected, the Hurewicz theorem gives a homotopy class of
maps S2k →M which represents the homology class x.

An important and subtle theorem of Whitney states that every homotopy class of maps
from an m-sphere to a simply-connected 2m-manifold, m > 3, contains an embedding3.
Apply this theorem to x to get an embedding i : S2k →M representing it. Since the Euler
number of the normal bundle is equal to the self-intersection x · x and is therefore zero, is
zero, this embedding can be compatibly framed (Proposition 2.29). Carry out surgery on
this framed embedding, with trace W and effect M ′.

To compute the homology ofM ′, consider the following braid diagram which displays
various homology exact sequences associated to the triple (T ;M,M ′).

H2k+1(W,M)

""

x

""
H2k(M)

""

x∗

""
H2k(W,M ′)

H2k+1(W,M ∪M ′)

<<

""

Hk(W )

<<

""
H2k+1(W,M ′)

<<

<<
H2k(M ′)

<<

<<
H2k(W,M)

We claim that
(i) All of the groups Hj(W,M) are zero except for H2k+1(W,M) which is Z;

(ii) All of the groups Hj(W,M
′) are zero except for H2k(W,M ′) which is Z;

(iii) The map displayed as x above sends the generator of H2k+1(W,M) to the
homology class x;

(iv) The map displayed as x∗ above sends a homology class to its intersection product
with x.

All of these are clear except perhaps (iv). Let z be another element ofH2k(M), represented
as above by an embedding S2k → M . By construction, the integer x∗(z) is the degree of
the composite map

S2k →M → U+ = Σ2k(S2k t •)→ S2k

obtained by performing the Pontrjagin-Thom construction (see Equation 2.20) on a tubular
neighborhood U of the original framed embedding i : S2k → M . The result (d) now
follows from the familiar fact that the degree of a map between spheres is the number of
preimages of a generic point.

Now it is a general fact about exact braid diagrams of the above sort that the top row
and the bottom row are chain complexes with (naturally) isomorphic homology. Thus in
our situation we get a natural isomorphism

H2k(M ′) ∼= Ker(x∗)/ Im(x) = 〈x〉⊥/〈x〉

3We shall prove this in Chapter 10. The condition m > 3 is one of the places where the requirement of
high-dimensionality enters into surgery theory.
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and this can be naturally identified with the orthogonal complement to the hyperbolic
subspace 〈x, y〉 in H2k(M). This proves part (a) of the proposition.

To prove part (b) we need to know that Whitney’s ideas can also be used to study
the intersections of embedded spheres4 The homology classes x and y can be represented
by embedded spheres, and their ‘algebraic’ intersection number is 1. Since the algebraic
intersection number is the signed count of the geometric intersection points, there might in
principle be any odd number of geometric intersections between the representative spheres.
The specific fact that we need from Whitney’s theory is that we can choose embeddings
ix and iy representing x and y which intersect (transversely) in exactly one point. (This
follows from Theorem 6.31.)

Let U be a tubular neighborhood of ix(S2k). Then iy(S2k) meets ∂U in a ‘dual
sphere’ S2k−1, which bounds two disks, one contained in U and one contained in its
complement (see Figure 5). Now the parts of M and M ′ outside the surgery region are
identical. Thus the dual sphere bounds a disk in M ′. However, M is obtained from M ′

by surgery on this dual sphere. Since this sphere bounds a disk, and has a framing which
extends to the disk, M = M ′#(S2k × S2k), as we observed above (Exercise 2.48). This
completes the proof. �

2.51. EXERCISE. Prove the algebraic fact about braid diagrams used above, that the
top and bottom rows have isomorphic homology. Also, prove that in the situation above
the isomorphism respects the intersection form.

PROOF OF PROPOSITION 2.37. Given M as in the statement of the proposition, we
may assume by surgery below the middle dimension that it is (2k−1)-connected. Accord-
ing to Proposition 2.45, the intersection form on the free abelian group H2k(M) is a direct
sum of hyperbolic pieces. According to Proposition 2.50, we can carry out a succession
of compatibly framed surgeries which remove these hyperbolic pieces. The final effect of
these surgeries is aM ′ which is framed, has the same boundary asM , and is 2k-connected;
therefore it is contractible (Exercise 2.43). Removing a small disk from M ′ now gives an
h-cobordism between Σ and a standard sphere. �

We can now complete the calculation of the group bP4k.

mainbP-thm 2.52. THEOREM. The group bP4k of exotic (4k−1)-spheres that bound parallelizable
manifolds is cyclic and of order tk/8, where tk is defined in Proposition 2.15.

4This will be a central theme in Chapters 6 and 9.
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PROOF. Propositions 2.14 and 2.15 tell us that one-eighth of the signature gives a
homomorphism ϕ from bP4k to the cyclic group of order tk/8.

By applying the Plumbing Theorem 2.35 to theE8 matrix of Equation 2.24, we see that
bP4k contains a homotopy sphere of signature 8. Thus the homomorphism ϕ is surjective.

Suppose that Σ is in the kernel of ϕ, so that it bounds a parallelizable manifold
with signature a multiple of tk. By the existence part of Proposition 2.15, there exists
a parallelizable manifold with the same signature bounding a standard sphere. By taking
the difference of these in the group bP4k, we see that there is no loss of generality in
assuming that Σ bounds a parallelizable manifold of signature 0. But now Σ is standard by
surgery (Proposition 2.37). Thus ϕ is injective, and hence an isomorphism. �

2.6. Overview of surgery theory

The classification of exotic spheres provides a model of how surgery can be applied
to compute other structure sets S(X). In general it is necessary to assume only that X
is a compact Poincaré duality space, that is, it has a ‘fundamental class’ which induces
appropriate isomorphisms between cohomology and homology. Surgery theory then gives
a uniform treatment both of the existence question — does X have a manifold structure at
all? — and of the uniqueness question — how many such structures are there? The classi-
fication of exotic spheres focuses on the uniqueness question, but it was soon observed that
the same methods could be applied to the existence question as well (see Browder [10];
this manuscript, written in 1962, was finally published more than thirty years later!).

The classification of exotic spheres is a two-stage process, as displayed in the se-
quence 2.12: one stage having to do with surgery, and the other with bundle theory. The
same is true for the calculation of more general structure sets. We begin with the bundle-
theoretic side, which is based on Browder’s notion of a normal map. This theory will be
developed in detail in Chapter 11.

If X is to have the structure of a smooth manifold then there must be a vector bundle
that will serve as its tangent bundle. In fact, it is often geometrically more convenient
to think about the stable normal bundle. If X were a manifold and embedded in Rn+k,
k large, then it would have a tubular neighborhood diffeomorphic to the total space of a
vector bundle V , the normal bundle of the embedding. Once k is big enough, making it
bigger just changes V by the addition of a trivial bundle, so it makes sense to speak of
a well-defined stable normal bundle. By construction, the tangent bundle plus the stable
normal bundle is (stably) trivial.

The stable normal bundle cannot be prescribed arbitrarily. Its twofold interpretation
(as a vector bundle over X and as a neighborhood of X in Euclidean space) gives a
compatibility condition between Poincaré duality and the Thom isomorphism of the bundle
V . This condition is necessary (but not sufficient) for V to be the stable normal bundle of
a manifold structure on X .

2.53. CLAIM. In order that the Poincaré duality space X admit a manifold structure,
it is necessary that there exist a k-vector bundle V over X , having the following property:
if Φ: Hr+k(ThV,∞) → Hr(X) denotes the Thom isomorphism, then Φ−1([X]) is a
spherical class.

Here ThV denotes the Thom space of V , that is the one-point compactification of
the total space of V . By definition, a spherical homology class is one in the image of the
Hurewicz homomorphism — that is, one arising from a map Sr+k → ThV . To see how
the condition arises, think of V as the normal bundle of an embedding of X in Sr+k.
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2.54. DEFINITION. A normal invariant for the Poincaré duality space X is a stable
isomorphism class of vector bundles V as described in the Claim above. The pair (X,V )
will be referred to as normal data.

2.55. REMARK. We shall see in Chapter 11 that this notion can be expressed in homotopy-theoretic terms.
In fact, any Poincaré duality space possesses a Spivak normal bundle, a spherical fibration canonically determined
by the Poincaré duality structure. There is a forgetful functor from (stable) vector bundles to (stable) spherical
fibrations, corresponding to a map of classifying spaces BO → BG; a normal invariant is just a reduction of
structure of the Spivak normal bundle to a vector bundle, or equivalently, a factorization of its classifying map
X → BG through the space BO.

2.56. DEFINITION. A normal map associated to given normal data (X,V ) is a pair
(f, b) where f is a degree-one map from an oriented smooth manifold M to X , and b is a
(stable) isomorphism from f∗(V ) to the (stable) normal bundle of M .

We say that f : M → X is of degree one if f∗[M ] = [X], where the square brackets denote the
fundamental homology classes; in particular the dimension ofM equals the ‘formal dimension’ ofX (the degree
in which its fundamental class appears).

Surgery theory regards a normal map as a ‘first approximation’ to a homotopy equiva-
lence from a manifold toX . The following theorem is therefore fundamental to the subject.

nmthm 2.57. THEOREM. Given normal data (X,V ), there exist normal maps f : M → V
associated to it.

SKETCH OF PROOF. How shall we obtain a manifold M from normal data? The
answer is to apply transversality theory. This theory — one of Thom’s beautiful ideas —
is about the ‘generic’ behavior of smooth maps. In its simplest form it concerns a smooth
map between manifolds, g : Mn+k → Nn. It is easy to see that any closed subset of M
can appear as such an inverse image. Nevertheless, ‘generically’ the inverse image g−1{p}
of a point p ∈ N is a smooth k-dimensional submanifold. Notice that in linear algebra,
‘generically’ a linear map from Rn+k to Rn is surjective with k-dimensional kernel. The
basic idea of transversality theory is that the generic behavior of smooth maps is modeled
by the generic behavior of linear maps (which of course appear as the tangent maps to the
smooth maps in question).

We will leave until later the question of what exactly is meant by ‘generic’. Let us
suppose that normal data (X,V ) are given, and apply transversality to the map g : Sn+k →
ThV which is given to us by the assumption that the Thom class of V is spherical. What
we mean by this is the following. Locally V is a product, so (away from the point at
infinity) g looks like (g1, g2) : U → Y × Rk, Y ⊆ X , U ⊆ Sn+k and we may assume
without loss of generality that g2 is smooth. Transversality theory tells us that the ‘generic’
behavior of g2 is as described above: the inverse image of a point (say the origin) is an
n-dimensional submanifold. But the inverse image of a point under g2 is just the inverse
image of the zero-section of the bundle V under f . We therefore expect, and Thom’s
transversality theorem verifies, that ‘generically’ the inverse image of the zero section of
ThV will be an n-dimensional submanifold of Sn+k, equipped with a map f : M → X
(just the restriction of g) which pulls back V to the normal bundle of M . �

It should be underlined that this is a very non-constructive way to obtain the manifold
M . The ‘generic’ perturbation of g cannot be precisely specified in advance.

We have seen that from normal data (X,V ) it is always possible to construct normal
maps M → V — in fact, one can show that the normal data determine an entire normal
bordism class of normal maps. Now, following Browder, we ask: Does this normal bordism
class contain at least one manifold structure, that is, a normal map which is actually a
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homotopy equivalence? This is where surgery proper enters the picture. Surgery gives
a means of constructing normal bordisms, and conversely any normal bordism can be
analyzed into a sequence of surgeries. The question is, therefore, whether starting with
a ‘generic’ normal map produced by transversality, one can improve it by a sequence of
surgeries until at last one obtains a homotopy equivalence. The key result is

2.58. THEOREM (Fundamental Surgery Theorem). LetX be a Poincaré duality space
with formal dimension n > 5 and fundamental group π. There is a surgery obstruction
group Ln(π), an abelian group depending only on n and π, and for each normal map
f : M → X there is a surgery obstruction σ(f) ∈ Ln(π), such that f is normal bordant
to a homotopy equivalence if and only if σ(f) = 0.

This will be proved in Chapter 15. Proposition 2.37 is the special case n = 4k, π
trivial. As one can see in that example, the fundamental surgery theorem also applies to
manifolds with boundary, provided that the boundary is ‘left alone’ during the surgery
process. What this turns out to mean is that ∂X → X should induce an isomorphism on
fundamental groups and that normal maps should already be homotopy equivalences on
the boundary.

We can express the fundamental theorem formally as an ‘exact sequence’ which
answers the existence question, relating the L-group, the structure set, and the normal
bordism set N (X) of normal bordism classes of degree one normal maps to X . The
sequence is

S(X) // N (X)
σ // Ln(π)

When X = Sn this corresponds to the right-hand half of the sequence 2.12: Θn/bPn+1 is
the kernel of σ : N (Sn)→ Ln(e).

To extend the sequence to the left and so answer the uniqueness question as well,
suppose that f : M → X and f ′ : M ′ → X are two manifold structures which have the
same normal invariant. Then there is a normal bordism M between M and M ′, equipped
with a normal map to X × [0, 1]. We want to know whether M can be made into an h-
cobordism, and that is the same question as asking whether the normal mapM → X×[0, 1]
can be modified, leaving the boundary fixed, to make it into a homotopy equivalence.
Once again we try to do this by means of surgery. The surgery obstruction apparently
lies in Ln+1(π), but now there is an ambiguity coming from the surgery obstructions of
normal bordisms from f to itself, so the correct place to measure is in the cokernel of
σn+1 : N (X × [0, 1]; ∂) → Ln+1(π). We see that there is a natural map which assigns
to a pair (f, f ′) of structures having the same normal invariant an element of Cokerσn+1,
which is zero if and only if the two structures are h-cobordant. This is the map bP4k →
Z/(tk/8) in our discussion of exotic spheres; the group L4k(Z) is isomorphic to Z, and
Proposition 2.15 says that the image of σ4k is generated by tk/8.

As in the discussion of exotic spheres, the final piece of the puzzle is a geometric
construction that says that any element of Ln+1(π) can be realized as the surgery ob-
struction of a normal bordism. This construction, a generalization of Milnor’s plumbing
(Theorem 2.35), will be discussed in Section 16.1. It gives us an action of Ln+1(π) on
the structure set S(X): given a structure f and x ∈ Ln+1(π), realize x as the surgery
obstruction of a normal bordism one of whose ends is f , and let x · f be the other end of
the normal bordism. In terms of this action we can extend our exact sequence to the left

N (X × [0, 1]; ∂)
σ // Ln+1(π) // S(X) // N (X)

σ // Ln(π)
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The dotted arrow denotes the group action above, and exactness at S(X) means that the
orbits of this action are precisely the inverse images of elements of N (X). This surgery
exact sequence is a succinct formulation, due to Sullivan, of all the main results in the
surgery classification of manifold structures.

pisketch 2.59. REMARK. To end this section, let’s look at what we are going to have to do to set
up the theory that has just been sketched. The first requirement is to define theL-groups. At
least for n = 4k, the discussion of Section 2.5 gives a good hint as to how this is to be done:
the L-groups will be stable isomorphism classes of quadratic forms, modulo hyperbolic
ones. Remember though that the geometrical part of Section 2.5 depended heavily on
Whitney’s theory of embeddings. In turn, this theory depends on a geometrical device, the
Whitney lemma (Lemma 4.26) which allows one to ‘cancel’ superfluous intersection points
of middle-dimensional submanifolds. The Whitney lemma requires that a certain circle in
M can be spanned by a 2-disk; this is automatic for a simply-connected manifold, but in
general there is an obstruction in the fundamental group. The upshot of this is that we have
to study intersection theory, Poincaré duality , embeddings and immersions, and so on,
not just in M but in the universal cover M̃ , equivariantly with respect to the fundamental
group, and that the L-groups will involve quadratic forms, not on abelian groups, but on
modules over the (noncommutative) group ring Z[π].





CHAPTER 3

Bundles and the Thom isomorphism

thom-chapter
3.1. Orientations and the Thom isomorphism

In this section we will work with de Rham cohomology for smooth manifolds M . On
such a manifold we have the familiar de Rham complex of differential forms

Ω0(M)
d // Ω1(M)

d // · · · d // Ωn(M)

which computes the cohomology H∗(M ;R). If M is not compact, there is also the
important subcomplex of compactly supported forms

Ω0
c(M)

d // Ω1
c(M)

d // · · · d // Ωnc (M);

its cohomology is the compactly supported cohomology H∗c (M ;R). We will need to work
with both of these cohomology theories.

compact-support 3.1. REMARK. Any definition of cohomology (singular, cellular, or even a general-
ized cohomology theory) has a ‘compactly supported’ variant defined for locally compact
spaces X: it is the direct limit lim

→
H∗(X,X \K) taken over the direct system of compact

subsets of K of X ordered by inclusion. It is functorial for proper maps (a map is proper
if the inverse image of any compact set is compact). The most familiar example of a
compactly supported generalized cohomology theory is Atiyah-Hirzebruch K-theory.

3.2. EXERCISE. Show that our definition of compactly supported de Rham cohomo-
logy is consistent with the general definition in terms of relative groups given in the remark
above. (Relative de Rham theory can be defined in terms of mapping cone complexes;
see [7, page 78].)

Any calculation of de Rham cohomology begins with the Poincaré lemma, which gives
the cohomology of Euclidean space. The result is:

poincare-lemma 3.3. LEMMA. Let M be diffeomorphic to Euclidean space Rn. Then

(a) Hk(M ;R) is isomorphic to R when k = 0, to 0 otherwise; the generator is the
cohomology class of the constant function 1;

(b) Hk
c (M ;R) is isomorphic to R when k = n, to 0 otherwise; the generator is the

cohomology class of a ‘bump n-form’ ω, compactly supported and with
∫
M
ω =

1.

Notice in (b) that the operation
∫

, and therefore the normalization of the generator,
depend on the choice of an orientation of M .

Having understood the de Rham cohomology of a single Euclidean space, the next
thing to understand is a smoothly varying collection of such spaces — that is, a vector
bundle.

43
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3.4. DEFINITION. Let V be an oriented `-dimensional vector bundle over a compact
manifold M . A Thom form for V is a closed `-form α on the total space of V (considered
as a non-compact manifold in its own right) such that

(a) α is compactly supported,
(b) α is closed, that is, dα = 0, and
(c) for each fiber F of V (oriented by the orientation of V ) we have

∫
F
α = 1.

The cohomology class (in H`
c(V ;R)) of a Thom form is called a Thom class for V .

3.5. EXERCISE. Show that Thom forms exist. (Use a partition of unity to glue together
local Thom forms.)

3.6. THEOREM. (Thom Isomorphism Theorem) Let V be an oriented `-dimensional
vector bundle over a compact manifold M . All Thom forms α for V define the same Thom
class in H`

c(V ;R). If π denotes the projection of the vector bundle V , then the map β 7→
π∗β ∧ α gives an isomorphism (the Thom isomorphism) Φ: H∗(X;R)→ H∗+`c (V ;R).

SKETCH PROOF. Leave to one side for now the question of the uniqueness of the
Thom classes; just choose a particular Thom form. Cap-product with it defines Thom
maps Φ not just for M itself but for any open subset U : we have

ΦU : Ω∗c(U)→ Ω∗+`c (π−1(U))

on the level of differential forms, and

ΦU : H∗c (U ;R)→ H∗+`c (π−1(U);R)

on the level of cohomology. If U is a small open ball in a coordinate chart (so that the
restriction of V to U is a trivial bundle) then both U and π−1(U) are diffeomorphic to
Euclidean spaces and ΦU is an isomorphism on cohomology by Lemma 3.3. We now
piece these isomorphisms together using a Mayer-Vietoris argument. Suppose that U1

and U2 are open subsets of M and that it is known that ΦU1 , ΦU2 , and ΦU1∩U2 are all
isomorphisms. There is a commutative diagram of complexes and chain maps with exact
columns

0

��

0

��
Ω∗c(U1 ∩ U2)

Φ //

��

Ω`+∗c (π−1(U1) ∩ π−1(U2))

��
Ω∗c(U1)⊕ Ω∗c(U2)

Φ //

��

Ω`+∗c (π−1(U1))⊕ Ω`+∗c (π−1(U2))

��
Ω∗c(U1 ∪ U2)

Φ //

��

Ω`+∗c (π−1(U1) ∪ π−1(U2))

��
0 0

which gives rise to a commutative diagram of Mayer-Vietoris sequences in compactly
supported cohomology. (See [7] for details of the construction of these Mayer-Vietoris
sequences.) By our supposition, two out of the three horizontal maps give rise to cohomo-
logy isomorphisms; so the five lemma tells us that the third one, ΦU1∪U2

, will do so also.
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The proof that the Thom map for the compact manifold M is an isomorphism is now
completed by an induction on the number of sets in a ‘good’ open covering1.

Finally, let us return to the question of the uniqueness of Thom classes. We may
assume that M is connected. Then, by the isomorphism result that we have just proved,
H`
c(V ;R) ∼= H0(M ;R) is one-dimensional. Thus, any two Thom classes are scalar

multiples of one another. The normalization condition (c) in the definition of a Thom
class ensures that the multiple is 1. �

3.7. REMARK. In particular note that Hq
c (V ;R) = 0 for q < `. The Mayer-Vietoris

type argument used in this proof will recur frequently. We refer to it as an assembly
construction; it ‘assembles’ the local Thom isomorphisms given by the Poincaré lemma
into a global isomorphism.assembly-remark-1

fiber-integration 3.8. REMARK. The inverse of the Thom isomorphism can be described in de Rham
theory as the operation of integration along the fiber. This process defines a ‘wrong way’
map on the complexes of differential forms, π∗ : Ω∗c(V ) → Ω∗−`(M); one uses the local
product structure to express a form as a product of terms coming from the root and from the
fiber, and then integrates out the top-dimensional fiber component using the orientation.
See [7, pages 61–63] for details. We will need to make use of the ‘Fubini principle for
integration along the fiber’ ∫

V

π∗θ ∧ ϕ =

∫
M

θ ∧ π∗ϕ,

where θ ∈ Ω∗(M), ϕ ∈ Ω∗c(V ). This is proved by using a partition of unity to work in
product neighborhoods.

Imagine now that the closed manifoldMm is embedded as a submanifold of the closed
manifold Wn, and that both W and M are oriented. Then the normal bundle V of M in
W is oriented also, and so it possesses a Thom class [α] ∈ Hn−m

c (V ;R). Now, by the
tubular neighborhood theorem (see Appendix ?), the total space of V may be identified
with an open subset of W , and so there is a map on cohomology H∗c (V ;R)→ H∗(W ;R)
— in terms of differential forms, this is the operation of ‘extension by zero’ of a compactly
supported form. Applying this map to [α] we see that each oriented submanifold M of W
gives rise to a cohomology class

[αM ] ∈ Hn−m(W ;R).

dual-class 3.9. DEFINITION. The cohomology class αM defined above is called the dual co-
homology class to M .

Thpd 3.10. PROPOSITION. With M and W as above, the dual cohomology class [αM ] has
the following property: for every closed form β ∈ Ωm(W ), we have∫

M

β =

∫
W

β ∧ αM = 〈[β] ^ [αM ], [W ]〉.

Thus, in terms of the Poincaré duality map D of Remark 1.3, D[αM ] is the homology class
[M ] ∈ Hm(W ;R).

PROOF. Denote by i : M → V the inclusion of the zero-section. Then∫
W

β ∧ αM =

∫
V

β ∧ αM =

∫
V

π∗i∗β ∧ αM ,

1That is, a covering by open sets such that every intersection of these sets is either empty or diffeomorphic
to Rn.
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the first equality by restriction and the second because i and π are mutually inverse
homotopy equivalences between M and V . By the Fubini principle for integration along
the fiber (Remark 3.8),∫

V

π∗i∗β ∧ αM =

∫
M

i∗β ∧ π∗(αM ) =

∫
M

β,

since π∗(αM ) = 1 by definition of the Thom form. �

Suppose now that M1 and M2 are two submanifolds of Wn, of dimensions m1 and
m2 respectively, m1 + m2 > n. One says that M1 and M2 intersect transversely if, near
any point of their intersection, there is a coordinate chart in which M1 is represented by
the subspace spanned by the first m1 basis vectors of Rn and M2 is represented by the
subspace spanned by the last m2 basis vectors.

This is a special case of the general notions of transversality that we will investigate in Chapter 4. There
we will see that given any two submanifolds it is possible to deform one of them slightly so as to make their
intersection transverse.

In particular, the intersection M1 ∩M2 is a submanifold of dimension m1 +m2 − n.
Moreover, the normal bundles are related by

νM1∩M2 = νM1 ⊕ νM2 .

Since the Thom class of a direct sum of vector bundles is easily seen to be the product of
the Thom classes of the summands, we have

intersect-dual 3.11. PROPOSITION. If M1 and M2 intersect transversely, then the dual cohomology
classes are related by

αM1∩M2 = αM1 ∧ αM2 .

intersect-examp 3.12. EXAMPLE. In particular suppose that M1 and M2 intersect transversely and
have complementary dimensions, m1 +m2 = n. The intersection M1 ∩M2 is then just a
finite set of points p, each of which acquires a sign ε(p) ∈ {±1} according to whether or
not the orientations ofM1 andM2 at that point combine to yield the orientation ofW . The
signed count

∑
p∈M1∩M2

ε(p) of these points is called the intersection number λ(M1,M2)
of the two submanifolds. Plainly, this is just the integral over W of the dual class to the
oriented 0-dimensional manifold M1 ∩M2. Thus, from Proposition 3.11 we obtain

intersect-equationintersect-equation (3.13) λ(M1,M2) =

∫
M

αM1
∧ αM2

Thus the intersection numbers of submanifolds are given by the cohomological intersection
form applied to their dual cohomology classes. To do: Think carefully about signs.To do

Notice the important symmetry property

intersect-symmetryintersect-symmetry (3.14) λ(M2,M1) = (−1)m1m2λ(M1,M2)

which may be derived either by considering the orientation of the intersection points, or from the graded
commutativity of the wedge product.

int2-rmk 3.15. REMARK. When M1 and M2 are not transverse, we may use the homological
formula as the definition of the intersection number; this will then be equal to the ‘geomet-
ric’ intersection number of M ′1 and M2, where M ′1 is a small deformation of M1 in the
same homology class, and is transverse to M2.
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Although we have worked in this section with de Rham cohomology, and therefore
with real coefficients, the Thom isomorphism actually holds good with coefficients in the
integers, and also for vector bundles over an arbitrary compact base (not just a manifold).
We shall prove this in a more general context in Section 3.4 below.

thom-space-def 3.16. REMARK. It is traditional, though not strictly necessary, to express the Thom
isomorphism for a vector bundle V over a compact base X in terms of the Thom space
of V . To define it, first notice that by giving V a Euclidean metric we can define the disk
bundle D(V ) and sphere bundle S(V ) of V ; these are the spaces of vectors of length 6 1
and length exactly 1, respectively. Up to homeomorphism they are independent of the
choice of Euclidean structure, and D(V ) \ S(V ) is naturally identified with V itself. The
Thom space Th(V ) is the identification space D(V )/S(V ); we denote the point in the
Thom space corresponding to S(V ) by∞. Then we have

H∗c (V ) ∼= H∗(D(V ), S(V )) ∼= H∗(Th(V ),∞) = H̃∗(Th(V )),

so the Thom isomorphism may be expressed in terms of the (reduced) cohomology of the
Thom space.

thomsphere-ex 3.17. EXERCISE. Let V be an oriented q-dimensional vector bundle over Sm, classi-
fied by an element α ∈ πm(BSO(q)) = πm−1(SO(q)). Show that the Thom space of V
has the structure of a CW-complex with a single cell in dimensions 0, q, and m+ q; in fact

Th(V ) ∼= Sq ∪J(α) D
m+q,

where J : πm−1(SO(q))→ πm+q−1(Sq) is the usual J-homomorphism.. See [21].

3.2. The Euler class
euler-section

Let V be an oriented `-dimensional vector bundle over a compact base X . The zero-
section of V defines a proper map i : X → V , which induces i∗ : H∗c (V ;R)→ H∗(X;R)
on (compactly supported) cohomology.

euler-def 3.18. DEFINITION. Let V be as above. The image i∗(αV ) of the Thom class of V
under the map induced by the zero-section is called the Euler class of V , e(V ) ∈ H`(X).

Because the Thom isomorphism is natural, the Euler class is a characteristic class for
oriented `-dimensional bundles, i.e. an element of H`(BSO(`)).

3.19. PROPOSITION. If V admits a nowhere vanishing section, then e(V ) = 0.

PROOF. Let S(V ) denote the (` − 1)-sphere bundle associated to V , and D(V ) the
corresponding `-disk bundle, so that V ∼= D(V ) \ S(V ). If V admits a nowhere vanishing
section, then the zero-section of D(V ) is homotopic to a map X → S(V ). By the
exact sequence of the pair (D(V ), S(V )), the zero-section therefore induces the 0 map
on H∗(D(V ), S(V )) = H∗c (V ). �

Thus the Euler class is an unstable characteristic class — it vanishes when we add a
trivial summand. (Contrast this with the behavior of the Pontrjagin and Stiefel-Whitney
classes.)

We shall be particularly interested in the case where the base is an oriented manifold
and the fiber dimension of V is equal to the dimension of the manifold. In this situation
we can make the preceding proposition more precise.
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3.20. PROPOSITION. Let V be an orientedm-dimensional vector bundle over a closed
m-dimensional manifold M . Then the Euler number 〈e(V ), [X]〉 is equal to the signed
count of the number of zeroes of a generic section of V . It is also equal to the self-
intersection number λ([X], [X]) of the zero-section of V , considered as a submanifold
of the oriented 2m-manifold D(V ) with boundary S(V ).euler-selfint

Locally, a section of V is the graph of a function f : Rm → Rm, and the genericity
condition is that Df(p) should be invertible for all points p such that f(p) = 0. The sign
that we associate to the point p is then the sign of the determinant Df(p).

PROOF. By definition of the Euler class and the Fubini principle of Remark 3.8, we
have

〈e(V ), [M ]〉 = 〈αV ^ αV , [V ]〉.
This is the self-intersection of the zero section M of V , by Equation 3.13. But the
geometric definition of this self-intersection requires that we perturb the zero section within
its isotopy class, to be transverse toM , and then count the intersections of this perturbation
M ′ with M . We can take M ′ to be the graph of a generic section of V , and then the
intersections of M ′ with M are precisely the zeroes of that section. �

The proposition still holds for manifolds M with boundary, so long as we consider
sections of V that do not vanish on the boundary.

An important example of the above situation occurs when V is the tangent bundle to
the oriented manifold M . Here we have

3.21. PROPOSITION. The Euler number 〈e(TM), [M ]〉 of the tangent bundle to a
closed oriented manifold M is equal to the Euler characteristic

χ(M) =
∑

(−1)i dimHi(M ;R).

OUTLINE PROOF. Consider the diagonal embedding of M in M ×M . Show that the
normal bundle to this embedding is just the tangent bundle toM . Work out the cohomology
class dual to the diagonal in terms of the decomposition H∗(M ×M ;R) = H∗(M ;R)⊗
H∗(M ;R) given by the Künneth theorem. Restrict to the diagonal and evaluate on [M ] to
get the result. For details, see [26]. �

3.3. Framings and stable framings
sfram-sec

Recall (Definition 2.17) that a framing for an `-dimensional vector bundle V is an
isomorphism from V to the standard trivial bundle ε`. A stable framing is a framing of
V ⊕ εm for some m. We say V is stably trivial if it admits a stable framing.

sieven 3.22. PROPOSITION. Let V be an `-dimensional oriented vector bundle over a closed
oriented `-manifold M . If V admits a stable framing, then the Euler number 〈e(V ), [M ]〉
is even.

PROOF. We need to know that the Euler class is in fact an integral cohomology class.
From the proof of Proposition 3.20, the Euler number equals the self-intersection

〈αV ^ αV , [V ]〉, and its mod 2 reduction can therefore be written in terms of Steenrod
squares as 〈Sq` αV , [V ]〉.

Let V ′ = V ⊕εm. Because of the naturality of the Steenrod squares, the Euler number
mod 2 is also equal to 〈Sq` αV ′ , [V

′]〉. But since V ′ is trivial for sufficiently large m,
this expression is zero (use the naturality of the Steenrod squares again, and the Künneth
decomposition of H∗c (V ′) = H∗(M)⊗H∗c (R`+m).) �
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It amounts to the same thing to say that the mod 2 reduction of the Euler class of V is
the `th Stiefel-Whitney class [26, Theorem ?], which vanishes for stably trivial bundles.

3.23. REMARK. This simple argument leads us into one of the most delicate parts of
surgery theory: correctly accounting for the self -intersections of middle dimensional sub-
manifolds. It is telling us that the simple ‘symmetric’ self-intersection of such a manifold
(in this case the zero-section of V ), given by the diagonal part of the intersection form
λ, should be realized as twice some more refined ‘quadratic’ self-intersection invariant
(usually denoted µ). We are going to need to work over integral group rings (Remark 2.59)
where multiplication by 2 is not necessarily an injective map, and in such circumstances
the quadratic invariant will contain strictly more information than the symmetric one. We
will develop the general theory of quadratic self-intersections when we study immersions,
in Chapter 10.

We want to investigate when an m-dimensional, stably framed vector bundle over Sm

has a compatible (unstable) framing. In particular we want to prove Proposition 2.29,
which was important in our study of the exotic spheres.

3.24. EXERCISE. Recall that the group πm−1(SO(k)) = πm(BSO(k)) classifies
k-dimensional oriented vector bundles over the m-sphere. Show that the natural homo-
morphism

πm−1(SO(m))→ πm−1(SO(m), SO(m− 1)) ∼= πm−1(Sm−1) ∼= Z
sends an oriented m-dimensional vector bundle over Sm to its Euler number. (Hint: Write
Sm = Dm∪Sm−1Dm. Think of a map Sm−1 → SO(m) as the clutching function joining
two trivial bundles on the disks to make a non-trivial bundle on the sphere. Try to construct
a section which is equal to the vector (1, 0, 0, . . .) on one of the disks. Use degree theory
to count its zeroes.)eul-exa

This exercise reconciles the definition of the Euler number in Proposition 3.20 with
that given in Definition 2.26.

3.25. EXERCISE. Show that the boundary map in the homotopy exact sequence
associated to the fibration SO(m)→ SO(m+ 1)→ Sm, namely

Z ∼= πm(Sm) ∼= πm(SO(m+ 1), SO(m))→ πm−1(SO(m)),

sends the generator 1 ∈ Z (corresponding to the identity map Sm → Sm) to the class of
the tangent bundle TSm in πm−1(SO(m)).eul-exb

Let V be an oriented m-dimensional vector bundle over Sm with a stable framing f.
Thus (V, f) defines an element of πm−1(SO(m)) which vanishes in πm−1(SO(m + k)),
for some large k. As in the proof of Proposition 2.28, we see we can destabilize the given
stable framing if we can fill in the dotted arrow in

Sm−1

��

// SO(m)

��
Dm

88

// SO(m+ k);

that is, if a certain element of the relative homotopy group πm(SO(m + k), SO(m))
vanishes. These groups stabilize for k > 2, so it is enough to take k = 2. Moreover,
πm(SO(m+ 1), SO(m)) = Z→ πm(SO, SO(m)) = πm(SO(m+ 2), SO(m)) is onto,
so it is even possible to take k = 1.
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Introduce the following notation2: for ε ∈ {±1}, letQε(Z) denote the quotient Z/(1−
ε)Z, that is either Z or Z/2 according to the sign of ε.

3.26. PROPOSITION. The relative homotopy group πm(SO(m + 2), SO(m)) is iso-
morphic to Q(−1)m(Z).vprop

PROOF. Because we are dealing with Lie groups, there is a fibration SO(m) →
SO(m + 2) → SO(m + 2)/SO(m), and the relative homotopy group appearing in the
proposition is just the group πm(SO(m + 2)/SO(m)). Now one can identify SO(m +
2)/SO(m) with S(TSm+1), the sphere bundle of the tangent bundle to Sm+1. (To see
this, notice that SO(m+2)/SO(m) is the space of orthogonal 2-frames in Rm+2; the first
vector of such a 2-frame gives a point in Sm+1, the second gives a tangent vector to Sm+1

at that point.) Thus there is a fibration3

Sm → SO(m+ 2)/SO(m)→ Sm+1.

The associated long exact sequence gives

πm+1(Sm+1)
χ //

��

πm(Sm) // πm(SO(m+ 2), SO(m)) // πm(Sm+1)

πm(SO(m+ 1))

77

Exercises 3.24 and 3.25, applied to the triangle in the diagram, show that the map denoted
by χ is multiplication by the Euler number of TSm+1, which is 2 if m is odd and 0 if m is
even. From the exact sequence it follows that πm(SO(m + 2), SO(m)) is isomorphic to
Q(−1)m(Z). �

We interpret this proposition in the following way: a stably framed m-dimensional
oriented vector bundle (V, f) over Sm gives rise a class d(V, f) ∈ Q(−1)m(Z), such that
V admits a genuine framing compatible with its given stable framing if and only if the
destabilization obstruction vanishes.

destab-def 3.27. DEFINITION. The class d(V, f) defined above is called the destabilization ob-
struction of the stably framed vector bundle (V, f).

1-framing 3.28. EXERCISE. Let V be an m-dimensional vector bundle over Sm, with (disk,
sphere)-bundle

(Dm, Sm−1)→ (D(V ), S(V ))→ Sm .

(i) Prove that D(V ) is homotopy equivalent to Sm.
(ii) Prove thatD(V ) is also homotopy equivalent to the space S(V )∪Dm∪D2m obtained
from S(V ) by first attaching an m-cell along the map Sm−1 → S(V ) and then attaching
a 2m-cell along a map S2m−1 → S(V ) ∪ D2m. Show that the homotopy class of the
composite S2m−1 → S(V ) ∪ D2m → Sm is the image J(V ) ∈ π2m−1(Sm) of V ∈
πm(BSO(m)) = πm−1(SO(m)) under the J-homomorphism (Exercise 3.17).
(iii) Prove that J(TSm) = [ι, ι] ∈ π2m−1(Sm), the Whitehead product of the generator
ι ∈ πm(Sm) with itself.

2A special case of the general quadratic groups that will be defined in Chapter 8.
3In terms of Lie groups this is just

SO(m+ 1)/SO(m)→ SO(m+ 2)/SO(m)→ SO(m+ 2)/SO(m+ 1).
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(iv) Prove that for any a stable framing f : V ⊕ εn ∼= εm+n with n > 1 there exists a
framing f̂ : V ⊕ ε ∼= εm+1 such that f is equivalent to f̂ ⊕ 1εn−1 . Use the EHP exact
sequence (Example 5.56 below) to prove that for any such f̂

J(V ) = d̂(V, f̂)[ι, ι] ∈ ker(E : π2m−1(Sm)→ π2m(Sm+1)) = im(Z→ π2m−1(Sm))

for some integer d̂(V, f̂) ∈ Z with image the destabilization obstruction d(V, f) ∈ Q(−1)m(Z).
�

If m is even we can identify the destabilization obstruction in terms of the Euler
number.

destab-2 3.29. PROPOSITION. For m even, the destabilization obstruction d(V, f) in Q+(Z) =
Z of a stably framed oriented m-dimensional vector bundle V over Sm is half its Euler
number 〈e(V ), [Sm]〉 ∈ Z (which is even by Proposition 3.22).

PROOF. The proof of Proposition 3.26 above shows that, when m is even, the natural
map

Z ∼= πm(Sm)→ πm(SO(m+ 2), SO(m)) = Q(−1)m(Z)

is an isomorphism. Exercise 3.25 now shows that the image of the generator, in the group
πm−1(SO(m)) of oriented m-dimensional vector bundles over Sm, is the tangent bundle
TSm, which has Euler number 2. �

PROOF OF PROPOSITION 2.29. This follows from Proposition 3.22, Proposition 3.29,
and the group structure of πm(SO(m+ 2), SO(m)). �

Notice that for m even the destabilization obstruction is independent of the choice of
stable framing f — it depends only on the bundle V . This is definitely not the case for m
odd.

oddsfex 3.30. EXAMPLE. Consider the simplest odd-dimensional example, m = 1. Let V be
an oriented (therefore trivial) line bundle over the circle S1, and suppose that V ⊕ ε2 is
provided with a framing f. Then the ‘difference’ between f and the framing coming from
a trivialization of V gives a loop S1 → SO(3). The destabilization obstruction d(V, f) is
zero if this loop lifts to a loop in Spin(3), and it is one otherwise. (This follows easily from
the exact sequence appearing in the proof of Proposition 3.26.)

Note in particular that if we take V to be the tangent bundle to S1, and we give it the
stable framing f coming from the standard embedding S1 → R2, then d(V, f) = 1.

3.31. EXERCISE. Show that, in fact, if V = TSm is given the stable framing f arising
from embedding Sm → Rm+1, then d(V, f) = 1 for all m.

3.4. Spherical fibrations
sphfib-sec

In this section we shall define the notion of a spherical fibration — a purely homotopy-
theoretic counterpart to the definition of a vector bundle. We shall see that the Thom
isomorphism theorem is still true for these much more general objects. Spherical fibrations
give us a systematic way to keep track of the ‘bundle data’ that is important in surgery
theory; we shall see in Chapter 11 that though a homotopy equivalence between manifolds
may change the stable tangent (vector) bundle4, it must preserve the underlying stable
spherical fibration.

4We have seen an example of this in Section 1.5.
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3.32. DEFINITION. A spherical fibration is a Serre fibration whose fiber is homotopy
equivalent to a sphere.

Recall that a Serre fibration is a map that has the unrestricted homotopy lifting property: that is, p : E → B
is a Serre fibration if any commutative diagram of the form

X × {0} //

��

E

p

��
X × [0, 1]

;;

// B

can be completed by filling in the dotted arrow. The ‘fiber’ of such a fibration is the inverse image of a point in
B; its homotopy type is well defined (provided thatB is path connected). There is a standard procedure (“Serre’s
construction”) in homotopy theory whereby any map f : X → B can be ‘made into’ a Serre fibration, that is, X
can be replaced by a space E with a canonical homotopy equivalence X → E and a Serre fibration p : E → B
such that the diagram

X //
f

  

E

p

��
B

commutes. (We define E = {(x, ϕ) ∈ X ×Maps([0, 1], B) : f(x) = ϕ(0)}.) The fiber of the new Serre
fibration p is referred to as the homotopy fiber of f , and we will allow ourselves to speak of f as a spherical
fibration if its homotopy fiber is a sphere, i.e. if p is a spherical fibration.

3.33. EXAMPLE. Suppose V → B is a vector bundle of fiber dimension n. Then the
sphere bundle S(V ) of V is an (n− 1)-spherical fibration.

By analogy with this example, we shall usually denote a spherical fibration by a
Greek letter such as ξ, and let S(ξ) stand for its total space (the fibration is thus a map
ξ : S(ξ)→ B).

The natural notion of equivalence for spherical fibrations (corresponding to isomorph-
ism for vector bundles) is fiber homotopy equivalence:

3.34. DEFINITION. Two spherical fibrations ξ and ξ′ over the same base B are fiber
homotopy equivalent if there is a commutative diagram

S(ξ)
' //

ξ

��

S(ξ′)

ξ′

��
B B

in which the top row is a homotopy equivalence.

Many familiar operations on vector bundles have counterparts in the world of spherical
fibrations. For example, corresponding to the addition of a trivial bundle to a vector bundle,
there is an operation of ‘fiberwise suspension’ of a spherical fibration (replace S(ξ) by
B ∪p [0, 1] × S(ξ) ∪p B, with the obvious map to B) which replaces an n-spherical
fibration by an (n + 1)-spherical fibration. This means that it makes sense to speak of
‘stable spherical fibrations’, just as it does to talk of ‘stable vector bundles’.

3.35. LEMMA. Any spherical fibration can be embedded (uniquely up to homotopy)
as a subfibration of a fibration with contractible fiber.

PROOF. To do: Write it �To do
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This contractible fibration is of course the counterpart of the disk bundle associated to
a vector bundle; to maintain the analogy, we shall therefore denote it by D(ξ).

We can now see that all the usual operations on vector bundles now have counterparts
for spherical fibrations. Thus one can define pullbacks, external products, Whitney sum,
and so on of spherical fibrations. For example, to define the Whitney sum of two spherical
fibrations ξ1 and ξ2 of fiber dimensions k1−1 and k2−1 over B, one first forms the ‘disk’
fibrationsD(ξ1) andD(ξ2). Their product is a fibration overB×B, which can be restricted
to the diagonal (i.e. pulled back over the diagonal map B → B × B) to yield a fibration
over B. Then we define the Whitney sum of ξ1 and ξ2 to be the (k1 + k2 − 1)-spherical
fibration over B with total space

S(ξ1)×D(ξ2) ∪D(ξ1)× S(ξ2) ⊆ D(ξ1)×D(ξ2).

3.36. EXERCISE. Verify that this operation corresponds to the Whitney sum of vector
bundles.

Similarly we can define the Thom space (compare Remark 3.16).

3.37. DEFINITION. Let ξ be an (n − 1)-spherical fibration over B. The Thom space
T (ξ) is the mapping cone of the projection p : S(ξ) → B; in other words, it is S(ξ) ×
[0, 1] t B modulo the equivalence relation which identifies all points (x, 0), x ∈ S(ξ),
with each other and each point (x, 1), x ∈ S(ξ), with p(x) ∈ B.

It is easy to verify that the Thom space (in the sense of this definition) of the spherical
fibration underlying a vector bundle is homotopy equivalent to the Thom space (in the old
sense) of the vector bundle itself. Notice that the pair (T (ξ),∞) (where ∞ denotes the
cone point) is equivalent under excision to (D(ξ), S(ξ)).

Since spherical fibrations are homotopically similar to vector bundles it is perhaps
not surprising that the Thom isomorphism theorem can be proved for them as for vector
bundles. The proof can be thought of as another Mayer-Vietoris argument; but this time
we shall take advantage of the powerful machinery of spectral sequences to present it in a
condensed form.

3.38. DEFINITION. An (n − 1)-spherical fibration ξ (with connected base B) is
orientable if the action of π1(B) on πn−1(fiber) = Z is trivial. In this case an orientation
is a choice of generator for πn−1(fiber) = Z.

3.39. PROPOSITION. Let ξ : S(ξ) → B be an oriented (n − 1)-spherical fibration.
Then there is defined a Thom class α ∈ Hn(T (ξ),∞;Z) such that cup and cap products
with α define isomorphisms

Hn+k(T (ξ),∞)→ Hk(B), Hk(B)→ Hn+k(T (ξ),∞).

These isomorphisms hold with arbitrary coefficients.

PROOF. Since the associated ‘disk bundle’ D(ξ) has contractible fiber, the projection
S(ξ) → B is homotopy equivalent to the inclusion S(ξ) → D(ξ). Thus the homotopy
groups πi+1(D(ξ), S(ξ)) of the projection are just the homotopy groups πi(Sn−1) of
the fiber, so that the pair (D(ξ), S(ξ)) is (n − 1)-connected and there is a canonical
isomorphism πn(D(ξ), S(ξ)) → Z. Orientability tells us that π1(B) acts trivially on this
group, so by the (relative) Hurewicz theorem we get

Hr(D(ξ), S(ξ);Z) =

{
0 (r < n)
Z (r = n)
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and hence by the Universal Coefficient Theorem Hn(D(ξ), S(ξ);Z) = Z. Let α be the
(positive) generator of this group; this is the Thom class.

Now we appeal to the Serre spectral sequence of a fibration. (Because of our assump-
tion of orientability we can use untwisted coefficients.) Specifically, we observe that cup
product with α induces an isomorphism on the E2 terms from the spectral sequence of
the trivial fibration B → B to the spectral sequence of (D(ξ), S(ξ)) → B. However,
both spectral sequences collapse at E2, the first one for trivial reasons, and the second one
because the Epq2 vanish for q 6= n. Thus cup product with α also induces an isomorphism
on the E∞ terms, that is, an isomorphism from Hk(B) to Hn+k(D(ξ), S(ξ)). A similar
argument works for homology. �

non-orient-thom 3.40. REMARK. We can define a Thom isomorphism for non-oriented spherical fibra-
tions (and in particular for non-oriented vector bundles) if we take coefficients in Z2. Then
we have an isomorphism

Hk(B;Z2)→ Hn+k(T (ξ),∞;Z2)

for any spherical fibration ξ.

3.41. EXERCISE. From the Thom isomorphism derive the Gysin sequence for an
oriented (n− 1)-spherical fibration ξ over B:

. . .→ Hk(B)→ Hk+n(B)→ Hk+n(S(ξ))→ Hk+1(B)→ . . . .

What is the map Hk(B)→ Hk+n(B) appearing here?

3.5. Stable bundles and the classifying space BG

To do: This section needs revision. Need to give some details of what is a
‘stable bundle’, both in the vector bundle and spherical fibration cases.To do

3.42. DEFINITION. G(n) denotes the topological monoid of homotopy equivalences
Sn−1 → Sn−1. G denotes the direct limit limG(n) under suspension.

3.43. THEOREM. (STASHEFF) There is a classifying space BG, with ΩBG ' G,
such that the fiber homotopy equivalence classes of stable spherical fibrations over a finite
complex X are in natural 1 : 1 correspondence with homotopy classes of maps X → BG.

Thus one can think of spherical fibrations loosely as ‘fiber bundles’ with ‘group’
G. There are also classifying spaces BG(n), as well as corresponding spaces BSG,
etc, for oriented spherical fibrations (SG(n) consists of orientation-preserving homotopy
equivalences Sn−1 → Sn−1).

Every oriented vector-bundle gives rise to an oriented spherical fibration, so there is a map of classifying
spaces BSO → BSG. This map is closely related to the J-homomorphism which we studied in the previous
chapter. Let us see why this is so.

Pick a base point ∗ ∈ Sn. Then the action of SG(n+ 1) on ∗ gives a map SG(n+ 1)→ Sn and we have

3.44. LEMMA. This map is a Serre fibration, with fiber the monoid SF (n) of orientation preserving
homotopy equivalences Sn → Sn that preserve the basepoint.

The inclusion SG(n) → SG(n + 1) has image in SF (n), so that the limit SG might equally be called
SF ; some authors use this notation, especially if they want the letter G for other purposes.

3.45. PROPOSITION. For i > 1, πi(SF (n)) ≡ πi+n(Sn). Hence, πi(SF ) = πi(S).

PROOF. By standard adjunction formulae,

Maps•(S
n, Sn) = ΩnSn;
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the base-point-preserving maps Sn → Sn are just the n-fold loop space of Sn. This space is divided into
connected components parameterized by the degree. A map Sn → Sn is an orientation-preserving homotopy
equivalence if and only if it has degree 1. Hence, SF (n) is a connected component (that corresponding to degree
1) of ΩnSn; the result follows. �

We now see that the map SO → SF which associates to a (stable) orthogonal transformation the
corresponding (stable) self-homotopy-equivalence of a sphere induces πi(SO) → πi(SF ) = πi(S), and it
is plain that this is another description of the J-homomorphism.





CHAPTER 4

General Position
generalposchapter

In this chapter we will develop the ‘general position’ techniques, such as transversality,
that will allow us to construct manifolds and embeddings. We have already seen how
transversality is used at key points in the study of exotic spheres (compare Theorem 2.57
and the discussion of intersections in Proposition 2.50). The key to all these general
position results is found in Sard’s theorem, which we study first.

4.1. Sard’s theorem

4.1. DEFINITION. Let f : Mm → Nn be a smooth map of manifolds. The critical set
Cf ⊆ M of M is the set of m ∈ M such that the tangent map dfm : TmM → Tf(m)N
fails to be surjective. The image f(Cf ) ⊆ N is called the set of critical values of f .

4.2. DEFINITION. With notation as above, the complement N \ f(Cf ) of the set of
critical values of f is called the set of regular values.

Notice that, by definition, a point that is not in the image of f at all is a regular value
of f .

4.3. PROPOSITION. Let f : Mm → Nn be a smooth map of manifolds. If x ∈ N
is a regular value of f , then the inverse image f−1{x} is a (possibly empty) smooth
submanifold of M , of dimension m− n, and having trivial normal bundle.

PROOF. This follows from the Inverse Function Theorem. �

sardtheorem 4.4. THEOREM (Sard’s theorem). If f is a smooth map as above, then f(Cf ) has
measure zero in N .

4.5. EXERCISE. Prove Sard’s theorem for maps R→ R. (Hint: By Taylor’s theorem,
f contracts an interval of length ε containing a critical point to an interval of length O(ε2)
containing the corresponding critical value.) Note that this requires only C1 differentiabil-
ity.sardex

The notion ‘has measure zero’ makes sense on any smooth manifold, even though there is no canonical
choice of smooth measure. There is a disconcerting example which shows that high differentiability is in general
necessary in Sard’s theorem; this is an example of a C1 map f : R2 → R, such that there is a (topological) arc
γ in R2 for which df = 0 at all points of the arc, but nevertheless f is not constant along γ. The image of the
critical set thus contains an open subset of R.

AE 4.6. COROLLARY. If f : Mm → Nn is smooth, and m < n, then the image of f has
measure zero.

For this corollary, only C1 differentiability is in fact necessary; the proof of Exer-
cise 4.5 will work.

57
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OUTLINE PROOF OF THEOREM 4.4. Clearly, it is enough to consider the case M =
Rm, N = Rn. The proof involves a double induction on m and n.

We split the critical set Cf into two pieces: C ′ on which df is zero, and C ′′ on which
df is non-zero (but nonetheless not surjective).

We further decompose C ′ into pieces C ′i on which f is critical to order i, in other
words, all the partial derivatives of f up to order i vanish. Thus C ′ = C ′1 ⊇ C ′2 ⊇ · · · . If
i is big enough (roughly m/n + 1) the argument of Exercise 4.5 generalizes to show that
f(C ′i) has measure 0. It is enough therefore to show that f(C ′i \ C ′i+1) has measure 0 for
all i. Near a point of C ′i \ C ′i+1 there is, by definition, a ith order partial derivative g of
f whose derivative dg does not vanish. Then g−1{0} is a lower-dimensional submanifold
M ′ of M and C ′i \ C ′i+1 is contained in the critical set of f restricted to this submanifold.
The result follows from induction on m.

On the other hand, near a point of C ′′, we can assume that there is a coordinate
projection p : Rn → R for which d(p ◦ f) does not vanish. Then the inverse images Mt =
(p ◦ f)−1{t} foliate M into smooth lower-dimensional submanifolds, and inductively we
can assume that

f(C ′′ ∩Mt)

is a measure-zero subset of Rn−1×{t}. The result now follows from Fubini’s theorem. �

4.2. Embedding and immersion theorems

4.7. DEFINITION. Let f : M → N be a smooth map between manifolds. Then f is
called an immersion if the tangent map dfx : TxM → Tf(x)N is injective for all x ∈ M .
It is an embedding if it is an immersion and, in addition, is a homeomorphism of M onto
the image f(M) (equipped with the topology it inherits as a subspace of N )

We will mostly be interested in compact manifolds; in this case any injective immer-
sion is an embedding. For it is a standard result of elementary topology that a continuous
bijection from a compact space to a Hausdorff space is in fact a homeomorphism.

The smooth map R → T 2 which wraps R densely around the 2-torus, using an irrational slope, is an
example of an injective immersion of a non-compact manifold which is not an embedding.

We are going to construct embeddings and immersions of compact manifolds into
Euclidean space, and eventually into other manifolds. A first step is provided by

4.8. PROPOSITION. Let Mn be a smooth manifold, K ⊆ M a compact subset. Then
there is a smooth map f : M → Rk, for some large k, which is an embedding on a
neighborhood of K. In particular, any compact manifold can be embedded in a Euclidean
space.emb-1

PROOF. Cover K by finitely many coordinate charts U1, . . . , Um, with embeddings
hi : Ui → Rn. Let ϕi be a system of bump functions subordinated to Ui — by this I mean
that ϕi is supported within Ui and that for each x ∈ K there is some index i such that
ϕi(x) = 1. Then the map M → Rn(m+1) defined by

x 7→ (ϕ1(x)h1(x), . . . , ϕm(x)hm(x), ϕ1(x), . . . , ϕm(x))

is easily seen to be an embedding. �

The partition of unity construction yields a very large k. We now seek to reduce k.
This we can do by general position arguments.



4.2. EMBEDDING AND IMMERSION THEOREMS 59

IIT 4.9. LEMMA. Let f : M → Rk be an embedding of a compact manifold (or of a
compact piece of a manifold, as above), and suppose k > 2n+ 1. Then for almost all unit
vectors v ∈ Rk the projection Pv : Rk → Rk−1 orthogonal to v has the property that Pvf
is an embedding. If k = 2n+ 1, then for almost all unit vectors v, Pvf is an immersion.

PROOF. Think of M as a submanifold of Rk. What can go wrong? Pvf may fail to
be one-to-one, or it may fail to be immersive. To say that Pvf is not one-to-one is to say
that v belongs to the image of the map

M ×M \∆→ Sk−1, (x, y) 7→ x− y
‖x− y‖

.

However, by 4.6, the image of this map has measure zero, since 2n < k − 1. To say that
Pvf is not immersive is to say that v belongs to the image of the unit tangent bundle T1M
under the map T1M → Sk−1 that sends each unit tangent vector to ‘itself’. But again,
by 4.6, the image of this map has measure zero; this is true even when k = 2n + 1. This
proves both results. �

To do: Connection to tangent groupoid? To do

4.10. THEOREM. Let Mn be a compact n-manifold. Any map Mn → R2n+1 may
be arbitrarily well approximated by an embedding, and any map Mn → R2n may be
arbitrarily well approximated by an immersion.

PROOF. We do it for embeddings. Let f : M → R2n+1 be the given map, and let
g : M → Rk be an embedding of M in some high-dimensional Euclidean space Rk. Then
h = (f, g) : M → R2n+1+k is an embedding, and f = Πh where Π: R2n+1+k → R2n+1

is the obvious projection. But by k applications of the previous lemma, we see that Π can
be altered by an arbitrarily small amount so as to make Πh an embedding; and it is clear
that this new Πh may be as close as we wish to f . �

We would like to prove a similar result for maps of one manifold to another. It will
be useful to note the obvious fact that the set of embeddings of M in N , and the set of
immersions of M in N , are both open subsets of C∞(M ;N). (We assume M is compact
here.)

WIT 4.11. THEOREM (Whitney). Let Mm, Nn be manifolds, M compact.
(a) If 2m + 1 6 n then any smooth map M → N can be arbitrarily well approxi-

mated by an embedding. In fact, if f : M → N is a smooth map which is already
an embedding on some closed subset C of M , then f can be arbitrarily well
approximated by an embedding which agrees with f on C.

(b) If 2m 6 n then any smooth map M → N can be arbitrarily well approximated
by an immersion. In fact, if f : M → N is a smooth map which is already
an immersion on some closed subset C of M , then f can be arbitrarily well
approximated by an immersion which agrees with f on C.

PROOF. The relative version easily follows from the absolute version and the open-
ness of the set of embeddings. Cover N by finitely many coordinate charts V1, . . . , V`, let
Ui = f−1(Vi), and let Ki ⊆ Ui be closed subsets such that

⋃
Ki = M . Assume that f

is an embedding on K1 ∪ · · · ∪Kr−1. Using the previous theorem, we can make a small
perturbation of f on Ur so that f becomes an embedding on Kr. Because the embeddings
form an open set, if we choose the perturbation small enough it will not destroy the property
that f is an embedding on K1 ∪ · · · ∪Kr−1. An induction on r completes the proof. �
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4.12. REMARK. It is easy to see that sufficiently close maps M → N are homotopic
(for instance, give N a complete Riemannian metric, and join nearby points by a minimal
geodesic). Thus, any smooth map M → N is in particular homotopic to an embedding (if
2m+ 1 6 n) or an immersion (if 2m 6 n).

For some purposes it is important to have a more refined notion of equivalence of
immersions (or embeddings).

4.13. DEFINITION. An isotopy of embeddings M → N is a smooth map h : M ×
[0, 1] → N such that each ht : M × {t} → N is an embedding. An ambient isotopy is
an isotopy which arises by composing a fixed embedding M → N with a one-parameter
family of diffeomorphisms of N .

To do: Give a statement of the isotopy extension theorem. This might also
be a good point to give a precise statement of the existence and uniqueness of
tubular neighborhoods.To do

There is an analogous definition for immersions.

4.14. DEFINITION. A regular homotopy of immersions M → N is a smooth map
h : M × [0, 1]→ N such that each ht : M × {t} → N is an immersion.

The notion of regular homotopy (of immersions) is more restrictive than that of
homotopy. For example, consider immersions S1 → R2. They are all homotopic (after
all, R2 is contractible), but they are not all regular homotopic: the rotation number of such
an immersion γ, which is the homotopy class of the tangent map γ′ : S1 → R2 \ {0}, is a
regular homotopy invariant.

4.15. EXERCISE. Prove the Whitney-Graustein theorem: two immersions S1 → R2

are regularly homotopic if and only if they have the same rotation number. See [34].
(Beware that, contrary to the impression one might gain from the classical literature, it is
not enough to require a regular homotopy merely to be continuous and smooth for each
fixed t.)

We will discuss the regular homotopy classification of higher-dimensional immersions
in Chapter 10.

4.3. Transversality

Let f : M → N be a smooth map, and let X be a submanifold of N . Then for each
p ∈ f−1(X), dpf induces a map from the tangent bundle of M to the normal bundle of X ,

TpM
df // Tf(p)N // Tf(p)N/Tf(p)X

We say that f is transverse to X at p if this composite map is surjective, and that f is
transverse to X if it is transverse at all p ∈ f−1(V ). Thus, if X = {x} consists of a single
point, f is transverse to X if and only if x is a regular value, that is, x /∈ f(Cf ). By Sard’s
theorem, this is a generic condition.

A generalization will be of value. In the definition of transversality, it is clear that only
the part of f that maps M to some tubular neighborhood of X is significant. Therefore
we may consider the situation where M maps into the total space of some vector-bundle
over X . In this situation, the condition that f be transverse does not involve the smooth
structure on X at all. There is thus no reason to suppose X to be a manifold. We therefore
end up with the following definition:
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4.16. DEFINITION. Let π : V → X be a vector-bundle over a space X and let
f : M → ThV be a vertically smooth map from M to the Thom space of V (see
Remark 3.16). We say that f is transverse at the zero section X of ThV if for all
p ∈ f−1(X), the vertical tangent map

dp,vf : TpM → (π∗V )f(p)

is surjective.
4.17. EXERCISE. Check that the notions of ‘vertically smooth’ and the ‘vertical tangent map’ make sense.

Since we are interested in transversality only at the zero-section, it makes no difference whether we consider
maps to V itself or to its Thom space; the latter has the advantage of being compact (provided that X itself is
compact).

If f is a transverse map to the Thom space of the bundle V → X , then by the inverse
function theorem f−1(X) is a smooth manifold of dimension equal to the dimension ofM
minus the fiber dimension of V , and its normal bundle inM is identified with the pull-back
f∗V . In other categories, and with an appropriate notion of ‘bundle’, this conclusion of
the inverse function theorem may be taken as the definition of transversality.

We say that two submanifolds of M are transverse if the inclusion of one is transverse
to the other. (This is a symmetric condition, equivalent to the statement that the tangent
spaces of the submanifolds together span the tangent space of M at each point of intersec-
tion.) Using the inverse function theorem, one sees

4.18. PROPOSITION. Two submanifolds N1 and N2 of M (dimensions n1, n2, m) are
transverse

(a) in case n1 + n2 < m, if and only if they don’t intersect;
(b) in case n1 + n2 > m, if and only if near any point p ∈ N1 ∩ N2, one can find

local coordinates which identify a neighborhood U of p with Rm in such a way
thatN1∩U is identified with Rn1×{0} and U ∩N2 is identified with {0}×Rn2 .

�

This proposition reconciles our present definition of transversality with that used in
Chapter 3 in the special case n1 + n2 = m.

The transversality theorem of Thom is

trans-theorem 4.19. THEOREM. Any map from a compact manifold to the Thom space of a vector
bundle can be arbitrarily well approximated by a map which is transverse at the zero
section.

PROOF. This is like the proof of 4.11. Let f : M → V be the given map. We start
the proof by choosing an open cover {Ui} of M , such that each f(Ui) lies in a trivial part
Rp × Vi of the bundle, and such that there is a compact cover Ki contained in Ui. On
each Ui the map f can be represented as (g, h), where g : Ui → Rp and h : Ui → Vi, and
transversality just says that zero is a regular value of gi. Thus, by Sard’s theorem, it is
possible to make an arbitrarily small perturbation of f to make it transverse on Ki. (Just
perturb by a small constant.)

Now we remark that transversality is an open condition (in a suitable topology). Thus
we can carry out inductively a sequence of smaller and smaller perturbations over the
sets Kr, r = 1, 2, . . ., in order to make f transverse as required. (This ‘local-to-global’
argument was already used in the proof of Theorem 4.11.) �

It is convenient to make explicit a few points about transversality in the context of manifolds with boundary:

4.20. DEFINITION. Let (M,∂M) be a manifold with boundary. A submanifold N ⊆ M is called neat if
∂N = N ∩ ∂M and N meets ∂M transversely.
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A map from (M,∂M) to the Thom space of a vector-bundle V is called transverse at the zero-section if it
is transverse on the interior and its restriction to the boundary is transverse as a map from ∂M . If this is so, then
the inverse image of the zero-section is a neat submanifold. The transversality theorem still applies: any map can
be perturbed by an arbitrarily small amount so as to make it transverse. Moreover, there is a relative version: if
the map is already transverse on ∂M , then the perturbation may be taken to be the identity on ∂M .

4.21. EXAMPLE. As an illustration of the power of transversality, here is Hirsch’s proof of the Brouwer
fixed point theorem. You will observe that no algebraic topology is required.

As is well known, to prove Brouwer’s theorem it is enough to show that there is no smooth retraction of
Dn onto its boundary Sn−1. Suppose r is such a retraction. There is some point p ∈ Sn−1 such that r is
transverse at p. Then r−1(p) is a 1-dimensional neat submanifold ofDn, so it is a finite union of circles and arcs
with endpoints on the boundary. One of these arcs must run from p to some other point q ∈ Sn−1. Therefore,
r(q) = p. But since r is a retraction, q = p, a contradiction.

4.22. EXERCISE. Show that the complement of a smooth (compact) manifold Mm

embedded in Rm+k is (k − 2)-connected. (Use transversality to show that any map of
Sk−2 into Rm+k \M can be extended to a map of Dk−1.) In particular, the complement
of a smoothly embedded circle in R4 is simply connected. (Smoothness is essential here.)

4.23. EXERCISE. Use transversality to show that if Mn is a closed orientable mani-
fold, then any homology class in Hn−1(M) or Hn−2(M) is represented by the fundamen-
tal class of a closed oriented submanifold. (Use the fact from homotopy theory that the
kth cohomology group of M is the collection of homotopy classes of maps from M to an
Eilenberg-MacLane space of typeK(Z, k); together with the identificationsK(Z, 1) = S1

and K(Z, 2) = CP∞.)

One important application of transversality is to make a map transverse to itself.

4.24. DEFINITION. Let f : Mm → N2m be an immersion. It is self-transverse if at
most two points ofM map to any point ofN , and that if x1 6= x2 with f(x1) = f(x2), then
there are neighborhoods Ui of xi in M such that f|U1

and f|U2
are transverse embeddings

of U1 and U2 into M .

Note that this condition implies that the double points of f are finite in number.

WIT-ST 4.25. PROPOSITION. Any smooth map Mm to N2m can be arbitrarily well approx-
imated by (and in particular is homotopic to) a self-transverse immersion. In fact, if
f : M → N is a smooth map which is already a self-transverse immersion on some closed
subsetC ofM , then f can be arbitrarily well approximated by a self-transverse immersion
which agrees with f on C.

PROOF. To do: write it �To do

4.4. The Whitney lemma

Let N1 and N2 be smooth oriented submanifolds of the oriented manifold M having
complementary dimensions and intersecting transversely. Then N1 ∩ N2 consists of a
finite number of isolated points each of which acquires a sign according to whether or not
the orientations of N1 and N2 at that point combine to yield the orientation of M . (See
Example 3.12.) Our objective in this section is to prove the Whitney Lemma, which states

whitney-lemma 4.26. LEMMA. Let M be an n-dimensional manifold. Suppose that
(a) Nk1

1 and Nk2
2 are transversely intersecting oriented submanifolds of M , n =

k1 + k2, k1, k2 > 3,
(b) P and P ′ are intersection points of N1 and N2, having opposite signs, and
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(c) there exist paths γ1 and γ2 from P to P ′, lying in N1 and N2 respectively, such
that the loop γ−1

1 γ2 is nullhomotopic in M .
Then there is an ambient isotopy ofN1 to a submanifold N ′1 transverse toM and such that
N ′1 ∩ N2 = N1 ∩ N2 \ {P, P ′}. The ambient isotopy is constant on a neighborhood of
N1 ∩ N2 \ {P, P ′}, so in particular the signs of all the intersection points of N ′1andN2

are the same as the signs of the corresponding intersection points of N1 and N2.

In other words, if two intersection points cancel ‘algebraically’, then they can be
canceled ‘geometrically’. For example, the graph of y = x3 − x intersects the x-axis
in three points −1,0,1; the signs alternate, so the algebraic intersection number is 1. By
continuous deformation one can move the x-axis up to the line y = 2, which now intersects
y = x3 − x only in one point — the number of intersections required by the algebra.

4.27. REMARK. With some more careful hypotheses one can relax the dimension requirements somewhat1;
this is important for the proof of the h-cobordism theorem. The proof of the Whitney lemma depends on the easy
part of Whitney’s embedding theory for submanifolds (that is our Theorem 4.11), and the lemma itself is the key
to the hard part of that theory (Chapter 10).

If M is oriented we can give each of the intersection points P and P ′ a sign in the usual way (see the
discussion preceding Equation 3.13). In fact, though, we do not need to assume that M is oriented; to define the
signs of the intersection points we can choose an arbitrary orientation ofM at P and then transport the orientation
to P ′ along either of the (homotopic) paths γ1 and γ2. While the actual signs associated to the two intersection
points will of course depend on the choice of orientation of M at P , the notion ‘P and P ′ have opposite sign’
will not.

PROOF. The idea of the proof is illustrated in the figure below. Suppose that we
want to cancel the two intersection points P and P ′ of N1 and N2 shown in the figure.
Join p and q by embedded paths γ1 and γ2 in N1 and N2 respectively, so that the loop γ
they form is nullhomotopic. We may assume without loss of generality that they do not
meet any other intersection points. Now there is a homotopy class of maps D2 → M
with boundary γ realizing the nullhomotopy, and by Theorem 4.11 this homotopy class
contains an embedding of a disk (because n > 5 = 2 · 2 + 1); this disk may be assumed to
be disjoint from N1 and N2 (this is an easy special case of transversality theory; remember
that the codimension of both N1 and N2 is at least three). Such an embedded disk is called
a Whitney disk. Now we use this as a guide for an isotopic ‘push’ of M parallel to the
Whitney disk in a small neighborhood thereof; such a ‘push’ can be constructed to shove
N1 right through N2, thereby getting rid of the intersection points, and to leave everything
fixed outside a small neighborhood of the Whitney disc.

To be a bit more precise, let us define a ‘standard Whitney model’ to be the following
configuration of two submanifolds intersecting transversely in Rn. Write Rn = Rk1−1 ×
R2 × Rk2−1 and let γ1 and γ2 be the two transversely intersecting curves in the plane R2

given by the axis y = 0 and the parabola y = x2 − 1. Let N1 be the k1-dimensional
submanifold Rk1−1 × γ1 × {0} ⊆ Rn, and let N2 be the k2-dimensional submanifold
{0} × γ2 × Rk2−1 ⊆ Rn. The proof of Whitney’s lemma now has two parts:

(a) There is an ambient isotopy of the standard Whitney model which is equal to the
identity off a compact set and which moves N1 to a new submanifold N ′1 of the
model which does not intersect N2;

(b) In the situation specified by the Whitney lemma, there is a neighborhood (in M )
of the Whitney disk which is diffeomorphic to the standard model.

The proof of (a) is clear: To do: so write it out To do

1To be precise, we can allow n > 5, k1 > 3, provided that if k2 < 3 we also assume that the induced map
π1(M \N2)→ π1(M) is an injection.
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FIGURE 1. The Whitney lemma

To prove (b) we use normal bundles and the tubular neighborhood theorem. We will
find an obstruction. So, in our original set-up, let D+ be an open disk slightly extending
the closed disk D (and similarly for γ+

i ); let ν be the normal bundle to D+ in M , and let
νi, i = 1, 2, be the normal bundles to γ+

i in Ni. These bundles are all over contractible
spaces, so they are all trivial. The bundles νi are sub-bundles of the restriction of ν to
γi. By the tubular neighborhood theorem, there are tubular neighborhoods of D+ and γ+

i

which are diffeomorphic to the (trivial) total spaces of the bundles ν and νi. Moreover,
with care we can arrange2 that the inclusions of the tubular neighborhoods correspond to
the inclusions of the sub-bundles νi in ν.

To embed our standard model, what we now need to do is to choose an orthonormal
frame {v1

1 , . . . , v
k1−1
1 , v1

2 , . . . , v
k2−1
2 } in the normal bundle ν in such a way that the vectors

v1 form an orthonormal frame for ν1 along γ1 and the vectors v2 form an orthonormal
frame for ν2 along γ2. The only question is whether ν1 and ν2 match up correctly at the
two points of intersection. Notice that ν1 = ν⊥2 at the intersection points, so we can define
a vector-bundle ξ over the circle γ whose fiber is ν1 over γ1 and ν⊥2 over γ2. A bundle
theory argument shows that we can find the frames we require if and only if the bundle ξ
is trivial. In general the bundle ξ defines a loop in G(k1 − 1, n− 2), the Grassmannian of
(k1 − 1)-planes in (n− 2)-space, and we need to know that this loop is null-homotopic.

Now our assumptions put us in the stable range for calculating the fundamental group
of the Grassmannian, so π1G(k1 − 1, n − 1) = π1(BO(k1 − 1)) = Z/2. There is just
a single element of {±1} to calculate, which can be detected by considering orientations,
so that ξ is trivial if and only if it is orientable. Since γ1 and γ2 intersect with opposite
orientations at P and P ′, ξ will be orientable if and only if the intersection indices ε(P )
and ε(P ′) are opposite. Since this was our assumption, the bundle ξ is trivial, and we can
embed the standard model and complete the proof. �

4.28. EXERCISE. Verify the assertion made above about the fundamental group of the
Grassmannian (you will need to use its description as G(k, n) = O(n)/O(k) × O(n −

2We use a Riemannian metric in which N1 and N2 are totally geodesic, and which is Euclidean near the
intersection points.
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k), together with the homotopy exact sequence). Also, compute π1G(1, 2) by the same
method; hence find another reason why the Whitney trick fails in dimension four.

For a very careful account of the Whitney lemma and its consequences one should
consult chapter 6 of Milnor’s book [23].





CHAPTER 5

Products and the Symmetric Construction

product-chapter
The purpose of this chapter is to review some more-or-less standard material about

the construction of products in cohomology theory, but to do so in the most functorial
way possible. For instance, we don’t just want to know that the cup product is (graded)
commutative; we want to keep track of the chain homotopies that make it commutative;
then we want to keep track of the chain homotopies between them, and so on for ever. It
will turn out that the whole of this elaborate algebraic structure is important for surgery
theory.

We adopt the following sign conventions. Given chain complexes C,D let C ⊗ D,
Hom(C,D) be the chain complexes with

(C ⊗D)n =
∑

p+q=n
Cp ⊗Dq , d(x⊗ y) = x⊗ dD(y) + (−)qdC(x)⊗ y ,

Hom(C,D)n =
∑

q−p=n
Hom(Cp, Dq) , d(f) = dDf + (−)qfdC .

5.1. Diagonal approximations and the cup product

Cup products in de Rham theory are represented simply by the exterior product of
differential forms. In fact, one can think of the exterior product of forms on a manifold
M in the following way: if we identify the (suitably completed) tensor product Ω∗(M)⊗
Ω∗(M) with the differential forms on the product manifoldM×M , then the wedge product
is simply the map on forms

Ω∗(M ×M)→ Ω∗(M)

induced by the diagonal inclusion M →M ×M .
When we use other homology and cohomology theories (such as singular or simplicial

theory), there is no longer such a canonical choice of diagonal approximation. Instead,
there are theorems which show that diagonal approximations exist and are unique up to an
appropriate notion of chain homotopy.

Let X 7→ C•(X) denote
(a) either the singular chain functor, from topological spaces X to chain complexes
C•(X) of abelian groups,

(b) or the simplicial chain functor, from ordered simplicial complexes X 1 to chain
complexes C•(X) of abelian groups.

da-def 5.1. DEFINITION. In either of the two cases above, a diagonal approximation is a
chain map

∆ = ∆X : C•(X)→ C•(X)⊗ C•(X),

natural in X , with the property that ∆(x) = x⊗ x on each 0-simplex x of X .

1That is, simplicial complexes with a specified ordering of the vertices

67
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DA1 5.2. PROPOSITION. Diagonal approximations exist, and any two diagonal approxi-
mations are naturally chain homotopic.

PROOF. The proof is an application of a standard technique from algebraic topology,
the method of acyclic models. It makes heavy use of the naturality of a diagonal approxi-
mation.

We are going to construct a diagonal approximation ∆ = {∆n} by induction on the
degree n. In degree zero, the formula ∆0(x) = x⊗x is given us by the definition. Suppose
inductively that natural maps

∆j : Cj(X)→ (C•(X)⊗ C•(X))j

have been defined for j < m and satisfy the chain map condition ∆j−1∂ = ∂∆j .
Let Xm be the m-simplex, considered either as a topological space (if we are working

with singular chains) or as a finite simplicial complex (if we are working with simplicial
chains). Let xm ∈ Cm(Xm) be the chain defined by the identity m-simplex. From the
chain map condition

∂
(
∆m−1∂xm

)
= 0 ∈ (C(Xm)⊗ C(Xm))m−2.

Thus ∆m−1∂xm is a cycle, and therefore it is a boundary (the complex C(Xm)⊗C(Xm) is
the tensor product of two acyclic complexes and is therefore acyclic itself). Choose some
ym ∈ (C(Xm)⊗ C(Xm))m such that

∆m−1∂xm = ∂ym

and define ∆m(xm) = ym. Because Cm(X) for a general space X is freely generated by
the images of the class xm under maps2 Xm → X , there is a unique natural extension of
∆m to all such spaces. The induction is complete.

The uniqueness assertion is proved by a similar argument, which we omit. �

awda-def 5.3. EXAMPLE. The Alexander-Whitney diagonal approximation for an ordered sim-
plicial complex is defined by the formula

∆[v0, . . . , vn] =

n∑
p=0

[v0, . . . , vp]⊗ [vp, . . . , vn]

where as usual we denote a simplex by its ordered set of vertices. There is an analogous
Alexander-Whitney formula for the singular complex.

As the reader is no doubt aware, it is Proposition 5.2 which is ‘responsible’ for the
well-definedness of cup and cap products in singular cohomology. For example a diagonal
approximation gives rise to a map (well-defined on the homology level)

Hn(X;Z)→ Hn(C•(X)⊗ C•(X)).

Combining this with the natural pairing

Hn(C ⊗D)⊗Hm(D∗)→ Hn−m(C)

we obtain the cap product

(5.4) Hn(X;Z)⊗Hm(X;Z)→ Hn−m(X;Z).

Similarly for the cup product

(5.5) Hp(X;Z)⊗Hq(X;Z)→ Hp+q(X;Z)

2Continuous maps if we are working with singular homology; simplicial maps if we are working with
simplicial.
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which corresponds to the exterior product in de Rham cohomology.
We shall need to think more carefully about the properties of diagonal approximations.

For instance, suppose that ∆ is a diagonal approximation and let

T = TX : Cp(X)⊗ Cq(X)→ Cq(X)⊗ Cp(X) ; x⊗ y 7→ (−)pqy ⊗ x
be the (natural) automorphism T : C•(X)⊗C•(X)→ C•(X)⊗C•(X) which switches the
two factors of the tensor product. Then, clearly, T ◦∆ is another diagonal approximation.
By the uniqueness part of Proposition 5.2, ∆ and T ◦∆ are naturally chain homotopic. In
particular, this gives us a proof that the cup-product is (graded) commutative on the level
of cohomology.

However, there is no reason to stop here. Let us denote our original diagonal approxi-
mation ∆ by ϕ0 and let us now denote by ϕ1 the natural chain homotopy that we have just
constructed, so that

(1− T )ϕ0 = ∂ϕ1 + ϕ1∂.

Since (1 + T )(1− T ) = 0, it follows from this equation that (1 + T )ϕ1 is itself a natural
chain map (raising degree by 1) from C•(X) to C•(X) ⊗ C•(X). Now we can extend
Proposition 5.2 as follows.

DA2 5.6. LEMMA. Any natural chain map raising degree by k > 0

C•(X)→ C•(X)⊗ C•(X)

is naturally chain homotopic to zero. �

5.7. EXERCISE. Prove Lemma 5.6, once again using the method of acyclic models.

This lemma allows us to continue our construction inductively: we build a natural
chain homotopy ϕ2 such that

(1 + T )ϕ1 = ∂ϕ2 − ϕ2∂.

Arguing inductively we can build a sequence of natural chain homotopies ϕn (raising
degree by n) such that for all n,

refdegrefdeg (5.8) (1 + (−1)n+1T )ϕn = ∂ϕn+1 + (−1)nϕn+1∂.

5.9. DEFINITION. A collection {ϕn : C•(X) → (C•(X) ⊗ C•(X))•+n|n ≥ 0} as
above will be called a refined diagonal approximation for X .

We have proved

DA3 5.10. PROPOSITION. Refined diagonal approximations exist and are unique up to
(natural) chain homotopy.

A refined diagonal approximation gives a chain map from C•(X) to the symmetric
chain complex associated to C•(X), which we shall now define. This symmetric con-
struction (and the associated but more subtle quadratic construction which we shall meet
later in this chapter) are closely related to the group (co)homology of the cyclic group Z2

with two elements. (The cyclic group in question is that generated by the transposition
automorphism T .)

W-lemma 5.11. LEMMA. The complex

· · · 1+T // Z[Z2]
1−T // Z[Z2]

1+T // Z[Z2]
1−T // Z[Z2]

��
Z
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gives a resolution of the trivial Z[Z2]-module Z by free Z[Z2]-modules. �

We denote this complex by W , so that Wn = Z[Z2] if n > 0, and d : Wn → Wn−1

equals 1 + (−1)nT .

group-hrem 5.12. REMARK. For any Z[Z2]-module K, we now have

Hn(Z2;K)) = Hn(W ⊗Z[Z2] K), Hn(Z2;K) = Hn(HomZ[Z2](W,K)),

by definition of group homology and cohomology.

Now let C be any finite-dimensional chain complex (of abelian groups). We can
considerC⊗C to be a chain complex of Z[Z2]-modules by making use of the transposition
involution T . Form the space of Z[Z2]-module homomorphisms HomZ[Z2](W,C⊗C); this
is now a double complex, which we make into a single complex by assigning total degree
p+ q − r to HomZ[Z2](Wr, Cp ⊗ Cq).

5.13. DEFINITION. The chain complex HomZ[Z2](W,C ⊗ C) so defined is the sym-
metric chain complex of the chain complex C.

Let

symdefsymdef (5.14) Qn(C) = Hn(HomZ[Z2](W,C ⊗ C))

be the homology groups of the symmetric chain complex of C. (Formally speaking these
are the hypercohomology groups of Z2 with coefficients in C ⊗C. Compare the definition
of ordinary group cohomology in Remark 5.12.)

5.15. DEFINITION. The groups Qn(C) defined by Equation 5.14 are called the sym-
metric groups of the chain complex C.

The symmetric groups are nonadditive:

Qn(C ⊕D) = Qn(C)⊕Qn(D)⊕Hn(C ⊗D) .

5.16. EXAMPLE. If C is a chain complex concentrated in dimension m

C : · · · → 0→ Cm → 0 . . .

then

Qn(C) =


ker(1− (−)mT : Hom(Cm, Cm)→ Hom(Cm, Cm)) if 2m = n
ker(1− (−)m+nT : Hom(Cm, Cm)→ Hom(Cm, Cm))

im(1 + (−)m+nT : Hom(Cm, Cm)→ Hom(Cm, Cm))
if 2m > n

0 if 2m < n .

�

The quadratic groups Qn(C) of C, to be defined and investigated shortly, are nothing
but the corresponding hyperhomology groups, i.e. the homology groups of the complex
W ⊗Z[Z2] (C ⊗ C).

Writing out explicitly the definition of the boundary operator in the symmetric chain
complex, we find that an n-cycle in that complex is given by a collection of chains ϕs ∈
(C ⊗ C)n+s satisfying the relations

∂ϕs + (−)n+s−1(ϕs−1 + (−1)sTϕs−1) = 0 ∈ (C ⊗ C)n+s−1, s = 0, 1, 2 . . .

with (by convention) ϕ−1 = 0. The quantities on the left of the equation give the
expression for the boundary of a general chain. Let C−∗ be the chain complex defined
by

(C−∗)r = Hom(C−r,Z) = C−r , dC−∗ = (dC)∗ .



5.1. DIAGONAL APPROXIMATIONS AND THE CUP PRODUCT 71

The chain map

C ⊗ C → Hom(C−∗, C) ; x⊗ y 7→ (f 7→ f(x)y)

(which is an isomorphism for finite f.g. free C) sends the cycle ϕ0 ∈ (C ⊗ C)n to a chain
map ϕ0 : Cn−∗ → C, where Cn−∗ is the chain complex defined by

(Cn−∗)r = Cn−r , dCn−∗ = (−)r(dC)∗ : Cn−r → Cn−r+1 .

Now if we compare this expression with Equation 5.8 we find that the maps ϕs
constituting a refined diagonal approximation exactly give a chain map

ϕX : C(X)→ HomZ[Z2](W, C•(X)⊗ C•(X))

from C•(X) to its symmetric chain complex, and this chain map is natural in X and is
unique up to natural chain homotopy. In particular there is a natural mapϕX : Hn(X;Z)→
Qn(C•(X)). This process, which produces a map from the homology of any space X to
the symmetric groups of its chain complex, is called the symmetric construction.

The symmetric groups Q•(C) are functorial for chain maps of complexes: a chain
map f : C → D induces

f% : Q•(C)→ Q•(D) ; ϕ 7→ (f ⊗ f)ϕ .

In fact we have

5.17. PROPOSITION. The symmetric groups are chain homotopy invariant: chain
homotopic chain maps C → D induce the same homomorphism on the symmetric groups.
In fact, they introduce chain homotopic chain maps

HomZ[Z2](W,C ⊗ C)→ HomZ[Z2](W,D ⊗D)

on the symmetric chain complexes of C and D.

One should regard this as slightly surprising, since the symmetric groups depend
‘nonlinearly’ on C.

PROOF. A chain map f : C → D induces f% = f ⊗ f on the symmetric chain
complexes. Let h be a chain homotopy between f and g, so that f − g = h∂ + ∂h. Define
a map h% on the symmetric chain complexes (raising degree by 1) by the formula

h%(ϕ)s+1 = (f ⊗ h)ϕs + (−)q(h⊗ g)ϕs + (−)q+s−1(h⊗ h)Tϕs−1

∈ (D ⊗D)n+s+1 =
∑
q
Dn−q+s+1 ⊗Dq .

We write the total differential d = ∂ + b, where b = 1± T . Then calculation yields

∂h% + h%∂ = (f ⊗ f − g ⊗ g) + ((f − g)⊗ h+ h⊗ (f − g)T )

and
bh% − h%b = ((f − g)⊗ h+ h⊗ (f − g))T.

Combining these shows that h% gives the desired chain homotopy. �

5.18. REMARK. Note in particular that the symmetric groups Q•(C•(X)) associated
to a space X do not depend on whether we use the singular or the simplicial model
for homology. For it is well known that the corresponding chain complexes are chain
homotopy equivalent.
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For our purposes it will turn out to be important to understand the behavior of the symmetric construction
under suspensions. Let us use the notation C̃•(X) for the reduced chain complex (singular or simplicial) of
a space X with a base-point. The familiar suspension isomorphism between H̃r(X) and H̃r+1(ΣX) in fact
comes from a natural chain equivalence

SC̃•(X)→ C̃•(ΣX),

where the ‘algebraic suspension’ S of a chain complex is defined by (SC)r+1 = Cr . Once again, this chain
equivalence can be constructed by the method of acyclic models.

Let ϕX : C̃(X)→ HomZ[Z2](W, C̃(X)⊗C̃(X)) denote the (reduced) symmetric construction forX . We
can ‘shift dimensions’ algebraically to define

SϕX : SC̃(X)→ HomZ[Z2](W,SC̃(X)⊗ SC̃(X))

by

(SϕX)s =

{
0 if s = 0
(ϕX)s−1 if s > 0

We can also consider the symmetric construction for the geometric suspension ΣX ,

ϕΣX : C̃(ΣX)→ HomZ[Z2](W, C̃(ΣX)⊗ C̃(ΣX)).

We thus obtain a diagram of chain complexes and maps

symsuspsymsusp (5.19) SC̃(X) //

��

HomZ[Z2](W,SC̃(X)⊗ SC̃(X))

��
C̃(ΣX) // HomZ[Z2](W, C̃(ΣX)⊗ C̃(ΣX))

in which the vertical maps are chain equivalences. This diagram need not commute. It does, however, commute
up to a natural chain homotopy. The non-triviality of this chain homotopy will give rise to ‘destabilization
obstructions’ which we shall ultimately identify as a generalization of the homotopy-theoretic destabilization
obstructions discussed in Section 3.3.

5.20. EXERCISE. Prove that the diagram 5.19 commutes up to natural chain homotopy. (Acyclic models
again.)

5.21. EXERCISE. Use the commutativity of the diagram to explain why it is that cup-products vanish in
the (reduced) cohomology of a suspension ΣX . Suppose that you know that Y is the suspension of some other
space X; how can you use the symmetric construction for Y to recover the cup-product structure of X?

5.2. Steenrod squares

The symmetric construction exactly encodes the algebra needed to define the classical
Steenrod squares. They are cohomology operations — natural transformations from the
cohomology of a space to itself.

Let X be a space. The symmetric construction for X gives a natural chain map

ϕX = {ϕn|n > 0} : C•(X)→ HomZ[Z2](W, C•(X)⊗ C•(X))

which is unique up to chain homotopy.
Let α ∈ Hom(C•(X), D) be a chain map from C•(X) to a complex D with mod 2

coefficients. Then α ⊗ α defines a map C•(X) ⊗ C•(X) → D ⊗ D, which vanishes on
the image of the b-differential b = 1± T in the symmetric (double) complex of C•(X). It
follows that α⊗ α defines a chain map

HomZ[Z2](W, C•(X)⊗ C•(X))→ D ⊗D.

Composing with the symmetric construction we obtain a family of chain maps

∆s = (α⊗ α)ϕr−s : C•(X)→ (D ⊗D)•+r−s, s = 0, 1, 2, . . . .
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In particular we can consider the case when α ∈ Cr(X;Z2) is a cocycle for Hr(X;Z2),
which we consider as a chain map from C•(X) to the complexD = SrZ2 having one copy
of Z2 in degree r and zero elsewhere. The symmetric construction then gives us cocycles

Cr+s(X)→ Z2 ; x 7→ 〈α⊗ α,ϕr−s(x)〉

which correspond (by definition) to the Steenrod squares, the Z2-module morphisms

Sqs : Hr(X;Z2)→ Hr+s(X;Z2) ; α 7→ (α⊗ α)ϕr−s

constructed using the natural identification Hr(X;Z2) = H0(Hom(C•(X), D)).

5.22. EXERCISE. Show that for any Z2-coefficient cohomology class y ∈ Hn(X;Z2) =
H0(Hom(C•(X;Z2), SnZ2)) the evaluation of the composite

Hm(X;Z2)
ϕX // Qm(C•(X;Z2))

y% // Qm(SnZ2) = Z2

on a homology class x ∈ Hm(X;Z2) is given by

y%ϕX(x) = 〈Sqm−n(y), x〉 ∈ Z2 .

�

The standard reference for Steenrod squares and their properties is the book of Steen-
rod and Epstein [30].

5.23. EXERCISE. The following are Steenrod and Epstein’s axioms for the Steenrod
squares:

(a) Sq0 = 1.
(b) If x ∈ Hm(X;Z2), then Sqm(x) = x ^ x.
(c) If x ∈ Hm(X;Z2), then Sqn(x) = 0 for n > m.
(d) The total squaring operation Sq = 1+Sq1 + Sq2 + · · · is a ring homomorphism

from H∗(X;Z2) to itself. (The multiplicative part of this statement, Sq(x ^
y) = Sq(x) ^ Sq(y), is called the Cartan product formula.)

Verify, from our definition, as many of these as you have the energy for. (a) and (b) should
be no problem, but (c) and (especially) (d) are trickier.

5.24. EXERCISE. Use our discussion of the relationship of the symmetric construction to suspensions
(specifically the fact that the diagram 5.19 commutes up to natural chain homotopy) to show that the Steenrod
squares commute with suspensions. (This can also be deduced from Steenrod and Epstein’s axioms. Remember
how we used the fact that Steenrod squares commute with suspensions in the proof of Proposition 3.22.)

bock-ex 5.25. EXERCISE. Show that Sq1 is the Bockstein homomorphism Hk(X;Z2)→ Hk+1(X;Z2) associ-
ated to the short exact sequence

0→ Z2 → Z4 → Z2 → 0

of coefficient groups.

5.26. EXERCISE. Verify that for s odd, the Steenrod squares Sqs are defined on integral cohomology (but
their images are still 2-torsion elements).

5.27. EXAMPLE. Let f : S2n−1 → Sn be any map. Let X be the CW-complex Sn ∪f D2n. This is
a CW-complex with three cells: 0-dimensional, n-dimensional (corresponding to a generator x of Hn(X;Z)),
and 2n-dimensional (corresponding to a generator y of H2n(X;Z)). There is an integer m such that

x ^ x = my ∈ H2n(X;Z).

This integer m is called the Hopf invariant of the map f . In the classical examples of the Hopf maps S3 → S2,
S7 → S4, and S15 → S8, X is a manifold (the complex, quaternionic or Cayley projective space) and thus
m = 1 by the unimodularity of Poincaré duality.
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The Steenrod squares satisfy certain relations (the Adem relations, see [30]). Using these relations it can be
shown that if Sqn(x) 6= 0 then Sqm(x) 6= 0 for some m 6 n which is a power of 2. It follows easily that if
f : S2n−1 → Sn has odd Hopf invariant, then n is a power of 2.

It is a theorem of Adams that, in fact, an odd Hopf invariant is possible only for n ∈ {1, 2, 4, 8}. The
easiest proof of this uses operations on K-theory; see [2].

One can use the Steenrod squares to define the Stiefel-Whitney characteristic classes
of a real vector bundle. Let V be an n-dimensional vector bundle over X . We will make
use of the Thom isomorphism for V (using Z2-coefficients in the nonoriented case, by
remark 3.40). Let

Φ: Hp(X;Z2)→ Hp+n(D(V ), S(V );Z2)

denote the Thom isomorphism and let α = Φ(1) ∈ Hn(D(V ), S(V );Z2) be the Thom
class.

5.28. DEFINITION. With the above notation, the Stiefel-Whitney classes of V are the
cohomology classes

wq(V ) = Φ−1(Sqq(α)) ∈ Hq(X;Z2).

It is plain from this definition that Stiefel-Whitney classes may be defined for a
spherical fibration — the ‘linear’ structure of a vector bundle plays no rôle.

5.29. REMARK. We can also define the total Stiefel-Whitney class w = 1 + w1 +
w2 + . . ., by analogy with the total Steenrod square. Cartan’s product formula for Steenrod
squares then becomes the Whitney sum formula

w(V ⊕W ) = w(V )⊕ w(W )

for Stiefel-Whitney classes.

5.30. EXERCISE. Show that if V is an oriented n-dimensional vector bundle over a
space X , then wn(V ) ∈ Hn(X;Z2) is the mod 2 reduction of the Euler class e(V ) ∈
Hn(X). (This is immediate from the definition 3.18 of the Euler class, and the fact that
Sqn(x) = x ^ x for x ∈ Hn(X;Z2).)

symbundle 5.31. EXAMPLE. (i) Given a map f : Sm+n−1 → Sn with m > 1 let X = Sn ∪f
Dm+n be the mapping cone, and let α = 1 ∈ H̃n(X) = Z, as represented by a chain map
α : C̃(X)→ SnZ. The evaluation of the composite

H̃m+n(X) = Z
ϕX // Qm+n(C̃(X))

α%
// Qm+n(SnZ)

on 1 ∈ H̃m+n(X) = Z defines an abelian group morphism

πm+n−1(Sn)→ Qm+n(SnZ) ; f 7→ ϕX(1) .

For even n = m this is the Hopf invariant map H : π2m−1(Sm)→ Q2m(SmZ) = Z.
(ii) Let V be an oriented n-dimensional vector bundle over a space X , and let α ∈
H̃n(Th(V )) be the Thom class. The evaluation of the composite

Hm(X) ∼= H̃m+n(Th(V ))
ϕTh(V )// Qm+n(C̃(Th(V )))

α%
// Qm+n(SnZ)

on a homology class x ∈ Hm(X) is given by

α%ϕTh(V )(x) =


〈e(V ), x〉
〈wm(V ), x〉
0

∈ Qm+n(SnZ) =


Z if m is even and n = m

Z2 if m is even and n > m

0 otherwise .
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(iii) As in Example 3.17 the Thom space of an oriented n-dimensional vector bundle V
over X = Sm is Th(V ) ∼= Sn ∪J(β) D

m+n, with β : Sm → BSO(n) the classifying
map. The map of (ii) with x = [Sm] ∈ Hm(Sm) = Z defines an abelian group morphism

πm(BSO(n))→ Qm+n(SnZ) ; α 7→ α%ϕTh(V )([S
m])

which factors through the J-homomorphism and the abelian group morphism of (i)

πm(BSO(n))
J // πm+n−1(Sn) // Qm+n(SnZ) .

For even n = m the map sends to V ∈ πm(BSO(m)) to 〈e(V ), [Sm]〉 = HJ(V ) ∈
Q2m(SmZ) = Z. �

Basic geometrical properties of the two lowest Stiefel-Whitney classes are given in:

5.32. PROPOSITION. Let V be an n-dimensional vector bundle.
(a) The first Stiefel-Whitney class w1 vanishes if and only if V is orientable, i.e. if

and only if the structural group of V can be reduced from O(n) to SO(n) (via
the inclusion SO(n)→ O(n)).

(b) Supposing that w1 = 0, the second Stiefel-Whitney class w2 vanishes if and only
if V is spinable, i.e. if and only if the structural group of V can be reduced from
SO(n) to Spin(n) (via the double cover Spin(n)→ SO(n)).

Note that (b) is a vital component of the analytic proof of Rochlin’s theorem, Re-
mark 2.23. However, it will not be used elsewhere in the book.

PROOF. (a) The exact sequence SO → O → Z2 of groups gives rise to a fibration of
classifying spaces

BSO → BO → BZ2 = K(Z2, 1)

where we recall that BZ2 can be taken as the real projective space RP∞. It follows that
a map X → BO can be lifted to BSO (i.e., the corresponding bundle can be oriented)
if and only if the composite map X → K(Z2, 1) is nullhomotopic. But homotopy
classes of maps to an Eilenberg-MacLane space correspond to cohomology classes, so we
conclude that there exists a characteristic class in H1(BO;Z2) which is the obstruction to
orientability. We now appeal to the calculation H1(BO;Z2) = Z2 (see [26]) which shows
that there is precisely one possibility for such a (nontrivial) characteristic class, namelyw1.

(b) This is similar: the exact sequence Z2 → Spin→ SO gives a fibration

K(Z2, 1)→ B Spin→ BSO.

Using K(Z2, 1) = ΩK(Z2, 2) we can rearrange this into a fibration

B Spin→ BSO → K(Z2, 2),

and arguing as before we see that the obstruction to ‘spinability’ of an oriented bundle is a
characteristic class in H2(BSO;Z2). Again, calculation shows that this group has rank 1,
generated by w2; so w2 is the desired obstruction. �

5.33. EXERCISE. Give an alternative proof of (a) above by making use of the relation-
ship between Sq1 and the Bockstein, Exercise 5.25.

5.34. REMARK. The reader may wonder if this series of results continues: can the vanishing of w1, w2

and w3 be interpreted in terms of some still more refined geometric structure on the tangent bundle? The answer
is no, at least if we understand ‘geometric structure’ in classical terms of finite Lie structural groups. However,
it is possible to interpret invariants related to H3 in terms of bundles with infinite-dimensional structure groups,
such as the projective unitary group of a Hilbert space. This is one side of the theory of gerbes — see [?].
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Let us now consider the particular case of the tangent bundle of a manifold Mn. (In
this case we refer for short to the Stiefel-Whitney classes of M .) In this case there is
another recipe for ‘characteristic’ cohomology classes due to Wu. Consider the linear map
Hn−s(M ;Z2)→ Z2 defined by

x 7→ 〈Sqs(x), [M ]〉.
Because Poincaré duality is nondegenerate, there is a unique class vs = vs(M) ∈
Hs(M ;Z2) which represents this map, so that

〈Sqs(x), [M ]〉 = 〈vs ^ x, [M ]〉.
The classes vs(M) (which are determined by the homotopy type and Poincaré duality
structure of M only) are called the Wu classes of M . The reader should check that this
definition does indeed generalize the definition of the Wu class appearing in the proof of
Proposition 2.14.

Now we shall show that the Wu classes can be expressed in terms of the Stiefel-
Whitney classes. (This fact was already used in the proof of Proposition 2.14.)

wu-thm 5.35. THEOREM. The total Wu class v = 1 + v1 + . . . of a manifold M is related to
the total Stiefel-Whitney class w of its tangent bundle by w = Sq(v). In detail we have

wq =

q∑
s=0

Sqq−s(vs).

In particular, the Wu classes v1, . . . , vs vanish if and only if the corresponding Stiefel-
Whitney classes w1, . . . , ws vanish.

PROOF. We shall need to know that the total Steenrod squaring operation is invertible.
To be precise, there is an operation Sq−1 in the Steenrod algebra (the algebra generated
by the Steenrod squares) such that Sq−1 Sq = Sq Sq−1 = identity. This follows from the
Adem relations, see [30, reference].

Embed the manifold M in a Euclidean space RN (Proposition 4.8) and let ν be the
normal bundle of M in RN . Because ν ⊕ TM is a trivial bundle, the total Stiefel-Whitney
class w of TM and the total Stiefel-Whitney class w̄ of ν are related by the equation

w ^ w̄ = 1.

This equation allows each of w, w̄ to be calculated in terms of the other (see [26, Prop ?]).
We are going to make some calculations using the Thom isomorphism for the nor-

mal bundle ν. This normal bundle has the special property that its top homology class
[ν] ∈ HN (Th ν,∞;Z2) is spherical ; that is, [ν] belongs to the image of the Hurewicz
homomorphism. Indeed, the Pontrjagin-Thom construction gives a map SN → Th ν
which generates the top homology class. From the naturality of cohomology operations
it follows that

〈γ(x), [ν]〉 = 0

for any x ∈ H∗(Th ν,∞;Z2) and any γ in the Steenrod algebra of positive degree. In
particular,

eq-taeq-ta (5.36) 〈Sq−1(x), [ν]〉 = 〈x, [ν]〉
for all x.

Now let α denote the Thom class for the normal bundle, and let y ∈ H∗(M ;Z2). We
have

〈Sq(x), [M ]〉 = 〈Sq(x) ^ α, [ν]〉 = 〈Sq−1(Sq(x) ^ α), [ν]〉 = 〈x ^ Sq−1(α), [ν]〉
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using the properties of the Thom isomorphism and the result of equation 5.36. On the other
hand, from the definition of the Wu class v we have

〈Sq(x), [M ]〉 = 〈x ^ v, [M ]〉 = 〈x ^ v ^ α, [ν]〉.

Comparing the two displayed equations gives us

v ^ α = Sq−1(α).

But by definition of the Stiefel-Whitney classes

w̄ ^ α = Sq(α).

Putting these together

α = Sq(v) ^ Sq(α) = Sq(v) ^ w̄ ^ α.

Therefore, Sq(v) ^ w̄ = 1, which means that Sq(v) = w as asserted. �

5.37. EXERCISE. Use Stiefel-Whitney classes to show that when n is a power of 2,
there is no immersion RPn → R2n−2. See [26]. (We shall prove, in Chapter 10, that
any closed n-manifold can be immersed in R2n−1. The example of RPn shows that this
immersion theorem is sharp.)

5.38. EXERCISE. Show that a ‘symmetric’ version of the above construction can also
be given, which maps πm−1(SO(q)) to Qm+q(SqZ). Show that the homomorphism thus
obtained factors through the J-homomorphism. In the case m = q = 2k, also relate it to
the Hopf invariant.

5.3. The quadratic construction

The material in this section will not be required until Chapter 14. The first-time reader
might well wish to postpone the study of this section at least until after reading Chapter 8.
The discussion there about the relationship between symmetric and quadratic forms may
be regarded as a special case of the ideas of this section, applied to chain complexes
concentrated in a single degree.

Let X and Y be spaces with base-points.

5.39. DEFINITION. A stable map fromX to Y is a map from ΣpX to ΣpY , p > 0; two
stable maps are stably homotopic if they become homotopic after some further suspensions.

Compare our discussion of stable vector bundles, in To do: Reference. We are To do
interested in deciding whether a stable map is stably homotopic to a genuine map X → Y .
If this is the case, we shall say that the given stable map can be destabilized.

5.40. EXAMPLE. Let V be a stably framed k-vector bundle over a base X . A stable
framing of V gives a stable map

Th(V )→ Th(εk) = Σk(X t •).

If the stable framing can be destabilized to a genuine framing (in the sense of Section 3.3),
then the stable map of Thom spaces can be destabilized to a genuine map.



78 5. PRODUCTS AND THE SYMMETRIC CONSTRUCTION

5.41. EXAMPLE. (A ‘symmetric’ destabilization obstruction) A stable map from X
to Y induces maps of reduced cohomology H̃∗(Y )→ H̃∗(X). Using the cup product we
obtain a commutative diagram

H̃m(Y )⊗ H̃n(Y )

��

// H̃m+n(Y )

��
H̃m(X)⊗ H̃n(X) // H̃m+n(X)

which will commute if our stable map can be destabilized. Thus the difference between
the two ways around the diagram gives a homomorphism

H̃k(Y ∧ Y )→ H̃k(X)

which is an obstruction to destabilization.

5.42. EXERCISE. Show that in the case of m-dimensional vector bundles over Sm,
this obstruction is the Euler number. Also, relate the obstruction to the Hopf invariant.

5.43. EXERCISE. For any pointed spaces A,B define a stable map F : Σ(A×B)→
Σ(A ∨ B) splitting the inclusion A ∨ B → A × B, and work out the destabilization
obstruction in this case. (For connected CW complexes A,B there is in fact a homotopy
equivalence Σ(A×B) ' Σ(A ∨B ∨ (A ∧B)).)

We are going to implement the idea of the preceding example on the level of chain
complexes and chain maps. Thus, let F : ΣpX → ΣpY be a stable map. Then F induces
a natural chain homotopy class of chain maps

f : C̃(X)→ C̃(Y )

and therefore there is a diagram of symmetric constructions

sq1sq1 (5.44) H̃n(X)
ϕX //

f∗
��

Qn(C̃(X))

f%

��
H̃n(Y )

ϕY // Qn(C̃(Y ))

This diagram need not commute in general; its non-commutativity is an obstruction to
destabilizing f . However, the fact that diagram 5.19 commutes up to natural chain
homotopy tells us that the difference e between the two paths around the diagram 5.44
will vanish after p applications of the algebraic shift map

S : Q∗(C̃(X))→ Q∗+1(SC̃(X))

defined by

(Sϕ)s =

{
0 if s = 0
ϕs−1 if s > 0

More is true, in fact. The natural chain homotopy expressing the commutativity of 5.19
gives us an algebraic ‘reason’ for the vanishing of the p-fold suspension of e and that
‘reason’, together with the diagram of chain maps underlying 5.44, combine to give us a
chain map

psi-eqpsi-eq (5.45) ψ : SC̃(X)→ C(Sp)
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from SC̃(X) to the algebraic mapping cone C(Sp) of

Sp : HomZ[Z2](W, C̃(X)⊗ C̃(X))→ S−p HomZ[Z2](W,S
pC̃(X)⊗ SpC̃(X))

5.46. REMARK. Recall that the algebraic mapping coneC(ϕ) of a chain mapϕ : C →
D is the chain complex with chain groups and differential

C(ϕ)r = Cr ⊕Dr+1, ∂C(ϕ) =

(
∂C 0
ϕ −∂D

)
.

There is a short exact sequence of chain complexes(C

0→ S−1(D)→ C(ϕ)→ C → 0

whose associated long exact homology sequence has boundary map f∗ : H∗(C)→ H∗(D) =
H∗−1(S−1(D)).

What is the algebraic mapping cone of the shift map Sp appearing above? Let
W [0, p−1] denote the truncation of the complexW (defined in Lemma 5.11) at the (p−1)st
stage. Thus W [0, p− 1]r is Z[Z2] if 0 6 r 6 p− 1, and is 0 otherwise. The nonzero maps
of the complex are the same as those appearing in W .

mapcone-prop 5.47. PROPOSITION. Let C be a finite-dimensional chain complex. Then the alge-
braic mapping cone of Sp : HomZ[Z2](W,C ⊗ C) → S−p HomZ[Z2](W,S

pC ⊗ SpC) is
naturally chain equivalent to the complex S(W [0, p−1]⊗Z[Z2] (C⊗C)). Moreover, under
this chain equivalence the natural chain map C(Sp)→ C(Sp+1) corresponds to the map
induced by W [0, p− 1]→W [0, p]. Thus there is defined an exact sequence

. . . // Qn+p+1(SpC) // Q[0,p−1]
n (C) // Qn(C)

Sp
// Qn+p(SpC) // Q[0,p−1]

n−1 (C) // . . .

with Q[0,p−1]
n (C) = Hn(W [0, p− 1]⊗Z[Z2] (C ⊗ C)).

PROOF. The suspension map is induced by applying HomZ[Z2](◦, C ⊗C) to the map
of complexes

W [−p,∞]→W [0,∞]

with the obvious notation. Thus its mapping cone is chain equivalent to

HomZ[Z2](W [−p,−1], C ⊗ C) ∼= W [0, p− 1]⊗Z[Z2] (C ⊗ C),

which gives the result. �

5.48. EXERCISE. (i) Work out the maps in the exact sequence of the special case
p = 1

. . . // Qn+2(SC) // Hn(C ⊗ C) // Qn(C)
S // Qn+1(SC) // Hn−1(C ⊗ C) // . . .
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noting that Q[0,0]
n (C) = Hn(C ⊗ C).

(ii) Check that there is defined a commutative braid of exact sequences

Hn−1(C ⊗ C)

&&

1−T

$$
Hn−1(C ⊗ C)

&&

$$
Qn−1(C)

Qn+1(SC)

88

S

&&

Hn−1(1− T )

88

&&
Qn(C)

S
88

S2

::
Qn+2(S2C)

88

::
Hn−2(C ⊗ C)

such that Hn−1(1− T )→ Qn−1(C)→ Qn−1(C).
(iii) Show that the morphisms πn(BSO(m))→ Qm+n(SmZ) of Example 5.31 (ii) extend
to a map of commutative braids of exact sequences from

πm+1(Sm+1) = Z

''

χ(Sm+1)=1+(−1)m+1

%%
πm(Sm) = Z

''

TSm

%%
πm(BSO(m))

πm+1(BSO(m+ 1))

77

''

πm(SO(m+ 2), SO(m))

77

''
πm+1(BSO(m))

77

99
πm+1(BSO(m+ 2))

77

99
πm(Sm+1) = 0

to the braid of (ii) with n = 2m+ 1, C = SmZ

H2m(SmZ⊗ SmZ) = Z

''

1−T=1+(−1)m+1

%%
H2m(SmZ⊗ SmZ) = Z

''

%%
Q2m(SmZ)

Q2m+2(Sm+1Z)

77

S

''

Q(−1)m(Z)

77

''
Q2m+1(SmZ)

S
77

S2

99
Q2m+3(Sm+2Z)

77

99
H2m−1(SmZ⊗ SmZ) = 0

involving the destabilization isomorphism πm(SO(m + 2), SO(m)) ∼= Q(−1)m(Z) of
Proposition 3.26 (ii). �
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5.49. DEFINITION. The quadratic groups Qn(C) of the chain complex C are the
homology groups of the complex W ⊗Z[Z2] (C ⊗ C)

Qn(C) = Hn(W ⊗Z[Z2] (C ⊗ C)) .

5.50. EXERCISE. Define morphisms Hn(C ⊗C)→ Qn(C), Qn(C)→ Hn(C ⊗C)
with composite 1 + T : Hn(C ⊗ C)→ Hn(C ⊗ C).

The quadratic groups are nonadditive:

Qn(C ⊕D) = Qn(C)⊕Qn(D)⊕Hn(C ⊗D) .

A chain map f : C → D induces a Z[Z2]-module chain map f⊗f : C⊗C → D⊗D,
and hence morphisms f% : Qn(C)→ Qn(D).

Note that the quadratic groups Qn(C) are the direct limit

Qn(C) = lim−→
p

Q[0,p]
n (C)

of the homology groups of the direct system of complexes

· · · →W [0, p− 1]⊗Z[Z2] (C ⊗ C)→W [0, p]⊗Z[Z2] (C ⊗ C)→ · · ·
that is implicit in Proposition 5.47.

5.51. DEFINITION. The quadratic construction of the stable map F : ΣpX → ΣpY

is the homomorphism ψF : H̃n(X)→ Qn(C̃(Y )) coming from the chain map ψ of Equa-
tion 5.45 followed by the identification of Proposition 5.47 and, finally, the stabilization
coming from the direct system of complexes displayed above.

If we omit the final stabilization step we may refer to the unstable quadratic construc-
tion ψF : H̃n(X)→ Q

[0,p−1]
n (C̃(Y )). In particular, the unstable quadratic construction for

a 1-stable map f : ΣX → ΣY is of the type

ψF : H̃n(X)→ Q[0,0]
n (C̃(Y )) = Hn(C̃(Y )⊗ C̃(Y )) .

¿From our previous discussion we have

5.52. PROPOSITION. If a stable map F : ΣpX → ΣpY can be destabilized (i.e.,
is stably homotopic to a genuine map X → Y ), then the quadratic construction ψF
associated to F is zero. �

5.53. REMARK. Let us contrast the quadratic and symmetric groups. As we previously
observed, a cycle for the symmetric group Qn(C) is represented by a collection of chains
ϕs ∈ (C ⊗ C)n+s, s = 0, 1, 2, . . ., satisfying

∂(ϕs) + (−1)n+s−1(1 + (−1)sT )ϕs−1 = 0.

By contrast a cycle for the quadratic group Qn(C) is represented by a collection of chains
ψs ∈ (C ⊗ C)n−s, s = 0, 1, 2 . . ., satisfying

∂(ψs) + (−1)n−s−1(1 + (−1)s+1T )ψs+1 = 0.

Given a cycle {ψs} for the quadratic group, the collection of chains

ϕs =

{
(1 + T )ψs (s = 0)
0 (s > 0)

is a cycle for the symmetric group; this process defines the symmetrization map (1 +
T ) : Qn(C) → Qn(C). The proof of proposition 5.47 shows that the image of the sym-
metrization map is equal to the kernel of the iterated suspensionQn(C)→ limkQ

n+k(SkC).
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The following result is an immediate consequence of our definitions.

5.54. PROPOSITION. Let F : ΣpX → ΣpY be a stable map inducing the chain map
f : C̃(X)→ C̃(Y ). Then the quadratic construction ψF : H̃n(X)→ Qn(C̃(Y )) is related
to the non-commutativity in the square of symmetric constructions 5.44 by

(1 + T )ψF = f%ϕX − ϕY f∗. �
The quadratic construction has the following sum and composition properties:

(a) IfF1, F2 : ΣpX → ΣpY are stable maps inducing the chain maps f1, f2 : C̃(X)→
C̃(Y ) then

ψF1+F2
= ψF1

+ ψF2
+ (f1 ⊗ f2)(ϕX)0 : H̃∗(X)→ Q∗(C̃(Y )) .

(b) If F : ΣpX → ΣpY , G : ΣpY → ΣpZ are stable maps inducing the chain maps
f : C̃(X)→ C̃(Y ), g : C̃(Y )→ C̃(Z) then

ψGF = g%ψF + ψGf∗ : H̃∗(X)→ Q∗(C̃(Z)) .

We shall now directly relate the quadratic construction to the destabilization ob-
struction for vector bundles of Section 3.3. Let V be an oriented m-dimensional vector
bundle over Sm, and let f be a stable framing for V . Recall from Definition 3.27 that the
destabilization obstruction d(V, f) is the class defined by this data in πm(SO, SO(m)) =
πm(SO(m+ 2), SO(m)) = Q(−)m(Z).

5.55. PROPOSITION. The stable framing f determines a stable map F : Σp Th(V )→
Σp Th(εm) = Σp(S2m ∨Sm) such that the quadratic construction ψF : H̃2m(Th(V ))→
Q2m(C̃(S2m ∨ Sm)) sends [Sm] ∈ Hm(Sm) = H̃2m(Th(V )) to

ψF [Sm] = d(V, f) ∈ Q2m(C̃(S2m ∨ Sm)) = Q(−)m(Z) .

PROOF. We can consider a cocycle representing the generator of H̃m(S2m ∨ Sm) as
a chain map from C̃(S2m∨Sm) to the chain complex SmZ having a single Z in dimension
m. The composition

Z
∼= // H̃2m(ThV ) // Q2m(C̃(S2m ∨ Sm))

∼= // Q2m(SmZ) = Q(−)m(Z)

produces an element of the group Q(−)m(Z) defined in Section 3.3. Thus we have used
the quadratic construction to associate an element ofQ(−)m(Z) to the stably framed vector
bundle (V, f). Every stable framing f : V ⊕ εp ∼= εm+p can be destabilized to a 1-stable
framing f̂ : V ⊕ ε ∼= εm+1. The destabilization obstruction d(V, f) ∈ Q(−)m(Z) is the
image of the destabilization obstruction d̂(V, f̂) ∈ Z of Exercise 3.28 (ii). �

EHP 5.56. REMARK. (i) The suspension map in the homotopy groups of a connected space
X with a base point ∗ ∈ X is traditionally denoted by

E : πn(X)→ πn+1(ΣX) ; f 7→ Σf

(suspension = Einhängung in German). The mapE is induced by the inclusionX ⊂ ΩΣX
in the loop space of the suspension of X . Define the identification space

J2(X) = (X ×X)/{(x, ∗) ∼ (∗, x) |x ∈ X} ,
the second stage of the combinatorial model for ΩΣX constructed by I.M. James (Reduced
product spaces, Ann. of Maths. 62 (1955), 170-197)), which fits into a cofibration
sequence X → J2(X)→ X ∧X . Define also the space

J ′2(X) = ((X × [0, 1]) ∪ (X ×X))/{(x, 0) ∼ (x, ∗), (x, 1) ∼ (∗, x) |x ∈ X} ,
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such that the projection J ′2(X) → J2(X) is a homotopy equivalence (assuming that the
basepoint ∗ ∈ X is nondegenerate). The map

J ′2(X)→ ΩΣX ; (x, y) 7→
(
s 7→

{
(2s, x) if 0 6 s 6 1/2

(2s− 1, y) if 1/2 6 s 6 1

)
,

(x, t) 7→
(
s 7→

{
(2s− t, x) if t/2 6 s 6 (1 + t)/2

∗ otherwise

)
induces the injection

H̃∗(J
′
2(X)) = H̃∗(J2(X)) = H̃∗(X)⊕ H̃∗(X ∧X)→ H̃∗(ΩΣX) =

∞⊕
n=1

H̃∗(∧
n
X) .

The unstable quadratic construction on the stable map

G : Σ(ΩΣX)→ ΣX ; (s, ω) 7→ ω(s)

is the projection ψG : H̃∗(ΩΣX) → H̃∗(X ∧ X), with the following universal property.
The unstable quadratic construction on a stable map F : ΣY → ΣX with adjoint

adj(F ) : Y → ΩΣX ; y 7→ (s 7→ F (s, y))

is given by the composite

ψF : H̃∗(Y )
adj(F )∗ // H̃∗(ΩΣX)

ψG // H̃∗(X ∧X) .

(The work of Milgram, May etc. provided similar combinatorial models for the iterated
loop spaces ΩnΣnX (n > 1) as well as the infinite loop space QX = lim−→n

ΩnΣnX with
homotopy groups the stable homotopy groups π∗(QX) = πs∗(X)).
(ii) If X is an (m − 1)-connected pointed space the map J2(X) → ΩΣX is (3m − 2)-
connected, and for n 6 3m− 2 the homotopy exact sequence

. . . // πn(X) // πn(J2(X)) // πn(J2(X), X) // πn−1(X) // πn−1(J2(X)) // . . .

becomes the EHP exact sequence

. . . // πn(X)
E // πn+1(ΣX)

H // πn(X ∧X)
P // πn−1(X)

E // πn(ΣX) // . . .

with H a Hopf invariant map. The homotopy class of a map f : Sn−1 → X together
with a null-homotopy g : Σf ' ∗ : Sn → ΣX is an element (f, g) ∈ πn(X ∧ X). The
Hurewicz image h(f, g) ∈ H̃n(X ∧ X) has the following description in terms of the
unstable quadratic construction. Let Y = X ∪f Dn, and use g to define a stable map

F : ΣSn = Sn+1 → ΣX ∨ Sn+1 ' ΣX ∪Σf D
n+1 ' ΣY .

The unstable quadratic construction ψF : H̃n(Sn) → H̃n(Y ∧ Y ) sends [Sn] ∈ H̃n(Sn)
to

ψF [Sn] = h(f, g) ∈ H̃n(Y ∧ Y ) = H̃n(X ∧X) .

In particular, if f = ∗ : Sn−1 → X then a null-homotopy g : Σf ' ∗ is just a map
g : Σ(Sn) = Sn+1 → ΣX , and F = g : Sn+1 → ΣX , with the Hurewicz image of
H(g) ∈ πn(X ∧ X) given by ψg[S

n] ∈ H̃n(X ∧ X). For X = Sm, n = 2m the
map H : π2m+1(Sm+1) → π2m(Sm ∧ Sm) = Z is given by the Hopf invariant, and
P : Z→ π2m−1(Sm) is given by P (1) = J(TSm) = [ι, ι].
(iii) There is a natural transformation of exact sequences
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. . . // πm+1(BSO(m+ 1)) //

J

��

Z

∼=

��

TSm // πm(BSO(m))

J

��

// πm(BSO(m+ 1)) //

J

��

. . .

. . . // π2m+1(Sm+1)

��

H // π2m(Sm ∧ Sm)
P //

∼=
��

π2m−1(Sm)

��

E // π2m(Sm+1) //

��

. . .

. . . // Q2m+2(Sm+1Z) // H2m+2(Sm+1Z⊗ Sm+1Z) // Q2m+1(SmZ)
S // Q2m+2(Sm+1Z) // . . .

with the middle row the EHP sequence for X = Sm. The destabilization obstruction
d(V, f) ∈ Q(−)m(Z) (3.27) of an m-dimensional vector bundle V over Sm with a framing
f̂ : V ⊕ ε ∼= εm+1 is the image of the destabilization obstruction d̂(V, f̂) = ψF [S2m] ∈ Z
(3.28), with F : S2m+1 → Σ Th(V ) = Σ(Sm∪J(V )D

2m) as in (i) and V ∼= d̂(V, f̂)TSm.
It is known from the work of Bott and Milnor that TSm is trivial if and only ifm = 1, 3, 7.
It is known from the work of Adams that H : π2m+1(Sm+1) → Z is onto if and only if
m = 1, 3, 7. For odd m 6= 1, 3, 7 im(H) = 2Z. For even m H = 0, and d̂(V, f̂) =
〈e(V ), [Sm]〉/2 ∈ Z (cf. Proposition 3.29).
(iv) The quadratic construction will be used in Chapter ?? below to express the number
µ(f) ∈ Q(−)m(Z) of double points of an immersion f : Sm →M2m in terms of algebraic
topology. For any p > 1 it is possible to deform f × 0: Sm → M2m × Rp by a regular
homotopy to an embedding with normal bundle νf ⊕ εp : Sm → BSO(m + p). The
Pontrjagin-Thom construction on the embedding is a stable map F : Σp(M t {•}) →
Σp Th(νf ). The quadratic construction

ψF : H2m(M)→ Q2m(C̃(Th(νf ))) = Q2m(SmC(Sm)) = Q2m(SmZ) = Q(−)m(Z)

sends [M ] ∈ H2m(M) to ψF [M ] = µ(f) ∈ Q(−)m(Z). In particular, for any m > 1

the Whitney immersion f : Sm → S2m with a single double point has normal bundle
νf = −TSm : Sm → BSO(m). The deformation of f × 0: Sm → S2m × R to
an embedding corresponds to the standard stable framing f̂ : TSm ⊕ ε ∼= εm+1 . The
Pontrjagin-Thom map F : Σ(S2m t {•})→ Σ Th(νf ) has

ψF [S2m] = µ(f) = 1 ∈ Q2m(C̃(Th(νf ))) = Q2m(SmZ) = Q(−)m(Z) .

�

Just as the symmetric construction is a chain level version of the Steenrod squaring
operations, so the quadratic construction is a chain level version of the functional Steenrod
squares, which are defined for any map f : X → Y to be the Z2-module morphisms

Sqsf : ker(

(
f∗

Sqs

)
: Hr(Y ;Z2)→ Hr(X;Z2)⊕Hr+s(Y ;Z2))

→ coker(
(
f∗ Sqs

)
: Hr+s−1(Y ;Z2)⊕Hr−1(X;Z2)→ Hr+s−1(X;Z2))

constructed by diagram chasing in the natural transformation of exact sequences

. . . // Hr−1(Y ;Z2)

Sqs

��

f∗ // Hr−1(X;Z2)

Sqs

��

// Hr(f ;Z2) //

Sqs

��

Hr(Y ;Z2)
f∗ //

Sqs

��

Hr(X;Z2) //

Sqs

��

. . .

. . . // Hr+s−1(Y ;Z2)
f∗ // Hr+s−1(X;Z2) // Hr+s(f ;Z2) // Hr+s(Y ;Z2)

f∗ // Hr+s(X;Z2) // . . .
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5.57. EXERCISE. Let F : ΣpX → ΣpY be a stable map inducing a chain map
f : C̃(X)→ C̃(Y ). Show that for any Z2-coefficient cohomology class

y ∈ H̃n(Y ;Z2) = H0(Hom(C̃•(Y ;Z2), SnZ2)) = [Y,K(Z2, n)]

and m > n the evaluation of the composite

H̃m(X;Z2)
ψF // Qm(C̃•(Y ;Z2))

y% // Qm(SnZ2) = Z2

on a homology class x ∈ H̃m(X;Z2) is given by

y%ψF (x) = 〈Sqm−n+1
h (Σpι),Σpx〉 ∈ Z2

with h = (Σpy)F − Σp(f∗y) ∈ [ΣpX,ΣpK(Z2, n)] and ι ∈ Hn(K(Z2, n);Z2) = Z2

the generator.





CHAPTER 6

Poincaré duality and intersections

intersect-chap-a
At the beginning of Chapter 1 we sketched a proof of the Poincaré duality theorem

with real coefficients, using de Rham theory. In this chapter we are going to develop a
more general approach to Poincaré duality. We begin by abstracting the main idea of the
Mayer-Vietoris proof of duality sketched in Remark 1.3.

Given a finite open cover U of the closed manifold W , we can build a simplicial
complex called the nerve N(U) of U as follows: the vertices of the nerve are the members
of U , and U1, . . . , Uk ∈ U span a simplex if and only if their intersection U1 ∩ · · · ∩ Uk is
a non-empty subset of W . Let F be a functor which attaches to each open subset U of X a
chain complex (of real vector spaces) and which is covariant for inclusions; the examples
we have in mind are F1(U) = Ωn−∗c (U) the compactly supported forms on U (with a
shift of grading), and F2(U) = Ωc∗(U) the compactly supported currents on U . Then to
each simplex of N(U) is associated a chain complex (via the functor F ) and to each face
map is associated a morphism of chain complexes. These data allow us to define a double
complex (as in [7]) combining the given differentials on the functor F and the simplicial
differential on the nerve N(U). The duality map D defines a natural transformation of
functors F1 → F2 and the key point in the proof of Poincaré duality is a ‘local-to-global’
principle stating that if such a natural transformation is an isomorphism ‘locally’ — over
every simplex of N — then it is an isomorphism ‘globally’ — on the total complex of the
double complex. We will develop these ideas in the next section.

6.1. Geometric modules and duality

In order to understand the structure of Poincaré duality, and for other purposes, it will
be helpful to develop some ‘geometric algebra’ — algebra carried out on objects (such as
modules) which are ‘located’ at some point of a ‘control space’. In this section we shall
develop one version of this idea, which is of central importance in modern topology.

Let K be a finite simplicial complex and let R be a ring.

6.1. REMARK. For the purposes of this chapter it will suffice to take R to be a commutative ring, in fact
we shall usually be working with R = Z. However, our algebra does not depend strongly on the commutativity
of R and the reader should note for future reference that all our statements remain valid for general rings. Over a
general ring R, the term ‘module’ will refer to a right module.

6.2. DEFINITION. A geometric R-module M over K (or (R,K)-module for short) is
a list {Mσ} of R-modules parameterized by the simplices of K. The total module of M is
the direct sum

⊕
σMσ (over all simplices of K). Usually we’ll use the same notation M

for the total module as we do for the geometric module itself. We will call Mσ the part of
M anchored at σ. A geometric module M is free if each Mσ is free.

6.3. DEFINITION. A geometric morphism or simply morphism ϕ : M → N of
(R,K)-modules is a list {ϕσ,τ} of R-module morphisms Mσ → Nτ , such that ϕσ,τ is
zero unless σ 6 τ (that is, unless σ is a face of τ ). We also use the notation ϕ for the total

87
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morphism induced by ϕ, that is the direct sum
⊕

σ,τ ϕσ,τ considered as a morphism on the
total modules.

Geometric R-modules and morphisms form an (additive) category.

6.4. EXAMPLE. Here is a key example. Let Cq(K) be the geometric module whose
component over a simplex σ is R if σ is a q-simplex, and 0 otherwise. The total module
of this geometric module may be identified with the space of simplicial q-cochains of K
(with coefficients in R). Moreover, the simplicial cochain complex of K,

C0(K;R) // C1(K;R) // C2(K;R) // · · ·

now becomes a complex in the category of geometric modules. (This is because the
coboundary of a simplex σ is a sum of simplices of which σ is a face.)controlled-cochain

6.5. EXAMPLE. Let X be a topological space, U a finite open cover, K = N(U)
the nerve of U (as in Remark ??). Suppose that Γ is a sheaf of R-modules over X . Let
Cq(U ; Γ) be the geometric (R,K)-module which sends each q-simplex σ = (U1, . . . , Uq)
to the R-module Γ(U1 ∩ · · · ∩Uq), and is zero on simplices of other dimensions. The total
module of this geometric module may be identified with the space of C̆ech q-cochains of
the cover U with coefficients in Γ. Moreover, the C̆ech cochain complex of the cover

C0(U ; Γ)→ C1(U ; Γ)→ C2(U ; Γ)→ · · ·
now becomes a complex in the category of geometric modules.

6.6. EXERCISE. Let M and N be geometric (R,K)-modules. Show that the space
Hom(R,K)(M,N) of geometric morphisms from M to N is itself a geometric module,
where we consider the component ϕσ,τ to be anchored at τ . Show that composition on
the left with a geometric morphism M ′ → M , or on the right with a geometric morphism
N → N ′, themselves define geometric morphisms

Hom(R,K)(M,N)→ Hom(R,K)(M
′, N), Hom(R,K)(M,N)→ Hom(R,K)(M,N ′),

respectively.

Our definition of geometric morphism has a certain asymmetry, which is why it is
easier to build cohomological examples than homological ones. However, homology can
also be incorporated into the picture by the device of dual cell decomposition, which goes
right back to Poincaré’s proof of Poincaré duality.

Let K be a simplicial complex, as before. Remember that the barycentric subdivision
K ′ of K may be defined (abstractly) as the simplicial complex whose vertices correspond
to the simplices of K, with a simplex of K ′ being a flag of simplices of K. That is to
say, the simplices of K ′ are spanned by vertices σ̂0, σ̂1, . . . , σ̂q corresponding to simplices
σ0, σ1, . . . , σq of K having σ0 < σ1 < · · · < σq . The figure shows the geometric picture
of a barycentric subdivision.

As a matter of terminology, if [σ̂0, . . . , σ̂q] is a simplex of K ′, we shall refer to the
simplex σ0 of K as its root and the simplex σq as its tip. If σ is a simplex of K, its dual
cell D(σ,K) is the subcomplex of K ′ comprising those simplices whose root σ0 satisfies
σ 6 σ0; the condition of strict inequality σ < σ0 defines a subcomplex of the dual cell
which is called its boundary ∂D(σ,K). The dual cell is contractible; there is an obvious
‘linear’ contraction to the vertex represented by σ.

6.7. EXAMPLE. LetK be a finite simplicial complex. Let Cq(K ′, R) be the geometric
(K,R)-module which assigns to a simplex σ ∈ K the free R-module generated by those
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FIGURE 1. Barycentric subdivision, and a dual cell

q-simplices of K ′ whose root is σ. As an R-module, this is canonically isomorphic to the
q’th relative simplicial chain module of the pair (D(σ,K), ∂D(σ,K)). The total module of
the geometric module Cq(K ′, R) is just the module of simplicial chains on K ′. Moreover,
the simplicial chain complex of K ′

C0(K ′;R) C1(K ′;R)oo C2(K ′;R)oo · · ·oo

is now a complex in the category of geometric (R,K)-modules. This is because a face
of a simplex of K ′ must have as vertices only simplices of K which have the root of the
original simplex among their faces.controlled-chain

We have constructed various chain complexes in the category of geometric modules.
We will need a ‘local-global principle’ for deciding when two such complexes are chain
equivalent.

6.8. DEFINITION. Let ϕ be a morphism of geometric (R,K)-modules. It is said to
be diagonal if ϕσ,τ = 0 unless σ = τ . For a general morphism ϕ, its diagonal part is the
diagonal morphism ϕ̂ defined by

ϕ̂σ,τ =

{
ϕσ,τ if σ = τ

0 otherwise

6.9. EXERCISE. Check that this process of ‘taking the diagonal part’ is functorial (it
preserves composition of morphisms). The reason is essentially that the map from upper
triangular matrices to their diagonal part preserves matrix multiplication.

6.10. EXERCISE. Show that an (R,K)-module morphism is an isomorphism if and
only if its diagonal part is an isomorphism. (Hint: If the diagonal part of ϕ is invertible,
show that its inverse defines an (R,K)-module morphism ψ such that ϕψ− 1 and ϕψ− 1
are nilpotent. Remember that K is a finite complex.)invert-ex

We can define a category (call it the category of ‘diagonal modules’) whose objects are
geometric modules and whose morphisms are diagonal morphisms. The exercise shows
that taking the diagonal part defines a functor from the category of geometric modules
to the category of diagonal modules. In particular we can take the diagonal part of a
chain complex of geometric modules, obtaining an associated chain complex of diagonal
modules.
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Notice that the total complex of a chain complex of diagonal modules splits into
a direct sum of subcomplexes, one for each simplex σ. This means that properties of
complexes of diagonal modules are ‘local’ — they can be verified one simplex at a time.

homology-ex1 6.11. EXAMPLE. The diagonal part of the cochain complex C•(K;R), considered
as a complex of geometric modules as in Example 6.4, assigns to each q-simplex σ the
complex which has one free generator in dimension q and zero boundary maps. The
diagonal part of the chain complex C•(K

′;R), considered as a complex of geometric
modules as in Example 6.7, assigns to each q-simplex σ the relative chain complex of
the pair (D(σ,K), ∂D(σ,K)) (the nontrivial statement here is that the diagonal part of the
boundary map is exactly the relative boundary map of the pair).

We can now state the local-global principle

loctoglob 6.12. PROPOSITION. A finite chain complex of geometric (R,K)-modules is chain
contractible (in the category of geometric modules) if and only if its diagonal part is chain
contractible (in the category of diagonal modules). Similarly, a chain map between such
complexes is a chain equivalence if and only if the induced map on the diagonal parts is a
chain equivalence.

PROOF. Let (C, d) be a finite chain complex of geometric modules. It is clear that if
C is chain contractible then so is Ĉ. Conversely, suppose that Ĉ is chain contractible and
let Γ̂ : Ĉ → Ĉ be a chain contraction, defined by diagonal morphisms Γ̂ : Cr → Cr+1

such that
d̂Γ̂ + Γ̂d̂ = 1.

The morphisms α defined by

α = dΓ̂ + Γ̂d

have diagonal parts α̂ = 1, so that they are automorphisms by Exercise 6.10. Moreover,
the calculation dα = dΓ̂d = αd shows that they are chain maps. Then the morphisms
Γ = Γ̂α−1 satisfy

dΓ + Γd = 1,

and so they define a chain contraction of C.
The second part of the proposition follows from the first by considering mapping

cylinders. �

subdivide-cochain 6.13. EXERCISE. Show that the cochain complex C•(K ′;R) of the barycentric sub-
division of K becomes a chain complex of (R,K)-modules if we take each simplex
[σ̂0, . . . , σ̂q] of K ′ to be anchored at its tip σq .

Show that the barycentric subdivision chain map [8, IV.17] defines a chain equivalence
of complexes of (R,K)-modules between C•(K;R) and C•(K ′;R).

We are now going to discuss the cap product in the context of geometric modules.
To do so we need a diagonal approximation (Definition 5.1) and we shall make use of the
specific diagonal approximation given by Alexander and Whitney (Example 5.3) Recall
that to define it, we must first order (arbitrarily) the vertices of the complex K, and decide
to represent each simplex by a symbol [v0 · · · vq] where the vertices appear in increasing
order. The Alexander-Whitney diagonal approximation is the chain map

C•(K)→ C•(K)⊗ C•(K)



6.2. GEOMETRIC POINCARÉ DUALITY 91

defined by

[v0 · · · vq] 7→
q∑
i=0

[v0 · · · vi]⊗ [vi · · · vq].

The tensor products are taken over R. Here is one point where the assumption that R is commutative does
make our life easier; see Chapter 8 for the appropriate notions of tensor product over noncommutative rings with
involution.

We are going to apply the Alexander-Whitney diagonal approximation not to the
complex K itself but to its barycentric subdivision K ′. In order to do this we must order
the vertices of K ′. Remembering that each vertex of K ′ corresponds to a simplex of K,
we order these by increasing dimension:

0-simplices of K < 1-simplices of K < · · · ;

and within each fixed dimension we order the simplices lexicographically. This choice of
ordering gives us a chain level cap product mapcapprod

(6.14) C•(K ′;R)→ HomR(C•(K ′;R), C•(K ′;R))

which is defined by

[σ̂0 · · · σ̂q] 7→ ϕ([σ̂0 · · · σ̂p])[σ̂p · · · σ̂q]

if ϕ is a p-cochain.

controlled-capprod 6.15. PROPOSITION. The pairing of Equation 6.14 in fact defines a (R,K)-module
chain map

C•(K ′;R)→ Hom(R,K)(C•(K ′;R), C•(K ′;R))

where the chain and cochain complexes are made into geometric modules as in Exam-
ples 6.7 and 6.13.

PROOF. There are two statements to verify here,

(i) that for a fixed simplex [σ̂0 · · · σ̂q] of K ′ the map C•(K ′;R) → C•(K ′;R)
defined by ϕ 7→ ϕ([σ̂0 · · · σ̂p])[σ̂p · · · σ̂q] is an (R,K)-module homomorphism,

(ii) and that the map assigning to [σ̂0 · · · σ̂q] the (R,K)-module homomorphism
defined in item (i) is itself an (R,K)-module homomorphism from C•(K ′;R)
to Hom(R,K)(C•(K ′;R), C•(K ′;R)).

It is easy to check these facts: remember that a simplex of the chain complex of K ′ is
anchored at its root, whereas a simplex of the cochain complex is anchored at its tip. �

6.16. EXERCISE. Show that the map

C•(K ′;R)→ Hom(R,K)(C•(K ′;R), C•(K ′;R))

defined in the proposition is in fact an (R,K)-module chain equivalence (use Proposi-
tion 6.12).

6.2. Geometric Poincaré Duality

Let K be a finite complex. For a vertex v of K, let K 	 v denote the subcomplex of
K comprising all those simplices which do not have v as a vertex (this is the complement
of the ‘open star’ of v in K).
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6.17. DEFINITION. Let R be a commutative ring (usually Z). The complex K is a
(combinatorial) homology n-manifold (with coefficients R) if

Hk(K ′,K ′ 	 σ̂;R) =

{
R when k = n

0 otherwise

for every vertex σ̂ of the barycentric subdivision K ′.homology-mfd-def

6.18. EXERCISE. A compact Hausdorff spaceX is called a homology n-manifold if, for each point x ∈ X ,
one has

Hk(X,X \ {x};R) =

{
R when k = n

0 otherwise

using singular homology. Show that the complex K is a homology manifold by our definition in 6.17 if and only
if its geometric realization |K| is a homology manifold in the topological sense above.

6.19. EXAMPLE. Every compact smooth manifold can be triangulated (that is, it is
homeomorphic to the geometric realization of a finite simplicial complex). This result,
which is far from trivial, is due to Cairns and Whitehead [33], and it can also be deduced
from the handlebody decomposition of smooth manifolds which will be sketched in the
appendix. Using excision and local coordinate charts, it is easy to check that a smooth
manifold is a homology manifold, in the topological sense of the previous exercise.
Therefore, by that exercise, any triangulation of a smooth manifold is a combinatorial
homology manifold.

6.20. DEFINITION. Let K be a homology n-manifold (with coefficients R). An
orientation for K is a homology class [K] ∈ Hn(K ′;R) (called a fundamental class for
the orientation) which restricts to a generator of Hn(K ′,K ′ 	 σ̂;R) ∼= R for each vertex
σ̂ of K ′.

Suppose that K is an oriented homology n-manifold, and pick a specific cycle repre-
senting the fundamental class [K]. By Proposition 6.15, cap-product with [K] defines an
(R,K)-module chain map from Cn−•(K ′;R) to C•(K ′;R).

6.21. THEOREM (Geometric Poincaré Duality). For an oriented homology n-manifold
K as above, the (R,K)-module chain map defined by cap product with the fundamental
class

Cn−•(K ′;R)→ C•(K ′;R)

is a chain equivalence (in the category of (R,K)-modules).

6.22. REMARK. In particular, cap-product with [K] defines a chain equivalence in
the category of R-modules, and therefore an isomorphism of homology and cohomology
groups Hn−∗(K;R) → H∗(K;R), which is the classical statement of Poincaré duality.
But the local form of duality given by this theorem is more precise.

PROOF. According to Proposition 6.12 above, it will be enough to show that cap-
product with [K] gives a chain equivalence on the level of the diagonal parts of the (R,K)-
module chain complexes Cn−•(K ′;R) and C•(K ′;R).

The diagonal part of C•(K ′;R) anchored over a k-simplex σ is the simplicial chain
complex of the dual cell D(σ,K) relative to its boundary (see Example 6.11). Let us note
that the k-fold suspension of the pair (D(σ,K), ∂D(σ,K)) is the pair consisting of the
closed star of σ̂ relative to its boundary, or equivalently (by excision) the pair (K ′,K ′	 σ̂).
See Figure 2. In particular,H•(D(σ,K), ∂D(σ,K)) isR in dimension n−k, 0 elsewhere.
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FIGURE 2. Suspension of the dual cell gives a star suspstar

Similarly, the diagonal part of C•(K ′;R) anchored over σ is spanned by all those
simplices of K ′ which have σ as their tip. Let (R)k denote the cochain complex that has
a single copy of R in dimension k, and zero elsewhere. There is a chain map (R)k →
C•(K ′;R)σ given by sending the generator to the sum of all the k-simplices of K ′ whose
tip is σ; by Exercise 6.13, this chain map is a chain equivalence. Thus the cohomology of
the diagonal part of C•(K ′;R)σ is R in dimension k and 0 elsewhere.

One sees geometrically that the cap-product with the cohomology generator described
above is just the suspension isomorphism

Hr(M,M 	 σ̂;R)→ Hr−k(D(σ,K), ∂D(σ,K)).

Taking r = n this tells us that cap-product with the fundamental homology class maps
the cohomology of the diagonal cochain complex anchored at σ isomorphically to the
homology of the diagonal chain complex anchored at σ. Finally, we recall that a chain
map between free chain complexes which induces a homology isomorphism is necessarily
a chain equivalence. �

6.23. REMARK. By elaborating these techniques slightly we can also prove the Alexan-
der duality theorem: Let K be an oriented combinatorial homology n-manifold, and
let L be a subcomplex of K ′. Then cap-product with the fundamental class induces an
isomorphism of (R,K)-module chain complexes

Cn−•(L;R)→ C•(K ′,K ′ 	 L;R).

Notice that when L consists of a single vertex, this is just the definition of orientation.

Although we have followed the classical approach to duality using triangulations and dual cells, Poincaré
duality does not depend on the existence of such a combinatorial structure. Using Mayer-Vietoris arguments
similar to those we employed for de Rham cohomology, one can for instance prove an Alexander duality theorem
for topological homology manifolds:

6.24. THEOREM. Let M be an oriented topological homology n-manifold (compact or not), and let C ⊆
M be a compact subset. Then the cap-product with the orientation class defines duality isomorphisms

D : Ȟr(C;R)→ Hn−r(M,M \ C;R)

where Ȟ denotes C̆ech cohomology.

SKETCH OF PROOF. One verifies the theorem first when C is either empty (obvious) or is a small cell in
M , that is a closed ball in some coordinate chart. In the latter caseK is homotopy equivalent to a point andM \C
is homotopy equivalent to the complement of that point, so the result follows from the definition of orientation.
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Now by the usual Mayer-Vietoris ‘assembly’ argument we can handle the case where C is a finite ‘good’ union
of small cells. Given any closed set C and any open neighborhood U one can find C′, C ⊆ C′ ⊆ U , which
is such a union of small cells; using the continuity property of C̆ech cohomology we can therefore complete the
proof. For more details see Dold [?]. �

Some standard consequences are the separation theorems of Brouwer, generalizing the Jordan curve theo-
rem.

sep 6.25. EXERCISE. Let C be a closed subset of a compact connected n-manifold. Show that the number
of connected components of M \ C is equal to 1 + dim Coker(Hn−1(M ;Z/2) → Ȟn−1(C;Z/2)). (Use
duality and exact sequences.)

6.26. EXERCISE. Prove the Jordan-Brouwer separation theorem: Any homeomorphic image K of a com-
pact connected (n − 1)-manifold (in particular, of Sn−1) in Sn separates Sn into two connected components,
of which it is the common boundary. (Use the previous exercise.)

6.27. EXERCISE. Prove the theorem of invariance of domain: Let U ⊆ Rn be open, f : U → Rn be
continuous and injective; then f(U) is open in Rn. (Let p ∈ U and surround p by a small sphere Sn−1 in U ;
argue that f(p) must belong to the unique bounded component of the complement of f(Sn−1), which must be
the image under f of the interior disc to Sn−1 in U ; hence f(p) belongs to the interior of the image.)

Suppose now that (W,∂W ) is a compact smooth (n+1)-manifold with boundary. An
orientation in this case is by definition a class [W ] ∈ Hn(W,∂W ;R) that restricts to a
generator of Hn(W,W \ {x};R) for each x ∈ W ◦, the interior of W . It is easy to check
that ∂[W ] ∈ Hn−1(∂W ;R) is then an orientation for ∂W . Cap-product with the relevant
orientation classes gives a diagram of duality maps

// Hn−r+1(W ) //

��

Hn−r+1(∂W ) //

��

Hn−r(W,∂W ) //

��
// Hr(W,∂W ) // Hr+1(∂W ) // Hr+1(W ) //

which commutes up to sign.

6.28. PROPOSITION (Lefschetz duality). All the duality maps in the diagram above
are isomorphisms.

PROOF. We already know that the absolute duality map for ∂W is an isomorphism, so
by the five lemma it suffices to prove that one of the relative duality maps is an isomorphism
too, say the map Hn−r(W )→ Hr(W,∂W ). One can regard this as an Alexander duality
map for W considered as a closed subset of its ‘double’, obtained by joining two copies of
W , with opposite orientations, along their common boundary. �

A corollary whose importance that we have already seen is

CIOS 6.29. PROPOSITION (Cobordism invariance of the signature). Let W 4j+1 be an ori-
ented manifold with boundary ∂W . Then the signature Sign(∂W ) = 0.

PROOF. Let M = ∂W , let i : M → W , and consider the subspace V which is the
image of i∗ : H2j(W ) → H2j(M) in the middle-dimensional cohomology of M (we
take coefficients in R throughout this proof). Then I claim that V is exactly equal to its
own annihilator with respect to the intersection form (x, y) 7→ 〈x,D(y)〉. For the proof,
consider the diagram of duality maps, and write

x ∈ V ⇔ i∗D(x) = 0⇔ 〈H2j(W ), i∗D(x)〉 = {0} ⇔ 〈V,D(x)〉 = {0}.
But elementary linear algebra shows that if a symmetric bilinear form over R admits a
subspace which is equal to its own annihilator (such a subspace is called Lagrangian) then
it has signature zero. �
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6.3. Geometric versus algebraic intersections I

Let M be a closed, oriented n-manifold. The intersection form of M is the bilinear
pairing

λ : Hr(M)⊗Hn−r(M)→ Z
that is defined by Poincaré duality. When our homology classes are given by embedded,
transversely intersecting submanifolds N1 and N2, the intersection form λ([N1], [N2])
counts (with sign) the intersection points of N1 and N2; see Example 3.12.

6.30. EXAMPLE. Figure 3 depicts two closed 1-dimensional submanifolds N1 and
N2 in a surface of genus 2. There are two intersection points of opposite signs, so
λ([N1], [N2]) = 0. Nevertheless, it is intuitively clear that the two intersection points
cannot be ‘deformed away’: there is no isotopy of N1 to a new position in which it does
not intersect N2 (or vice versa).

As this example makes clear, the vanishing of the intersection form is in general not
a sufficient condition for N1 and N2 to be disjoint after isotopy. The situation can be
analyzed further by means of the Whitney lemma.

AIGI1 6.31. THEOREM. Let M be an n-dimensional oriented simply-connected manifold.
Suppose that Nk1

1 and Nk2
2 are transversely intersecting oriented submanifolds of M ,

n = k1 + k2, k1, k2 > 3. Then there exists an ambient isotopy of N1 to a submanifold N ′1
which intersects N2 in precisely |λ([N1], [N2])| points. In particular, if λ([N1], [N2]) = 0,
then N1 and N2 can be made disjoint by an ambient isotopy.

PROOF. Repeatedly apply Lemma 4.26 to cancel pairs of intersection points of oppo-
site sign. The crucial hypothesis (c) of that lemma, that certain loops are nullhomotopic, is
assured by our assumption that M is simply connected. �

6.4. Linking numbers

To do: Later To do





CHAPTER 7

Cobordism and the signature theorem

cobordism-chapter
In this chapter we shall systematically develop the properties of the Pontrjagin-Thom

construction, which makes a link between the geometric problem of classifying manifolds
up to cobordism and the topological problem of computing stable homotopy groups. Pontr-
jagin’s original idea was to use geometry to give information about homotopy theory; later,
after the development of new methods in homotopy theory, Thom reversed the argument
and used homotopy theory to yield geometric information. We have already seen the
Pontrjagin-Thom construction at work in Chapter 2 (see Equation 2.20).

The Pontrjagin-Thom construction can be applied in many slightly different examples.
We shall develop the classical application to framed cobordism in detail: other applica-
tions, to oriented cobordism in this chapter and to normal cobordism in Chapter 12, will
merely be sketched.

7.1. Cobordism and surgery

7.1. DEFINITION (Thom). Two closed n-dimensional manifolds M and M ′ are said
to be cobordant if their disjoint union M t M ′ is the boundary of a compact (n + 1)-
dimensional manifold W .

There are many variations on this basic definition. For instance, we shall need to
consider oriented cobordism (everything is oriented, and the cobordism condition is ∂W =
Mt(−M ′)), framed cobordism (everything is equipped with a framing of its stable normal
bundle), and so on.

It is clear that cobordism is an equivalence relation. It is a rather weak one: for
instance, every oriented 2-manifold is cobordant to zero.

There is a close connection between cobordism and surgery. Proposition 2.39 tells
us that if M ′ is obtained from M by performing a surgery, then there is a cobordism W
between M and M ′, obtained by attaching a handle to M × [0, 1]. (Such a cobordism is
called an elementary cobordism.) The following observation is then immediate.

7.2. PROPOSITION. If the closed manifold M ′ is obtained from the closed manifold
M by performing surgeries, then M ′ is cobordant to M . �

Morse theory provides a means of generating elementary cobordisms.

7.3. DEFINITION. Let f : M → R be a smooth function on a manifold M . It is called
a Morse function if the differential df : M → T ∗M is transverse to the zero-section of
T ∗M .

7.4. PROPOSITION. Morse functions are dense. More precisely, suppose that M
is embedded in some Rk. Then any smooth function f on M can be perturbed by an
(arbitrarily) small linear function on Rk, so as to make it a Morse function.

97
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PROOF. Look first on a coordinate patch, where T ∗M is trivial. By Sard’s theorem,
we may perturb df by an arbitrarily small constant in order to make it transverse to the
zero-section on this patch. Since a constant is the differential of a linear map, this means
that we can perturb f by a small linear map to make df transverse on the given patch. Now,
noting that the Morse condition is an open one, we may apply the same local-to-global
argument as in the proof of Theorem 4.11 to get the result. �

An equivalent definition of a Morse function is this: at each critical point of f (that is,
point with df = 0), the Hessian — the symmetric matrix (in local coordinates) of second
derivatives of f — should be nonsingular. By definition, the index of the critical point is
the number of negative eigenvalues of the Hessian there. One can easily check that this
does not depend on the choice of local coordinates.

morse-lemma 7.5. LEMMA (Morse Lemma). Let f : M → R be a Morse function having a critical
point at p. Then one can choose local coordinates x1, . . . , xn near p (with p corresponding
to the origin) such that, relative to these coordinates, f takes the form

f = −x2
1 − · · · − x2

r + x2
r+1 + · · ·+ x2

n

where r is the index of the critical point.

PROOF. �

The basic result of Morse theory is contained in the next proposition.

7.6. PROPOSITION. Let W be a cobordism, with boundary ∂W = ∂−W t ∂+W .
Suppose that W admits a Morse function f with no critical values on the boundary. Then

(i) If f has no critical values on the interior of W , then W is a product;
(ii) If f has exactly one critical value, of index r say, then W is an elementary

cobordism, obtained by attaching an r-handle to ∂−W × [0, 1].

SKETCH PROOF. First consider the case in which there are no critical points. Equip
W with a Riemannian metric, which allows us to define the gradient vector field ∇f of f
as the dual to df . The flow lines of this vector field foliate W , and they always run in the
direction of decreasing f ; so they give W a product structure.

Now consider the case of just one critical point. Using the Morse lemma we can
choose local coordinates so that the Morse function f is just a quadratic form

f(x1, . . . , xn) = ±x2
1 ± x2

2 ± · · · ± x2
n

where the first r signs (r being the index) are negative and the last n−r are positive. Using
the first result we can localize matters to a neighborhood of the critical point; we then just
need to observe that if f is the quadratic form given above, the region {x ∈ Rn : −1 6
f(x) 6 1} is naturally diffeomorphic to Dr ×Dn−r minus the corner set. See Figure 1.

For more details of this argument, consult [22]. �

If M is a manifold, f : M → R a Morse function, then it is quite easy to adjust
f so that all the different critical points of f have different critical values (Just make an
appropriate small linear perturbation.) Consequently, we may pick a sequence a0 < a1 <
. . . of regular values for f such that there is exactly one critical value of f between ai
and ai+1 for each i. By the above result, f−1([ai, ai+1]) is an elementary cobordism.
Consequently, we obtain

7.7. PROPOSITION (Milnor). Cobordism (of closed manifolds) is exactly the equiva-
lence relation generated by surgeries. �
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Moreover

7.8. PROPOSITION. Any (compact) manifold can be built up by successively attaching
handles to the empty set. Any cobordism between manifolds can similarly be built up by
successive attachment of handles. The number of r-handles equals the number of critical
points of index r of the Morse function used to construct the handle decomposition. �

7.9. COROLLARY. A closed manifold has the homotopy type of a finite CW -complex.

PROOF. Attaching a (q + 1)-handle to a cobordism W has the same effect on homo-
topy type as attaching a (q + 1)-cell Dq+1 via the attaching map, since up to homotopy
equivalence we may contract the complementary disk Dp to a point. But a CW -complex
just is a space built up by attaching cells to the empty set. �

puncture-ex 7.10. EXERCISE. LetM be a connected manifold of dimensionm, having non-empty
boundary. Show that M has the homotopy type of an (m− 1)-dimensional CW-complex.
To do: some hints may be needed To do

7.11. EXERCISE. To do: Something about triangulation To do

7.2. Framed cobordism

7.12. DEFINITION. Let M be a closed submanifold of the closed manifold N . A
framing for M in N is a framing of the normal bundle νM of the embedding M → N . We
say that M is a framed submanifold if it is provided with a framing.

We have already made use of this definition in special cases; compare Definition 2.38.

7.13. DEFINITION. A framed cobordism between framed submanifolds M , M ′ of N
is a neat framed submanifold W of N × [0, 1] whose boundary is M ×{0} ∪M ′×{1} ⊆
N × [0, 1] (as a framed manifold).

7.14. LEMMA. The collection Ωfrm (N) of framed cobordism classes ofm-dimensional
submanifolds of Nn is an abelian group provided that 2m+ 1 < n.

PROOF. We need to know that given two framed m-dimensional submanifolds, we
can adjust one of them by a cobordism so that it is disjoint from the other one. This is
assured by transversality: just push one of the manifolds slightly in a normal direction.
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Now we can define the addition operation on Ωfrm (N) to be disjoint union. The empty
m-manifold is the identity element, and the inverse of a framed manifold M is M with a
‘mirror image’ framing (one vector in the framing is replaced by its negative). �

7.15. EXERCISE. Show that if N is a sphere then the condition 2m + 1 < n can be
replaced bym < n in the proposition above. (Show that there are enough diffeomorphisms
Sn → Sn to allow us to move one submanifold into the northern hemisphere and the other
into the southern hemisphere.)

7.16. EXERCISE. Say that two framings are equivalent if one can be obtained from
the other by a (fixed) element of SO(m). Show that equivalent framings of a submanifold
M define the same element of Ωfrm (N). Deduce that when we define the mirror image of
a framing, it doesn’t matter which vector we replace by its negative.

We shall now apply the Pontrjagin-Thom construction as in Equation 2.20. Given a
framed submanifold Mm of Nn, this constructs a map N → Sn−m, as

pteqn2pteqn2 (7.17) N → U+ = Σn−m(M t •)→ Σn−m(S0) = Sn−m

where U is a tubular neighborhood of M in N , identified with N × Rn−m by the given
framing and the tubular neighborhood theorem.

frbord-comp 7.18. THEOREM. The construction of equation 7.17 gives a well-defined isomorphism
from Ωfrm (N) to the cohomotopy group πn−m(N) := [N,Sn−m]. In particular when
N = Sn we obtain an isomorphism

Ωfrm (Sn)→ πn(Sn−m) = πn−m(Sn).

PROOF. It is important to observe first that the construction depends on the choice of
tubular neighborhood. Thus we need first of all to appeal to the uniqueness theorem1

for tubular neighborhoods, which states that given two tubular neighborhoods U and
V of M in N , there exists an ambient isotopy of U onto V . That is, there exists a
1-parameter family of diffeomorphisms of N , all of which fix M , beginning with the
identity and ending with a diffeomorphism which maps U onto V . This ambient isotopy
gives rise to a homotopy between the Pontrjagin-Thom maps constructed using the tubular
neighborhoods U and V . We conclude that a framed submanifold of N does give rise to a
well-defined element of πn−m(N).

If M and M ′ are framed cobordant, we can apply the Pontrjagin-Thom construction
to a framed cobordism W between them. This produces a map N × [0, 1] → Sm−n

which implements a homotopy between the Pontrjagin-Thom maps constructed from M
and M ′. We conclude that the Pontrjagin-Thom construction gives a well-defined map
Ωfrm (N) → πn−m(N). The proof that this map is a group homomorphism is left to the
reader2.

To show that this homomorphism is an isomorphism, we shall use transversality to
construct an inverse. Suppose that f : N → Sn−m is a map. Pick a point p ∈ Sn−m

and apply transversality (Theorem 4.19: think of the sphere as the Thom space of a trivial
bundle over p) to perturb f slightly so as to be transverse at p. The perturbation does not
change the homotopy class of f , so we may assume without loss of generality that the
original f was transverse at p. Then M = f−1{p} is a framed submanifold of N , and it

1Many textbooks prove the existence but not the uniqueness of tubular neighborhoods, e.g. [26]. The
uniqueness is given a careful treatment in [32].

2If you are not familiar with the group structure on πn−m(N), just restrict attention to N = Sn and think
about the familiar homotopy group structure there. This is the most interesting case anyway.
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has a tubular neighborhood U such that the restriction of f to U can naturally be identified
with the projectionM×D → D,D being a disk around p in Sn−m. The Pontrjagin-Thom
map associated to this framed submanifold is the map g : N → Sn which is obtained by
composing f with the map Sn−m → Sn−m which maps the complement of D to the point
at infinity. But this latter map is homotopic to 1, hence g is homotopic to f . We have
therefore shown that Ωfrm (N)→ πn−m(N) is surjective.

The proof of injectivity is similar (apply relative transversality to a homotopy N ×
[0, 1]→ Sn−m), and will be omitted. �

7.19. EXAMPLE. Let us use Pontrjagin-Thom theory to calculate the groups πn(Sn).
We need to study the cobordism classes of framed 0-manifolds in Sn. Now a framed
0-manifold is just a point with a sign ± depending on the orientation of the chosen frame;
the inverse of a point with sign + is a point wit sign −. The only possible non-trivial
cobordisms (1-manifolds) are cancellations of pairs of points of opposite sign. Thus we
recover the familiar result

πn(Sn) = Ωfr0 (Sn) = Z,
together with the identification of the degree of a map Sn → Sn as the number of inverses
(counted with sign) of a generic point in the range.

7.20. EXAMPLE. We can proceed similarly to study πn+1(Sn) (details).

The difficulties of this method of computing the homotopy groups of spheres obviously increase rapidly.
See Section 8.6 for the connection between πn+2(Sn) = Z2 and the Arf invariant. See Section 17.2 for the
connection between πn+3(Sn) = Z24 and PL manifolds, Rochlin’s theorem and the Hauptvermutung.

j-hom2 7.21. REMARK. Consider the ‘equatorial sphere’ Sm in Sn. It has a standard framing
(which makes it the framed boundary of a disk). Any other framing is obtained from this
one by a map Sm → O(n−m), or to SO(n−m) if we insist that orientation is preserved.
Homotopic maps Sm → O(n − m) give rise to cobordant framings, so in this way we
obtain a homomorphism

πm(O(n−m))→ Ωfrm (Sn) = πn(Sm).

It is easy to see that this is simply the J-homomorphism of Remark 1.42.

7.22. EXERCISE. Use the Pontrjagin-Thom construction to prove the Freudenthal
suspension theorem: the suspension map πn+k(Sn)→ πn+k+1(Sn+1) is an isomorphism
for n > k + 1 and an epimorphism for n = k + 1.

7.23. REMARK. As this last exercise indicates, the Pontrjagin-Thom construction
gives a nice way to think of the stable homotopy groups of spheres, πsk; they are the
bordism groups of k-manifolds M equipped with a (stable) framing for the stable normal
bundle. Note that the stable normal bundle to M can be defined without appealing to any
embedding into a sphere: it is just a vector bundle νM such that TM ⊕ νM is trivialized.

7.3. Computations with exotic spheres

A manifold is called stably parallelizable if its tangent bundle has a stable framing.
From Proposition 2.28, we see that a manifold M is stably parallelizable if and only if
TM ⊕ ε1 is a trivial bundle.

In this section we are follow Milnor and Kervaire in using framed cobordism to prove
that every homotopy sphere is stably parallelizable. We shall see that this implies that the
quotient group Θn/bPn+1 in the exact sequence 2.12 is a finite group. In fact, it is naturally
identified with a subgroup of Coker J : πn(SO)→ πsn.
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It is useful to introduce a somewhat weaker notion than stable parallelizability.

def-ap 7.24. DEFINITION. A manifold M is called almost parallelizable if M \ {p} is
parallelizable for p ∈M .

Clearly, a homotopy sphere is almost parallelizable, since the result of removing a
point from it is contractible. By Exercise 7.10, the result of removing a point from a
connected, compact manifold of dimension n has the homotopy type of a CW -complex of
dimension (n−1). Therefore, by 2.28, a compact connected stably parallelizable manifold
is almost parallelizable. We ask: When is the converse true?

APSP 7.25. THEOREM. Let M be a compact, connected, oriented, almost parallelizable
n-manifold. Then

(a) If n is not a multiple of 4, M is always stably parallelizable;
(b) If n is a multiple of 4, M is stably parallelizable if and only if its signature is

zero.

PROOF. Let M be an almost parallelizable manifold, and consider a disk Dn around
p ∈M . Then TM is trivial overD and trivial overM \D, so it is completely described by
the map Sn−1 → SO(n) relating the two trivializations. (Notice that this argument shows
that TM is the pull-back of some bundle over Sn. In particular, all its lower Pontrjagin
classes vanish.) The bundle TM ⊕ ε1 will be trivial if and only if the composite

γ : Sn−1 → SO(n)→ SO(n+ 1)

is nullhomotopic, i.e. if and only if a certain element of the group πn−1(SO(n + 1)) =
πn−1(SO) vanishes.

We claim that γ ∈ Ker J : πn−1(SO) → πn−1(S). Indeed, the n-manifold M \ D
provides a framed cobordism from the sphere Sn−1, with the framing described by γ, to
zero. By our discussion in Remark 7.21, the element J(γ) ∈ πsn−1 = Ωfrn−1 is equal to
zero.

According to Bott periodicity, the groups πn−1(SO) are determined by the congru-
ence class of n modulo 8, according to the following table

n modulo 8 0 1 2 3 4 5 6 7
πn−1(SO) Z Z/2 Z/2 0 Z 0 0 0

which is reproduced from 2.18. Moreover, a theorem of Adams [1] states that when n is
congruent to 1 or 2 modulo 8, the stable J-homomorphism πn−1(SO)→ πsn−1 is injective.
Thus the group Ker J , in which γ lies, is zero unless n is a multiple of 4. To complete the
proof, we need only show that the obstruction γ in this case is proportional to the signature
of M .

This is the same calculation we have already made in the proof of Proposition 2.15.
The top Pontrjagin class of M is a multiple of γ ; the signature theorem shows that the
signature of M is a multiple of the top Pontrjagin class (since the lower Pontrjagin classes
all vanish). (The specific constants involved are not relevant to the argument here, except
insofar as they are nonzero; see Equation 2.19 and Proposition 7.40). �

7.26. COROLLARY (Kervaire-Milnor). Homotopy spheres are stably parallelizable.

PROOF. The signature of a homotopy sphere is certainly zero. �

We will now use this calculation to investigate the quotient group Θn/bPn+1. Let
Σn be a homotopy sphere; since, as we have just proved, it is stably parallelizable, its
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normal bundle will be trivial when it is embedded in a sphere Sn+k for sufficiently large
k. Choosing a framing for the normal bundle we obtain an element of Ωfrn = πsn. The
element we obtain depends on the choice of framing, of course; but two different choices
of framing will give rise to elements of πsn which differ by an element of Im J . Therefore
we have defined a homomorphism

ϕ : Θn → Coker J = πsn/ Im J.

7.27. LEMMA. The kernel of ϕ is exactly the group bPn+1 of homotopy spheres that
bound parallelizable manifolds.

PROOF. If a homotopy sphere Σ belongs to Kerϕ, then by suitable choice of framing
it can be embedded in Sn+k as the framed boundary of a framed submanifold W of
Dn+k+1. Since W is a framed submanifold of a parallelizable manifold, it is stably
parallelizable. But a stably parallelizable manifold W with non-empty boundary is par-
allelizable (by Proposition 2.28 and Exercise 7.10). Conversely if Σ is the boundary of
a parallelizable manifold, then there is a framing for which it defines the zero element of
Ωfrn . �

Thus we have shown that Θn/bPn+1 is isomorphic to a subgroup of Coker Jn. In
particular, since Coker Jn ⊆ πsn is a finite group (by Serre’s theorem, Proposition 1.18),
we have

7.28. PROPOSITION. Θn/bPn+1 is a finite group. �

7.4. Thom spaces and oriented cobordism

The set Ωn of oriented cobordism classes of n-dimensional closed oriented manifolds
is an abelian group, using the empty set as the identity element, disjoint union as addition,
and−M as the inverse ofM . More is true: the operation of cartesian product of manifolds
passes to cobordism classes, giving Ω∗ =

⊕
n Ωn the structure of a graded ring, the

oriented cobordism ring. In this section we shall follow Thom’s computation of the torsion-
free part Ω∗ ⊗Q. (The full structure of Ω∗ was later obtained by Wall. We shall not need
this.)

Recall that oriented k-dimensional vector bundles are classified by maps to the space
BSO(k), which one can think of as the Grassmannian of oriented k-planes in ‘infinite
dimensional Euclidean space’. (More formally, BSO(k) is defined as a direct limit of
finite-dimensional Grassmannians.) This means that given such a vector bundle over a
space X , there is a unique homotopy class of maps X → BSO(k) that pulls back the
universal bundle over BSO(k) to the given vector bundle over X .

7.29. DEFINITION. MSO(k) denotes the Thom space of the universal bundle over
BSO(k).

Thom proved

MSOprop 7.30. PROPOSITION. There is a canonical isomorphism

lim
k→∞

πn+k(MSO(k))→ Ωn.

PROOF. Suppose that f is a map from Sn+k to MSO(k). By Theorem 4.19, we can
make f transverse at the zero-section; and f−1(BSO(k)) then becomes a manifold M
of dimension n. This defines maps πn+k(MSO(k)) → Ωn which are compatible with
suspension.
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Let Mn be a closed oriented manifold. By Whitney’s embedding theorem (4.11),
M can be embedded in S2n+1. Let ν be the normal bundle to such an embedding. By
collapsing all of S2n+1 outside a tubular neighborhood of M we get a map S2n+1 →
T (ν), and then by composing with the classifying map for ν we get a map S2n+1 →
MSO(n + 1), which is already transverse at the zero-section and such that the inverse
image of the zero-section is M . This shows that π2n+1(MSO(n)) → Ωn is surjective.
A refinement of this argument (embedding a cobordism rel boundary) proves injectivity
if k is a little larger. The details of the proof are similar to those in the case of framed
cobordism (Theorem 7.18); we omit them. �

Now we use this result to compute the cobordism ring modulo torsion. This needs
the theory of Pontrjagin numbers. Let k = (k1, . . . , kr) be a partition of n (that is, a list
of nonnegative integers adding up to N ). For an oriented 4n-manifold M , the Pontrjagin
number pk[M ] corresponding to the partition k is the number

〈pk1(TM) . . . pkr (TM), [M ]〉

where on the left we have the Pontrjagin classes of the tangent bundle of M .

pont-cobord2 7.31. LEMMA. Pontrjagin numbers are cobordism invariants.

PROOF. Suppose M = ∂W . The Pontrjagin classes of TM are the same as the
Pontrjagin classes of TW restricted to M ; indeed, these two bundles differ only by a
trivial 1-dimensional bundle. Let i : M → W be the inclusion. Then we have (denoting
by p the relevant product of Pontrjagin classes)

〈p(TM), [M ]〉 = 〈i∗p(TW ), [M ]〉 = 〈p(TW ), i∗[M ]〉.

But i∗[M ] = 0, since [M ] is the boundary of the orientation class [W ] ∈ H4n+1(W,∂W ),
so the Pontrjagin numbers are zero. �

The Pontrjagin numbers therefore give homomorphisms Ω4n → Z. In particular they
give Q-linear maps Ω4n ⊗Q→ Q.

Given a partition k of n, let Pk denote the product CP2k1 × · · · × CP2kr of complex
projective spaces, which is a 4n-dimensional manifold. Let ϕ(n) denote the number of
partitions of n. Then we have

7.32. LEMMA. For any n, the ϕ(n) × ϕ(n) matrix whose entries are the Pontrjagin
numbers pj [Pk] has nonzero determinant.

PROOF. A computation with symmetric functions. See [26, Chapter 16]. �

As a corollary, the manifolds Pk are linearly independent elements of Ω4n ⊗ Q, and
the dimension of this vector space is therefore at least ϕ(n). In fact we have

TCT 7.33. THEOREM. (Thom) The rational cobordism algebra Ω∗ ⊗ Q is a polynomial
algebra on the complex projective spaces CP2,CP4, . . .. In particular, the dimension of
Ω4n ⊗Q is exactly ϕ(n).

7.34. EXERCISE. It is a consequence of the theorem that if Mr is a manifold and r is
not a multiple of 4, then some finite disjoint union of copies ofM is a boundary. Try to see
this directly in some examples. For instance, what happened in the case of CPm, m odd?
Hint: You should be able to represent CPm in this case as the total space of a circle bundle
over a quaternionic projective space.
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PROOF. Given the linear independence lemma above, it is plain that all we need to
do is to find an upper bound for the dimension dimQ Ωn ⊗ Q; the upper bound should be
ϕ(m) if n = 4m is a multiple of 4, and 0 otherwise.

We start by noting that by Proposition 7.30 we can identify

Ωn ⊗Q ∼= πn+k(MSO(k))⊗Q

for k large. The space MSO(k) is highly connected (in fact it is (k − 1)-connected),
and so we can apply the Hurewicz theorem tensored with3 Q; this theorem says that if
X is a (k − 1)-connected space then the Hurewicz map πr(X) ⊗ Q → Hr(X;Q) is
an isomorphism for r < 2k − 1. Now by the Thom isomorphism, H̃r(MSO(k);Q) ∼=
Hr−k(BSO(k);Q). Thus we find an isomorphism

Ωn ⊗Q→ Hn(BSO(k);Q)

for k large.
The rational cohomology of the classifying space BSO = limk BSO(k) is well

known; it is a polynomial algebra generated by the Pontrjagin classes. It follows that
dimQHn(BSO(k);Q) is equal to ϕ(n/4) if n is a multiple of 4, and zero otherwise. The
proof is completed. �

7.5. The Hirzebruch signature theorem

We stated the signature theorem somewhat loosely in Chapter 1. Now we will give a
more precise statement, and an outline of the proof.

We need the notion of a multiplicative sequence of polynomials, due to Hirzebruch.
This is a sequence of polynomials K0 = 1,K1(p1),K2(p1, p2), . . . and so on in the
universal Pontrjagin classes, with Kn ∈ H4n(·;Q), such that the total K-genus K(V ) =
1 + K1(V ) + K2(V ) + · · · of a vector bundle V is multiplicative: K(V1 ⊕ V2) =
K(V1)K(V2). For example, the sequence of polynomials Kn = pn is multiplicative (this
is just the Whitney sum formula.)

Recall the splitting principle from the theory of characteristic classes (Proposition 1.21).
The real form of the splitting principle tells us that given any reasonable spaceX and (real)
vector-bundle V over X , we can find a map f : Y → X such that the induced map f∗ on
cohomology is injective and the pulled-back bundle f∗V splits as a direct sum of 2-plane
bundles, together (possibly) with a line bundle. It follows that any multiplicative sequence
Kn is determined uniquely by its value on 2-plane bundles, which is a formal power series
f(t) in the first Pontrjagin class. (The coefficients of f(t) are just the coefficients of pn1
in Kn(p1, . . . , pn).) Conversely, Hirzebruch showed that every formal power series with
leading coefficient 1 determines uniquely a multiplicative sequence of polynomials, called
the multiplicative sequence belonging to the given formal power series. The proof is a
computation with symmetric functions: write formally

1 + p1t+ p2t
2 + · · · = (1 + u1t)(1 + u2t) · · · ,

3This is a theorem of Serre. The main ingredient in the proof is the computation of the homotopy groups
of spheres modulo torsion, which may be found for instance in Spanier, Chapter 9 Section 7. The computation is
that πr(Sn) is a finite group for r 6= n, 2n− 1, and this verifies that the theorem is true for a sphere. One then
extends to prove the theorem for a bouquet of spheres, and then for an arbitrary finite complex X by considering
a map Sr1 ∨ · · · ∨Srp → X obtained by combining the generators of the torsion-free parts of all the homotopy
groups up to dimension 2k − 1. See Milnor and Stasheff, theorem 18.3.
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where the formal variables ui may be identified with the first Pontrjagin classes of the
splitting 2-plane bundles. Then we must have

1 +K1t+K2t
2 + · · · = f(u1t)f(u2t) · · · ,

so to findK1, K2 and so on we just expand the right-hand side as a power series in t whose
coefficients are symmetric functions in the ui, and then write these coefficients in terms of
the elementary symmetric functions pi.

7.35. EXAMPLE. The multiplicative sequence of polynomials belonging to the formal
power series

f(t) = (1 + t)−1 = 1− t+ t2 − · · ·
expresses the Pontrjagin classes of the stable inverse of a vector bundle V ( a bundle V ′

such that V ⊕ V ′ is trivial) in terms of the Pontrjagin classes of V .

cauchy-ex 7.36. EXERCISE. Consider the multiplicative sequence of polynomials Kn belonging
to the formal power series f(t). Show that the coefficient of pn in Kn is the same as the
coefficient of tn in the formal power series

1− t d
dt

(
log f(t)

)
= f(t)

d

dt

(
t

f(t)

)
.

(This is originally due to Cauchy. Hint: Take logarithms of the generating identity to write∑
log f(uit) = log(1 +K1t+K2t

2 + · · · ).

Use this to find the coefficient in Kn of the power sum un1 + · · ·+ unn. Now use Newton’s
identities (see [17]) relating elementary symmetric functions and power sums.)

7.37. THEOREM (Hirzebruch Signature Theorem). Let Ln be the multiplicative se-
quence of polynomials in the Pontrjagin classes belonging to the formal power series

√
t

tanh
√
t

= 1 +
1

3
t− 1

45
t2 + · · · .

Then for any compact oriented 4n-manifold M we have

SignM = 〈Ln(p1, . . . , pn), [M ]〉
where the pi are the Pontrjagin classes of the tangent bundle of M .

PROOF. (See Hirzebruch [15].) Both sides of the equation define ring homomor-
phisms Ω∗ ⊗ Q → Q. For the right side this is obvious from the definition of a
multiplicative sequence and the cobordism invariance of the Pontrjagin numbers. For the
left side, we proved the cobordism invariance of the signature in 6.29 as a consequence of
Poincaré duality for manifolds with boundary; the multiplicative property can similarly be
proved using the Künneth theorem.

Since both sides of the Hirzebruch signature formula define ring homomorphisms
from Ω∗ ⊗ Q, it suffices to check the theorem on a set of generators for this ring.
By Thom’s theorem 7.33, such a set of generators is provided by the even-dimensional
complex projective spaces CP2k. These all have signature +1. On the other hand, the total
Pontrjagin class of CP2k is equal to (1+a2)2k+1 (Exercise 1.25), where a ∈ H2(CP2k;Q)
is the canonical generator (the hyperplane class). Thus

L(p) = (a/ tanh a)2k+1

and a direct calculation shows that the coefficient of a2k in this power series is equal to 1.
Thus the theorem is verified for the generators, hence it is true. �
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7.38. EXERCISE. Verify that, as asserted above, the coefficient of z2k in the power
series expansion of (z/ tanh z)2k+1 is equal to 1. (Use contour integration.)

The Bernoulli numbers Bk may be defined by

bernoulli-defbernoulli-def (7.39)
z

tanh z
=

∞∑
k=0

22kBk
(2k)!

z2k.

We may now deduce

sig-ap 7.40. PROPOSITION (Milnor-Kervaire [25]). Let M4k be an oriented manifold all
of whose Pontrjagin classes except for pk vanish (for example, M could be an almost
parallelizable manifold, see 7.24). Then

Sign(M) =
22k(22k−1 − 1)Bk

(2k)!
pk(TM).

This result was used in Chapter 2, in the proof of Proposition 2.15.

PROOF. By Exercise 7.36, we need to calculate the coefficient of tk in the power
series expansion of

√
t

tanh
√
t

d

dt

(√
t tanh

√
t
)

=
1

2

(
1 +

2
√
t

sinh(2
√
t)

)
.

Using the identity
2

sinh 2u
=

1

tanh 2u
− 1

tanhu
,

together with the definition of the Bernoulli numbers in Equation 7.39, we obtain the stated
result. �





CHAPTER 8

Quadratic Algebra

quadratic-chapter
This chapter has two purposes. First, it develops the basic machinery of ‘quadratic

algebra’ over noncommutative rings with involution. In Chapter 2 we used the algebra
of integral quadratic forms to describe the intersection theory of middle-dimensional
homology classes in a (2k− 1)-connected, parallelizable 4k-manifold. The corresponding
theory for general manifolds needs to be elaborated in several different ways. The most
basic point is this: to deal with manifolds that are not simply connected, we shall need to
study ‘intersection forms’ which are quadratic forms on free modules over the group ring
Z[π] of the fundamental group. This is connected with the Whitney Lemma (4.26) via the
requirement that certain loops in the manifold span 2-disks.

The second part of this chapter gives the basic theory of the L-groups L2n(R), due
to Wall. These groups give a ‘stable’ classification of quadratic forms over R, in just the
right sense to be useful for surgery theory. It will turn out that, after preliminary surgery
below the middle dimension to make matters highly connected, the middle-dimensional
intersection form of a 2n-dimensional ‘surgery problem’ defines an element of L2n(Z[π]),
which vanishes precisely when surgery is possible. (This is the main result of Chapter 15;
compare Proposition 2.37 and its proof.)

If we do not wish to assume that the geometric situation has been simplified by pre-
liminary surgery below the middle dimension, we shall in fact need to study not quadratic
forms, but their homological counterparts, quadratic complexes. Quadratic complexes of
length one, otherwise known as ‘formations’, are a necessary ingredient in the surgical
study of odd-dimensional manifolds also. We shall not develop the theory of quadratic
complexes in detail in this chapter; in Section 14.4 we shall organize them into an ‘alge-
braic bordism’ group which gives a generalized definition of L-theory.

The material of this chapter is almost purely algebraic, and provides a necessary
foundation for the geometric developments later in the book. The geometrically-minded
reader might skim the whole chapter on first reading, and then refer back as necessary.

8.1. Linear algebra over rings with involution

We are going to think about linear and multilinear algebra over a possibly noncom-
mutative ring R. The basic objects of linear algebra are modules, tensor-products, and
Hom-sets. In the noncommutative context one must draw a distinction between

(a) left modules V over R (equipped with a multiplication R × V → V , satisfying
the associativity law (rs)v = r(sv)),

(b) right modules, equipped with a multiplication V × R → V satisfying the
associativity law v(rs) = (vr)s, and

(c) bimodules, equipped with both a left and a right module structure and satisfying
the compatibility law (rv)s = r(vs).

109
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The distinction corresponds to that between left, right, and two-sided ideals in a noncom-
mutative ring.

8.1. REMARK. One needs to exercise care in forming tensor products and Hom-sets. For instance, if V is
a right R-module and W a left R-module, then V ⊗RW may be defined: it is the quotient of the tensor product
in the category of additive groups by the subgroup generated by expressions

vr ⊗ w − v ⊗ rw, v ∈ V, r ∈ R,w ∈W.

Notice that this tensor product has no module structure — it is simply an abelian group. However, if V is a
bimodule then the tensor product inherits a left R-module structure from V ; if W is a bimodule it inherits a right
R-module structure fromW ; and of course if both V andW are bimodules, then V ⊗RW is a bimodule as well.
Similar remarks apply to Hom-sets HomR(V,W ) (now V and W need to be modules of the same handedness,
both left or both right, in order that Hom(V,W ) be defined.)

8.2. DEFINITION. By convention, we will use the terminology ‘module over R’ to
refer to a right module.

The rings of interest to us will come equipped with an extra piece of structure which
allows us to relate ‘left’ and ‘right’.

8.3. DEFINITION. An involution on a ring R is a map R → R, denoted x 7→ x∗,
which is a homomorphism of abelian groups, preserves the unit, and has (xy)∗ = y∗x∗

and x∗∗ = x for all x, y ∈ R.

A ring with involution will be called a ∗-ring.

8.4. EXAMPLE. Conjugation on C or on H is an involution. The conjugate transpose
on a ring of matrices over R, C or H is an involution. The adjoint on the ring of bounded
operators on a Hilbert space (or on any C∗-subalgebra, such as the ring of compact
operators) is an involution.

More relevant to our purposes is the following.

8.5. PROPOSITION. For any group π the map π → π; g 7→ g−1 extends (by linearity)
to an involution (the standard involution) on the group ring Z[π]. More generally, the map
g 7→ w(g)g−1 where w : π → {±1} is any group homomorphism, extends to an involution
(the w-twisted involution) on Z[π]. �

Let R denote a ring with involution. Given a right R-module V , the opposite left
R-module, V o, is defined to be V with the left action of R given by

(r, v) 7→ vr∗.

Similarly we can define the opposite of a left R-module, and even the opposite of an
R-bimodule (take the opposite of each structure).

8.6. EXERCISE. Let R be a ring with involution. Verify that Ro is isomorphic to R as
an R-bimodule.bimod-ex

zw-ex 8.7. EXERCISE. Suppose that the group ring Z[π] is provided with the involution
associated to w : π → {±1}. Give Z the trivial right Z[π]-module structure in which
each group element acts as 1. What is the structure of the left Z[π]-module Zo? Show that
the left and right actions commute so that Z becomes a Z[π]-bimodule. (We denote it by
Zw when it is considered as a bimodule in this way.)

We isolate here a useful algebraic calculation.
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diag-tensor 8.8. PROPOSITION. Let U and V be right Z[π]-modules. Equip Z[π] with the w-twisted involution, and
let Zw denote the integers considered as a left Z[π]-module as in Exercise 8.7. The tensor product U ⊗Z V in
the category of abelian groups is made into a right Z[π]-module by the diagonal action (u ⊗ v)g = ug ⊗ vg.
Then there is a natural isomorphism

(U ⊗Z V )⊗Z[π] Zw ∼= U ⊗Z[π] V
o

in the category of abelian groups.

PROOF. Send an element x = u ⊗ v ∈ U ⊗Z[π] V
o to the element u ⊗ v ⊗ 1 ∈ (U ⊗Z V ) ⊗Z[π] Zw .

The map is well-defined because if we represent x also by (ug)⊗ (g−1v), the image is

(ug)⊗ (g−1v)⊗ 1 = w(g)(ug)⊗ (vg)⊗ 1 = u⊗ v ⊗ 1 ∈ (U ⊗Z V )⊗Z[π] Zw

using the definitions of the opposite module and of the involution in Z[π]. The reader may verify similarly that
the map is, in fact, an isomorphism. �

Let V be a (right) R-module. Then HomR(V,R) is a left R-module.

8.9. DEFINITION. We define the dual module of V to be the right R-module V ∗ =
HomR(V,R)o.

8.2. Symmetric and quadratic forms

8.10. DEFINITION. Let V be an R-module, where R is a ring with involution. A
sesquilinear form on V is a R-module homomorphism λ : V → V ∗. It is nonsingular if
it is an isomorphism of R-modules. The abelian group of all sesquilinear forms on V is
denoted by Ses(V ).

8.11. REMARK. For a commutative ring R a sesquilinear form λ on a finitely gen-
erated free Z-module V is nonsingular if and only if the determinant (with respect to any
basis for V ) is a unit in R. In particular, for R = Z a form is nonsingular if and only if the
determinant is +1 or −1, in which case we call it unimodular.

We may identify λ with the function V × V → R given by (x, y) 7→ (λ(x))(y). By
a slight abuse of notation we denote this function by λ also. The sesquilinearity condition
then states that

λ(xa, yb) = a∗λ(x, y)b

for a, b ∈ R and x, y ∈ V . We now study symmetry conditions on these forms.

8.12. DEFINITION. Let ε = ±1. The ε-symmetrization map Tε : Ses(V ) → Ses(V )
is defined by

Tελ(x, y) = ελ(y, x)∗.

symform-def 8.13. DEFINITION. A sesquilinear form λ on an R-module V is called ε-symmetric if
λ = Tελ. The space of ε-symmetric forms on V is SQε(V ) = ker(1 − Tε : Ses(V ) →
Ses(V )).

We can also say ‘symmetric’ or ‘skew-symmetric’ for ‘ε-symmetric’, according as ε = 1 or ε = −1, but
the more uniform terminology saves some writing).

8.14. REMARK. In Chapter ?? we defined what we called the symmetric groups
associated to a chain complex C (of Z-modules), and we denoted these by Qn(C). Those
symmetric groups are related to the groups of symmetric forms defined above in the
following way. Let V be a f.g. free Z-module (abelian group) and let C = SnV ∗ be
the chain complex having a single copy of V ∗ in degree n and 0 elsewhere. Then the
chain complex symmetric group Q2n(C) is the same as the group Qε(V ) of ε-symmetric



112 8. QUADRATIC ALGEBRA

forms on V for ε = (−1)n. Later, we shall be motivated by this example to generalize the
symmetric and quadratic constructions of Chapter 5 to chain complexes of modules over a
noncommutative ring R with involution.

hyperbolic-def 8.15. EXAMPLE. Let V be any R-module. Then W = V ⊕ V ∗ is also an R-module.
We can define an ε-symmetric form on W by making use of the natural pairing between V
and V ∗:

λ
(
(x1, ϕ1), (x2, ϕ2)

)
= ϕ1(x2) + εϕ2(x1)∗.

One checks easily that this is indeed a sesquilinear form and is ε-symmetric. It is called
the hyperbolic ε-symmetric form associated to V .

Hyperbolic forms arise as the intersection forms of pairs of n-spheres in a 2n-manifold which are embedded
and meet transversely in a single point. This observation, made suitably precise, is at the core of surgery theory.

We have noticed several times that the information given in the usual intersection form
does not fully account for all the geometry of self -intersections of middle-dimensional
spheres in a manifold. The simplest example of this is the observation that the intersection
matrix of a parallelizable 4k-manifold has to be even (see the proof of Proposition 2.14);
that is, the self-intersection numbers (diagonal entries) must be multiples of 2. We now
seek a more refined algebra which includes this extra information.

quadform-def 8.16. DEFINITION. Let V be an R-module and let Tε : Ses(V ) → Ses(V ) be the
ε-transposition map, as before. Define Qε(V ) = Coker(1− Tε) : Ses(V )→ Ses(V ). An
element of Qε(V ) is called a quadratic form on V .

Compare this with Definition 8.13.

8.17. EXAMPLE. Consider the case V = R. One easily checks that Ses(R) is
identified with (the additive group of) R itself: the element a ∈ R corresponds to the
sesquilinear form λ(x, y) = x∗ay on R. Thus if, for example, R is a commutative ring
with the trivial involution x∗ = x, Q+1(R) = R andQ−1(R) = R/〈2〉. (Here 〈2〉 denotes
the principal ideal generated by 2 = 1 + 1.)

Since T 2
ε = 1, Im(1 − Tε) ⊆ Ker(1 + Tε) and Im(1 + Tε) ⊆ Ker(1 − Tε) , so that

1 +Tε gives a well-defined map Qε(V )→ Qε(V ). This map from quadratic to symmetric
forms is called the symmetrization map. We can therefore regard a quadratic form as a
symmetric form ‘with extra structure’.

8.18. DEFINITION. A quadratic form is said to be nonsingular if its symmetrization
is nonsingular.

8.19. LEMMA. If 2 is invertible in R and V is free, then symmetrization gives an
isomorphism between Qε(V ) and Qε(V ).

PROOF. It is enough to consider when V = R is free of rank 1. For ε = +1 the
symmetrization map 1 + T1 = 2: Q+1(R) = R→ Q+1(R) = R is an isomorphism, and
for ε = −1 we have Q−1(R) = Q−1(R) = 0. �

8.20. DEFINITION. A ε-symmetric form λ on a module V over a ring R is even if
λ(x, x) ∈ (1 + Tε)R for all x ∈ V .

This extends the notion of even form over Z (Remark 1.8).

evprop 8.21. PROPOSITION. Let R be a ring with involution and let V be a free R-module.
Then the image of the symmetrization map consists precisely of the even forms.
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PROOF. Clearly everything in the image of the symmetrization map is even. Suppose
that the symmetric form λ is even and let v1, . . . , vn be a basis1 for V . Then λ is completely
determined by the matrix λij = λ(vi, vj), which satisfies λij = ελ∗ji. Choose aij ∈ R
such that aij = λij if i < j, aij = 0 if i > j, and (1 + ε)aii = λii. The matrix a then
defines a sesquilinear form which symmetrizes to λ. �

ef-ex 8.22. EXERCISE. IfR has trivial involution and the ‘multiplication by 2’ mapR→ R
is injective, prove that every even +1-symmetric form on a free R-module is the sym-
metrization of a unique element ofQ+1(V ). Thus, in this case, quadratic forms correspond
1 : 1 with even symmetric forms.

We can take this ideas further to give a precise description of the ‘extra structure’ in a
quadratic form, at least over a free module.

refine-def 8.23. DEFINITION. Let V be an R-module and let λ be an ε-symmetric bilinear form
on V . A quadratic refinement for λ consists of a function µ : V → Qε(R), such that

(i) The identity µ(x+ y)−µ(x)−µ(y) = [λ(x, y)] holds in Qε(R) (here [λ(x, y)]
denotes the equivalence class of λ(x, y) ∈ R under the quotient map R →
Qε(R);

(ii) The identity µ(x) + εµ(x)∗ = λ(x, x) holds in R. (Notice, here, that µ(x) +
εµ(x)∗ = (1 + Tε)µ(x) is a well-defined element of Qε(R) ⊆ R, since 1 + Tε
maps Qε to Qε.)

(iii) The identity µ(ax) = a∗µ(x)a holds in Qε(R). (Here we need to remark that
even though Qε(R) is not an R-module, the ‘quadratic operation’ µ 7→ a∗µa is
well-defined on it.)

8.24. PROPOSITION. Over a free module V , there is a 1 : 1 correspondence between
quadratic forms, on the one hand, and symmetric forms equipped with quadratic refine-
ments, on the other.

PROOF. If λ is obtained by symmetrizing a sesquilinear formψ, then µ(x) = ψ(x, x) ∈
Qε(R) is a quadratic refinement of λ.

Conversely, if V is free with basis {v1, . . . , vn} and we are given a symmetric form λ
on V with a quadratic refinement µ, then set

λij = λ(vi, vj), µi = µ(vi).

The matrix

bij =

 λij if i < j
µi if i = j
0 if i > j

then specifies a well-defined element of Qε(V ) which symmetrizes to λ and has µ as
associated quadratic refinement. �

8.25. EXERCISE. Extend the above argument to projective R-modules V (by embed-
ding into a free module).

hyperbolic-def2 8.26. EXAMPLE. Consider the hyperbolic ε-symmetric form onW = V⊕V ∗, defined
in Example 8.15 above. An underlying ε-quadratic structure is provided by the function
µ : W → QεR with µ(x, ϕ) = [ϕ(x)]. As a matter of notation, the space W equipped
with this hyperbolic ε-quadratic form will be denoted by Hε(V ). Note that the hyperbolic

1Everything works in the infinitely generated case but we don’t burden the proof with the notation for that.
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form can be defined directly as an element of Qε(V ); it corresponds to the sesquilinear ψ
on V ⊕ V ∗ given by

ψ
(
(x1, ϕ), (x2, ϕ2)

)
= ϕ1(x2).

We are going to classify the nonsingular ε-quadratic forms on finite-dimensional
vector spaces over certain fields.

8.27. EXAMPLE. We begin with the case R = R. Since 1
2 ∈ R, there is no difference

between quadratic and symmetric forms. By Sylvester’s law of inertia, nonsingular sym-
metric bilinear forms over R are classified completely by their rank and signature. On the
other hand, nonsingular skew-symmetric bilinear forms over R are necessarily hyperbolic,
with no invariant other than their rank (which must be even).

8.28. EXAMPLE. The case R = C (with complex conjugation as the involution) is
similar as regards symmetric (now usually known as hermitian) forms, which are classified
by their rank and signature. Now, however, since the ring contains an element i such
that i2 = −1, there is no difference between symmetric and skew-symmetric forms; so
skew-symmetric forms are also classified by their rank and signature.

arf-invariant 8.29. EXAMPLE. Now we consider the fundamental 2-torsion example, R = F2 the
field of 2 elements. Thus we have a finite-dimensional vector space V over F2, and on this
we have a bilinear λ : V × V → F2 and a function µ : V → F2 such that

eqstareqstar (8.30) µ(x+ y) = µ(x) + µ(y) + λ(x, y).

Notice that since +1 = −1 the distinction between symmetric and skew-symmetric forms
has disappeared. By (8.30) applied to x+x we have that λ(x, x) = 0 for all x. I claim that
the symmetric part λ of the given quadratic form is hyperbolic, in fact it is a direct sum of
elementary hyperbolic forms each of which has matrix(

0 1
1 0

)
on a two-dimensional subspace. We prove this inductively, so let x ∈ V be any element,
and let y ∈ V be an element such that λ(x, y) = 1, λ(v, y) = 0 for all v ∈ V \{x}. (There
is such a y since the map x 7→ 1, V \ {x} 7→ 0 is linear over F2.) Then the subspace H
spanned by x and y has H ∩ H⊥ = 0, so that V = H ⊕ H⊥, and we have split off an
elementary hyperbolic subspace. The assertion follows by induction.

Even though the symmetric structure of our form is now revealed to be hyperbolic, its
quadratic structure need not be so. In fact, suppose now that x and y span an elementary
hyperbolic subspace for λ. The identity (8.30) easily shows that, of the three numbers
µ(x), µ(y), µ(x+ y), either all three are 1 (call this case V1) or two are 0 and the third is 1
(call this case V0). We have proved therefore that our given quadratic form is isomorphic
to a direct sum of copies of V0 and V1.

There is however a relation to be taken into account, namely V0 ⊕ V0
∼= V1 ⊕ V1.

This can be proved by writing down an explicit isomorphism. In fact, if {x1, y1, x2, y2}
(with the obvious notation) is a basis for V0 ⊕ V0, then the basis {x1 + y1 + x2, x1 + y1 +
y2, x1+x2+y2, y1+x2+y2} has µ = 1 on each element, so exhibits an isomorphism with
V1 ⊕ V1. We conclude that our form is in fact isomorphic to the direct sum of a number of
copies of V0 together with at most one copy of H1.

This is as far as we can go:
⊕n

V0 is not isomorphic to
⊕n−1

V0 ⊕ V1, because
one can count the number of elements of the vector space on which µ is nonzero, and
this number is greater in the second case (see Exercise 8.31 below). We have therefore



8.3. LAGRANGIANS AND HYPERBOLIC FORMS 115

obtained a complete classification of quadratic forms (on finite-dimensional vector spaces)
over Z2. If an V1 factor appears we say that the form has Arf invariant 1; otherwise it has
Arf invariant 0. Notice that the Arf invariant (considered as a member of Z2) is additive
on direct sums.

arfcount 8.31. EXERCISE. For a finite-dimensional F2-vector space V equipped with a qua-
dratic form (as above), set p(V ) = number of elements of V on which µ = 1, and n(V ) =
number of elements of V on which µ = 0. Show that

p(V ⊕ V0) = 3p(V ) + n(V ), n(V ⊕ V0) = p(V ) + 3n(V ).

Deduce that
⊕n

V0 is not isomorphic to
⊕n−1

V0 ⊕ V1, as asserted above. [9, Lemma
III.1.10]

8.32. EXERCISE. Show that a quadratic form over F2 with Arf invariant 0 is hy-
perbolic (in the sense of 8.26). Show that a quadratic form with Arf invariant 1 is not
hyperbolic.

8.33. EXERCISE. Show that the Arf invariant of a quadratic form (λ, µ) on V may be
defined as

∑
µ(xi)µ(yi), where {x1, . . . , xn, y1, . . . , yn} is any symplectic basis for V .

(A symplectic basis satisfies λ(xi, yj) = δij , λ(xi, xj) = λ(yi, yj) = 0.)

8.3. Lagrangians and hyperbolic forms

Suppose that V is an R-module equipped with a nonsingular bilinear form λ, which
we assume is either symmetric or skew-symmetric. Then, for any submodule U ⊆ V we
can define the orthogonal submodule U⊥ ⊆ V in the natural way, namely

U⊥ = {y ∈ V : λ(x, y) = 0∀x ∈ U}.
In fact, we have already made use of this notion for vector spaces in our discussion of the
Arf invariant. Notice that, in contrast to the familiar situation of orthogonal complements
relative to a positive-definite inner product, it is possible for U and U⊥ to intersect non-
trivially.

The submodule U is said to be complemented in V if there is another submodule W
such that U ⊕W = V .

8.34. EXERCISE. Show that if U is complemented then so is U⊥.

lagr-def 8.35. DEFINITION. Let V be an R-module equipped with a nonsingular ε-quadratic
form (λ, µ). Let U be a submodule of V .

(i) U is called a sublagrangian if U ⊆ U⊥, U is complemented, and µ|U = 0.
(ii) U is called a lagrangian if it is a sublagrangian and, in addition, U = U⊥.

If V is a finite-dimensional vector space over a fieldR of characteristic not 2, then quadratic and symmetric
forms coincide, and moreover all submodules are complemented. A sublagrangian is then what is usually called
an ‘isotropic subspace’, and a lagrangian is a ‘maximal isotropic subspace’.

8.36. EXAMPLE. Let V be any R-module, and consider the hyperbolic ε-quadratic
form on W = V ⊕ V ∗. Then V and V ∗ are complementary lagrangians.

In fact, this is the only example which can occur in the f.g. free case.

8.37. THEOREM (Witt). If a nonsingular ε-quadratic form (V, λ, µ) on a finitely
generated free R-module V admits a lagrangian U , then it is isomorphic to the hyperbolic
form Hε(U) generated by U .
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PROOF. We note first that if we can find another lagrangianW such that V = U⊕W ,
then λ will identify W with the dual U∗ of U and µ will be determined by the fact that it is
zero on U and on W , so that it will follow that V is hyperbolic. We therefore aim to find
a complementary lagrangian to U . The idea is to choose any complementary subspace and
then modify it, à la Gram-Schmidt, so that it becomes lagrangian.

Let i : U → V be the inclusion. Dualizing and composing with the isomorphism
λ : V → V ∗ we get a map j : V → U∗. By definition, Ker j = U⊥, which equals U
since U is lagrangian. Since a lagrangian is assumed to be complemented, j is a split
surjection, and there is a 1 : 1 correspondence between splittings θ : U∗ → V of j and
complementary submodules to U in V . Fix one such splitting θ; then any other splitting is
of the form θ + ϕ, where ϕ is a homomorphism from U∗ to Ker j = U .

Now (using the fact that V is free) choose a sesquilinear form ψ on V such that
[ψ] ∈ Qε(V ) corresponds to the quadratic form (λ, µ). We would like to choose our
splitting θ + ϕ so that it corresponds to a complementary lagrangian to U , which is to say
that (θ + ϕ)∗ψ(θ + ϕ) = 0. However we may compute

(θ + ϕ)∗ψ(θ + ϕ) = θ∗ψθ + ϕ ∈ Hom(U∗, U).

Thus we can achieve what we want by choosing ϕ = −θ∗ψθ. �

8.38. REMARK. By an extension of this argument we may also prove that if U is a
sublagrangian in V , then there is an isomorphism of quadratic forms V ∼= Hε(U)⊕U⊥/U .

8.39. COROLLARY. Let (V, λ, µ) be a quadratic form on a finitely generated free
R-module; then (V, λ, µ)⊕ (V,−λ,−µ) is isomorphic to a hyperbolic form.

PROOF. The diagonally embedded copy of V is lagrangian. �

8.4. The even-dimensional L-groups

We may now define the even-dimensional L-groups. Let ε = (−1)n. We define a
group L2n(R) as follows: consider a semigroup with one generator for each isomorphism
class of ε-quadratic forms on finitely generated free R-modules, with addition by direct
sum, and with the imposed relation that every hyperbolic form on a f.g. free R-module
represents zero (in other words, we take the free semigroup as described above, and divide
by the subsemigroup generated by hyperbolic forms). By the corollary above, the quotient
semigroup so defined is in fact a group; the inverse of (V, λ, µ) being (V,−λ,−µ).

8.40. DEFINITION. This quotient group is denoted L2n(R).

We observe that L2n(R) is a covariant functor of R (by “change of rings”).

8.41. EXAMPLE. Here are the L-groups for the three fields R, C, Z2 that we previ-
ously considered.

R L0(R) L2(R)

R Z 0
C Z Z
Z2 Z2 Z2

These follow from the classification of symmetric and skew-symmetric forms over these
fields, which we previously discussed. The isomorphisms L0(R) → Z, L0(C) → Z,
and L2(C) → Z are given by the signature. The isomorphisms L0(Z2) → Z2 and
L2(Z2)→ Z2 are given by the Arf invariant
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8.42. EXAMPLE. An example of some interest to analysts occurs when the ring R is
a complex C∗-algebra A. In this case there is an identification between L0(A) = L2(A)
and the topological K-theory of the algebra A. We will assume that the reader is familiar
with K-theory for C∗-algebras.

We consider, then, symmetric forms on free A-modules; in fact, without essential loss
of generality, it is enough to consider symmetric forms on A itself. Such a form is given
by

λ(x, y) = yTx∗

for some self-adjoint T ∈ A. If the form is nondegenerate, then T is invertible, that is, the
spectrum σ(T ) of T does not contain zero.

Choose a continuous and bounded function f : R → R which is equal to zero on R−
and equal to one on R+ ∩ σ(T ). The operator e+(T ) = f(T ) defined by the functional
calculus does not depend on the choice of function f ; it is called the positive spectral
projection of T . Similarly we may define the negative spectral projection e−(T ) and we
note that e−(T ) + e+(T ) = 1. Now define a new symmetric form λ′ by

λ′(x, y) = y(−e−(T ) + e+(T ))x∗.

I claim that λ′ and λ are isomorphic as forms; indeed, the spectral theorem provides an
invertible operator S = |T |1/2 such that λ′(Sx, Sy) = λ(x, y). We conclude that, over a
C∗-algebra A, any nondegenerate form is isomorphic to one arising as the ‘difference’ of
two projections.

The analytic signature of λ is the class [e+] − [e−] in K0(A). The analytic signature
of a hyperbolic form is zero, so we get a map L0(A) → K0(A). The discussion above
shows that this map is almost an isomorphism from L-theory to K-theory. The reason
it isn’t exactly an isomorphism is that the two projections are related by the requirement
that their sum represent a free module. If we use the variant definition Lp of L-theory,
made out of quadratic forms on f.g. projective modules, then the analytic signature gives
an isomorphism Lp0(A)→ K0(A) for any unital C∗-algebra A.

8.43. EXERCISE. Show that we can describe our original L-theory L0(A) = Lh0 (A)
in terms of K-theory as well. In fact, show that the map which sends the form to the pair
(e−, e+) gives an isomorphism between L0(A) and the group G which consists of pairs
(x, y) ∈ K0(A) ×K0(A) such that x + y vanishes in reduced K-theory K̃0(A), modulo
the subgroup which is the image of the diagonal embedding C → A ⊕ A. Show that this
group only differs from K0(A) by 2-primary torsion.

8.5. Computation of L2n(Z)
evenLZ-sect

The main point of L-theory is that it should be applicable to group rings, and the alert
reader will have noticed that we have not computed the L-theory groups of a single group
ring so far. In this section we will make some amends by calculating the simplest example,
the L-theory of Z (which is of course the group ring of the trivial group). This object made
an implicit appearance in Chapter 2. Even in this simple case, some substantial input from
number theory is required.

Let α : Z→ R and β : Z→ Z2 denote the obvious homomorphisms. We aim to prove
the following two results.

L0Z 8.44. PROPOSITION. α∗ : L0(Z)→ L0(R) = Z is injective, and its image is 8Z.

L2Z 8.45. PROPOSITION. β∗ : L2(Z)→ L2(Z2) = Z2 is an isomorphism.
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We begin with the symmetric case (n = 0). Here our task is to classify even nonsingu-
lar symmetric forms (which are the same as nonsingular quadratic forms by Exercise 8.22)
on finitely generated free abelian groups. It turns out to be helpful to begin with a stable
classification of all nonsingular symmetric forms.

8.46. DEFINITION. We define K to be the Grothendieck group constructed from the
semigroup of isomorphism classes of nonsingular symmetric forms on finitely generated
free abelian groups.

Let I+ and I− denote the rank 1 forms λ(x, y) = xy and λ(x, y) = −xy.

8.47. PROPOSITION. The group K is free abelian generated by [I+] and [I−].

PROOF. It will suffice to prove that any odd indefinite form is isomorphic to a direct
sum of copies of I+ and I−. For certainly any form is can be made odd and indefinite by
adding I+ ⊕ I−, so this will prove that [I+] and [I−] generate K; on the other hand, the
pair (rank,signature) gives a homomorphism K → Z × Z under which the images of [I+]
and [I−] are linearly independent, so K must in fact be free on these classes.

We work by induction on the rank. Let λ be an odd indefinite form on a Z-module V of
rank n. By the number-theoretic Theorem 2.46 there exists x ∈ V such that λ(x, x) = 0.
We may assume that x is indivisible (i.e. that it cannot be written as a nontrivial integer
multiple of any other vector) and from this and the unimodularity of the form it follows
that there exists y ∈ V such that λ(x, y) = 1. Because λ is odd, a simple argument shows
that we may choose such a y with λ(y, y) = 2m+1 an odd number. Now let x′ = y−mx,
y′ = y − (m+ 1)x; then we have the following table of values for λ:

x′ y′

x′ 1 0
y′ 0 −1

and hence V = I+ ⊕ I− ⊕W , where W is a module of rank n− 2. Now one of I+ ⊕W ,
I− ⊕W is odd indefinite and of rank n− 1, so the induction may proceed. �

Now we can prove something we have already asserted and used, that the signature
maps L0(Z) to 8Z.

vdBl 8.48. PROPOSITION (van der Blij). The signature of an even symmetric form (that is,
a quadratic form) over Z is a multiple of 8.

PROOF. We have observed that the signature gives a homomorphism K→ Z. We will
now define a related map σ : K→ Z/8. Given a symmetric form λ on a free Z-module V ,
let λ̄ be the associated form on the vector space V̄ = V ⊗ F2 = V/2V over F2. On V̄ the
functional ξ 7→ λ̄(ξ, ξ) is linear and hence, by duality, there is a canonical element ζ ∈ V̄
such that

λ(ζ, ξ) = λ(ξ, ξ)

for all ξ ∈ V̄ . Let z ∈ V be a lift of ζ; it is unique modulo 2V . Then λ(z, z) ∈ Z is
well-defined modulo 8, since

λ(z + 2x, z + 2x) = λ(z, z) + 4(λ(x, z) + λ(x, x))

and λ(x, x) agrees modulo 2 with λ(z, x). This residue class modulo 8 is the invariant σ
of the form (V, λ).

I now claim that σ is exactly the reduction of the signature modulo 8. Since σ and
the signature both give homomorphisms on K, it suffices to check this assertion on the
generators [I+] and [I−] of K, and there it is easy. But now, if λ is an even form, then
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λ̄(ξ, ξ) (in the notation above) vanishes identically on V̄ , so ζ = 0 and we may take z = 0,
whence σ = 0. The conclusion follows. �

8.49. REMARK. Note that in the geometric situation of Proposition 2.14, the quantity
ζ appearing in the above proof is exactly the Wu class.

8.50. EXERCISE. To do: Something about the connection with Gauss sums. To do

Now we can do the computation of L0(Z). Let us first prove

rep2 8.51. LEMMA. Every (nonzero) class in L0(Z) can be represented by a definite form.

PROOF. It suffices to show that a hyperbolic summand can be split off from any even
indefinite form. Let (V, λ) be such a form, let x ∈ V be indivisible with λ(x, x) = 0 and
let y ∈ V have λ(x, y) = 1. Then λ(y, y) = 2m for somem, and x′ = x and y′ = y−mx
span a hyperbolic summand in V . �

PROOF OF PROPOSITION 8.44. Lemma 8.51 proves that the signature homomor-
phism L0(Z) → Z is injective (since the signature of a definite form is equal to plus
or minus its rank). On the other hand, van der Blij’s lemma shows that the image of this
homomorphism is contained in 8Z, and the existence of the even definite form E8 of rank
8 shows that the image is actually equal to 8Z. �

PROOF OF PROPOSITION 8.45. Suppose that λ is a skew-symmetric form on a free
Z-module V . An inductive argument (similar to but simpler than those we have already
carried out) shows that V is an orthogonal direct sum of 2-dimensional subspaces on each
of which the form λ is hyperbolic, having matrix(

0 1
−1 0

)
.

If we now consider a quadratic refinement µ : V → Q−(Z) = Z2, essentially the same
discussion as in Example 8.29 applies to show that there are only two distinct possibilities
for µ on each hyperbolic summand; moreover, denoting these possibilities V0 and V1 as
before, we still have the isomorphism V0 ⊕ V0

∼= V1 ⊕ V1. At this point we know that
there are at most two skew-quadratic forms over Z up to stable isomorphism; but they are
certainly distinguished by the Arf invariants of their mod 2 reductions. This is 8.45. �

To do: Something about the Maslov index and (non) additivity of the signature?
See Cappell–Lee–Miller. To do

8.6. The Arf invariant and topology
arf-top-sect

In this section we shall describe one natural topological situation in which the Arf in-
variant arises. This shows a relationship between the Arf invariant and the stable homotopy
group πs2. At the same time, the techniques that we shall use to find a quadratic refinement
of the intersection form — counting self-intersections and destabilization obstructions
of immersed spheres — will be exactly the ones that are needed to define the surgery
obstruction in the general case.

We are going to consider stably framed (4k+2)-manifoldsM which are 2k-connected.
It follows that the Hurewicz homomorphism π2k+1(M)→ H2k+1(M) is an isomorphism.
The most important example for this section is the 2-torus M = T2.

It follows from Proposition 4.25 that each element of H2k+1(M) can be represented
by a self-transverse immersion f : S2k+1 → M , which is unique up to homotopy. Since
the tangent bundle to M is stably framed (by hypothesis) and the tangent bundle to S2k+1
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FIGURE 1. Connected sum of immersions conns-immerse

is stably framed (by the standard embedding S2k+1 → R2k+2)2, the normal bundle νf to
f is stably framed. Recall (Definition 3.27) that the destabilization obstruction d(f) ∈ Z2

measures whether or not it is possible to reduce this stable framing of the normal bundle to
a genuine framing.

8.52. DEFINITION. For a self-transverse immersion f : S2k+1 → M , define n(f) ∈
Z2 to be the total number (mod 2) of self-intersection points of the immersion f . Further
define µ(f) ∈ Z2 to be d(f) + n(f).

We shall show in the next chapter (Proposition ??) that the quantity µ(f) is a homotopy
invariant of the immersion f . Thus we may consider µ as a Z2-valued function on the
homology group H2k+1(M).

8.53. PROPOSITION. The function µ defined above is a quadratic refinement of the
intersection form λ on H2k+1(M ;Z).

PROOF. It suffices to establish part (i) of Definition 8.23; in this case (skew-symmetric
forms over R = Z) part (ii) is trivial and part (iii) follows from part (i). That is, we must
show that for homology classes x, y,

µ(x+ y)− µ(x)− µ(y) = λ(x, y).

Suppose that x and y are represented by transverse immersions f and g. Then x + y is
represented by the connected sum of f and g, which is an immersion h : S2k+1#S2k+1 =
S2k+1 → M defined as follows (see figure 1). Run a path in M from a regular point
(i.e. not a self-intersection point) p ∈ f(S2k+1) to a regular point q ∈ g(S2k+1). The
path has a tubular neighborhood U diffeomorphic to [0, 1] × R4k+1, in such a way that
f(S2k+1) meets U in a copy of S2k standardly embedded in {0} × R2k+1 × {0} ⊂
[0, 1] × R4k+1, and similarly g(S2k+1) meets U in a copy of S2k standardly embedded
in {1} × R2k+1 × {0} ⊂ [0, 1] × R4k+1. We wish to join these two copies of S2k by an
immersion of a tube [0, 1]× S2k in U . There are two cases to consider:

(a) If the two copies of S2k acquire opposite orientations from the immersed S2k+1s
of which they are a part, then we may simply connect them by the natural
embedding of the product [0, 1]×S2k in [0, 1]×R2k+1×{0} ⊂ [0, 1]×R4k+1.

2In cases k = 0, 1, 3 the tangent bundle to S2k+1 is actually trivial. Nevertheless it is very important to
note that the framing provided by this trivialization is not compatible with the stable framing that we are using.
Compare Example 3.30.
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(b) If on the other hand the two copies of S2k acquire the same orientations, then
we must connect them by an immersion of [0, 1]× S2k in [0, 1]× R4k+1 which
reverses orientation. An explicit example of such a ‘figure eight’ immersion is
described in Section 10.1; it has a single double point and its destabilization
obstruction is equal to 1.

We now investigate the self-intersection points and destabilization obstructions of the
connected sum h. The self-intersections of h comprise the self-intersections of f , the
self-intersections of g, and the mutual intersections of f and g, together in case (b) above
with the one extra self-intersection point introduced by the figure eight immersion. As for
the destabilization obstruction, it is the sum of the destabilization obstructions of f and of
g, together in case (b) above with an extra 1 coming from the figure eight immersion. Thus
we have the following table

n(h) d(h) µ(h)

Case (a) n(f) + n(g) + λ(f, g) d(f) + d(g) µ(f) + µ(g) + λ(f, g)
Case (b) n(f) + n(g) + λ(f, g) + 1 d(f) + d(g) + 1 µ(f) + µ(g) + λ(f, g)

from which it can be seen that µ(x+ y)− µ(x)− µ(y) = λ(x, y) in all cases. �

8.54. DEFINITION. The Arf invariant of the stably framed manifold M is the Arf
invariant of the quadratic refinement of its intersection form, described above.

We are going to carry out some calculations for M a surface embedded in R3. Let
F (M) be the principal bundle of oriented orthonormal 2-frames in M . The map

(x,y) 7→ (x,y,x× y)

(where × denotes the ‘cross product’ of vectors in R3) sends each 2-frame to an oriented
3-frame in R3, related to the standard 3-frame by an element of SO(3). In this way be
obtain a bundle map

F (M)→ SO(3)×M.

Let F̃ (M) denote the pull-back of Spin(3)×M over this bundle map. It is a double cover
of F (M) called the spin structure induced by the embedding M → R3.

We give M the stable framing induced by its embedding in R3.

arf-ex1 8.55. EXERCISE. Let f : S1 →M be an embedding. Show that d(f) = 0 if and only
if the unit tangent map

df : S1 → S(T (M)) ∼= F (M)

does not lift to a map S1 → F̃ (M). Deduce that if f is nullhomotopic, then d(f) = 0.

arf-ex2 8.56. EXERCISE. Show that if f : S1 → M is an embedding, and if there is an em-
bedding D2 → R3 which extends f and which intersects M transversely and orthogonally
along Im(f), then d(f) = 0. (Use Exercise 8.55.)

8.57. EXAMPLE. Let M = T2 be the 2-torus. It acquires a stable framing f0 from
its embedding as a two-sided submanifold of R3. Let x and y be the standard homology
generators. Then x, y, and x+ y may be represented by embeddings f, g, h of S1 in M .

By Exercise 8.56, d(f) = d(g) = 0. It follows that d(h) = 1 (one can also check this
directly). Thus the Arf invariant of the torus with framing f0 is 0.
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8.58. EXAMPLE. By contrast let us now consider the torus T2 with the translation-
invariant framing f1 of its tangent bundle coming from the Lie group structure. With this
framing we easily see that each of f , g, h have destabilization obstruction 1 (this essentially
comes from the destabilization obstruction of T (S1) with its Lie-invariant framing, see
Example 3.30). Thus the Arf invariant of the torus with framing f1 is 1.

It can be shown that the Arf invariant is an invariant of framed cobordism. (We don’t
give a proof here, but this will follow from later results in To do: insert reference.) TheTo do
two framings of the torus described above therefore give the two different elements of

Ωfr2
∼= πs2

∼= Z2

(see Theorem 7.18), and the Arf invariant gives an isomorphism Ωfr2 → Z2. This is how
Pontrjagin computed πs2.



CHAPTER 9

Intersections and the fundamental group

intersect-chap-b
9.1. Geometric versus algebraic intersections II

To do: Stuff just patched in — need rewrite To do
The hypothesis that M is simply-connected can be removed by developing a theory

of equivariant intersection numbers. We will need the theory of group rings. Let π be a
group, most likely the fundamental group of something. You will recall that the group ring
Z[π] is by definition the collection of all finite formal linear combinations

∑
ngg, where g

runs over the group π. These can be added and multiplied in the obvious way. Notice that
Z[π] is an abelian group equipped with an action of π, and any such group is naturally a
module over Z[π].

9.1. EXAMPLE. The group ring Z[Z] is the ring Z[t, t−1] of finite formal Laurent
series over Z.

9.2. DEFINITION. Let M be a compact connected manifold, with a preferred base-
point, and let π1M = π. A π-trivial submanifold N consists of a connected submanifold
N ⊆ M such that the image of π1N → π is the trivial group, together with a preferred
homotopy class of paths from the basepoint of M to some fixed point of N .

Suppose that two oriented π-trivial submanifolds N1 and N2 of complementary di-
mensions intersect transversely. Then to each intersection point p ∈ N1 ∩ N2 we may
associate an element gp ∈ π, namely the homotopy class of the path that runs from the
basepoint in M , via the preferred route to N1, then by a path in N1 to p, then back from
p by a path in N2 to the preferred point in N2, and back by the preferred route to the
basepoint in M .

To do: Richard says — make more explicit the role of the π-triviality assumption
(choice of path does not matter) To do

Suppose now that we choose an orientation for M at the basepoint (we can always do
this, even though M need not be globally orientable). We can define a sign ε(p) ∈ {±1}
for the intersection point p by comparing the orientation at p induced from the orientations
of N1 and N2 with the orientation transported from the basepoint along the path for N1.

equiv-intersect 9.3. DEFINITION. In the situation of the previous paragraphs, define the equivariant
intersection number of N1 and N2 by λ(N1, N2)π ∈ Z[π] by

λ(N1, N2)π =
∑

p∈N1∩N2

ε(p)gp.

An alternative version of this definition can be given by considering the universal cover
M̃ of M . It is easy to see that a π-trivial submanifold N ⊆M can equivalently be defined
as one for which there is given a submanifold Ñ of M̃ that is mapped homeomorphically
onto N by the covering map M̃ → M of the universal cover. Now suppose that we have
two transversely intersecting π-trivial submanifolds N1 and N2 as above. Notice that M̃

123



124 9. INTERSECTIONS AND THE FUNDAMENTAL GROUP

is oriented by the choice of orientation at the basepoint of M . Then, for each g ∈ G, the
submanifolds Ñ1 and g−1Ñ2 have an ordinary intersection number [Ñ1 : g−1Ñ2], and it is
not hard to verify the identity

λ(N1, N2)π =
∑
g∈G

[Ñ1 : g−1Ñ2]g.

9.4. DEFINITION. If x =
∑
ngg belongs to Z[π], we define |x| =

∑
|ng|.

We can now generalize Corollary ?? as follows. The statement is the same, except that
simple-connectedness ofM has been weakened to π-triviality of the submanifolds, and we
use equivariant intersection numbers.

WNSC 9.5. COROLLARY. If, in the situation of the Whitney lemma, N1 and N2 are π-trivial
in M , then one can find an ambient isotopy of N1 to a submanifold N ′′1 which intersects
N2 in precisely |λ(N1, N2)π| points. Hence, in particular, if λ(N1, N2)π = 0, then one
can make N1 and N2 disjoint by an ambient isotopy.

For the proof, we merely note that superfluous intersections belonging to the same
g ∈ π can indeed be canceled by the Whitney trick, since the definition of equivariant
intersection numbers provides the desired paths γ1 and γ2.

Let X be a CW -complex1. The notation C(X) denotes the cellular chain complex of
X , which has one generator in dimension q for each q-simplex of X . There is a natural
map of complexes C(X)→ S(X) including the cellular complex in the singular complex;
this map is a chain equivalence.

Suppose now that X is a finite complex, with fundamental group π. The universal
cover X̃ is then also a CW -complex, on which π acts freely2 with one π-orbit of cells in
X̃ corresponding to each individual cell of X . It follows then that C(X̃) may be thought
of as a complex of finitely generated, free right Z[π]-modules.

It remains true that C(X̃) → S(X̃) is a chain equivalence (in the category of complexes of right Z[π]-
modules). This proves the topological invariance of our constructions below.

9.6. DEFINITION. Let V be a left Z[π]-module. The homology of X with coefficients
V , written Hπ

∗ (X;V ), is the homology of the complex

C(X̃)⊗Z[π] V

of abelian groups.

In general Hπ
∗ (X;V ) is an abelian group; if V is a Z[π]-bimodule, then the homology

is naturally a right Z[π]-module.

9.7. DEFINITION. Let W be a right Z[π]-module. The cohomology of X with coeffi-
cients W , written H∗π(X;W ), is the cohomology of the complex

HomZ[π](C(X̃,W ))

of abelian groups.

In general H∗π(X;W ) is an abelian group; if W is a Z[π]-bimodule, then the cohomo-
logy is naturally a left Z[π]-module.

1See Appendix C for more about CW-complexes and cellular homology.
2Our convention is that π acts on the right.
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9.8. REMARK. There is a pairing

Hk
π(X;W )⊗Z H

π
k (X;V )→ V ⊗Z[π] W

between homology and cohomology.

9.9. EXAMPLE. The group Z has a natural Z[π]-bimodule structure in which every
group element acts as the identity. The homology and cohomology groups Hπ

∗ (X;Z) and
H∗π(X;Z) are canonically isomorphic to the usual homology and cohomology groups of
X with integer coefficients. Here is why: there is an obvious map of complexes of abelian
groups

C(X̃)→ C(X)

which sends each cell of X̃ to its image in X . Since the image of a cell of X̃ under this
map is the same as the image of each of its π-translates, the map passes to the quotient

Z⊗Z[π] C(X̃)→ C(X).

This latter map is easily seen to be an isomorphism of chain complexes. A similar argument
applies to cohomology.

9.10. EXAMPLE. Now consider homology and cohomology with coefficients in the
bimodule Z[π]. Since Z[π]⊗Z[π] C(X) = C(X), the homology groups Hπ

∗ (X;Z[π]) with
coefficients Z[π] are just the ordinary homology groups of X̃ with the natural right action
of π.

The cohomology groups H∗π(X;Z[π]) with coefficients Z[π] are the compactly sup-
ported cohomology groups of X̃ , with the natural left action of π. To see this, we note
that a Z[π]-module homomorphism from C(X̃) to Z[π] is the same thing as a Z-module
homomorphism ϕ from C(X̃) to Z with the additional constraint that for each cell σ,
ϕ(g · σ) is nonzero for only finitely many g ∈ π. But since X has only finitely many
cells, this is exactly the same as a compactly supported cochain for X̃ .

This is a simple example of translating between equivariance and geometric control (in this case, compact
support). The idea will become much more important later.

9.11. EXAMPLE. As an explicit example, let us consider X = S1 with its usual cell
structure with one 0-cell and one 1-cell. We take π = π1(S1) = Z, so Z[π] = Z[t, t−1].
The complex C(X̃) is then

0 Z[t, t−1]oo Z[t, t−1]
1−too 0oo

One readily computes that its homology is Z in dimension 0 and trivial in dimension 1, in
agreement with the ordinary homology of the universal cover X̃ = R.

Similarly the dual complex Hom(C(X̃,Z[π]) is

0 // Z[t, t−1]
1−t // Z[t, t−1] // 0

whose cohomology is trivial in dimension 0 and Z in dimension 1, in agreement with the
compactly supported cohomology of R. Notice that Poincaré duality apparently still holds!
We will investigate this in general in the next section.

With reference to this example, you might be puzzled by the following question: ho-
mology (with Z[π] coefficients) is naturally a right Z[π]-module, cohomology is naturally
a left module. How then can there be a natural Poincaré duality isomorphism between
them? The answer is that Z[π] is provided with some extra structure — an involution —
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which relates left and right actions. The involution allows us to understand the symmetry
properties of Poincaré duality , which are critical in setting up the surgery obstruction
groups.

9.12. DEFINITION. An involution on a ring R is a map R → R, denoted x 7→ x∗,
which is a homomorphism of abelian groups, preserves the unit, and has (xy)∗ = y∗x∗

and x∗∗ = x for all x, y ∈ R.

A ring with involution will be called a ∗-ring.

9.13. EXAMPLE. Conjugation on C or on H is an involution. The conjugate transpose
on a ring of matrices over R, C or H is an involution. The adjoint on the ring of bounded
operators on a Hilbert space (or on any C∗-subalgebra, such as the ring of compact
operators) is an involution.

More relevant to our purposes is the following.

9.14. PROPOSITION. The map g 7→ g−1 extends (by linearity) to an involution on
the group ring Z[π]. More generally, the same is true of the map g 7→ w(g)g−1 where
w : π → {±1} is any group homomorphism. �

These are called the standard, respectively the w-twisted, involutions on the group
ring.

To do: We may want to consider only the oriented case, and put the unoriented
case into exercises.To do

In our situation π is usually the fundamental group π1(M) of some manifold. based loops γ in M can
be classified as orientation-preserving or orientation-reversing according to whether a local orientation at the
basepoint is preserved or reversed under smooth transport around γ. The homomorphism π1(M) → {±1}
which sends orientation-preserving loops to +1 and orientation-reversing loops to −1 gives a canonical choice
for the orientation character w on π. Note that M is orientable if and only if this w is identically 1.

9.15. EXERCISE. By abuse of notation, we will denote the 2-element group {±1} by Z/2. By the Hurewicz
theorem we have in fact Hom(π1(M),Z/2) = H1(M ;Z/2). Show that under this isomorphism the orientation
character w corresponds to the first Stiefel-Whitney class of M . (See [26] for the Stiefel-Whitney classes.)

9.16. EXAMPLE. Let N1 and N2 be transversely intersecting oriented π-trivial sub-
manifolds of M , having complementary dimensions k1 and k2. Then their equivariant
intersection numbers (Definition 9.3) are related by

[N2 : N1]π = (−1)k1k2λ(N1, N2)∗π,

where ∗ is the involution on Z[π] associated to the first Stiefel-Whitney class. Indeed,
reversing the order ofN1 andN2 replaces each group element g appearing in the sum defin-
ing the equivariant intersection number by its inverse, and also multiplies the orientation-
dependent coefficient ε(g) by the factor w(g).

9.2. Orientations and equivariant duality

Our new homology and cohomology theories Hπ
∗ and H∗π enjoy suitable versions

of the usual kinds of functorial properties, including excision, Mayer-Vietoris sequences,
homotopy invariance and so on. In particular, it is true just as for ordinary homology that if
M is an n-manifold, then Hπ

i (M,M \ {x};Zw) is isomorphic to 0 for i 6= n, Z for i = n.

9.17. DEFINITION. An orientation of M for the orientation character w is a class
[M ] ∈ Hπ

n (M ;Zw) which restricts to a generator of Hπ
n (M,M \ {x};Zw) for all x ∈M .

This is exactly the same definition as we previously gave in the non-equivariant case.
But now we have
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9.18. PROPOSITION. Any (connected, compact) manifold M is orientable for the
orientation character defined by the first Stiefel-Whitney class.

PROOF. The manifold M has an orientation cover M̄ , a Z/2 cover whose fiber over
p ∈ M consists of the possible orientations of M at p. The orientation cover M̄ is
the Z/2-cover associated to the Stiefel-Whitney class w = w1 : π1M → Z/2, and it is
(tautologically) orientable. Now take a fundamental cycle for M̄ and lift it (on the chain
level) to a cycle on the universal cover; one sees directly that this lifted cycle belongs to
C(M̃)⊗ Zw, so it defines a w-twisted orientation for M . �

9.19. REMARK. The usual notion of orientation is a special case, with w1 = 1; you
may prefer to focus on this case to start with. But our machinery handles the general case
with almost no extra effort.

Our intention is to set up Poincaré duality for manifolds in the context of twisted
homology. Having obtained the notion of orientation, the next task is to define a suitable
cap-product. So, let X be a finite complex (or just a compact Hausdorff space, if we use
singular theory), with fundamental group π, and let w be an orientation character for π.
Let V be a right Z[π]-module. For every a ∈ Hπ

r (X;Zw) we want to define a cap-product

_ a : Hs
π(X;V o)→ Hπ

r−s(X;V )

which is a homomorphism of abelian groups. To do this, we begin with an Eilenberg-Zilber
diagonal approximation

C(X̃)→ C(X̃)⊗Z C(X̃).

One can manufacture such a diagonal approximation (see Appendix D) which is equivari-
ant with respect to the π-action on the tensor product by (x ⊗ y)g = (xg) ⊗ (yg). Now
tensor on the right by the module Zw. This gives a chain map

C(X̃)⊗Z[π] Zw → (C(X̃)⊗Z C(X̃))⊗Z[π] Zw.

According to Proposition 8.8, the complex on the right of this display is naturally iso-
morphic to C(X̃) ⊗Z[π] C(X̃)o. Tensoring over Z with the complex HomZ[π](C(X), V o)
which computes the cohomology, this gives us a diagram

HomZ[π](C(X), V o)⊗Z (C(X̃)⊗Z[π] Zw)

��
HomZ[π](C(X), V o)⊗Z (C(X)⊗Z[π] C(X)o)

evaluation
��

V o ⊗Z[π] C(X)o

in which the arrows are maps of complexes. Passing to homology this gives the desired
productcap-def

(9.20) Hπ
r (X;Zw)⊗Hs

π(X;V o)→ Hπ
r−s(X;V )

9.21. DEFINITION. The product defined in Equation 9.20 above is called the cap
product between H∗π and Hπ

∗ .
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Assuming for simplicity thatw = +1 we can obtain a more geometric picture of the cap product as follows.
There is defined an infinite transfer map T from the ordinary homologyHr(X;Z) to the locally finite homology
Hlf
n (X̃;Z) of the universal cover. The usual (locally finite) cap product with T (a) defines a map

Hs
c (X;Z)→ Hr−s(X;Z).

The cap-product above is just this map.

9.22. REMARK. In the situation of the cap-product, above, suppose that V is not
merely a right module but a bimodule. Then Hs

π(X;V o) is a right Z[π]-module and
Hπ
r−s(X;V ) is a left Z[π]-module. The cap-product with a is now a module map from

the opposite of cohomology to homology.
When V = Z[π] itself, which will be the most important case, we can apply the result

of Exercise 8.6 that V ∼= V o as bimodules and express the cap-product with a as a map of
left Z[π]-modules

Hs
π(X;Z[π])o → Hπ

r−s(X;Z[π]).

When calculating with this expression of the cup product it is important not to forget the
extra involution that has been introduced by the isomorphism Z[π] ∼= Z[π]o.

Let Mn be a compact manifold, oriented with orientation character w. Then the cap-
product with the fundamental class defines Z[π]-module morphismsduality-eq

(9.23) D : Hr(M ;Z[π])o → Hw
n−r(M ;Z[π]).

Following word-for-word the proofs in the non-equivariant case, we find
To do: This ‘following the proofs’ needs to be expanded into a discussion of

the assembly process from (Z,K)-modules to Z[π1K] modules.To do

9.24. THEOREM (Universal Poincaré duality). The equivariant duality maps D for a
compact oriented manifold, defined in Equation 9.23 above, above are isomorphisms. �

Now we make the connection to intersection theory. Let N1 and N2 be transversely
intersecting oriented π-trivial submanifolds of M , of complementary dimensions. Recall
that a π-trivial submanifold Nk has a preferred lift Ñ to a submanifold of the universal
cover of M . The fundamental class of Ñ then maps to a class [N ] ∈ Hw

k (M ;Z[π]). We
use the orientation character coming from the first Stiefel-Whitney class.

9.25. THEOREM. The equivariant intersection number of transversely intersecting
submanifolds as above is related to equivariant Poincaré duality by

λ(N1, N2)π = D−1[N1][N2].

PROOF. The equivariant intersection number of N1 and N2 is a sum, over g ∈ π,
of the ordinary intersection numbers of Ñ1 and g−1Ñ2. Now apply ordinary intersection
theory in the universal cover. �

Together with corollary 9.5, this theorem provides the essential link between quadratic
algebra over Z[π] and geometric intersections. Our application will be to discover when
homology classes can be represented by disjoint embedded spheres, so that we can do
surgery on them.

9.3. Equivariant Poincaré duality

9.4. Counting self-intersections

9.5. The quadratic intersection form
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