
A Side Journey to Titan

Side-Channel Attack on the Google Titan Security Key

(Revealing and Breaking NXP’s P5x ECDSA Implementation on the Way)

Victor Lomne and Thomas Roche

NinjaLab

161 rue Ada, 34095 Montpellier, France

firstname@ninjalab.io

January 7, 2021

ABSTRACT

The Google Titan Security Key is a FIDO U2F hardware device proposed by Google (available
since July 2018) as a two-factor authentication token to sign in to applications (e.g. your Google
account). We present here a side-channel attack that targets the Google Titan Security Key ’s
secure element (the NXP A700X chip) by the observation of its local electromagnetic radiations
during ECDSA signatures (the core cryptographic operation of the FIDO U2F protocol). This
work shows that an attacker can clone a legitimate Google Titan Security Key .

To understand the NXP ECDSA implementation, find a vulnerability and design a key-
recovery attack, we had to make a quick stop on Rhea (NXP J3D081 JavaCard smartcard).
Freely available on the web, this product looks very much like the NXP A700X chip and uses
the same cryptographic library. Rhea, as an open JavaCard platform, gives us more control to
study the ECDSA implementation.

We could then show that the electromagnetic side-channel signal bears partial information
about the ECDSA ephemeral key. The sensitive information is recovered with a non-supervised
machine learning method and plugged into a customized lattice-based attack scheme.

Finally, 4000 ECDSA observations were enough to recover the (known) secret key on Rhea
and validate our attack process. It was then applied on the Google Titan Security Key with
success (this time with 6000 observations) as we were able to extract the long term ECDSA
private key linked to a FIDO U2F account created for the experiment.

Cautionary Note Two-factor authentication tokens (like FIDO U2F hardware devices) pri-
mary goal is to fight phishing attacks. Our attack requires physical access to the Google Titan
Security Key , expensive equipment, custom software, and technical skills.

Thus, as far as the work presented here goes, it is still safer to use your Google
Titan Security Key or other impacted products as FIDO U2F two-factor authenti-
cation token to sign in to applications rather than not using one.

Nevertheless, this work shows that the Google Titan Security Key (and other impacted prod-
ucts) would not avoid unnoticed security breach by attackers willing to put enough effort into
it. Users that face such a threat should probably switch to other FIDO U2F hardware security
keys, where no vulnerability has yet been discovered.

1

Contents

1 Introduction 4
1.1 Context . 4

1.1.1 Study Motivation . 4
1.1.2 Product Description . 4
1.1.3 Contributions and Document Organization 5

1.2 Preliminaries . 6
1.2.1 FIDO U2F Protocol . 6
1.2.2 A Side-Channel Attack Scenario on the FIDO U2F Protocol 9
1.2.3 Google Titan Security Key Teardown . 10
1.2.4 NXP A700X Chip . 12

1.3 NXP Cryptographic Library on P5x Chips . 13
1.3.1 The NXP P5x Secure Microcontroller Family 13
1.3.2 Available NXP JavaCard Smartcards on P5x Chips 14
1.3.3 Rhea . 15

1.4 Side-Channel Observations . 16
1.4.1 Side-Channel Setup . 16
1.4.2 First Side-Channel Observations on Titan 17
1.4.3 First Side-Channel Observations on Rhea 18

2 Reverse-Engineering of the ECDSA Algorithm 20
2.1 ECDSA Signature Algorithm . 20

2.1.1 Basics about he ECDSA Signature Algorithm 20
2.1.2 Matching the Algorithm to the Side-Channel Traces 21
2.1.3 Study of the Scalar Multiplication Algorithm 22

2.2 ECDSA Signature Verification Algorithm . 23
2.2.1 Basics about the ECDSA Signature Verification Algorithm 24
2.2.2 Matching the Algorithm to the Side-Channel Traces 24
2.2.3 Study of the Scalar Multiplication Algorithm 25
2.2.4 Study of the Pre-Computation Algorithm 27

2.3 High-Level NXP Scalar Multiplication Algorithm 29
2.3.1 Pre-Computation and First Scalar Multiplication in Signature Verification

Algorithm . 29
2.3.2 Second Scalar Multiplication in Signature Verification Algorithm 31
2.3.3 Scalar Multiplication in Signature Algorithm 31

2

3 A Side-Channel Vulnerability 33
3.1 Searching for Sensitive Leakages . 33
3.2 A Sensitive Leakage . 35
3.3 Improving our Knowledge of the NXP’s Scalar Multiplication Algorithm 39

4 A Key-Recovery Attack 42
4.1 Directions to Exploit the Vulnerability . 42

4.1.1 A Closer Look at the Sensitive Information 42
4.1.2 Lattice-based ECDSA Attacks with Partial Knowledge of the Nonces . . . 43
4.1.3 How to Deal with Erroneous Known Bits 44

4.2 Recovering Scalar Bits with Unsupervised Machine Learning 45
4.3 Solving the Extended Hidden Number Problem 49
4.4 Touchdown on Rhea . 49
4.5 Touchdown on Titan . 50

5 Conclusions 52
5.1 Impact on Google Titan Security Key . 52
5.2 List of Impacted Products . 52
5.3 Attack Mitigations . 53

5.3.1 Hardening the NXP P5x Cryptographic Library 53
5.3.2 Use the FIDO U2F Counter to Detect Clones 54

5.4 Impact on Certification . 54
5.5 Project’s Timeline . 55

3

Chapter 1

Introduction

1.1 Context

1.1.1 Study Motivation

This journey begins in Amsterdam, Netherlands, during the international conference CHES in
September 2018 [7].

The second keynote of the conference was given by Elie Bursztein, Google’s anti-abuse re-
search team leader. At the end of his talk, Elie made some advertising about the new Google
security product, the Google Titan Security Key [17]. He also promoted that the hardware chips
are designed to resist physical attacks aimed at extracting firmware and secret key material.

During the Q&A session of the keynote, we asked if his team tried to apply the machine-
learning based side-channel methods he was promoting during his keynote to their new product,
and how resistant it was. We did not get any clear answer, but at the end of his talk, he
offered to some of the attendees few samples of their new product, which was at that time only
commercially available in the US. We managed to get one, with the idea to check by ourselves
its robustness against side-channel analysis !

1.1.2 Product Description

The Google Titan Security Key is a hardware FIDO U2F (universal second factor) device. It can
then be used, in addition to your login and password, to sign in to your Google account1.

The original Google Titan Security Key box [17] (which has been available in the US market
since July 2018, and in the EU market since February 2020) contains two versions:

• one with three communication interfaces, micro-USB, NFC and BLE (Bluetooth Low En-
ergy), see Figure 1.12, left side;

• one with two communication interfaces, USB type A and NFC (Figure 1.1 in the middle).

1see https://www.yubico.com/works-with-yubikey/catalog/ for a list of almost all applications supporting
FIDO U2F protocol

2pictures credit: https://store.google.com/product/titan_security_key

4

https://www.yubico.com/works-with-yubikey/catalog/
https://store.google.com/product/titan_security_key

Furthermore, a third version has been released in October 2019, with only one communication
interface, USB type C (Figure 1.1, right side).

Figure 1.1: Google Titan Security Key - Left: version with micro-USB, NFC and BLE interfaces -
Middle: version with USB type A and NFC interfaces - Right: version with USB type C interface

The Google Titan Security Key main functionality is to generate a unique secret key and
keep it safe. This secret key will be used to sign in to the user account. Since no device or
server knows the secret (except the Google Titan Security Key itself), nobody can sign in to
the legitimate user account without physically possessing the device. The security hence resides
in ensuring the confidentiality of the secret key, as stated by Google Cloud product manager
Christiaan Brand3:

”Titan Security Keys are designed to make the critical cryptographic operations
performed by the security key strongly resistant to compromise during the entire de-
vice lifecycle, from manufacturing through actual use.

The firmware performing the cryptographic operations has been engineered by Google
with security in mind. This firmware is sealed permanently into a secure element
hardware chip at production time in the chip production factory. The secure element
hardware chip that we use is designed to resist physical attacks aimed at extracting
firmware and secret key material.

These permanently-sealed secure element hardware chips are then delivered to the
manufacturing line which makes the physical security key device. Thus, the trust in
Titan Security Key is anchored in the sealed chip as opposed to any other later step
which takes place during device manufacturing.”

1.1.3 Contributions and Document Organization

In this report, we will show how we found a side-channel vulnerability in the cryptographic
implementation of Google Titan Security Key ’s secure element (we assigned CVE-2021-3011).
Our contribution is threefold:

• use side-channel analysis to reverse-engineer the cryptographic primitive implementation
and reveal its countermeasures (this part is presented in Chapter 2);

• discover a previously unknown vulnerability in the (previously unknown) implementation
(see Chapter 3);

3https://cloud.google.com/blog/products/identity-security/titan-security-keys-now-available-on-the-google-store,
last accessed the 31 Dec 2020

5

https://cloud.google.com/blog/products/identity-security/titan-security-keys-now-available-on-the-google-store

• exploit this vulnerability with a custom lattice-based attack and fully recover an ECDSA
private key from the Google Titan Security Key (see Chapter 4).

Finally, in Chapter 5 we discuss the impact of our work, list the impacted products and
provide the project timeline.

But first things first, let us have a look at the public information we have on the Google Titan
Security Key and on the FIDO U2F protocol.

1.2 Preliminaries

1.2.1 FIDO U2F Protocol

The FIDO U2F protocol, when used with a hardware FIDO U2F device like the Google Titan
Security Key , works in two steps: registration and authentication.

Three parties are involved: the relying party (e.g. the Google server), the client (e.g. a web
browser) and the U2F device. We summarize here how the different messages are constructed
and exchanged, as explained in [15].

Registration

1. The FIDO client first contacts the relying party to obtain a challenge, and then constructs
the registration request message, before sending it to the U2F device. As described
in Figure 1.24, it has two parts:

• the challenge parameter, which is the SHA-256 hash of the client data (containing
among other things the challenge);

• the application parameter, which is the SHA-256 hash of the application ID (the
application requesting the registration).

Figure 1.2: FIDO U2F Registration Request Message

2. The U2F device creates a new Elliptic Curve Digital Signature Algorithm (ECDSA) key-
pair in response to the registration request message, and answers the registration

response message, as described in Figure 1.34. Its raw representation is the concatenation
of the following:

• a reserved byte;

4pictures credit: https://fidoalliance.org/specs/fido-u2f-v1.2-ps-20170411/

fido-u2f-raw-message-formats-v1.2-ps-20170411.html

6

https://fidoalliance.org/specs/fido-u2f-v1.2-ps-20170411/fido-u2f-raw-message-formats-v1.2-ps-20170411.html
https://fidoalliance.org/specs/fido-u2f-v1.2-ps-20170411/fido-u2f-raw-message-formats-v1.2-ps-20170411.html

• a user public key, which is the (uncompressed) X-Y representation of a curve point
on the P256 NIST elliptic curve [34];

• a key handle length byte;

• a key handle, which allows the U2F token to identify the generated key pair. Note
that U2F tokens may wrap (i.e. encrypt) the generated ECDSA private key and the
application ID it was generated for, and output that as the key handle (see section
2.2 of [14] for more details);

• an attestation certificate in X.509 DER format;

• an ECDSA signature on P256 encoded in ANSI X9.62 format, over the following byte
string:

– a byte reserved for future use;

– the application parameter, from the registration request message;

– the challenge parameter, from the registration request message;

– the above key handle;

– the above user public key.

3. Finally, the FIDO client sends back the registration response message to the relying
party, which can store its different fields for later authentication.

Figure 1.3: FIDO U2F Registration Response Message

Authentication

1. The FIDO client first contacts the relying party to obtain a challenge, and then constructs
the authentication request message, before sending it to the U2F device. As described
in Figure 1.44, it is made of 5 parts:

• control byte, which is determined by the FIDO client (the relying party cannot specify
its value). The FIDO client will set the control byte to one of the following values:

– 0x07 - check-only

– 0x03 - enforce-user-presence-and-sign

– 0x08 - dont-enforce-user-presence-and-sign

7

• the challenge parameter, which is the SHA-256 hash of the client data;

• the application parameter, which is the SHA-256 hash of of the application ID (the
application requesting the authentication);

• a key handle length byte;

• a key handle, which is provided by the relying party, and was obtained during regis-
tration.

Figure 1.4: FIDO U2F Authentication Request Message

2. If the U2F device succeeds to process/sign the authentication request message de-
scribed above, it answers the authentication response message. As described in Figure
1.54, it is made of 3 parts:

• a user presence byte, where its first bit indicates whether user presence was verified
or not;

• a counter, which is the big-endian representation on 4 bytes of a counter value that
the U2F device increments every time it performs an authentication operation. Note
that this counter may be global (i.e. the same counter is incremented regardless of
the application parameter in authentication request message), or per-application.
See Section 2.6 of [14] for more details. Furthermore, as explained in Section 8.1 of
[16], the counter may be used as a signal for detecting cloned U2F devices;

• an ECDSA signature on P256 encoded in ANSI X9.62 format, over the following byte
string:

– the application parameter, from the authentication request message;

– the above user presence byte;

– the above counter;

– the challenge parameter, from the authentication request message.

3. Finally, the FIDO client sends back the authentication response message to the re-
lying party, which will verify the ECDSA signature using the public key obtained during
registration.

8

Figure 1.5: FIDO U2F Authentication Response Message

1.2.2 A Side-Channel Attack Scenario on the FIDO U2F Protocol

From the study of the FIDO U2F protocol, we can imagine the following attack scenario:

1. the adversary steals the login and password of a victim’s application account protected
with FIDO U2F (e.g. via a phishing attack);

2. the adversary gets physical access to the victim’s U2F device during a limited time frame,
without the victim noticing;

3. thanks to the stolen victim’s login and password (for a given application account), the ad-
versary can get the corresponding client data and key handle, and then sends the authenti-
cation request to the U2F device as many time as necessary5 while performing side-channel
measurements;

4. the adversary quietly gives back the U2F device to the victim;

5. the adversary performs a side-channel attack on the measurements, and succeeds in ex-
tracting the ECDSA private key linked to the victim’s application account;

6. the adversary can sign in to the victim’s application account without the U2F device, and
without the victim noticing. In other words the adversary created a clone of the U2F device
for the victim’s application account. This clone will give access to the application account
as long as the legitimate user does not revoke its second factor authentication credentials.

Note that the relying party might use the counter value to detect cloned U2F devices and
then limit (but not totally remove) the attack impact.

Practical Considerations

To apply the above scenario, we need to find a side-channel vulnerability in the ECDSA im-
plementation. The cryptographic primitives implementation is not open-source and we have no
information on its side-channel countermeasures. This is standard procedure for secure elements:
in this field the secrecy of the implementation is still believed to add an extra layer of security.

5it might be limited to several millions of requests (the counter being encoded on 4 bytes).

9

As we have seen, the FIDO U2F protocol is very simple, the only way to interact with the
U2F device is by registration or authentication requests. The registration phase will generate
a new ECDSA key pair and output the public key. The authentication will mainly execute an
ECDSA signature operation where we can choose the input message and get the output signature.

Hence, even for a legitimate user, there is no way to know the ECDSA secret key of a given
application account. This is a limitation of the protocol which, for instance, makes impossible
to transfer the user credentials from one security key to another. If a user wants to switch to a
new hardware security key, a new registration phase must be done for every application account.
This will create new ECDSA key pairs and revoke the old ones.

This limitation in functionality is a strength from a security point-of-view: by design it is not
possible to create a clone. It is moreover an obstacle for side-channel reverse-engineering. With
no control whatsoever on the secret key it is barely possible to understand the details of (let
alone to attack) a highly secured implementation. We will have to find a workaround to study
the implementation security in a more convenient setting.

1.2.3 Google Titan Security Key Teardown

Once plugged into a computer’s USB port, lsusb outputs:

Bus 001 Device 018: ID 096e:0858 Feitian Technologies, Inc.

As a matter of fact, the company who designed the Google Titan Security Key is Feitian
[13]6. Indeed Feitian proposes generic FIDO U2F security keys, with customization for casing,
packaging and related services [12].

Removing the Casing

We decided to perform a teardown of the USB type A Google Titan Security Key (the middle
one in Figure 1.1).

The plastic casing is made of two parts which are strongly glued together, and it is not easy to
separate them with a knife, cutter or scalpel. We used a hot air gun to soften the white plastic,
and to be able to easily separate the two casing parts with a scalpel. The procedure is easy to
perform and, done carefully, allows to keep the Printed Circuit Board (PCB) safe. Figure 1.6
shows the extracted Google Titan Security Key PCB and one part of the casing, soften due to
the application of hot air.

6this information is publicly available since https://www.cnbc.com/2018/08/30/

google-titan-made-by-chinese-company-feitian.html

10

https://www.cnbc.com/2018/08/30/google-titan-made-by-chinese-company-feitian.html
https://www.cnbc.com/2018/08/30/google-titan-made-by-chinese-company-feitian.html

Figure 1.6: Google Titan Security Key Opened

An interesting future work could be to find a way to open the Google Titan Security Key
casing without damaging the two parts, such that it could be possible to re-assemble them after
physical tampering.

PCB Analysis

Figure 1.7 shows the recto of the Google Titan Security Key PCB.

Figure 1.7: Google Titan Security Key PCB - Recto

On Figure 1.8, one can see the verso of the Google Titan Security Key PCB, where the
different circuits are soldered. The Integrated Circuit (IC) package markings allow to guess the
IC references:

• the first IC (in green on Figure 1.8) is a general purpose microcontroller from NXP, the
LPC11u24 from the LPC11U2x family [35]. It acts as a router between the USB and NFC

11

interfaces and the secure element;

• the second IC (in red on Figure 1.8) is a secure authentication microcontroller also from
NXP, the A7005 from the A700X family [30]. It acts as the secure element, storing crypto-
graphic secrets and performing cryptographic operations (we validated this point by prob-
ing electric signals between the two ICs while processing an authentication request

message).

Figure 1.8: Google Titan Security Key PCB - Verso

Similar Teardowns by Hexview

• a similar teardown of the Google Titan Security Key [19] confirms our observations;

• a similar teardown of the Yubico Yubikey Neo [20] shows that its hardware architecture is
very similar to the one of the Google Titan Security Key .

1.2.4 NXP A700X Chip

Datasheet Analysis

As one can see on Figure 1.8, the package marking of the secure element is NXP A7005a. From
its public datasheet [30], we get the following interesting information:

• it runs the NXP’s JavaCard Operating System called JCOP, in version JCOP 2.4.2 R0.9
or R1 (JavaCard version 3.0.1 and GlobalPlatform version 2.1.1);

• technological node is 140µm;

• CPU is Secure MX51;

• EPPROM size is of 80kB;

• 3-DES and AES hardware co-processors;

• public-key cryptographic co-processor is the NXP FameXE;

• RSA available up to 2048 bits and ECC available up to 320 bits.

From the NXP A7005a RSA and ECC key length limitations, the JCOP version and the
technological node, it is clear that this is not a very recent chip.

12

IC Optical Analysis

In order to perform an IC optical analysis, we first performed a package opening procedure of
the NXP A7005a via wet chemical attack, as its package is made of epoxy. Luckily, we have access
less than 100 meters away from our offices to the clean room of the university of Montpellier [44].

We first protected the PCB by sticking some aluminium tape around it, and cut a square
just above the NXP A7005a package. Then we warmed some fuming nitric acid, and put carefully
some drops of acid on the package, until we see the die appear. Figure 1.9 depicts the result.
The device is still alive, it will be useful for ElectroMagnetic (EM) side-channel measurements.

Figure 1.9: Verso of Google Titan Security Key PCB, with NXP A7005a die visible after wet
chemical attack of its package

Similarities with other NXP Products

As explained before, trying to perform a black-box side-channel attack on a cryptographic imple-
mentation of a commercial product with potentially dedicated countermeasures is usually really
hard if no sample with known key is available. So with the information gathered from the NXP

A700X datasheet and its IC optical analysis, we tried to find similar NXP products where we
have more control on the ECDSA operations.

We found out that several NXP JavaCard platforms have similar characteristics with the NXP

A700X. Note that these NXP JavaCard platforms are based on NXP P5x chips.

1.3 NXP Cryptographic Library on P5x Chips

1.3.1 The NXP P5x Secure Microcontroller Family

The NXP P5x secure microcontroller family is the first generation of NXP secure elements, also
called SmartMX family [36], with the following characteristics:

• technological node of 140µm;

13

• CPU is Secure MX51;

• contact and/or contactless interface(s);

• 3-DES and AES hardware co-processors;

• public-key cryptographic co-processor FameXE;

• optionnally NXP Cryptolib for RSA and ECC operations;

• Common Criteria (CC) and EMVCo certified (last CC certification found in 2015).

1.3.2 Available NXP JavaCard Smartcards on P5x Chips

We went through the public data that can be found online and figured out that several NXP
JavaCard smartcards are based on P5x chips and have similar characteristics with the NXP

A700X. Thanks to BSI and NLNCSA CC public certification reports7, we were able to gather the
following (non-exhaustive) list of NXP JavaCard smartcards based on P5x chips:

• Product Family A

– J3A081, J2A081, J3A041

– JCOP 2.4.1 R3, JavaCard 2.2.2 and GlobalPlatform 2.1.1

– Secure MCU: P5CD081V1A / P5CC081V1A (die marking: T046B)

– CC certification report BSI-DSZ-CC-0675

– Cryptolib V2.7 (CC certification report BSI-DSZ-CC-0633-2010)

• Product Family B

– J3D145 M59, J2D145 M59, J3D120 M60, J3D082 M60, J2D120 M60, J2D082 M60

– JCOP 2.4.2 R2, JavaCard 3.0.1 and GlobalPlatform 2.2.1

– Secure MCU: P5CD145V0B / P5CC145V0B (die marking: T051A)

– CC certification report BSI-DSZ-CC-0783-2013

– Cryptolib V2.7/2.9 (CC certification report BSI-DSZ-CC-0750-V2-2014)

• Product Family C

– J3D081 M59, J2D081 M59, J3D081 M61, J2D081 M61

– JCOP 2.4.2 R2, JavaCard 3.0.1 and GlobalPlatform 2.2.1

– Secure MCU: P5CD081V1A (die marking T046B)

– CC certification report BSI-DSZ-CC-0784-2013

– Cryptolib V2.7 (CC certification report BSI-DSZ-CC-0633-2010)

• Product Family D

– J3D081 M59 DF, J3D081 M61 DF

– JCOP 2.4.2 R2, JavaCard 3.0.1 and GlobalPlatform 2.2.1

– Secure MCU: P5CD081V1D (die marking: T046D)

7https://www.bsi.bund.de/EN/Topics/Certification/certified_products/Archiv_reports.html

14

https://www.bsi.bund.de/EN/Topics/Certification/certified_products/Archiv_reports.html

– CC certification report BSI-DSZ-CC-0860-2013

– NIST FIPS 140-2 certified

– Cryptolib V2.7 (CC certification report BSI-DSZ-CC-0864-2012)

• Product Family E

– J3E081 M64, J3E081 M66, J2E081 M64, J3E041 M66, J3E016 M66, J3E016 M64,
J3E041 M64

– JCOP 2.4.2 R3, JavaCard 3.0.1 and GlobalPlatform 2.2.1

– Secure MCU: P5CD016/021/041/051 and P5Cx081V1A/V1A(s) (die marking: T046B
or s046B)

– CC certification report NSCIB-CC-13-37761-CR

– Cryptolib V2.7 (CC certification report BSI-DSZ-CC-0633-2010)

• Product Family F

– J3E145 M64, J3E120 M65, J3E082 M65, J2E145 M64, J2E120 M65, J2E082 M65

– JCOP 2.4.2 R3, JavaCard 3.0.1 and GlobalPlatform 2.2.1

– Secure MCU: P5Cx128/P5Cx145 V0v/V0B(s) (die marking: T051A, T051B or s051B)

– CC certification report NSCIB-CC-13-37760-CR

– Cryptolib V2.7/2.9 (CC certification report BSI-DSZ-CC-0750-V2-2014)

• Product Family G

– J3E081 M64 DF, J3E081 M66 DF, J3E041 M66 DF,J 3E016 M66 DF, J3E041 M64 DF,
J3E016 M64 DF

– JCOP 2.4.2 R3, JavaCard 3.0.1 and GlobalPlatform 2.2.1

– Secure MCU: P5CD016V1D/ P5CD021V1D/ P5CD041V1D/ P5CD081V1D (die mark-
ing: T046D)

– CC certification report NSCIB-CC-13-37762-CR

– Cryptolib V2.7/2.9 (CC certification report BSI-DSZ-CC-0864-2012)

1.3.3 Rhea

Most NXP JavaCard smartcards are available for purchase on the web thanks to various resellers
for about 20e per sample, we ordered cards from three families, namely J3A081, J3D081 and
J2E081. By observing their die markings, we could verify from the previous list that they re-
spectively correspond the product families A, D and E.

We chose to start with product family D as its characteristics are the closest to NXP A700X’s.
And decided to name it Rhea, as it is the name of the second largest moon of Saturn, right after
Titan.

Open JavaCard products, like Rhea, are generic platforms for developers to load their own
application (a JavaCard applet) on the smartcard. The JavaCard OS takes care of low level
interactions with the hardware and offers high level APIs for the applets. Hence, an applet needs

15

to comply with the JavaCard OS API independently of the underlying hardware.

On Rhea, the JavaCard OS happens to follow JavaCard 3.0.1 specifications [37], we hence de-
veloped and loaded a custom JavaCard applet allowing us to freely control the JavaCard ECDSA
signature engine on Rhea. More precisely, we can now load chosen long term ECDSA secret keys,
perform ECDSA signatures and ECDSA signature verifications.

Our JavaCard development was made easy thanks to the great job of Martin Paljak and other
contributors of an open-source project for building JavaCard applets [27]. Moreover, for the use of
JavaCard cryptographic API, our development was inspired by the open-source Wookey project
from ANSSI [3] that, among many other things, implements an ECDSA signature/verification
applet. Interestingly enough, they chose the same J3D081 card for their tests.

1.4 Side-Channel Observations

1.4.1 Side-Channel Setup

In order to perform EM side-channel measurements, we used the following side-channel anal-
ysis hardware setup (Figure 1.10 depicts the side-channel analysis platform while performing
measurements on Rhea):

• Langer ICR HH 500-6 near-field EM probe with an horizontal coil of diameter 500µm and
a frequency bandwidth from 2MHz to 6GHz, with its Langer BT 706 pre-amplifier [25];

• Thorlabs PT3/M 3 axes (X-Y-Z) manual micro-manipulator with a precision of 10µm [43];

• Pico Technology PicoScope 6404D oscilloscope, with a 500MHz frequency bandwidth, sam-
pling rate up to 5GSa/s, 4 channels and a shared channel memory of 2G samples [39].

Figure 1.10: SCA Platform used for this study

16

For triggering the side-channel measurements, we proceeded as follows:

• for the side-channel measurements performed on Rhea, we used a modified commercial
smartcard reader where we tap the I/O line, so we could trig on the sending of the APDU
command;

• for the side-channel measurements performed on Titan, we used the triggering capabilities
of our oscilloscope to trig on a pattern present at the beginning of the EM activity of the
command processing the authentication request message.

Finally, note that the cost of this setup is about 10ke (including the cost of the computer
used for processing side-channel measurements).

1.4.2 First Side-Channel Observations on Titan

Figure 1.11 depicts the spatial position of the EM probe above the die of the Google Titan Security
Key NXP A7005a die, whereas Figure 1.12 depicts the EM activity of the ECDSA signature
performed during the processing the authentication request message.

Figure 1.11: Titan EM Probe Position

17

Figure 1.12: Titan EM Trace - ECDSA Signature (P256, SHA256)

As a side note, we should indicate that we use the pyu2f library8 to send commands to Titan.
Surprisingly, the library only implements the authentication request message such that user
presence is checked (the user needs to touch the security key to validate his presence at each
authentication request). This is a bit annoying for our task since we will need to observe several
thousand of authentication requests. We then slightly modified the pyu2f library to remove the
user presence check (see Section 1.2.1). A simple way to make the attacker life harder would
be for the security keys to not support such requests, however this would make them not fully
compliant with FIDO U2F protocol.

1.4.3 First Side-Channel Observations on Rhea

Figure 1.13 depicts the spatial position of the EM probe above the die of Rhea, whereas Figure
1.14 depicts the EM activity of the ECDSA signature performed during the processing of our
APDU command launching the ECDSA signature available in the JavaCard cryptographic API
of Rhea.

The similarity between the two EM activities of the ECDSA signature of Titan and Rhea
confirms our hypothesis that both implementations are very similar.

8https://github.com/google/pyu2f

18

https://github.com/google/pyu2f

Figure 1.13: Rhea EM Probe Position

Figure 1.14: Rhea EM Trace - ECDSA Signature (P256, SHA256)

19

Chapter 2

Reverse-Engineering of the
ECDSA Algorithm

2.1 ECDSA Signature Algorithm

We have seen in the previous chapter that the ECDSA signature operation looks very similar
on Titan and Rhea. Furthermore we can fully control the inputs of the ECDSA signature and
verification operations on Rhea, therefore we will first focus our efforts on Rhea.

2.1.1 Basics about he ECDSA Signature Algorithm

Let us briefly recall the ECDSA signature algorithm and introduce the notations we will use in
this document:

• elliptic curve E over prime field Fp, elliptic curve base point is G(x,y) of order q

• inputs: secret key d, hash of the input message to sign h = H(m)

• randomly generate a nonce k in Z/qZ

• scalar multiplication Q(x,y) = [k]G(x,y)

• denote by r the x-coordinate of Q: r = Qx

• compute s = k−1(h+ rd) mod q

• output: (r,s)

First Remark: We can know k from the knowledge of (d, h, r, s):

k = s−1(h+ rd) mod q

Second Remark: An usual countermeasure against side-channel analysis is to randomize the
base point at each scalar multiplication (see [10]). So instead of computing directly the scalar
multiplication [k]G(x,y) on the affine coordinates of G, one usually uses the projective coordinates
of G:

20

• randomly generate a random z in Fp

• send G(x,y) to the projective coordinates (xz, yz, z)

• compute Q(x,y,z) = [k]G(x,y,z)

• get the x affine coordinate of Q(x,y,z): r = x/z mod p

2.1.2 Matching the Algorithm to the Side-Channel Traces

Figure 2.1 presents a full EM trace of the ECDSA signature at sampling rate 2.5GSa/s. The
whole execution time is approximatively 73ms. Our first goal here is to try to identify the dif-
ferent steps of the ECDSA algorithm on the trace.

Figure 2.1: Rhea EM Trace - ECDSA Signature (P256, SHA256)

Init

k, z ← $

encode k
project G(x,y) [k]G(x,y,z)

1
z

H(m)
1
k

k−1(h+ rd)

After an initialization phase, where ECDSA inputs are processed and stored in the right
places, the first step is to generate the randoms k (the nonce or ephemeral key) and z (the z
coordinate of G in randomized projective coordinates). The call to a pseudo-random number
generator (PRNG) is clear in the identified area, there are 48 calls to the PRNG to generate a
256-bit random and the PRNG re-initializes itself every 60 calls. There must also be at least
two modular multiplications in this step to get G in projective coordinates given the random z.
Also, the nonce k is encoded, meaning it is pre-processed to be used by the scalar multiplication
algorithm, we will see how below.

21

Next comes the scalar multiplication itself, pretty easy to identify as this is the longest oper-
ation in ECDSA and its stable iterative process stands out clearly.

Finally, there are still two modular inversions to compute (k−1 mod q for the evaluation of the
second part of the signature s and z−1 mod p to get the first part of the signature r), the hash of
the input and the final computation of s with two modular multiplications and one addition. We
propose to fill out as depicted on Figure 2.1 but we do not have strong arguments to show that
these operations are actually performed in this order. It is worth mentioning that the overall
process is pretty similar to what was observed in [31]. The authors were working on a P5 chip
with an older version of the NXP cryptographic library.

2.1.3 Study of the Scalar Multiplication Algorithm

In side-channel analysis, there are many ways to attack an ECDSA implementation. In fact, any
leakage inside one of the previously mentioned operations involving the nonce or the secret key
would lead to an attack. In the literature, the most studied operation is the scalar multiplication,
let us have a closer look.

The full scalar multiplication takes approximatively 43ms. This is an iterative process and ev-
ery scalar multiplication contains exactly 128 iterations. Figure 2.2 displays the first 6 iterations
of a trace (sampling rate is now set to 5GSa/s).

Figure 2.2: Rhea EM Trace - ECDSA Signature (P256, SHA256) - First Scalar Multiplication
Iterations

Iteration 1 Iteration 2 Iteration 3 Iteration 4 Iteration 5 Iteration 6

Figure 2.3 displays a single iteration. Some part of the iteration change from one iteration to
the others and then the iteration length is not perfectly stable but it takes roughly 340us, which
corresponds to about 1.7M samples (with 5GSa/s sampling rate).

22

Figure 2.3: Rhea EM Trace - ECDSA Signature (P256, SHA256) - Scalar Multiplication Single
Iteration

Iteration i

So the scalar multiplication algorithm does not seem to be a binary one, i.e. a scalar mul-
tiplication iteration is not related to a single bit of the nonce. This might then be a windowed
algorithm with a window size of at least 2 bits, meaning that 2 bits of the nonce are used at
each iteration (or more than that, for instance if we consider a blinded nonce, e.g. [10]). There
are many different windowed algorithms for the scalar multiplication with many possible tweaks,
which makes a lot of different directions to look at. Better understanding the iteration itself (e.g.
identify the Double and Add operations) would help but there are so many ways to implement
these things and we have no good starting point.

The good idea here was to look at the scalar multiplication in the ECDSA signature verifi-
cation operation.

2.2 ECDSA Signature Verification Algorithm

As mentioned before, one great advantage of working on Rhea is the possibility to run the
ECDSA signature verification algorithm (and not only the signature algorithm as on Titan).
As we will see, the signature verification algorithm requires to compute similar operations than
the signature algorithm, this might provide additional information on their implementation.
Moreover, developers might downgrade countermeasures to improve the execution time. Indeed,
the signature verification algorithm does not involve any secret and then side-channel or fault
injection countermeasures seem useless speed reducers. For reverse engineering however, such
a countermeasure downgrade is a windfall, it provides the opportunity to learn a lot on the
implementation and its countermeasures.

23

2.2.1 Basics about the ECDSA Signature Verification Algorithm

Let us briefly recall the ECDSA signature verification algorithm:

• elliptic curve E over prime field Fp, elliptic curve base point is G(x,y) and order is q

• inputs: public key P(x,y), the hash of the signed input message h = H(m)

• inputs: the signature to be verified (r, s)

• first scalar k(1) = s−1r mod q

• second scalar k(2) = s−1h mod q

• first scalar multiplication Q
(1)
(x,y) = [k(1)]P(x,y)

• second scalar multiplication Q
(2)
(x,y) = [k(2)]G(x,y)

• compute r̄ = Q
(1)
x +Q

(2)
x mod q

• check that r̄ = r

Remark: we can know k(1) and k(2) from the public inputs

2.2.2 Matching the Algorithm to the Side-Channel Traces

Figure 2.4 shows a full signature verification EM trace (2.5GSa/s sampling rate) where we try to
match the main operations. After a initialization phase very similar to the one in the signature
trace, there is a large step we called Pre-Computation followed by the two expected scalar
multiplications.

Figure 2.4: Rhea EM Trace - ECDSA Signature Verification (P256, SHA256)

Init Pre-Computation First Scalar Mult. Second Scalar Mult.

24

2.2.3 Study of the Scalar Multiplication Algorithm

A closer inspection of the scalar multiplication trace shows that it slightly differs from the one in
the signature algorithm. Indeed, as shown in Figure 2.5, there are two distinct patterns that can
be identified (colored in orange and blue on the figure). Moreover, the concatenation of an orange
and a blue pattern forms something very similar to a single iteration of the signature’s scalar
multiplication algorithm (Figure 2.6 shows few iterations of the signature’s scalar multiplication
algorithm where the orange and blue patterns are identified).

Figure 2.5: Rhea EM Trace - ECDSA Signature Verification (P256, SHA256) - Scalar Multipli-
cation First Iterations

25

Figure 2.6: Rhea EM Trace - ECDSA Signature (P256, SHA256) - Scalar Multiplication First
Iterations

Iteration 1 Iteration 2 Iteration 3 Iteration 4 Iteration 5 Iteration 6

At this point, the implementation becomes much clearer: the scalar multiplication is imple-
mented in a Double&Add Always fashion in the signature algorithm while it is a simple Dou-
ble&Add in the signature verification algorithm. This observation gives critical information on
the implementation:

• the Double and the Add operations are easily distinguishable, see Figure 2.7;

• the scalar multiplication is a left-to-right algorithm (meaning it starts with the most sig-
nificant bit of the scalar down to the least significant bit);

• from the relative sizes of the Double and Add operations, it is clear that the Double is a
single doubling operation. This might be surprizing since, from the observation that we
have a kind of windowed implementation, we would expect at least two doubling operations
by iteration (i.e. a 4×). This remark narrows down the possible scalar multiplication
algorithms;

• the use of a scalar blinding countermeasure (see [10]) for the scalar multiplications of the
signature verification algorithm is not very likely since we have seen that countermeasures
are disabled for these operations (considered public). Then, the number of Double and Add
operations shows that the windowed scalar multiplication implementation has a window
size of 2, i.e. the scalar is manipulated 2-bit by 2-bit.

26

Figure 2.7: Rhea EM Trace - ECDSA Signature (P256, SHA256) - Scalar Multiplication Single
Iteration

Iteration i

Double Add

Even if Double and Add operations seem very much alike in both scalar multiplications
(from signature and signature verification), it must be noted that these operations are slightly
smaller in the signature verification case, certainly because other countermeasures (apart from
the Double&Add Always) are downgraded. More precisely, we observed that for the signature
algorithm:

• Double operation takes about 159us;

• Addition operation takes about 179us;

while in the signature verification algorithm:

• Double operation takes about 155us;

• Addition operation takes about 166us.

2.2.4 Study of the Pre-Computation Algorithm

The pre-computation algorithm takes approximatively 17ms, it contains a varying number (but
close to 128) of iterations of the same pattern. Figure 2.8 shows the full pre-computation trace
while Figure 2.9 displays three iterations.

27

Figure 2.8: Rhea EM Trace - ECDSA Signature Verification (P256, SHA256) - Pre-Computation
Algorithm

Pre-Computation

Figure 2.9: Rhea EM Trace - ECDSA Signature Verification (P256, SHA256) - Pre-Computation
Algorithm First Iterations

Iteration i− 1 Iteration i Iteration i+ 1

The pre-computation algorithm looks very much like the scalar multiplication algorithm but
with iterations (taking about 130us each) that are slightly smaller than the Double operations

28

found inside the actual scalar multiplication.

Considering these iterations as efficient doubling operations in order to compute a scalar
multiplication where the scalar is a power of 2, the pre-computation step is actually computing
something close to [2128]P .

2.3 High-Level NXP Scalar Multiplication Algorithm

There are many ways to implement a scalar multiplication algorithm, but the costly pre-computation
observed in the previous section and the fact that there is a single doubling operation for each
addition suggests the comb implementation (see [26]).

2.3.1 Pre-Computation and First Scalar Multiplication in Signature
Verification Algorithm

Our best guess is then a comb method with window size 2. To compute [k]P1 using this method,
one has to do as follows1:

• First, let us consider the minimal binary form of k = {k1, · · · , klk} where lk is even2 with
k1 the most significant bit and klk the least significant bit.

We define the encoding of k as follows:

Comb2(k) : {k̃1, · · · , k̃i, · · · , k̃lk/2} = {k1klk/2+1, · · · , kiklk/2+i, · · · , klk/2klk},

where k̃i is the 2-bit value created by the concatenation of ki and klk/2+i (i.e. k̃i =
kiklk/2+i = 2ki + klk/2+i)

• The pre-computation phase is the computation of P2 = [2lk/2]P1 by lk/2 doubling opera-
tions and P3 = P1 + P2 = [2lk/2 + 1]P1.

The comb method then processes as in Algorithm 1. From the side-channel traces, the number
of iterations in the pre-computation scalar multiplication (lk/2 doubling) and in the first scalar
multiplication (assuming k = (rs−1) mod q) match perfectly the algorithm. Moreover, the sequel
of Double and Add in the scalar multiplication also matches perfectly the expected sequence from
the value of the encoded scalar {k̃1, · · · , k̃i, · · · , k̃lk/2}. Figure 2.10 shows what can be learned
from the sequence of Double and Add operations about encoded digits.

1In the case of the first scalar multiplication in the signature verification algorithm, k = (rs−1) mod q and P1

is the public key.
2i.e. If the minimal bit length of k is odd, then add a leading 0 bit to the binary form

29

Input : {k̃1, · · · , k̃i, · · · , k̃lk/2}: the encoded scalar
Input : P1, P2, P3: the pre-computed points
Output: [k]P : the scalar multiplication of scalar k by point P

// Init Register S: point at infinity;
S ← O;
// Find the first non null digit;
for `← 1 to lk/2 do

if k̃` 6= 0 then
break;

end

end
for i← ` to lk/2 do

S ← [2]S;

if k̃i > 0 then
S ← S + Pk̃i

;

end

end
Return: S
Algorithm 1: Scalar Multiplication Algorithm used in Signature Verification Operation

Figure 2.10: Rhea EM Trace - ECDSA Signature Verification (P256, SHA256) - Scalar Multipli-
cation First Encoded Digits

k̃` 6= 0 k̃`+1 = 0 k̃`+2 6= 0 k̃`+3 6= 0 k̃`+4 = 0 k̃`+5 6= 0

Another interesting observation can be made from Figure 2.10. Looking closely at the first
Double operation, one can see a clear signal amplitude decline at the beginning of the operation
that cannot be seen for other Double operations (the orange patterns). This amplitude drop
is certainly due to the fact that the first Double operation is done on the infinity point of the

30

elliptic curve, which has sparse coordinates O(x,y,z) = (0, y, 0).

2.3.2 Second Scalar Multiplication in Signature Verification Algorithm

Given a scalar k = (hs−1) mod q and the curve base point G, compute [k]G.

The second scalar multiplication does not come with a pre-computation part (similarly to the
signature scalar multiplication), this is because the input point of the scalar multiplication is the
elliptic curve base point and therefore is always the same for all signature verifications (and for
all signatures as well). Therefore, the pre-computation step can be done once for all (and this is
actually why the comb method is a great choice for ECDSA signature: it is very efficient when
pre-computation is done once for many scalar multiplications).

This creates a difference with the above algorithm (for the scalar multiplication over P1):
since the pre-computation is done once for all, it cannot be tuned for specific scalars k, therefore
the computation of G2 = [2lk/2]G1 (with G1 = G the elliptic curve base point) must be done
with lk set to the maximum possible value, in our case 256.

Then, to compute [k]G1, the considered binary form of k = {k1, · · · , klk} is constructed by
adding enough leading 0 bits to match the desired length lk. The rest of the algorithm goes
unchanged.

When doing so, we found out that the sequence of iterations in the second scalar multiplication
of the signature verification trace does not match the expected one. We found out that the bit
length lk was actually set to lk = 258, i.e. at least two leading 0 bits are systematically added
to the binary form of k. Doing this, we have a correct match between the k̃ sequence of digits
and the sequence of Double and Add operations of the scalar multiplication.

2.3.3 Scalar Multiplication in Signature Algorithm

The signature’s scalar multiplication algorithm is clearly the Double&Add Always version of the
signature verification scalar multiplication algorithm. As mentioned before, the scalar multipli-
cation contains exactly 128 consecutive Double&Add operations, making clear that the leading
zero bits are not skipped anymore (contrary to the previous algorithms), hence avoiding leaking
the nonce length. Moreover, we have seen in the previous section that the manipulation of the
infinity point should be avoided as the side-channel signal could easily inform the attacker of
such a manipulation.

Algorithm 2 combines these constraints and provides the best hypothesis we have so far of
the scalar multiplication algorithm. In Algorithm 2, Dummy represents a register or memory
address which will not be read and therefore stores useless computation results, G0 is any point
on the elliptic curve, G1 = G (the elliptic curve base point), G2 = [2129]G1, G3 = G1 +G2 and
G4 = [2128]G1.

Since G0 is solely used for dummy computation, it could take any point on the curve, it could
even change over time. Most likely G0 takes its value in {G1, G2, G3, G4}, since these points
coordinates are already computed.

31

Input : {k̃1, · · · , k̃i, · · · , k̃129}: the encoded scalar
Input : G0, G1, G2, G3, G4: the pre-computed points
Output: [k]G: the scalar multiplication of scalar k by point G

// Init Register S to the point G (= G1);
S ← G1;
for i← 2 to 129 do

S ← [2]S;

if k̃i > 0 then
S ← S +Gk̃i

;

else
Dummy ← S +G0;

end

end

if k̃1 = 0 then
S ← S −G4;

else
Dummy ← S −G4;

end
Return: S

Algorithm 2: Scalar Multiplication Algorithm used in Signature Operation

We now have a good explanation of the two extra leading zero bits added for the encoding
of k. Thanks to them, k̃1 can only take the values 0 or 1. In the former case, the initialization
of S should be the infinity point. To avoid this, k̃1 if forced to value 1, it is corrected by the
last operations in Algorithm 2 assuming the G4 point is also stored during the pre-computation
step (in addition to G2 and G3). This process is confirmed by the presence of an Add operation
following the scalar multiplication sequence of Double&Add iterations.

32

Chapter 3

A Side-Channel Vulnerability

In the previous chapter, we could identify the high-level implementation of the scalar multipli-
cation algorithm used in Rhea’s ECDSA signature operation. With this knowledge, and the fact
that, for each signature, we can know the nonce k (see Section 2.1.1 for the details) we will try
to correlate the side-channel traces to the values of the encoded nonce digits.

3.1 Searching for Sensitive Leakages

The first step of the statistical side-channel analysis starts by the acquisition of the EM radia-
tions of the Rhea chip during the ECDSA execution. Even though many configurations (choice
of EM probe, EM probe position, sampling rate, amplitude ranges, etc.) have been tested during
our work, only the final one is presented here as we believe the rest does not present real interest.
For similar reasons, the research of a sensitive leakage has been a tedious work with many failed
attempts and disillusions but only the output of this work is presented here.

Details of the acquisition setup are provided in Table 3.1 while the probe position is depicted
on Figure 1.13.

Table 3.1: Acquisition parameters on Rhea

operation ECDSA signature
equipment PicoScope 6404D, Langer ICR HH 500-06
inputs Messages are random, Key is constant (randomly chosen)
number of operations 4000
length 100ms
sampling rate 5GSa/s
samples per trace 500MSamples
channel(s) EM activity
channel(s) parameters DC 50ohms, ±50mV
file size 2TB
acquisition time about 4 hours

With this acquisition campaign, what we need to do first is to identify each and every Dou-
ble&Add operation inside every ECDSA scalar multiplication EM trace. After this step, we get

33

4000 × 128 sub-traces (since there are 4000 ECDSA executions and exactly 128 Double&Add
operations in each scalar multiplication).

However, these sub-traces are not aligned, meaning that for two different sub-traces, the
execution time is not perfectly synchronized. There are three main reasons for that:

• the Rhea internal clock is not perfectly stable (for this kind of chips, a natural clock jitter is
usual, we can also expect an artificial clock jitter as a countermeasure against side-channel
and fault injection attacks where, for instance, the clock slightly changes its frequency
during the computation);

• the exact starting point of each iteration is not very clear, so we might not have the exact
same starting point for each iteration;

• random delays are inserted during the computation (this is also a classical side-channel and
fault injection countermeasure).

Figure 3.1 illustrates this with two different iterations of a scalar multiplication. The Dou-
ble&Add operations take approximatively 1.7M samples (i.e. about 340us). The orange rect-
angles identify eight areas where the execution length changes (seemingly randomly) from one
iteration to the other. These areas seem to correspond to pauses in the computation, where
the microcontroller’s main CPU takes back the control from the arithmetic co-processor and do
some stuff (e.g. reconfigure the co-processor for next operation, move some values in memory,
etc.). Since these areas behave randomly, they might correspond to countermeasures against
side-channel or fault injection attacks (like random delays). In any cases, they do create mis-
alignment (additionally to the clock jitter).

The misalignment together with the length of the sub-traces makes a global re-alignment
algorithm very hard to design. We went back and forth for a while, each time re-aligning a
different portion of the sub-traces and trying to correlate the re-aligned traces with the known
encoded scalar digits.

34

Figure 3.1: Rhea EM Trace - ECDSA Signature (P256, SHA256) - Scalar Multiplication Itera-
tions Misalignment

3.2 A Sensitive Leakage

Figure 3.2 identifies the area where a sensitive leakage was detected whereas Figure 3.3 shows
four signal peaks that bear the sensitive leakage inside the area defined in Figure 3.2.

35

Figure 3.2: Rhea EM Trace - ECDSA Signature (P256, SHA256) - Sensitive Leakage Area

Iteration i

Double Add

k̃i

Figure 3.3: Rhea EM Trace - ECDSA Signature (P256, SHA256) - Sensitive Leakage

k̃i

Figure 3.4 (first sub-figure) depicts 1000 superposed traces after re-alignment, only 400 sam-
ples are kept around each of the four identified signal peaks. To evaluate the statistical relation
between the re-aligned traces and the encoded scalar digits, we compute the Signal-To-Noise

36

Ratio (SNR for short). More precisely, each of 4000 × 128 re-aligned sub-traces are classified
with respect to its corresponding k̃i 2-bit digit. We then end up with four sets of sub-traces. For
each set s and at each time sample t, we estimate the sub-traces mean µs(t) and variance vs(t).
The SNR computed independently for each time sample t is then:

SNR(t) =
V ar(µs(t))

E(vs(t))
,

where V ar(µs(t)) is the estimated variance over the four estimated means and E(vs(t)) is the
estimated mean of the four estimated variances.

Figure 3.4 (second sub-figure) provides the SNR results for the four sets, best SNR value is
about 0.53, clearly the amplitude of the side-channel traces are strongly related to the sensitive
values k̃i.

In our best guess on the scalar multiplication algorithm (Algorithm 2, Section 2.3.3) we have
no way to know, when k̃i = 0, what is the chosen dummy addition (i.e. what is the chosen point
G0 in Algorithm 2). In fact, G0 could be chosen to be G1, G2, G3, G4 or any point on the elliptic
curve (and G0 could change at each iteration). We therefore also estimated the SNR without
considering the cases where k̃i = 0, i.e. the corresponding sub-traces are then just discarded
from the SNR computation. Results are given in the third sub-figure of Figure 3.4. The SNR
results gets to 0.65, significantly improving the previous SNR score. These results tend to show
that G0 takes varying values among G1, G2 and G3, we will see in the next section what is
actually going on here.

Using standard noise reduction techniques, based on filtering and principal component anal-
ysis, allowed us to further improve this SNR to 0.78.

37

Figure 3.4: Rhea EM Trace - ECDSA Signature (P256, SHA256) - SNR results (y-axis range
[0, 0.7])

SNR for k̃i ∈ {1, 2, 3}

SNR for k̃i ∈ {0, 1, 2, 3}

Let us go a bit further in the understanding of what is leaking. Considering only the sub-
traces where k̃i 6= 0, we estimated the leakage strength with respect to the two bit values of k̃i
individually.

To do so we use a binary test, the Welch T-Test [46]. Given two univariate data sources the
T-Test will tell us if we can reject the null hypothesis with confidence, i.e. if these two sources
are far enough from two independent sources.

1. k̃i = 1 vs. k̃i = 3 (i.e. test msb leaving lsb constant)

2. k̃i = 2 vs. k̃i = 3 (i.e. test lsb leaving msb constant)

A T-Test score is computed for each time sample independently, they are depicted in Fig-
ure 3.5. These scores clearly show that the two bits of k̃i do not leak at the same time. Fur-
thermore, the most significant bit (msb) of k̃i shows a significant leakage on three of the four
identified peaks whereas the least significant bit (lsb) of k̃i significant leakage is mainly located
on a single peak.

38

Figure 3.5: Rhea EM Trace - ECDSA Signature (P256, SHA256) - T-Test results (y-axis range
[−100, 100])

Most significant bit of k̃i

Least significant bit of k̃i

3.3 Improving our Knowledge of the NXP’s Scalar Multi-
plication Algorithm

In the previous section, we have removed the sub-traces related to the case k̃i = 0 as they
showed to deteriorate our SNR computation. Our hypothesis is that, when k̃i = 0, since the
corresponding addition (with G0) has no effect on the scalar multiplication result (the addition
output is sent to a dummy register), the developers might have decided to randomly choose (at
each iteration) a point from the available pre-computed points (G1, G2, G3) as value for G0.

To try validate our hypothesis, we designed the following experiment based on supervised
Expectation-Maximization clustering (to this end, we use the GaussianMixture class from
Scikit-learn Python library [38]).

The idea is simple, we have many sub-traces with correct label k̃i (i.e. when k̃i 6= 0), we
will use them to train our clustering algorithm, i.e. define precisely the three clusters using

39

maximum likelihood. And then match the un-labeled sub-traces (i.e. when k̃i = 0): find for
each un-labeled sub-trace the closest cluster, i.e. the value j such that G0 = Gj for this iteration.
The Expectation-Maximization cultering is a multivariate process as it will use multi-dimensional
data (i.e. our sub-traces with several time samples) and infer multivariate Gaussian distributions
from them. To ease this work, we need to reduce the sub-traces to avoid adding useless time
samples (i.e. time samples where the signal does not relate strongly to the sensitive variable k̃i).
The overall process is summarized below:

1. Reduce all sub-traces to the time samples where SNR is larger than a specific threshold
(the best threshold choice is not something we know a priori, we applied the process for
different threshold values until it gave consistent results).

2. With the sub-traces for which we know the corresponding encoded scalar digit (i.e. k̃i 6= 0),
estimate the three cluster centers, each cluster related to a value of k̃i.

3. For each labeled sub-trace (corresponding to k̃i 6= 0), find the closest cluster. This phase
allowed us to control the success rate of the matching process.

4. For each un-labeled sub-trace (corresponding to k̃i = 0), find the closest cluster.

The matching phase showed that about half of the un-labeled sub-traces matched the k̃i = 1
case while the other half was divided equitably between k̃i = 2 and k̃i = 3.

This was validated by a new experiment: two sets of sub-traces are created. In the first one,
we put the k̃i = 0 iterations and in the other a mix of sub-traces with k̃i 6= 0 where half of them
correspond to k̃i = 1 iterations and the rest is divided equitably between k̃i = 2 and k̃i = 3
iterations. The T-Test evaluation between these two sets could not reject the null hypothesis
(best absolute T-Test value was less than 3), hence confirming the Expectation-Maximization
experiment results.

With these experiments we have now improved our understanding of the scalar multiplication
algorithm, Algorithm 3 gives the details. In Algorithm 3, G0 = G1 = G (the elliptic curve base
point), G2 = [2129]G1, G3 = G1 +G2 and G4 = [2128]G1

Since G0 = G1 = G, one can check that the Dummy ← S + Grand addition is operated on
G half the time and on G2 or G3 the rest of the time. We would like to emphasize that this
algorithm is only our interpretation of the real algorithm implemented on Rhea, it might be
different in many ways while doing roughly the same thing. Details of the real implementation
are not our concern here, a high-level understanding of the countermeasures is good enough.

40

Input : {k̃1, · · · , k̃i, · · · , k̃129}: The encoded scalar
Input : G0, G1, G2, G3, G4: The pre-computed points
Output: [k]G: The scalar multiplication of scalar k by point G

// Init Register S to the point G(= G1);
S ← G1;
for i← 2 to lk/2 do

S ← [2]S;
rand← random element from {0, 1, 2, 3};
if k̃i > 0 then

S ← S +Gk̃i
;

else
Dummy ← S +Grand;

end

end

if k̃1 = 0 then
S ← S −G4;

else
Dummy ← S −G4;

end
Return: S

Algorithm 3: Improved Version of Scalar Multiplication Algorithm used in Signature Opera-
tion

41

Chapter 4

A Key-Recovery Attack

We have showed a side-channel vulnerability in the ECDSA signature implementation of Rhea.
This allowed us to better understand the scalar multiplication algorithm. Now, is this vulnera-
bility exploitable in key-recovery attack ? In this chapter we will answer by the affirmative. But
first, let us have a look at the options we have.

4.1 Directions to Exploit the Vulnerability

We will here refer to Algorithm 3, our reverse-engineering of the scalar multiplication algorithm
of Rhea ECDSA signature operation.

4.1.1 A Closer Look at the Sensitive Information

We have seen that the value of the encoded scalar digits, denoted k̃i for the ith iteration, leaks
through the side-channel sub-trace related to the ith iteration. In a less protected implementation,
and assuming this leakage was noise free, one could recover the scalar, i.e. the ECDSA nonce.
And from this nonce, recover the secret key, indeed for each ECDSA signature we have:

d = r−1(ks− h) mod q

In the present case, we have seen in the previous chapter that the scalar value cannot be fully
recovered from the leakage: when k̃i = 0, it is set to k̃i = rand with rand taking its values in
{1, 2, 3} with respective probabilities {.5, .25, .25} and there is no leakage (to our knowledge) that
could tell the attacker if k̃i was actually a 0 before its modification. Therefore, even in a noise free
scenario, the attacker will recover an encoded scalar where no digit is null and that will not give
the correct scalar when removing the encoding. The main issue is not that all the scalar bits are
not recovered correctly, but the fact that the erroneous bits are indistinguishable from the correct
ones and then there is no encoded scalar digit where one can know with high probability its value.

Let us consider an encoded nonce k̃, we recall that:

k̃ = {k̃1, · · · , k̃i, · · · , k̃129},

where each k̃i is the 2-bit digit built as the concatenation of the bits ki and k129+i (ki lies in
the upper half1 of the 258-bit nonce k binary form and k129+i in the lower half). In a noise free

1upper half means here in the 129 most significant bits

42

scenario, from the observed leakage of k̃i, the attacker recovers the digit k̂i. Table 4.1 summarizes
what can be deduced from the value k̂i.

Table 4.1: Information on Scalar Bits from Noise Free Sensitive Leakage

k̂i Probability k̂i Possible values for k̃i Probability for k̃i Binary value (kik129+i)

1 3/8
1 2/3 01
0 1/3 00

2 5/16
2 4/5 10
0 1/5 00

3 5/16
3 4/5 11
0 1/5 00

In Table 4.1, the Probability k̂i column gives the probability to observe the value k̂i: due
to the non-uniform handling of k̃i = 0, there is not an uniform distribution of the values k̂i.
Moreover, two interesting cases appear in Table 4.1:

• When k̂i = 1 (which happens in 3/8 of the cases), the attacker can deduce that the non-
encoded nonce bit ki is equal to 0.

• When k̂i = 2 (which happens in 5/16 of the cases), the attacker can deduce that the
non-encoded nonce bit k129+i is equal to 0.

These are the only bit values that the attacker can know with certainty. All in all, in a noise
free scenario, the attacker can expect to infer, in average, about 88 bits (128 ∗ (3/8 + 5/16) bits)
of each nonce (i.e. one bit for each interesting case). These known bits being randomly scattered
all over the nonce.

Finally, another issue (more classical in side-channel analysis) arises: the noise free scenario is
not realistic. Even though we have found a strong leakage, it is still very noisy and matching a
sub-trace to the corresponding k̂i digit will be subject to errors.

4.1.2 Lattice-based ECDSA Attacks with Partial Knowledge of the
Nonces

Since the seminal work of Howgrave-Graham and Smart [22], we know that the knowledge of few
bits by nonce is enough to attack (EC)DSA schemes. This work was followed by many others
that improved the understanding of this kind of attacks and/or successfully applied variants to
practical settings (see e.g. [32, 33, 31, 6, 21, 18, 4, 11, 40, 23, 29, 2, 45, 28, 1]).

Roughly speaking (for a formal study and details, please refer to the literature), all these
attacks work as follows:

1. Run N ECDSA signatures and, for each of them, record the input h, the signature output
(r, s) and the leaked information k? of the nonce k (let us denote by k?̄ the unknown part
of k: k = k?̄ + k?).

2. From the ECDSA equation s = k−1(h + rd) mod q, one can build a linear equation over
Z/qZ where k?̄ and d are unknowns: Ak?̄ +Bd = C mod q. Note that d is constant while
k?̄ changes for each signature. In the following, we denote k?̄(i) the value k?̄ for the ith

recorded signature.

43

3. Build a lattice where the vector (with potentially some extra leading and ending elements)
v = (k?̄(1), k?̄(2), · · · , k?̄(N)) lies.

4. If the unknown part of each nonces k?̄(i) is small (i.e. the known part k?(i) is large enough),
then the vector v norm is small compared to the rest of the lattice vectors. One can then
expect to find v (and then the nonce values) by solving the Shortest Vector Problem (SVP
for short) in the lattice.

As shown in [22], this attack amounts to find a solution to the so-called Hidden Number Prob-
lem (HNP for short) introduced in [5]. In most of the studied cases by the literature, the known
part of the nonces corresponds to its most significant bits (i.e. the attacker knows some leading
bits of the nonces). But in a more general setting, sometimes referred to as the Extended Hidden
Number Problem (EHNP for short), the known part of the nonces is a set of several blocks of
consecutive known bits spread out over the nonce (seen as a vector of bits). In this case, the
unknown k?̄ is then a vector itself constituted of the unknown sections of the nonce. This more
general setting did not draw so much attention (important papers are [32, 22, 21, 18]) but led to
practical attacks nonetheless, mainly in the specific case a of windowed NAF implementation of
the scalar multiplication ([11, 28]). We will see that EHNP fits well our context.

To solve (E)HNP, one needs to solve SVP in the lattice. To this end, one can use the LLL
or BKZ algorithms (implementations can be found in Sage [42], we used Sage version 9.0)2. For
these attacks to work in practice:

• the attacker should have enough known bits, let us have in mind a lower bound (approxi-
mative but simple): over all recorded signatures the number of known nonce bits must be
larger than the bit length of the secret (i.e. the bit length of the elliptic curve order, 256
in our case)3. This means that the fewer known bits by nonce, the higher the number of
signatures required for the attack to work (and then the higher is the lattice dimension);

• the number of known bits in a nonce should not be too small. For a 256-bit curve, practical
HNP attacks were done with 4 known bits ([29, 23])4. In the EHNP setting, this means
that known sections of the nonces must not be too small: a single known bit surrounded
by two unknown bits does not help;

• the attack is not very tolerant to errors, i.e. the known part of the nonces should have
very high probability to be correct.

4.1.3 How to Deal with Erroneous Known Bits

In Section 4.1.1, we have seen that only part of the nonces could be known from the attacker and
we know that this knowledge is susceptible to errors due to side-channel noise. Previous work
usually had to deal with the same issue (see e.g. [23, 18, 29, 11, 28]) and solve it with ad-hoc
solutions depending on the context5. We can summarize the procedure as follows, pruning and
brute-force:

2In a recent paper [1], the authors show that enumeration and sieve algorithms actually perform better than
BKZ for this task. We were not aware of that during our work, using a sieve as in [1] would clearly improve our
results.

3This is called the information theoretic limit in [32, 1]. In [1], the authors show that with a sieve algorithm
this limit can actually be broken, i.e. attack can succeed with a number of known bits a little bit below the limit.

4The authors in [1] show that 3 bits are enough in practice with a sieve and 2 bits are theoretically reachable.
5In the recent paper [1], the authors show how this problem should be treated, avoiding the folklore of ad-hoc

solutions. To our understanding, this corresponds to what is done in [28], very few errors could be tolerated (we
would be in [28]’s worst case of ”1 → 0” errors). Our many attempts to reproduce this behaviour in our context

44

1. the pruning technique will select the best candidates and reduce the probability of error
as low as possible. This step will usually select a small subset of the available signatures
where the known part of the nonce is more likely to be correct. This is possible because
most side-channel matching algorithms (i.e. the process that will infer the value k̂i from
the side-channel trace) will also provide a confidence level for the matching. Selecting
the known parts of the nonce with confidence level above a given threshold will lower the
probability of error. However, if the attack requires a certain number of signatures, say N ,
and the pruning techniques selects a signature with probability ε, then the attacker must
acquire about N/ε signatures for the attack to work. In practice this technique is very
effective to significantly lower the probability of error but is not practical to remove all
errors: there usually exists some erroneous matching with very high level of confidence;

2. the brute-force process will finish the work on the selected candidates with very low error
rate. The basic idea is to have slightly more selected candidates than necessary (say
N ′ > N) and apply the attack on random subsets of candidates of size N . If the probability
of choosing N error-free candidates among the N ′ candidates is high enough, the attacker
will eventually find one by chance and succeed the attack.

In the next section will see what are the matching success rates we have on Rhea leakage and
how it can be improved with pruning. Then, we will describe our choices for the EHNP-based
attack. Finally we will see how this attack worked on Rhea, and then how it could be applied
on Titan.

4.2 Recovering Scalar Bits with Unsupervised Machine
Learning

In the previous chapter, T-Test results – on carefully re-aligned sub-traces around four EM
signal peaks – gave us very precise time samples where the encoded scalar digits are leaking.
Figure 4.1 recalls the T-Test results: this computation is done after having removed all scalar
multiplications with k̃i = 0 (as we know that they lead to erroneous matching) and the two bits
of k̃i are tested separately.

did not succeed and we believe this might be a question of computational power, which becomes prohibitive in
our case.

45

Figure 4.1: Rhea EM Trace - ECDSA Signature (P256, SHA256) - T-Test results

Most significant bit of k̃i

Least significant bit of k̃i

We can easily see that the two bits are handled at different time samples, therefore there is no
reason to work on the whole k̃i digit for the attack. Moreover, we have seen in Section 4.1.1 that
for these two bits only the matching to 0 is useful: assuming that no error is due to side-channel
noise, if the attacker infers that:

• the msb of the encoded scalar digit at iteration i is 0, then ki = 0;

• the lsb of the encoded scalar digit at iteration i is 0, then k129+i = 0.

Let us first consider the msb (we will denote it b in the following), the process will be similar
for the other bit. Thanks to the T-Test analysis, it is easy to precisely select the time samples
that are the most relevant regarding the handling of b: choose a threshold and select all time
samples where the T-Test absolute value is above this threshold. The best threshold value is not
known a priori, it is a parameter that will be found by brute-force. But first, let us choose an
arbitrary value (say t). We now have all sub-traces reduced to only include time samples that
are relevant w.r.t. b. As mentioned in Section 3.2, the reduced sub-traces are signal processed
to slightly improve SNR.

46

From there, the most classical direction for the matching process is a supervised technique:
using Templates [9] or DeepLearning (see e.g. [8]), build a matching reference from a training
set. For us, this would mean to acquire a set of traces on Rhea (where we can know secret
and nonces), re-align and reduce the corresponding sub-traces and create a template (or train
a neural network) for b = 0 and b = 1 from these traces. Then, acquire a set of traces where
the secret is not known (e.g. for us acquisitions on Titan), and for each re-aligned and reduced
sub-traces, estimate its distance from the two templates (or the neural network output). This
gives, for each sub-trace, the best candidate value for b as well as a level of confidence in the
matching.

This approach is certainly the most effective in theory but it has a major drawback in prac-
tice: the side-channel signal must be identical in the training and testing set. This makes sense
when the attacked target device can be also used for training, for instance if our final target
was Rhea. In our case, even though the two chips (P5 and A7x) look very similar, they might
have some design differences. Also, they do have different packages and we do not open them
the same way (see Chapter 1), positioning the EM probe at the exact same location with the
exact same orientation would make the attack hardly doable in practice. For all these reasons,
we decided to try another direction – unsupervised clustering – and then increase our chances to
transpose the attack on Titan.

In unsupervised clustering, there is no training data, we let the algorithm classify the traces
in two categories in the hope that it will actually divide them between b = 0 and b = 1. Since
we provide traces that are already re-aligned and reduced to the very time samples relevant
w.r.t. b, this is not completely hazardous. We used the Expectation-Maximization algorithm
(Scikit-learn GaussianMixture class6) to do the job.

In fact, even without knowing the secret, it is pretty easy to tell if the classification worked:
from Table 4.1 we know that b takes value 0 in 3/8 of the cases and 1 in the other cases (this
comes from the non-uniform handling of the k̃i = 0 case). Therefore, if the unsupervised classi-
fication algorithm outputs two sets with the right respective sizes the attacker is likely to have
found the correct parameters, moreover it is pretty obvious which set is corresponding to which
value of b. This remark was a great help in attacking Titan.

Table 4.2 summarizes the matching success rates for b = 0 on the 4000 × 128 sub-traces
of Rhea for various value of t (the threshold parameter). For a threshold t, the table gives
the resulting sub-traces length after samples selection and signal processing, the probability of
success when a sub-trace is labeled b = 0 and the overall number of sub-traces labeled b = 0 over
the 4000×128 sub-traces. More precisely, the clustering algorithm will choose two cluster centers
(i.e. two multivariate Gaussian distributions) and output, for each sub-trace, the probability of
fitting each cluster. We will call confidence level the probability for a sub-trace to fit the cluster
corresponding to b = 0. In Table 4.2, all sub-traces with confidence level over 0.5, i.e. sub-traces
for which the multivariate Gaussian distribution associated with b = 0 seems a better fit, are
labeled as b = 0.

6Exact parameters are GaussianMixture(n components=2, covariance type=’tied’)

47

Table 4.2: Confidence level 0.5

t sub-trace length success rate (%) # sub-traces

9 767 49.7 217380
10 697 92.7 184364
11 650 92.7 184203
12 591 92.7 183864
13 554 92.3 184498
14 520 92.4 184405
15 484 92.3 184158

Table 4.3 (resp. Table 4.4) summarizes the matching success rates for b = 0 when only
considering matching with confidence level over 0.95 (resp. 0.98). The highlighted row was the
chosen setting for the attack, it provides high success rate while keeping the number of considered
sub-traces high enough (which is not the case for confidence level 0.98).

Table 4.3: Confidence level 0.95

t sub-trace length success rate (%) # sub-traces

10 697 99.0 110054
11 650 99.0 109714
12 591 99.0 108451
13 554 99.0 106990
14 520 99.1 106691
15 484 99.1 105911

Table 4.4: Confidence level 0.98

t sub-trace length success rate (%) # sub-traces

10 697 99.5 82872
11 650 99.5 82456
12 591 99.6 81111
13 554 99.5 79157
14 520 99.6 78959
15 484 99.6 78289

We applied the same process to the lsb. However, since the leakage is not as strong as for the
msb, the matching success rates were much lower: about 80% (without pruning, i.e. confidence
level set to 0.5). We did not spend so much time on this since the attack was possible with the msb
only. Maybe the leakage could be improved, but we believe that the gap in strength between the
two leakages will not be overcome, there is simply a difference in the way the developers handle
the two bits and one is manipulated a little bit more than the other. We hence drop the lsb
information and focus on the msb (and when its value can safely be labeled as a 0).

48

4.3 Solving the Extended Hidden Number Problem

This report has no intention to get into the details of solving the Extended Hidden Number
Problem, great literature exists and will provide all the information to build the lattice base and
run the lattice reduction. We would like to emphasize that the heavy lifting of our lattice attack
development was preformed by our intern, Camille Mutschler7. Together with her academic
supervisor Dr. Laurent Imbert (LIRMM, CNRS), they did a tremendous work in the practical
study of these kind of attacks, vastly outside the scope of this work on the Google Titan Security
Key .

The building of the Lattice is the same than [22] (which was re-used in [18]), more precisely:

• we remove the secret key d from the equations, hence slightly reducing the lattice dimension;

• we use the embedding technique from [24], as it has been shown to be more efficient that
way: we hence end up solving the SVP instead of a Closest Vector Problem (CVP);

• we apply to EHNP the modification presented in [32] and recalled in [29, 1]: recentering
the unknown nonce parts around 08. This showed to be a significant improvement in the
attack success rate. The idea is very simple: in EHNP, each unknown nonce part is defined
by an a priori integer interval in which it fits. By construction this interval is between 0
and a positive bound B. By recentering this interval between −B/2 and B/2, one reduces
the lattice basis values and then makes the lattice reduction easier.

We use the LLL algorithm, although recent tests with BKZ confirmed better performances.
And, as mentioned earlier, the use of a sieve (as in [1]) is expected to perform even better.

4.4 Touchdown on Rhea

From the pruning parameters chosen in previous section (see Table 4.3), we have extracted about
110K sub-traces (exactly 109714) that match a nonce bit value to 0 with high probability (99%).
This makes, in average, 27.5 known 0 bit values in each of the 4000 256-bit nonces, all located in
the upper half of the nonces. This might look a lot, however a vast majority of this information
cannot be used. Indeed, [18]’s equation (26)9 tells us that in the case of EHNP, any known block
of less than three consecutive bits is not helping (actually it is worse than that, it is deteriorating
the success rate by increasing the lattice dimension for no gain).

In fact, if we follow [18]’s equation (26) to accept a 3-bit long known block of bits (i.e. con-
secutive bits), there should be at least three such known blocks in a nonce. For 4-bit long known
block of bits, there should be at least two and it is only starting from 5-bit long known block
of bits that one can accept a nonce with a single known block. After few experiments we chose
to look for a single block of 5 or more consecutive 0 bits in a nonce to select one. This process
dramatically reduces the number of available nonces: from 4000 we end up with 180. Together,
the 180 selected nonces gathers 948 known bits. For 5 of these 180 nonces, the known part was
wrongly estimated (i.e. 5 bits among the 948 are erroneous).

7She is now PhD student at NinjaLab
8To our knowledge, this is the first time that this optimization is used for EHNP
9The advantage of this equation is its simplicity, it gives the number of bits that has to be known with respect

to the nonces bit-length and the number of unknown sections in the nonces. However, this equation comes from
approximations that are conservative and practical results show that fewer known bits are usually enough.

49

In simulation, with such a configuration, 80 error free signatures are enough to get about
50% chances to find the secret. It is worth mentioning that without the recentering optimization
mentioned above, the success rate with these parameters would drop to 0%. Also, later exper-
iments using BKZ with block size 25 improved this result to 60 error free signatures and 100%
success rate.

We hence could run our brute-force process: among the 180 available nonces, we randomly
choose 80 and test the attack until the secret key was found.
The attack on 80 signatures takes about 100 seconds to complete (on a 3,3GHz Intel Core i7,
with 16GB RAM), the process was successfully completed after few tens of attempts.

4.5 Touchdown on Titan

To apply the attack on the Google Titan Security Key , we will need to go through all the steps,
hoping for the sensitive leakage to be there. First, we place the EM probe at approximatively the
same spatial position, with the same orientation (see Figure 1.11 in Introduction) and acquire
6000 side-channel traces of the U2F authentication request command. Details of the acquisition
campaign are provided in Table 4.5.

Table 4.5: Acquisition parameters on Titan

operation ECDSA Signature
equipment PicoScope 6404D, Langer ICR HH 500-06
inputs Messages are random, Key constant (unknown)
number of operations 6000
length 100ms
sampling rate 5GSa/s
samples per trace 500MSamples
channel(s) EM activity
channel(s) parameters DC 50ohms, ±50mV
file size 3TB
acquisition time about 6 hours

Re-alignment, samples selection and signal processing We apply exactly the same pro-
cess than for Rhea (the same four signal peaks are clearly visible). Once re-aligned around the
four signal peaks, we use the Rhea T-Test results to select the time samples and apply exactly
the same signal processing on the sub-traces.

By reusing the Rhea T-Test results for selecting the time samples, we here assume that
Rhea and Titan share the same clock frequency and instructions order. These are not strong
hypotheses since the clock frequency can be easily checked and the NXP cryptographic library
version seems to be the same on both devices.

Unsupervised clustering We used the same algorithm (Expectation-Maximization) than for
Rhea. As mentioned earlier, we can evaluate the correctness of the clustering with respect to the
msb as the relative sizes of the two output clusters get closer to (3/8, 5/8). Moreover, the smallest
set corresponds to a msb equal to 0. With this predicate, we brute-force the T-Test threshold

50

for time samples selection. The best threshold is t = 8 (whereas for Rhea is was t = 11), the
sub-trace length after signal processing and samples selection with this threshold is 854.

Pruning and nonces selection We choose the highest confidence level that keeps enough
nonces with 5 or more consecutive zeros. Since we have more traces than for Rhea, we can
increase the confidence level to 0.98. After selection of nonces with 5 or more consecutive zeros
we end up with 156 nonces.

Key recovery attack Our EHNP solver is run on random subsets of size 80 among the selected
nonces. It took few tens of attempts before finding a correct subset and output the secret key.

A posteriori analysis From the secret key, we can compute the values of the nonces and
verify that, among the 156 selected nonces, 7 were erroneous. The attack was then a little more
challenging than for Rhea but still possible. Again, the use of BKZ with medium or large block
size would do the work with much less nonces.

51

Chapter 5

Conclusions

5.1 Impact on Google Titan Security Key

The attack presented in this document allows to physically extract an ECDSA private key linked
to an application secured by FIDO U2F from the Google Titan Security Key , whereas this private
key should never leave the Google Titan Security Key in cleartext.

So the adversary could make a clone allowing her to sign in to the targeted application,
assuming she previously had stolen the login and password of the victim’s application account,
without the victim noticing.

However, it requires that the adversary steals during several hours the device of the victim
without the victim noticing, open or thin the IC package, access to expensive side-channel setup
equipment (about 10ke) and custom attack softwares.

Note also that depending on how the counter use is implemented by the relying party to
detect cloned U2F devices, it could limit the validity of the attack.

Thus it is still clearly far safer to use your Google Titan Security Key (or other impacted
products) as FIDO U2F two-factor authentication token to sign in to applications like your
Google account rather than not using one.

Nevertheless, this work shows that the Google Titan Security Key (or other impacted prod-
ucts) would not avoid unnoticed security breach by attackers willing to put enough effort into
it. Users that face such a threat should probably switch to other FIDO U2F hardware security
keys, where no vulnerability has yet been discovered.

5.2 List of Impacted Products

We performed the full attack (side-channel attack and lattice-based attack, leading to the recovery
of the full long term ECDSA private key) on the following products:

• NXP J3D081 M59 DF and variants (product family D in the list of section 1.3.2, also called
Rhea in this work);

52

• Google Titan Security Key (US version based on NXP A7005a).

We only validated that the EM activity is similar to the previous products, but did not
performed the side-channel attack, on the following products:

• NXP J3A081 and variants (product family A in the list of section 1.3.2);

• NXP J2E081 M64 and variants (product family E in the list of section 1.3.2);

• Google Titan Security Key (EU version based on NXP A7005c).

Furthermore, our research suggests that other products are also impacted by our attack (we
did not check via side-channel measurements, but for Feitian products we performed a partial
teardown to get package markings):

• NXP J3D145 M59 and variants (product family B in list of section 1.3.2);

• NXP J3D081 M59 and variants (product family C in list of section 1.3.2);

• NXP J3E145 M64 and variants (product family F in list of section 1.3.2);

• NXP J3E081 M64 DF and variants (product family G in list of section 1.3.2);

• Yubico Yubikey Neo (based on NXP A7005c, see [20]);

• Feitian FIDO NFC USB-A / K9 (product very similar to the Google Titan Security Key in
version with NFC and USB-A interfaces, nevertheless the package marking is NXP 3E81G

ZSD8161, and we could not validate that it corresponds to the NXP A700X);

• Feitian MultiPass FIDO / K13 (based on NXP A7005c, product very similar to the Google
Titan Security Key in version with micro-USB, NFC and BLE interfaces);

• Feitian ePass FIDO USB-C / K21 (based on NXP A7005c);

• Feitian FIDO NFC USB-C / K40 (based on NXP A7005c).

Finally, in our exchanges with the NXP Product Security Incident Response Team (PSIRT),
they confirmed that all ”NXP ECC Crypto Library up to version v2.9 on P5 and A7x products”
are vulnerable to the attack.

5.3 Attack Mitigations

Several measures can be implemented to thwart the proposed attack, at different levels.

5.3.1 Hardening the NXP P5x Cryptographic Library

Straightforward ways for hardening the NXP P5x cryptographic library:

• blinding of the scalar. This does not remove the sensitive leakage but makes the attack
much harder. For instance, by addition of a random factor of the curve order (the random’s
bit length should be at least half of the curve order’s bit length);

• re-randomizing the table lookup of precomputed points in the comb implementation at
each new access and hence completely remove the sensitive leakage.

53

5.3.2 Use the FIDO U2F Counter to Detect Clones

As explained in section 8.1 of [16], the counter may be used as a signal for detecting cloned U2F
devices. Thus if a relying party of an application protected with FIDO U2F receives a cryp-
tographically correct authentication response message, but with a counter value smaller or
equal to the previous counter value recorded, it means that a clone of the U2F device has been
created and used. Then the relying party should not validate the authentication request, and
lock the account.

This countermeasure would reduce the usability of the clone to a unique time after giving the
security key back to the legitimate user. Once the clone has been used (say one month after the
attack), the account will be locked by the next access from the legitimate user.

5.4 Impact on Certification

We followed the rating rules of the Common Criteria, the international standard for rating
hardware attacks. More precisely, we used the document Application of Attack Potential to
Smartcards and Similar Devices [41]. Table 5.1 provides a rating of the full attack (side-channel
attack and lattice-based attack).

Table 5.1: Common Criteria rating of the full attack

Factor Comments Identification Exploitation
Elapsed Time Identification phase took us more than

4 months. Exploitation phase would
take less than one day.

6 3

Expertise For Identification phase, a multiple ex-
pert is required. Only an expert is re-
quired for Exploitation phase.

7 4

Knowledge of the
TOE

As the attack has been performed in
black-box, no knowledge of the TOE is
required for both phases.

0 0

Open Samples /
Known Key

No Open Sample is required for both
phases.

0 NA

Access to TOE Less than ten samples were used for
both phases.

0 0

Equipement An electromagnetic SCA platform and
custom softwares are required for both
phases.

3 4

Sub Total 16 11
Total 27

Our attack gets a rating of 27 points, meaning that the device has a resistance to attackers
with moderate attack potential. It is worth mentionning that the NXP P5 chips and their
cryptographic libraries are no more covered by CC certificates and therefore our work does not
revoke any ongoing certification.

54

5.5 Project’s Timeline

The following timeline summarizes the different phases of this work and the associated responsible
disclosure:

• September 11th, 2018:

– Elie Bursztein’s keynote talk at CHES 2018 and obtention of first samples of the
Google Titan Security Key ;

• June 29th, 2020:

– full attack validated on Rhea;

• July 2nd, 2020:

– full attack validated on Titan;

• October 1st, 2020:

– contact Google VRP, Feitian, NXP, ANSSI and BSI, with a short technical description
of our work and our responsible disclosure plan (3 months);

– acknowledgment of reception from NXP PSIRT team and ANSSI CERT-FR;

• October 2nd, 2020:

– acknowledgment of reception from Feitian and BSI CERT-BUND;

– bug accepted by the Google VRP team;

• October 21st, 2020:

– Google VRP panel decided to acknowledge our contribution to Google Security in
their Hall of Fame (honorable mentions), but no reward as they consider that it is a
NXP issue;

• October to December 2020:

– several technical exchanges with NXP and Google about our work;

• January 4th, 2021:

– CVE ID assigned: CVE-2021-3011 1;

• January 7th, 2021:

– publication of this report on the NinjaLab website and on the IACR eprint archive.

Thanks

We would like to thank:

• Ryad Benadjila for his technical support about the development of JavaCard applets;

• Camille Mutschler and Dr. Laurent Imbert for working with us in developing a library
implementing lattice-based attacks.

1https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-3011

55

https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-3011

Bibliography

[1] M. R. Albrecht and N. Heninger. On Bounded Distance Decoding with Predicate: Breaking
the ”Lattice Barrier” for the Hidden Number Problem. Cryptology ePrint Archive, Report
2020/1540, 2020. https://eprint.iacr.org/2020/1540.

[2] A. C. Aldaya, C. P. Garcia, and B. B. Brumley. From A to Z: Projective Coordinates Leak-
age in the Wild. IACR Transactions on Cryptographic Hardware and Embedded Systems,
2020(3):428–453, Jun. 2020.

[3] R. Benadjila, M. Renard, P. Trebuchet, P. Thierry, A. Michelizza, and J. Lefaure. Wookey
Project Github repository. https://wookey-project.github.io/javacard/index.html.
[online; accessed 31-December-2020].

[4] N. Benger, J. van de Pol, N. P. Smart, and Y. Yarom. ”Ooh Aah... Just a Little Bit” :
A Small Amount of Side Channel Can Go a Long Way. In L. Batina and M. Robshaw,
editors, Cryptographic Hardware and Embedded Systems - CHES 2014 - 16th International
Workshop, Busan, South Korea, September 23-26, 2014. Proceedings, volume 8731 of Lecture
Notes in Computer Science, pages 75–92. Springer, 2014.

[5] D. Boneh and R. Venkatesan. Hardness of Computing the Most Significant Bits of Secret
Keys in Diffie-Hellman and Related Schemes. In N. Koblitz, editor, Advances in Cryptology
— CRYPTO ’96, pages 129–142, Berlin, Heidelberg, 1996. Springer Berlin Heidelberg.

[6] B. B. Brumley and N. Tuveri. Remote Timing Attacks Are Still Practical. In V. Atluri
and C. Dı́az, editors, Computer Security - ESORICS 2011 - 16th European Symposium
on Research in Computer Security, Leuven, Belgium, September 12-14, 2011. Proceedings,
volume 6879 of Lecture Notes in Computer Science, pages 355–371. Springer, 2011.

[7] I. Buhan and P. Schwabe. Conference on Cryptographic Hardware and Embedded Systems
2018. https://ches.iacr.org/2018/index.shtml, 2018. [online; accessed 31-December-
2020].

[8] M. Carbone, V. Conin, M.-A. Cornélie, F. Dassance, G. Dufresne, C. Dumas, E. Prouff, and
A. Venelli. Deep Learning to Evaluate Secure RSA Implementations. IACR Transactions
on Cryptographic Hardware and Embedded Systems, 2019(2):132–161, Feb. 2019.

[9] S. Chari, J. R. Rao, and P. Rohatgi. Template Attacks. In B. S. K. Jr., Ç. K. Koç,
and C. Paar, editors, Cryptographic Hardware and Embedded Systems - CHES 2002, 4th
International Workshop, Redwood Shores, CA, USA, August 13-15, 2002, Revised Papers,
volume 2523 of Lecture Notes in Computer Science, pages 13–28. Springer, 2002.

56

https://eprint.iacr.org/2020/1540
https://wookey-project.github.io/javacard/index.html
https://ches.iacr.org/2018/index.shtml

[10] J. Coron. Resistance against Differential Power Analysis for Elliptic Curve Cryptosystems.
In Ç. K. Koç and C. Paar, editors, Cryptographic Hardware and Embedded Systems, First
International Workshop, CHES’99, Worcester, MA, USA, August 12-13, 1999, Proceedings,
volume 1717 of Lecture Notes in Computer Science, pages 292–302. Springer, 1999.

[11] S. Fan, W. Wang, and Q. Cheng. Attacking OpenSSL Implementation of ECDSA with a
Few Signatures. In Proceedings of the 2016 ACM SIGSAC Conference on Computer and
Communications Security, CCS ’16, page 15051515, New York, NY, USA, 2016. Association
for Computing Machinery.

[12] Feitian. Feitian FIDO solutions. https://www.ftsafe.com/Products/FIDO/. [online; ac-
cessed 31-December-2020].

[13] Feitian. Feitian website. https://www.ftsafe.com. [online; accessed 31-December-2020].

[14] FIDO Alliance. FIDO U2F Implementation Considerations. https://fidoalliance.org/
specs/fido-u2f-v1.2-ps-20170411/fido-u2f-implementation-considerations-v1.

2-ps-20170411.pdf. [online; accessed 31-December-2020].

[15] FIDO Alliance. FIDO U2F Raw Message Formats. https://fidoalliance.org/specs/

fido-u2f-v1.2-ps-20170411/fido-u2f-raw-message-formats-v1.2-ps-20170411.

html. [online; accessed 31-December-2020].

[16] FIDO Alliance. Universal 2nd Factor (U2F) Overview. https://fidoalliance.org/

specs/fido-u2f-v1.2-ps-20170411/fido-u2f-overview-v1.2-ps-20170411.pdf. [on-
line; accessed 31-December-2020].

[17] Google. Google Titan Key. https://cloud.google.com/titan-security-key/. [online;
accessed 31-December-2020].

[18] D. Goudarzi, M. Rivain, and D. Vergnaud. Lattice Attacks Against Elliptic-Curve Signatures
with Blinded Scalar Multiplication. In R. Avanzi and H. M. Heys, editors, Selected Areas in
Cryptography - SAC 2016 - 23rd International Conference, St. John’s, NL, Canada, August
10-12, 2016, Revised Selected Papers, volume 10532 of Lecture Notes in Computer Science,
pages 120–139. Springer, 2016.

[19] HexView. Google Titan Key teardown. http://www.hexview.com/~scl/titan/. [online;
accessed 31-December-2020].

[20] HexView. Yubikey Neo teardown. http://hexview.com/~scl/neo/. [online; accessed 31-
December-2020].

[21] M. Hlavác and T. Rosa. Extended Hidden Number Problem and Its Cryptanalytic Ap-
plications. In E. Biham and A. M. Youssef, editors, Selected Areas in Cryptography, 13th
International Workshop, SAC 2006, Montreal, Canada, August 17-18, 2006 Revised Selected
Papers, volume 4356 of Lecture Notes in Computer Science, pages 114–133. Springer, 2006.

[22] N. Howgrave-Graham and N. P. Smart. Lattice Attacks on Digital Signature Schemes. Des.
Codes Cryptogr., 23(3):283–290, 2001.

[23] J. Jancar, V. Sedlacek, P. Svenda, and M. Sys. Minerva: The Curse of ECDSA Nonces
(Systematic Analysis of Lattice Attacks on Noisy Leakage of Bit-Length of ECDSA Nonces).
IACR Transactions on Cryptographic Hardware and Embedded Systems, 2020(4):281–308,
2020.

57

https://www.ftsafe.com/Products/FIDO/
https://www.ftsafe.com
https://fidoalliance.org/specs/fido-u2f-v1.2-ps-20170411/fido-u2f-implementation-considerations-v1.2-ps-20170411.pdf
https://fidoalliance.org/specs/fido-u2f-v1.2-ps-20170411/fido-u2f-implementation-considerations-v1.2-ps-20170411.pdf
https://fidoalliance.org/specs/fido-u2f-v1.2-ps-20170411/fido-u2f-implementation-considerations-v1.2-ps-20170411.pdf
https://fidoalliance.org/specs/fido-u2f-v1.2-ps-20170411/fido-u2f-raw-message-formats-v1.2-ps-20170411.html
https://fidoalliance.org/specs/fido-u2f-v1.2-ps-20170411/fido-u2f-raw-message-formats-v1.2-ps-20170411.html
https://fidoalliance.org/specs/fido-u2f-v1.2-ps-20170411/fido-u2f-raw-message-formats-v1.2-ps-20170411.html
https://fidoalliance.org/specs/fido-u2f-v1.2-ps-20170411/fido-u2f-overview-v1.2-ps-20170411.pdf
https://fidoalliance.org/specs/fido-u2f-v1.2-ps-20170411/fido-u2f-overview-v1.2-ps-20170411.pdf
https://cloud.google.com/titan-security-key/
http://www.hexview.com/~scl/titan/
http://hexview.com/~scl/neo/

[24] R. Kannan. Minkowski’s Convex Body Theorem and Integer Programming. Mathematics
of Operations Research, 12(3):415–440, 1987.

[25] Langer. ICR HH 500-6. https://www.langer-emv.

de/en/product/near-field-microprobes-icr-hh-h-field/26/

icr-hh500-6-near-field-microprobe-2-mhz-to-6-ghz/108, 2019. [online; accessed
31-December-2020].

[26] C. H. Lim and P. J. Lee. More Flexible Exponentiation with Precomputation. In Y. G.
Desmedt, editor, Advances in Cryptology — CRYPTO ’94, pages 95–107, Berlin, Heidelberg,
1994. Springer Berlin Heidelberg.

[27] Martin Paljak. Ant JavaCard Project Github repository. https://github.com/

martinpaljak/ant-javacard. [online; accessed 31-December-2020].

[28] G. D. Micheli, R. Piau, and C. Pierrot. A Tale of Three Signatures: Practical Attack
of ECDSA with wNAF. In A. Nitaj and A. M. Youssef, editors, Progress in Cryptology
- AFRICACRYPT 2020 - 12th International Conference on Cryptology in Africa, Cairo,
Egypt, July 20-22, 2020, Proceedings, volume 12174 of Lecture Notes in Computer Science,
pages 361–381. Springer, 2020.

[29] D. Moghimi, B. Sunar, T. Eisenbarth, and N. Heninger. TPM-FAIL: TPM meets Timing
and Lattice Attacks. In 29th USENIX Security Symposium (USENIX Security 20), Boston,
MA, Aug. 2020. USENIX Association.

[30] MOUSER. NXP A700x datasheet, secure authentication microcontroller. https://

www.mouser.fr/datasheet/2/302/a700x_fam_sds-1187735.pdf. [online; accessed 31-
December-2020].

[31] E. D. Mulder, M. Hutter, M. E. Marson, and P. Pearson. Using Bleichenbacher’s Solution to
the Hidden Number Problem to Attack Nonce Leaks in 384-bit ECDSA: extended version.
J. Cryptogr. Eng., 4(1):33–45, 2014.

[32] N. Q. Nguyen and I. E. Shparlinski. The Insecurity of the Digital Signature Algorithm with
Partially Known Nonces. J. Cryptol., 15(3):151–176, 2002.

[33] P. Q. Nguyen and I. E. Shparlinski. The Insecurity of the Elliptic Curve Digital Signature
Algorithm with Partially Known Nonces. Des. Codes Cryptogr., 30(2):201–217, 2003.

[34] NIST. FIPS 186-2, Digital Signature Standard (DSS). https://csrc.nist.gov/csrc/

media/publications/fips/186/2/archive/2000-01-27/documents/fips186-2.pdf,
2001. [online; accessed 31-December-2020].

[35] NXP. NXP LPC11U2x datasheet, 32-bit ARM Cortex-M0 microcontroller. https://www.

nxp.com/docs/en/data-sheet/LPC11U2X.pdf. [online; accessed 31-December-2020].

[36] NXP. NXP SmartMX family brochure. https://www.nxp.com/docs/en/brochure/

75017515.pdf. [online; accessed 31-December-2020].

[37] Oracle. JavaCard Connected Platform Specifications 3.0.1. https://www.oracle.com/

java/technologies/javacard/platform-specification-3-0-1.html. [online; accessed
31-December-2020].

58

https://www.langer-emv.de/en/product/near-field-microprobes-icr-hh-h-field/26/icr-hh500-6-near-field-microprobe-2-mhz-to-6-ghz/108
https://www.langer-emv.de/en/product/near-field-microprobes-icr-hh-h-field/26/icr-hh500-6-near-field-microprobe-2-mhz-to-6-ghz/108
https://www.langer-emv.de/en/product/near-field-microprobes-icr-hh-h-field/26/icr-hh500-6-near-field-microprobe-2-mhz-to-6-ghz/108
https://github.com/martinpaljak/ant-javacard
https://github.com/martinpaljak/ant-javacard
https://www.mouser.fr/datasheet/2/302/a700x_fam_sds-1187735.pdf
https://www.mouser.fr/datasheet/2/302/a700x_fam_sds-1187735.pdf
https://csrc.nist.gov/csrc/media/publications/fips/186/2/archive/2000-01-27/documents/fips186-2.pdf
https://csrc.nist.gov/csrc/media/publications/fips/186/2/archive/2000-01-27/documents/fips186-2.pdf
https://www.nxp.com/docs/en/data-sheet/LPC11U2X.pdf
https://www.nxp.com/docs/en/data-sheet/LPC11U2X.pdf
https://www.nxp.com/docs/en/brochure/75017515.pdf
https://www.nxp.com/docs/en/brochure/75017515.pdf
https://www.oracle.com/java/technologies/javacard/platform-specification-3-0-1.html
https://www.oracle.com/java/technologies/javacard/platform-specification-3-0-1.html

[38] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blon-
del, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau,
M. Brucher, M. Perrot, and E. Duchesnay. Scikit-learn: Machine learning in Python. Jour-
nal of Machine Learning Research, 12:2825–2830, 2011.

[39] Pico Technology. PicoScope 6000 Series datasheet. https://www.picotech.com/

download/datasheets/PicoScope6000CDSeriesDataSheet.pdf, 2019. [online; accessed
31-December-2020].

[40] K. Ryan. Return of the Hidden Number Problem.: A Widespread and Novel Key Extraction
Attack on ECDSA and DSA. IACR Transactions on Cryptographic Hardware and Embedded
Systems, 2019(1):146–168, Nov. 2018.

[41] SOGIS. Application of Attack Potential to Smartcards and Simi-
lar Devices v3.0. https://www.sogis.eu/documents/cc/domains/sc/

JIL-Application-of-Attack-Potential-to-Smartcards-v3-0.pdf. [online; accessed
31-December-2020].

[42] The Sage Developers. SageMath, the Sage Mathematics Software System (Version 9.0),
2020. https://www.sagemath.org.

[43] Thorlabs. Manual 3-axes Stage PT3/M. https://www.thorlabs.com/thorproduct.cfm?

partnumber=PT3/M#ad-image-0, 2019. [online; accessed 31-December-2020].

[44] University of Montpellier. CTM website (technological center of the university of Mont-
pellier). http://www.iesengineering.fr/centrale-de-technologie-de-montpellier.
[online; accessed 31-December-2020].

[45] S. Weiser, D. Schrammel, L. Bodner, and R. Spreitzer. Big Numbers - Big Troubles: System-
atically Analyzing Nonce Leakage in (EC)DSA Implementations. In 29th USENIX Security
Symposium (USENIX Security 20), pages 1767–1784. USENIX Association, Aug. 2020.

[46] B. L. Welch. The Generalization of ‘Student’s’ Problem when Several Different Population
Variances are Involved. Biometrika, 34(1/2):28–35, 1947.

59

https://www.picotech.com/download/datasheets/PicoScope6000CDSeriesDataSheet.pdf
https://www.picotech.com/download/datasheets/PicoScope6000CDSeriesDataSheet.pdf
https://www.sogis.eu/documents/cc/domains/sc/JIL-Application-of-Attack-Potential-to-Smartcards-v3-0.pdf
https://www.sogis.eu/documents/cc/domains/sc/JIL-Application-of-Attack-Potential-to-Smartcards-v3-0.pdf
https://www.thorlabs.com/thorproduct.cfm?partnumber=PT3/M#ad-image-0
https://www.thorlabs.com/thorproduct.cfm?partnumber=PT3/M#ad-image-0
http://www.iesengineering.fr/centrale-de-technologie-de-montpellier

	Introduction
	Context
	Study Motivation
	Product Description
	Contributions and Document Organization

	Preliminaries
	FIDO U2F Protocol
	A Side-Channel Attack Scenario on the FIDO U2F Protocol
	Google Titan Security Key Teardown
	NXP A700X Chip

	NXP Cryptographic Library on P5x Chips
	The NXP P5x Secure Microcontroller Family
	Available NXP JavaCard Smartcards on P5x Chips
	Rhea

	Side-Channel Observations
	Side-Channel Setup
	First Side-Channel Observations on Titan
	First Side-Channel Observations on Rhea

	Reverse-Engineering of the ECDSA Algorithm
	ECDSA Signature Algorithm
	Basics about he ECDSA Signature Algorithm
	Matching the Algorithm to the Side-Channel Traces
	Study of the Scalar Multiplication Algorithm

	ECDSA Signature Verification Algorithm
	Basics about the ECDSA Signature Verification Algorithm
	Matching the Algorithm to the Side-Channel Traces
	Study of the Scalar Multiplication Algorithm
	Study of the Pre-Computation Algorithm

	High-Level NXP Scalar Multiplication Algorithm
	Pre-Computation and First Scalar Multiplication in Signature Verification Algorithm
	Second Scalar Multiplication in Signature Verification Algorithm
	Scalar Multiplication in Signature Algorithm

	A Side-Channel Vulnerability
	Searching for Sensitive Leakages
	A Sensitive Leakage
	Improving our Knowledge of the NXP's Scalar Multiplication Algorithm

	A Key-Recovery Attack
	Directions to Exploit the Vulnerability
	A Closer Look at the Sensitive Information
	Lattice-based ECDSA Attacks with Partial Knowledge of the Nonces
	How to Deal with Erroneous Known Bits

	Recovering Scalar Bits with Unsupervised Machine Learning
	Solving the Extended Hidden Number Problem
	Touchdown on Rhea
	Touchdown on Titan

	Conclusions
	Impact on Google Titan Security Key
	List of Impacted Products
	Attack Mitigations
	Hardening the NXP P5x Cryptographic Library
	Use the FIDO U2F Counter to Detect Clones

	Impact on Certification
	Project's Timeline

