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These are lecture notes for a series of five lectures I gave to other graduate students about characteristic
classes through UT Austin’s summer minicourse program (see https://www.ma.utexas.edu/users/richard.
wong/Minicourses.html for more details). Beware of potential typos. In these notes I cover the basic theory of
Stiefel-Whitney, Wu, Chern, Pontrjagin, and Euler classes, introducing some interesting topics in algebraic topology
along the way. In the last section the Hirzebruch signature theorem is introduced as an application. Many proofs
are left out to save time. There are many exercises, which emphasize getting experience with characteristic class
computations. Don’t do all of them; you should do enough to make you feel comfortable with the computations,
focusing on the ones interesting or useful to you.

Prerequisites. Formally, I will assume familiarity with homology and cohomology at the level of Hatcher, chapters
2 and 3, and not much more. There will be some differential topology, which is covered by UT’s prelim course.
Some familiarity with vector bundles will be helpful, but not strictly necessary.

The exercises may ask for more; in particular, you will probably want to know the standard CW structures on
RPn and CPn, as well as their cohomology rings.

References. Most of this material has been synthesized from the following sources.
• Milnor-Stasheff, “Characteristic classes,” which fleshes out all the details we neglect.
• Freed, ”Bordism: old and new.” https://www.ma.utexas.edu/users/dafr/bordism.pdf. The mate-

rial in §§6–8 is a good fast-paced introduction to classifying spaces, Pontrjagin, and Chern classes.
• Hatcher, “Vector bundles and K-theory,” chapter 3. https://www.math.cornell.edu/~hatcher/VBKT/

VB.pdf.
• Bott-Tu, “Differential forms in algebraic topology,” chapter 4.

Thanks to the attendees of my minicourses in 2017 and 2018, as well as to Casandra Monroe and Alberto San
Miguel Mulaney, for finding and fixing a few typos.

1. FOUR APPROACHES TO CHARACTERISTIC CLASSES

Today, we’re going to discuss what characteristic classes are. The definition is not hard, but there are at least
four ways to think about them, and each perspective is important. This will also be an excuse to introduce some
useful notions in geometry and topology — though this will be true every day.

1.1. Characteristic classes: what and why. Characteristic classes are natural cohomology classes of vector
bundles. Let’s exposit this a bit.

Definition 1.1. Recall that a (real) vector bundle over a space M is a continuous map π: E→ M such that
(1) each fiber π−1(m) is a finite-dimensional real vector space, and
(2) there’s an open cover U of M such that for each U ∈ U, π−1(U)∼= U ×Rn, and this isomorphism is linear

on each fiber.
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That is, it’s a continuous family of vector spaces over some topological space. We allow Cn and complex vector
bundles. Often our spaces will be manifolds, and our vector bundles will usually be smooth. We will often assume
the dimension of a vector bundle on a disconnected space is constant.

Example 1.2.

(1) The tangent bundle T M → M to a manifold M is the vector bundle whose fiber above x ∈ M is Tx M .
(2) A trivial bundle Rn := Rn ×M � M .
(3) The tautological bundle S→ RPn is a line bundle defined as follows: each point ` ∈ RPn is a line in Rn+1;

we let the fiber above ` be that line. The same construction works over CPn, and Grassmannians. (

It’s also possible to make new vector bundles out of old: the usual operations on vector spaces (direct sum,
tensor product, dual, Hom, symmetric power, and so on) generalize to vector bundles without much fuss. Vector
bundles also pull back.

Definition 1.3. Let π: E → M be a vector bundle and f : N → M be continuous. Then, the pullback of E to N ,
denoted f ∗E→ N , is the vector bundle whose fiber above an x ∈ N is π−1( f (x)).

One should check this is actually a vector bundle.
Vector bundles are families of vector spaces over a base. There’s a related notion of a principal bundle for a Lie

group in which vector spaces are replaced with G-torsors.

Definition 1.4. Let G be a Lie group. A principal G-bundle is a map π: P → M together with a free right G-action
of P such that π is the quotient map, and such that every x ∈ X has a neighborhood U such that π−1(U)∼= U × G
as G-spaces. An isomorphism of principal G-bundles over M is a G-equivariant map ϕ : P → P ′ commuting with
the maps down to M .

Thus in particular each fiber is a G-torsor. As with vector bundles, we have notions of a trivial principal G-bundle
and pullback.

Example 1.5. Let E→ M be a real vector bundle, and give it a Euclidean metric. The frame bundle is the principal
On-bundle BO(E)→ M whose fiber at x ∈ M is the On-torsor of orthonormal bases of Ex . In the same way, a
complex vector bundle has a principal Un-bundle of framesBU(E) induced by a Hermitian metric. (

As Euclidean (resp. Hermitian) metrics exist and form a contractible space for any real (resp. complex) vector
bundle, the isomorphism type of the frame bundle well-defined.

With these words freshly in our minds, we can define characteristic classes.

Definition 1.6. A characteristic class c of vector bundles or principal G-bundles is an assignment to each bundle
E→ M a cohomology class c(E) ∈ H∗(M) that is natural, in that if f : N → M is a map, c( f ∗E) = f ∗(c(E)) ∈ H∗(N).

Characteristic classes can be for real or complex vector bundles, but usually not both at once; similarly, they’re
characteristic classes for principal bundles are defined with respect to a fixed G. The coefficient group for H∗(M)
will vary.

You probably have motivations in mind for learning characteristic classes, but here are some more just in case.

• Vector bundles interpolate between geometric and algebraic information on manifolds — often they arise
in a geometric context, but they’re classified with algebra. Characteristic classes provide useful algebraic
invariants of geometric information.

• More specifically, the obstructions to certain structures on a manifold (orientation, spin, etc) are captured
by characteristic classes, so computations with characteristic classes determine which manifolds are
orientable, spin, etc.

• Pairing a product of characteristic classes against the fundamental class defines a characteristic number.
These are cobordism invariants, and in many situations the set of characteristic numbers is a complete
cobordism invariant, and a computable one. Fancier characteristic numbers have geometric meaning and
are useful for proving geometric results, e.g. in the Atiyah-Singer index theorem.

We’ll now discuss four approaches to characteristic classes. These are not the only approaches; however, they
are the most used and most useful ones. All approaches work in the setting of Chern classes, characteristic classes
of complex vector bundles living in integral cohomology; most generalize to other characteristic classes, but not all
of them.
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1.2. Axiomatic approach. The axiomatic definition of Chern classes is due to Grothendieck.

Definition 1.7. The Chern classes are characteristic classes for a complex vector bundle E→ M : for each i ≥ 0,
the ith Chern class of E is ci(E) ∈ H2i(M ;Z). The total Chern class c(E) = c0(E)+ c1(E)+ · · · . One writes ci(M) for
ci(T M), and c(M) for c(T M).

These classes are defined to be the unique classes satisfying naturality and the following axioms.

(1) c0(E) = 1.
(2) The Whitney sum formula c(E ⊕ F) = c(E)c(F), and hence

ck(E ⊕ F) =
∑

i+ j=k

ci(E)c j(F).

(3) Let x be the generator of H2(CPn)∼= Z; then, c(S→ CPn) = 1− x .1

Of course, it’s a theorem that these exist and are unique! Thus, all characteristic-class calculations can
theoretically be recovered from these, though other methods are usually employed. However, some computations
follow pretty directly, including one in the exercises.

So what are these telling us?

Example 1.8. Let Cn → M be a trivial bundle. Then, c(Cn) = 1. This is because Cn is a pullback of the trivial
bundle over a point. (

Thus the Chern classes (and characteristic classes more generally) give us a necessary condition for a vector
bundle to be trivial.

Definition 1.9. A complex vector bundle E→ M is stably trivial if E ⊕Cn is a trivial vector bundle.

We’ll also use the analogous definition for real vector bundles.

Lemma 1.10. c(E ⊕C) = c(E), and hence if E is stably trivial, then c(E) = 1.

Proof. Whitney sum formula. �

This approach is kind of rigid, and also provides no geometric intuition.

1.3. Linear dependency of generic sections. This approach is geometric and slick, but one must show it’s
independent of choices.

To discuss it, we need one important fact, Poincaré duality.

Theorem 1.11 (Poincaré duality). Let M be a closed manifold.

(1) Let A be an abelian group. An orientation of M determines an isomorphism PD: Hk(M ;A)→ Hn−k(M ;A)
given by cap product with the fundamental class.

(2) There is isomorphism PD: Hk(M ;Z/2)→ Hn−k(M ;Z/2) given by cap product with the mod 2 fundamental
class.

This theorem is pretty much the best.

Definition 1.12. Let M and N be oriented manifolds and i : N ,→ M be an embedding. Hence it defines a
pushforward i∗[N] ∈ H∗(M); we will refer to this as the homology class represented by N , and N as a representative
for this homology class.

We’ll do the same thing in homology with coefficients in any abelian group A; when A= Z/2, no orientation is
necessary.

Definition 1.13. Let y ∈ Hk(M). A Poincaré dual submanifold to y is an embedded, oriented submanifold N ⊂ M
which represents PD(y) ∈ Hn−k(M). Correspondingly, the Poincaré dual to an embedded oriented submanifold
i : N ,→ M is PD(i∗[N]) ∈ Hcodim N (M).

Again, the above applies, mutatis mutandis, to cohomology with Z/2-coefficients, but without orientations.

1There are two choices of such x; we define it to be Poincaré dual to a hyperplane CPn−1 ⊂ CPn with the orientation induced from the
complex structure.
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Definition 1.14. Let π: E → M be a complex vector bundle over a manifold M . Then, choose k sections
s1, . . . , sk ∈ Γ (E) that are transverse to each other and to the zero section. (It’s a theorem in differential topology
that this is always possible.)

Let Yk be the locus of dependency of s1, . . . , sk, i.e. the subset of x ∈ M on which {s1(x), . . . , sk(x)} ∈ π−1(x) is
linearly dependent. Then, Yk is a smooth k-dimensional submanifold of M . The kth Chern class of E, denoted
ck(E), is the Poincaré dual of Yk.

This definition provides a perspective: a Chern class is an obstruction to finding everywhere linearly independent
sections of your vector bundle.

1.4. Chern-Weil theory. Any concept that appears in the real cohomology of a manifold can be expressed with de
Rham theory, and Chern-Weil theory does this for Chern classes.

Definition 1.15. Let E→ M be a vector bundle. A connection on E is an R-linear map ∇: Γ (T M)⊗R Γ (E)→ Γ (E)
that is C∞(M)-linear in its first argument and satisfies the Leibniz rule

(1.16) ∇v( fψ) = (v · f )ψ+ f∇vψ.

where v is a vector field, ψ ∈ Γ (E), and f ∈ C∞(M).

This is a way of differentiating vector fields. Locally (i.e. in coordinates U), a connection is like the de Rham
differential, but plus some matrix-valued one-form A∈ Γ (T ∗U⊗End(E|U)): ∇|U = d+A. So if you have coordinates,
you can define a connection through a matrix.

Definition 1.17. Let ∇ be a connection. Its curvature is F∇ ∈ Ω2
M (End E) := Γ (Λ2T ∗M ⊗ End E) defined by

F∇ :=∇X ◦∇Y −∇Y ◦∇X −∇[X ,Y ].

That is, it’s a 2-form, but instead of being valued in T ∗M , it’s valued in End E. If E is a line bundle, this is
canonically trivial, so the curvature of a connection on a line bundle is just a differential 2-form, and in fact it’s
closed, so it represents a class on H2

dR(M). This is 2πi times the first Chern class of that line bundle.
The trace tr: Ωk

M (End E)→ Ωk
M is the map induced from the map Γ (End E)→ C∞(M) which takes the trace at

each point. As before, one can show that tr((F∇)k) ∈ Ω2k
M is closed, hence defines a de Rham cohomology class.

Definition 1.18. The kth Chern class of E is (1/2πi)[tr((F∇)k)] ∈ H2k
dR(M).

Though this is a priori only in H2k
dR(M)⊗C, it’s an integral class (as the other definitions we’ve given were for

Z-cohomology), and it doesn’t depend on the choice of connection. The proof idea is that the space of connections
is convex, so you can interpolate between two connections.

So from this perspective, a Chern class measures curvature.

Corollary 1.19. If E admits a flat connection, its (rational) Chern classes are 0, and its integral Chern classes are
torsion.

1.5. The search for the universal bundle. The final approach for today is moduli-theoretic. It’s possible to
construct a maximally twisted vector bundle: all vector bundles (of a given kind) are pullbacks of a universal
vector bundle over a universal space.

By EG we will mean any contractible space with a free G-action, and BG := EG/G. Hence EG → BG is a
principal G-bundle.

Proposition 1.20. Any two choices for BG are homotopy equivalent.

Example 1.21. LetH be a separable Hilbert space and S∞ denote the unit sphere inH , which is contractible.
The antipodal map defines a free Z/2-action on S∞, and its quotient, denoted RP∞, is a model for BZ/2. (

This model for BZ/2 realizes it as a Hilbert manifold, and in fact for any compact Lie group G, BG has a model
as a Hilbert manifold. There are other constructions, e.g. defining RP∞ as a colimit of finite-dimensional spaces
(which is not homeomorphic to the Hilbert manifold description) or using the bar construction, which works in
great generality.

Let BunG M denote the set of isomorphism classes of principal G-bundles over M .

Theorem 1.22. Let M be a space. Then, the assignment [M , BG]→ BunG M sending f : M → BG to the pullback
f ∗(EG)→ M is a bijection.
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That is, every principal G-bundle arises from EG→ BG in an essentially unique way.

Proposition 1.23. There’s a natural bijection between the isomorphism classes of complex vector bundles of rank n
and BunUn

(M) defined by sending E 7→ B(E). The same is true for real vector bundles and BunOn
.

“Natural” here means this bijection is compatible with pullback.
So in other words, given a complex vector bundle E → M of rank n, we get a principal Un-bundle, hence a

homotopy class of maps fE : M → BUn. If c ∈ H∗(BUn), then let c(E) := f ∗E c. This satisfies naturality, hence is a
characteristic class, and all characteristic classes for rank-n vector bundles arise this way, because all principal
Un-bundles are pullbacks of EUn→ BUn!

In other words, a characteristic class is a cohomology class of the classifying space.
Of course, we’d like to treat characteristic classes for all vector bundles at once, not just those of rank n. This is

where stability jumps in: a rank-n vector bundle E defines a rank-(n+ 1)-vector bundle E ⊕C which should have
the same Chern classes. In the classifying-space framework, there’s a map Un ,→ Un+1 sending

A 7−→
�

A 0
0 1

�

,

which induces a map BUn → BUn+1.2 If fE : M → BUn is the classifying map for E, then the classifying map for

E ⊕C is the map M
fE→ BUn→ BUn+1.

So now we have a directed system BU1 ,→ BU2 ,→ ·· · , and any vector bundle defines compatible maps to
objects in this system. Hence, the classifying space for vector bundles of any (finite) rank is

BU := colim
n→∞

BUn.

That is, a homotopy class of maps M → BU defines a stable isomorphism class of vector bundles E → M , and
characteristic classes are exactly elements of the cohomology of BU! Exactly the same story goes forth to define
BO and characteristic classes for real vector bundles.3

Theorem 1.24. H∗(BU)∼= Z[c1, c2, . . . ], with |ck|= 2k.

Thus we can define the kth Chern class to be ck. Naturality and stability follow almost immediately.

Remark 1.25. This approach tells us that cohomology classes of BG define characteristic classes for principal
G-bundles, not just vector bundles, and this approach is sometimes useful. (

1.6. Exercises. Most important:
(1) In this exercise, we’ll compute c(CPn) = (1+ x)n+1, where x ∈ H2(CPn)∼= Z is a generator, Poincaré dual

to CPn−1 ⊂ CPn.
(a) Let Q = Cn+1/S, the universal quotient bundle: its fiber over an ` ∈ CPn is Cn+1/`. Show that

Hom(S,Q)∼= TCPn. (Hint: let ` be a complex line in Cn+1 and `⊥ be a complimentary subspace, i.e.
`⊕ `⊥ ∼= Cn+1. Then, Hom(`,`⊥) can be identified with the neighborhood of ` ∈ CPn of lines which
are graphs of functions `→ `⊥.)

(b) Using this, show that TCPn ⊕Hom(S, S)∼= (S∗)⊕(n+1).
(c) If E is any line bundle, show that Hom(E, E) is trivial.
(d) If E→ CPn is a line bundle, show that c1(E∗) = −c1(E). (Hint: use the fact that E∗ ∼= E and naturality

of Chern classes.)
(e) Applying (1c) and (1d) to (1b), conclude c(CPn) = (1+ x)n+1.

(2) If E→ M is a vector bundle, its determinant bundle Det E→ M is its top exterior power, which is a line
bundle. Use the locus-of-dependency definition of Chern classes to show that c1(E) = c1(Det E).

(3) Use Chern-Weil theory to compute the Chern classes of CP1 and CP2.
(4) Let L be a line bundle. Why is End L trivial? (Not just trivializable: can you produce a canonical

isomorphism with R (or C in the complex case)?)
Also important, especially if you’re interested:

(1) Show that TS2 is stably trivial, but not trivial. What’s an example of a manifold whose tangent bundle
isn’t stably trivial?

2Technically, it induces a homotopy class of maps. But there are models for BG which make B a functor on the nose.
3The notation is suggestive, and in fact BU is the classifying space for the infinite unitary group U, the colimit of Un over all n.
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(2) Show that if G is discrete, any Eilenberg-Mac Lane space K(G, 1) is a model for BG, and vice versa. Hence
S1 = BZ and RP∞ = BZ/2= BO1.

(3) In this exercise, we construct BOn as an infinite-dimensional manifold. Fix a separable Hilbert space, such
as `2. The Stiefel manifold Stn(`2) is the set of linear isometric embeddings Rn ,→ `2 (i.e. injective linear
maps preserving the inner product), topologized as a subspace of Hom(Rn,`2). On acts on Stk(`2) by
precomposition.

The infinite-dimensional Grassmannian Grn(`2) is the space of n-dimensional subspaces of `2, topolo-
gized in a similar way to finite-dimensional Grassmannians. There’s a projection π: Stn(`2)� Grn(`2)
sending a map b : Rn→ `2 to its image.
(a) Show that Stn(`2) is contractible. (Hint: if ei denotes the sequence with a 1 in position i and 0

everywhere else, define two homotopies, one which pushes any embedding to one orthogonal to
the standard embedding s : Rn → `2 as the first n coordinates, and the other which contracts the
subspace of embeddings orthogonal to s onto s).

(b) Show that the On-action on Stn(`2) is free, so Stn(`2) is an EOn.
(c) Show that π: Stn(`2)→ Grn(`2) is the quotient by the On-action, so Grn(`2) is a BOn.

(4) Show that the definition of Chern classes as cohomology classes on BU satisfies the axiomatic characteriza-
tion of Chern classes. Hint: CP∞ = colimnCPn is a BU1 with a standard CW structure, and the inclusion
CPn ,→ CP∞ is cellular (for the standard CW structure on CPn). Conversely, show that the axiomatic
definition of Chern classes implies they pull back from characteristic classes on BUn, and agree under the
map BUn→ BUn+1, and hence are unique.

Additional exercises:

(1) Verify that S∞ is contractible.

2. STIEFEL-WHITNEY CLASSES

The first characteristic classes we’ll discuss are Stiefel-Whitney classes, which are characteristic classes for real
vector bundles in Z/2 cohomology. This will make things slightly easier, so when the same ideas appear again for
Chern and Pontrjagin classes on Thursday, they will already be familiar.

2.1. A Definition of Stiefel-Whitney classes. Last time we emphasized that there are many ways to define and
think about characteristic classes. To get off the ground, we’re going to use one approach, and then state some
properties. Other definitions are possible.

Theorem 2.1. As graded rings, H∗(BO;F2)∼= F2[w1, w2, w3, . . . ], with |wi |= i.

Hence any characteristic class for real vector bundles in mod 2 cohomology is a polynomial in these classes.

Definition 2.2. The characteristic class defined by wi ∈ H i(BO;F2) is called the ith Stiefel-Whitney class. We also
let w0 = 1. The total Stiefel-Whitney class is w(E) := 1+w1(E) +w2(E) + · · · . If M is a manifold, w(M) := w(T M)
and wi(M) := wi(T M).

Proposition 2.3. Some basic properties of Stiefel-Whitney classes:

(1) The Stiefel-Whitney classes are natural, i.e. f ∗(wi(E)) = wi( f ∗(E)).
(2) The Whitney sum formula: w(E ⊕ F) = w(E)w(F), and hence

wk(E ⊕ F) =
∑

i+ j=k

wi(E)w j(F).

(Here we set w0 = 1.)
(3) If x denotes the generator of H1(RPn;F2)∼= F2, then w(S→ RPn) = 1+ x.
(4) The Stiefel-Whitney classes are stable, i.e. w(E ⊕R) = w(E).
(5) If k > rank E, then wk(E) = 0.
(6) If E has a set of ` everywhere linearly independent sections, then wk(E) = 0 for any k ≥ rank E − `.

2.2. Tangential structures. Our first application of characteristic classes will be to obstructing certain structures
on manifolds. The idea is that some structures, such as an orientation, can be expressed as a condition on the
characteristic classes of the tangent bundle. These structures tend to be more “topological;” geometric structures
(complex structure, Kähler structure, etc.) can’t be captured by this formalism.
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Let ρ : H → G be a homomorphism of Lie groups and π: P → M be a principal G-bundle. Recall that a reduction
of the structure group of P to H is data (π′ : Q→ M ,θ ) such that

• π′ : Q→ M is a principal H-bundle, and
• θ : Q×H G→ P is an isomorphism of principal G-bundles, where H acts on G through ρ.

An equivalence of reductions (Q1,θ1)→ (Q2,θ2) is a map ψ: Q1→Q2 intertwining θ1 and θ2.

Definition 2.4. Let M be a smooth n-manifold and ρ : H → GLn(R) be a homomorphism of Lie groups. If
B(M)→ M denotes the principal GLn(R)-bundle of frames on M , an H-structure on M is an equivalence class of
reductions of the structure group ofB(M) to H.

Example 2.5. Let ρ : On ,→ GLn(R) be inclusion. A reduction of the structure group ofB(M) to On is a smoothly
varying choice of which bases of Tx M are orthonormal, i.e. a smoothly varying inner product on Tx M . Hence it’s
equivalent data to a Riemannian metric. The space of Riemannian metrics on M is connected, which implies that
all reductions are equivalent; a manifold has a single On-structure. (

Example 2.6. Let ρ : SOn ,→ GLn(R) be inclusion. In this case, a reduction of the structure group of B(M) to
SOn specifies which bases of Tx M are oriented at every point, and therefore defines an orientation on M . Two
reductions are equivalent iff they define the same orientation. Therefore an SOn-structure on M is equivalent data
to an orientation. (

In particular: an H-structure is data, and it need not always exist.

Definition 2.7. A spin structure on a manifold M is an H-structure for H = Spinn along the map ρ : Spinn �
SOn ,→ GLn(R). A spin manifold is a manifold with a specified spin structure.

Example 2.6 immediately implies that a spin structure determines an orientation.
A reduction of the structure group to Un, called an almost complex structure, is enough structure to make a real

vector bundle into a complex one.

Remark 2.8. There are a few alternate ways to define tangential structures.
(1) Recall that one way to define a real vector bundle E on a manifold M is through transition functions: if

U is an open cover trivializing E, then for every pair of intersecting opens U , V ∈ U, E defines a smooth
function gUV : U ∩ V → GLn(R). Then an H-structure is a choice of transition functions hUV : U ∩ V → G
such that for all intersecting U , V ∈ U, the following diagram commutes.

H

ρ

��
U ∩ V

hUV

99

gUV

// GLn(R).

We define two such H-structures to be equivalent if they’re homotopic (possibly after taking a common
refinement of open covers). This is a formalization of the idea that, for example, an orientation is the
structure such that all change-of-charts maps preserve the orientation of tangent vectors.

(2) A faster, but less geometric, way to define tangential structures: ρ : H → GLn(R) induces a map Bρ : BH →
BGLn(R). An H-structure is a lift of the classifying map M → BGLn(R) of the vector bundle to a map
M → BH, and we say two H-structures are equivalent if they’re homotopic. (

These structures are obstructed by characteristic classes; often a characteristic class is a complete obstruction.

Theorem 2.9. Let M be a manifold.
• M is orientable iff w1(M) = 0.
• M is spinnable iff w1(M) = 0 and w2(M) = 0.

Proposition 2.10. Let M be an orientable manifold. The set of orientations of M is an H0(M ;Z/2)-torsor.

Explicitly, we can reverse orientation on any connected component, so a general switch from one orientation to
another is defined by a subset of π0(M), i.e. a function π0(M)→ Z/2.

Proposition 2.11. Let M be an oriented manifold admitting a spin structure. Then, the set of spin structures on M
inducing the given orientation is an H1(M ;Z/2)-torsor.
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One way to think of this is through transition functions: let U be an open cover of M trivializing T M ; then the
spin structure determines (up to homotopy) lifts of the transition functions gUV : U ∩V → GLn(R) to egUV : U ∩V →
Spinn, satisfying a cocycle condition on triple intersections. A Čech cocycle for an h ∈ H1(M ; {±1}) is data of
functions hUV : U ∩ V → {±1} satisfying a cocycle condition on triple intersections. Then, the transition functions
hUV · egUV : U ∩ V → Spinn still satisfy a cocycle condition, hence define a spin structure.

2.3. Stiefel-Whitney numbers and unoriented cobordism. Fix a dimension n≥ 0; we’ll allow the empty set to
be an n-manifold. Recall that two n-manifolds M and N are (unoriented) cobordant if there’s an (n+ 1)-manifold
X such that ∂ X = M q N ; one says X is a cobordism from M to N .

By gluing cobordisms, cobordism is an equivalence relation; the set of equivalence classes is denoted ΩO
n . This

is an abelian group under disjoint union, and

ΩO
∗ :=

⊕

n≥0

ΩO
n

is a graded ring under Cartesian product. This is called the (unoriented) cobordism ring.

Remark 2.12. Fix a tangential structure G. The above goes through when restricted to manifolds and cobordisms
with G-structure, and therefore defines G-cobordism groups and rings, denoted ΩG

n and ΩG
∗ . Frequently considered

are oriented cobordism, spin cobordism, and framed cobordism. (

It’s a classical question in algebraic topology, and a hard one, to compute cobordism rings. Somewhat easier
is the construction of cobordism invariants, maps out of ΩO

∗ to some other ring that are easier to compute. For
example, one can show that the mod 2 Euler characteristic is a cobordism invariant: if M is cobordant to N , then
χ(M)≡ χ(N)mod 2. (This admits a direct cellular argument, but we’ll prove it later with characteristic classes.)
We’re going to construct some more.

Definition 2.13. Let M be a closed n-manifold, so that it admits a unique fundamental class in F2 cohomology,
and let n= i1 + · · ·+ ik be a partition of n. Then, the Stiefel-Whitney number

wi1 i2···ik := 〈wi1(M)wi2(M) · · ·wik(M), [M]〉.

That is, multiply all of the specified Stiefel-Whitney classes together, then cap with the fundamental class.

In the exercises you’ll prove this is a cobordism invariant. Great! But it turns out the Stiefel-Whitney numbers
are a complete invariant.

Theorem 2.14 (Thom). As graded rings,

ΩO
∗
∼= F2[x i | i 6= 2 j − 1]∼= F2[x2, x4, x5, x6, x8, . . . ],

where if i is even, x i = [RPi]. Moreover, two n-manifolds M and N are cobordant iff their Stiefel-Whitney numbers all
agree.

The significance of this theorem is difficult to overstate: Thom more or less invented differential topology in
order to prove it.

Remark 2.15. The odd-dimensional generators are certain Dold manifolds P(m, n) := (Sm ×CPn)/Z/2, where Z/2
acts by the antipodal map on Sm and complex conjugation on CPn. (

The lesson today is: we know how to compute Stiefel-Whitney numbers, so we can tell whether two manifolds
are cobordant. Later we’ll give analogous results for other kinds of cobordism.

2.4. Some example calculations.

Proposition 2.16. There is no immersion RP9 ,→ R14.

Proof. Suppose f : RP9 ,→ R14 is such an immersion. Then, there is a short exact sequence of vector bundles on
RP9

0 // TRP9 // f ∗(TR14) // ν // 0,

where ν is the normal bundle. Hence by the Whitney sum formula,

w(RP9)w(ν) = w( f ∗TR14) = 1,
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because TR14 is trivial. Expanding,

w(RP9) = (1+ x)10 = 1+ x2 + x8,

so if you solve for w(ν), it has to be
w(ν) = 1+ x2 + x4 + x6.

However, ν is 5-dimensional, so w6(ν) = 0. �

Some more useful facts about Stiefel-Whitney classes follow. Recall that the determinant of a vector bundle E is
its top exterior power Det E := Λrank E E.

Proposition 2.17. If E→ M is a real vector bundle, w1(E) = w1(Det E).

The analogous result for Chern classes was an exercise yesterday, and this is true for the same reasons.

Proposition 2.18. Let E, E′ → M be real line bundles, where M is a closed manifold. Then, the following are
equivalent:

(1) E ∼= E′.
(2) w(E) = w(E′).
(3) w1(E) = w1(E′).

Corollary 2.19. Let M be a closed n-manifold. The following three maps are group isomorphisms:

BunZ/2(M)
–×Z/2R // Line(M)

w1 // H1(M ;Z/2) PD // Hn−1(M ;Z/2).

The first map is the associated bundle construction, the second is the first Stiefel-Whitney class, and the third is Poincaré
duality.

It is possible, and enlightening, to describe compositions or maps going the other way. For example, given an
embedded (n− 1)-manifold N ⊂ M , one can construct a principal Z/2-bundle on M by declaring it to be trivial on
M \ N , and on N , glue by switching the two fibers.

Proposition 2.20. The top Stiefel-Whitney number 〈wn, [M]〉 of a closed manifold is its Euler characteristic modulo
2.

Later we’ll see that if M is orientable, wn is the reduction of another characteristic class which encodes the
Euler characteristic in Z.

2.5. Exercises. Most important:

(1) Analogous to yesterday’s calculation of c(CPn), show that w(RPn) = (1+ x)n+1, where x is the nonzero
element of H1(RPn;Z/2)∼= Z/2.

(2) For which n is RPn orientable? Spin?
(3) We provided a definition of the kth Chern class as the Poincaré dual of the dependency locus of k generic

sections. Can you provide the analogous definition for the kth Stiefel-Whitney class and prove it’s equivalent
to the one given in lecture?

(4) Show that the top Stiefel-Whitney class of an odd-dimensional manifold vanishes.
(5) Show that when n 6= 2k − 1, RPn does not embed in Rn+1.

Also important, especially if you’re interested:

(1) There are two groups Pin+n and Pin−n which are double covers of On; for each one, the connected component
of the identity is Spinn. Thus, one may speak of Pin+- and Pin−-structures on manifolds; the former is a
trivialization of w2, and the latter is a trivialization of w2 +w2

1. For which n is RPn Pin+? Pin−?
(2) Show that an orientation and either a Pin+ or a Pin− structure determines a Spin structure. (This is not

the same as: an orientable and Pin± manifold is spin: we’re choosing structures.)
(3) Find a manifold M which is not parallelizable, but with w(M) = 1.
(4) Express w(M × N) in terms of w(M) and w(N).
(5) Show that if E is any vector bundle, E ⊕ E is orientable. Can you make sense of this geometrically?
(6) Show that a Stiefel-Whitney number defines a group homomorphism ΩO

n → F2.
(7) Show that if an n-manifold M embeds in Rn+1, then w j(M) = w1(M) j .
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(8) Consider the fiber bundle S2→ E→ S1 where we quotient S2 × [0, 1] by (x , 0)∼ ( f (x), 1), where f has
degree −1. What are its Stiefel-Whitney classes? Is it orientable? If instead you use a degree-1 map,
what’s the total space?

(9) Show there’s no immersion RP2k
,→ R2k+1−2 (hence Whitney’s theorem is optimal).

(10) Show a real vector bundle E is orientable iff Det E is trivial.

Additional exercises:

(1) If E1 and E2 are vector bundles such that two of E1, E2, and E1 ⊕ E2 are spin, show that the third is also
spin.

(2) Find two Pin+ manifolds M and N such that M × N is not Pin+. Repeat for Pin−. (This is ultimately the
reason why the cobordism groups ΩPin+

∗ and ΩPin−
∗ aren’t rings. As a spin structure determines a Pin±

structure, at least they’re still modules over ΩSpin
∗ . Said another way, MPin+ and MPin− aren’t ring spectra,

but they are module spectra over MSpin.)
(3) Show that all Stiefel-Whitney numbers of M vanish iff the Stiefel-Whitney numbers of its stable normal

bundle vanish.
(4) Let y ∈ H1(M ;Z/2) and N ,→ M be a Poincaré dual to y. Obtain a formula for the mod 2 Euler

characteristic of N as 〈c, [M]〉 for some c ∈ Hn(M ;Z/2). Hint: feel free to assume that if L→ M is a line
bundle and N ⊂ M is Poincaré dual to w1(L), then νN ,→M

∼= L|N .
(5) Show that if n is an odd number and M is a closed, n-dimensional manifold then for 0≤ k ≤ (d − 1)/2

and any y ∈ H1(M ;Z/2), wn−2k(M)y2k = 0.
(6) Show there is no vector bundle E→ RP∞ whose direct sum with the tautological bundle S is trivial.

3. STABLE COHOMOLOGY OPERATIONS AND THE WU FORMULA

Today, we’re going to discuss Wu classes, which are also characteristic classes for real vector bundles in Z/2
cohomology. This means they’re polynomials over the Stiefel-Whitney classes, but they way in which they arise is
interesting and useful.

3.1. Stable cohomology operations. Wu classes arise through stable cohomology operations, which are a worth-
while digression.

Definition 3.1. A cohomology operation is a natural transformation of functors θ : H p(–; A)→ Hq(–; B), meaning
it commutes with pullback. If in addition it commutes with suspension, θ is said to be stable.

Example 3.2.

• One simple example is the squaring map x 7→ x2 in any degree and any coefficients. This is not stable.
• The Pontrjagin square P : H2(X ;Z/2)→ H4(X ;Z/4) is a more interesting example, which is the squaring

map, but using the fact that if x ∈ Z, knowing x mod 2 suffices to determine x2 mod 4.
• Here’s an explicit example of a stable operation. The short exact sequence

0 // Z
·2 // Z // Z/2 // 0

induces a short exact sequence of cochain complexes

0 // C∗(M ;Z)
·2 // C∗(M ;Z) // C∗(M ;Z/2) // 0,

and hence a long exact sequence in cohomology:

· · · // Hn(M ;Z) // Hn(M ;Z) // Hn(M ;Z/2)
β0 // Hn+1(M ;Z) // · · · .

The connecting morphism β0 is called the Bockstein homomorphism.
If we instead started with the short exact sequence

0 // Z/2 // Z/4 // Z/2 // 0,

we’d obtain a different Bockstein homomorphism β4 : H i(M ;Z/2)→ H i+1(M ;Z/2). Both of these are
stable. (
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Since Eilenberg-Mac Lane spaces represent cohomology, a cohomology operation of type H p(–; A)→ Hq(–; B) is
determined by a homotopy class of maps K(A, p)→ K(B, q). That is, the abelian group of cohomology operations
from H p(–; A)→ Hq(–; B) is [K(A, p), K(B, q)] = Hq(K(A, p); B). Calculating this is a complicated problem.

Stable cohomology operations admit an axiomatic description. It turns out that over Z, all stable cohomology
operations are either multiples of the identity, or come from stable cohomology operations over Fp. We’ll only
need the case p = 2 today, though.

Definition 3.3. The stable cohomology operations H∗(–;F2)→ H∗(–;F2) form a graded F2-algebra called the
Steenrod algebraA , which is generated by classes Sqn ∈An for n≥ 0, called Steenrod squares, such that:

• Sqn : Hk(–;F2)→ Hk+n(–;F2) commutes with pullback and is a group homomorphism.
• Sq0 = id.
• Sq1 = β4.
• Restricted to classes of degree n, Sqn is the map x 7→ x2.
• If n> |x |, then Sqn x = 0.
• The Cartan formula

Sqn(x y) =
∑

i+ j=n

Sqi(x)Sq j(y).

Equivalently, the total Steenrod square Sq := 1+ Sq1 + Sq2 + · · · is a ring homomorphism.

It’s a theorem that these axioms uniquely determine A , but actually constructing the Steenrod squares is
involved.

As a consequence, the Steenrod squares satisfy the Ádem relations

SqiSq j =
bi/2c
∑

k=0

�

j − k− 1
i − 2k

�

Sqi+ j−kSqk.

Since we can apply any element of A to any cohomology class, H∗(M ;F2) is a module over A for any M .
Pullback maps areA -module homomorphisms, as is the connecting morphism in a long exact sequence.

Example 3.4. Let’s determine theA -module structure on H∗(RP4;Z/2)∼= Z/2[a]/(a5) with |a|= 1. We know
Sq0a = a and Sq1a = a2, and all higher Steenrod squares vanish. Now we can use the Cartan formula:

• Sq(a2) = Sq(a)Sq(a) = (a+ a2)2 = a2 + a4. Hence Sq1a2 = 0, Sq2a2 = a4, and all others vanish.
• Sq(a3) = Sq(a)Sq(a2) = (a+ a2)(a2 + a4) = a3 + a4, so Sq1a3 = a4 and all others vanish. (

3.2. The Wu class and Wu formula. We’re going to use Poincaré duality to turn the Steenrod squares into
characteristic classes. One formulation of Poincaré duality is that for any closed n-manifold M ,

Hk(M ;Z/2)⊗Hn−k(M ;Z/2) ^ // Hn(M ;Z/2)
_[M]
∼
// Z/2

is a nondegenerate pairing. This is the adjoint to the usual Poincaré duality statement (an isomorphism between
Hk and Hn−k).

In particular, Hk(M ;Z/2)∼= (Hn−k(M ;Z/2))∗, so if we can produce linear functionals on Hn−k(M ;Z/2), they
will define cohomology classes for us. And Sqk : Hn−k(M ;Z/2)→ Hn(M ;Z/2) is such a linear functional, so it’s
represented by some class vk ∈ Hk(M ;Z/2): vk ^ x = Sqk(x). This class is called the kth Wu class of M . Similarly,
the total Wu class is v := 1+ v1 + v2 + · · · . The total Wu class satisfies

〈v ^ x , [M]〉= 〈Sqx , [M]〉

for all x ∈ H∗(M ;Z/2).

Lemma 3.5. The Wu classes are natural, and hence are Z/2 characteristic classes of real vector bundles.

By natural we mean the pullback of the total Wu class on M by f : N → M is the total Wu class on N .

Proof sketch. The Stiefel-Whitney classes and Steenrod squares determine the Wu class, and both are natural. �

The Wu classes are something we haven’t seen before: there’s no vector bundle, just the manifold. So the
theorem that every Z/2 characteristic class for real vector bundles is a polynomial in Stiefel-Whitney classes doesn’t
literally apply. But the Wu classes are still closely related to Stiefel-Whitney classes.

Theorem 3.6 (Wu). Sq(v) = w.
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Corollary 3.7. The Stiefel-Whitney classes of a manifold are homotopy invariants.

Corollary 3.8. Homotopy equivalent manifolds of the same dimension are unoriented cobordant.

Here’s another application of Theorem 3.6:

Proposition 3.9 (Wu formula).

Sqiwk =
i
∑

j=0

�

k+ j − i − 1
j

�

wi− jwk+ j .

3.3. Some example applications. The point of all this formalism is to be useful, so let’s see some applications.

Proposition 3.10. If M is a closed 2- or 3-manifold, w1(M)2 = w2(M).

Proof. Here we use the fact that w= Sq(v). Looking at the homogeneous terms,

w1 = Sq1v0 + Sq0v1 = v1

w2 = Sq2v0 + Sq1v1 + Sq0v2 = v2
1 + v2 = w2

1,

because v2 = 0 on a 3-manifold. �

Corollary 3.11. Every orientable manifold of dimension at most 3 is spin.

So the Wu classes force certain Stiefel-Whitney numbers to vanish. It’s a theorem of Brown and Peterson that
all such relationships between Stiefel-Whitney classes arise in this way.

Proposition 3.12. Let M be an orientable 4-manifold. Then, M is spin iff all embedded surfaces have even intersection
number.

Proof. Since the intersection product is Poincaré dual to cup product, it suffices to show 〈a2, [M]〉 = 0 for all
a ∈ H2(M ;Z/2) iff w2(M) = 0.

Now we use the Wu formula. w1 is the degree-1 piece of Sqv , so

w1 = Sq1v0 + Sq0v1 = v1,

and hence v1 = 0. Next,
w2 = Sq2v0 + Sq1v1 + Sq0v2,

so w2 = v2. For any a ∈ H2(M ;Z/2),

〈a2, [M]〉= 〈Sq2a, [M]〉= 〈v2a, [M]〉= 〈w2a, [M]〉.

Poincaré duality tells us the cup product pairing H2(M ;Z/2)⊗H2(M ;Z/2)→ Z/2 is nondegenerate, so w2 = 0 iff
〈a2, [M]〉= 0 for all a, as desired. �

The Wu classes tell you that you can get the Stiefel-Whitney classes directly out of theA -module structure on
H∗(M ;Z/2), which can be useful if you don’t have a good geometric description of your space.

Example 3.13. Just as one has real and complex projective spaces, one can define quaternionic projective space
HPn :=Hn+1/H×, a 4n-dimensional manifold which behaves quite a bit likeRPn andCPn. For example, H∗(HPn)∼=
Z[a]/(an+1), where |a|= 4. This fact completely determines the Stiefel-Whitney classes of HPn.

For example, let n = 4. By degree reasons, Sq4a = a2 and no other Steenrod squares are nonzero, so
Sq(a) = a+ a2. By the Cartan formula, Sq(ak) = (Sqa)k and so

Sq(a2) = (a+ a2)2 = a2 + a4

Sq(a3) = (a+ a2)(a2 + a4) = a3 + a4 + a5 + a6 = a3 = a4

Sq(a4) = a4.

Often this is encoded in a diagram such as Figure 1.
The only possible nonzero Wu classes are v0, v4, and v8, and looking at theA -action, v4 = a and v8 = a2. Thus

w(HP4) = Sq(v) = Sq(1+ a+ a2)

= 1+ (a+ a2) + (a2 + a4)

= 1+ a+ a4,

so w4(HP4) = a, w16(HP4) = a4, and all other Stiefel-Whitney classes are zero. (
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FIGURE 1. The Z/2-cohomology of HP4, as anA -module.

Example 3.14. The Wu manifold W := SU3/SO3 is a five-dimensional manifold. One can show that its mod
2 cohomology is H∗(W ;Z/2) ∼= Z/2[z2, z3]/(z2

2 , z2
3), and the A -action is Sq1z2 = z3 and Sq2z3 = z5. Hence

v(W ) = 1+ v2, which determines the Stiefel-Whitney classes. Only w2 and w3 can be nonzero, by looking at
cohomology. And indeed,

w2(W ) = Sq2v0 + Sq1v1 + Sq0v2 = v2 = z2

w3(W ) = Sq3v0 + Sq2v1 + Sq1v2 + v3 = Sq1z2 = z3,

so w(W ) = 1+ z2 + z3.
This is noteworthy because it means the Stiefel-Whitney number w2,3 = 〈w2(W )w3(W ), [W ]〉= 1, and you’ll

show in the exercises that in dimension 5, all Stiefel-Whitney numbers are either 0 or equal to w2,3. Thus, ΩO
5
∼= Z/2

with W as a generator, and you can check you don’t get a generator from any 5-dimensional product of projective
spaces. (

3.4. The Bockstein and integral Stiefel-Whitney classes.

Definition 3.15. Let E→ M be a real vector bundle. The kth integral Stiefel-Whitney class of E, denoted Wn(E), is
β0wn−1(E) ∈ Hn(M ;Z).

For every n, there’s a Lie group Spinc
n which can be defined in a few ways: it’s the quotient

Spinc
n := (Spinn ×U1)/Z/2,

where Z/2 acts as −1 on both components.

Proposition 3.16. A Spinc-structure on an oriented manifold is obstructed by the third integral Stiefel-Whitney class.

Using the Bockstein long exact sequence, this is the same thing as w2 being in the image of the reduction map
H2(M ;Z)→ H2(M ;Z/2). A choice of preimage of w2 determines a Spinc structure and is called its first Chern
class.

Proposition 3.17. An almost complex structure determines a Spinc structure, and the first Chern classes agree.

Thus W3 is an obstruction to an almost complex structure. It’s not the only obstruction; we’ll find more in
Proposition 4.4.

3.5. Exercises. Most important:
(1) Which Wu classes vanish on a 5-manifold? What about an orientable 5-manifold?
(2) Show that any orientable 4-manifold is Spinc .
(3) Determine the action of the Steenrod algebra on H∗(RPn;Z/2).

Also important, especially if you’re interested:
(1) Let M be a 2n-dimensional manifold. Show that there exists an n-dimensional embedded submanifold

Y such that for any other n-dimensional embedded submanifold N ⊂ M , I2(N , N) = I2(Y, N). (Here I2
denotes the mod 2 intersection number.)
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(2) Show that if M is a closed 4-manifold embedding in R6, then χ(M) is even.
(3) Show that if M is a closed, orientable manifold of dimension 6 or 10, χ(M) is even.
(4) Show that for any vector bundle E→ M , the smallest k ≥ 1 such that wk(E) 6= 0, if one exists, is a power

of 2.
(5) Show that β4w2k+1(E) = w1(E)w2k+1(E) and β4w2k(E) = w2k+1(E) +w1(E)w2k(E). Hint: check this on

the universal bundle EOn→ BOn.
(6) Show that ΩSpinc

2 and ΩSpinc

4 are infinite, but that ΩSpinc

3 = 0. (In fact, ΩSpinc

2
∼= Z and ΩSpinc

4
∼= Z2.)

Additional exercises:

(1) Show that if M is an oriented manifold and H∗(M) contains no torsion, then M is Spinc . Conclude that
CPn is Spinc for all n.

(2) There’s a group Pinc
n = (Pin+n × U1)/Z/2 analogous to the definition of Spinc . The obstruction to a

Pinc-structure on E→ M is exactly W3(E). Show that RPn is Pinc iff it’s Pin+ iff it’s Pin− (and hence, RPn

is Spinc iff it’s spin).
(3) Show that if M is a spin 5-manifold, w(M) = 1. If M is a Pin− 5-manifold, show that w(M) = 1+w1(M).
(4) Show that w3(M) = 0 for a closed 4-manifold M .
(5) Generalize Proposition 3.12 to the unoriented setting.
(6) Is every 4-manifold Pinc?
(7) Is the product of two Pinc manifolds necessarily Pinc?
(8) Let x ∈ H∗(X ;Z/2), y ∈ H∗(X ), and z ∈ H∗(X ).

(a) Show that β0(x y) = β0(x)y .
(b) Show that β0(x)_ z = β0(x _ρ2(z)), where ρ2 denotes reduction mod 2.

(9) A theorem of Hoekzema:4 we’ll show that if M is a closed manifold with wi(M) = 0 for i ≤ 2k and
2k+1 - dim(M), then χ(M) is even.
(a) Reduce to dim(M) = 2k+1m+ 2k. Let n= dim(M)/2.
(b) Show that vi(M) = 0 for i ≤ 2k.
(c) Use the Adem relations to decompose Sqn in terms of Steenrod squares of degrees at most 2k−1.
(d) Conclude that Sqn : Hn(M Z/2)→ H2n(M ;Z/2) = 0.
(e) Use the Wu formula to show that w2n(M) = Sqnvn(M).
(f) Conclude that χ(M) = 0.

4. CHERN, PONTRJAGIN, AND EULER CLASSES

4.1. Chern classes. We’ve been here before. Let’s quickly recall a definition, and then discuss some properties.
Many are directly analogous to properties of Stiefel-Whitney classes, in a way that’s strongly reminiscent of the
passage from mod 2 intersection theory of unoriented submanifolds to integral intersection theory with orientations.
This analogy is not a coincidence.

We’ve provided several definitions of Chern classes already. From a universal perspective, H∗(BU)∼= Z[c1, c2, . . . ],
with |ck| = 2k, thus defining characteristic classes for complex vector bundles. Things like naturality, stability, and
the Whitney sum formula follow.

If M is an almost complex manifold, its tangent bundle has the structure of a complex vector bundle. In this
case we may define Chern numbers of M as usual. We can also do this if M is a stably almost complex manifold,
meaning we’ve placed a complex structure on T M ⊕Rk; this uses the fact that Chern classes are stable.

Here are some more properties of Chern classes. Some of these will be reminiscent of analogous properties for
Stiefel-Whitney classes.

Proposition 4.1. Let E→ M be a complex vector bundle.

(1) c1(E) = c1(Det E).
(2) If E denotes the complex conjugate bundle, then E ∼= E∗ and ck(E) = (−1)kck(E).
(3) If M is a stably almost complex manifold, its top Chern number is equal to χ(M).
(4) Under the reduction homomorphism H∗(M)→ H∗(M ;Z/2), cn(E) 7→ w2n(E), and w2n+1(E) = 0.

Just as w1 classifies real line bundles, c1 classifies complex line bundles.

4https://arxiv.org/pdf/1704.06607.pdf.

14

https://arxiv.org/pdf/1704.06607.pdf


Though we can’t define a cobordism ring of complex manifolds (what’s a complex structure on an odd-
dimensional manifold?), stably almost complex structures work fine. The stably almost complex cobordism ring is
denoted ΩU

∗ .5

Theorem 4.2 (Milnor, Novikov). As graded rings,

ΩU
∗
∼= Z[x1, x2, . . . ],

where |xk|= 2k. Moreover, two stably almost complex manifolds are cobordant iff all of their Chern numbers agree.

In ΩU
∗ ⊗Q, we can take CPk as a generator of the degree-2k piece, but over Z, things are more complicated.

Remark 4.3. The identification of ΩU
∗ with the ring of formal group laws is a major organizing principle in stable

homotopy theory, allowing one to define generalized cohomology theories that see a lot of the structure of stable
homotopy theory. This is an active area of research known as the chromatic program. (

There isn’t a single characteristic class which obstructs a stably almost complex structure. However, a stably
almost complex structure is exactly what it means to have Chern classes, so we obtain a necessary condition.

Proposition 4.4. If E→ M is a stably almost complex vector bundle, w2k+1(E) = 0 and W2k+1(E) = 0 for all k.

That is, the odd-degree Stiefel-Whitney classes are zero and the even-degree ones are reductions of integral
classes (namely, Chern classes of the tangent bundle).

4.2. Pontrjagin classes. We’ll leverage the Chern classes to define integral cohomology classes for real vector
bundles. At this point you broadly know how the story goes.

Definition 4.5. Let E→ M be a real vector bundle. Then, EC := E ⊗C is a complex vector bundle, which we call
the complexification of E.

Note that complexification doubles the rank.

Definition 4.6. Let E→ M be a real vector bundle. Then, its kth Pontrjagin class is pk(E) := (−1)kc2k(EC) ∈ H4k(M).
The total Pontrjagin class is p(E) := 1+ p1(E) + · · · . As usual, pi(M) := pi(T M), and p(M) := p(T M).

Remark 4.7. Not everyone uses the same sign convention when defining Pontrjagin classes. (

The Pontrjagin classes satisfy most of the usual axioms; in particular, they are stable. However, they do not
follow the Whitney sum formula! Thankfully, the difference p(E ⊕ F)− p(E)p(F) is 2-torsion, so if you work over
Q (or even Z[1/2]) Pontrjagin classes satisfy the Whitney sum formula.

Pontrjagin numbers are used to classify oriented cobordism. The answer is not as clean as for unoriented
cobordism

Theorem 4.8 (Thom, Wall).

(1) All torsion in ΩSO
∗ is 2-torsion.

(2) As graded rings,

ΩSO
∗ ⊗Q∼=Q[x1, x2, . . . , ]

where |xk|= 4k, and xk = [CP2k].
(3) Two oriented n-manifolds are oriented cobordant iff their Pontrjagin and Stiefel-Whitney numbers agree.

Remark 4.9. Ultimately because Spinn→ SOn is a double cover, the forgetful map ΩSpin
∗ → ΩSO

∗ is an isomorphism
after tensoring with Z[1/2]. In particular, ΩSpin

∗ ⊗Q∼=Q[ex1, ex2, . . . ] with |exk|= 4k. However, we can’t take CP2k

to be generators anymore.
To get characteristic numbers that characterize spin cobordism, one has to define characteristic classes for real

K-theory, a generalized cohomology theory. (

5There’s a similar issue with defining a cobordism ring of symplectic manifolds, and what one obtains is stably almost symplectic cobordism.
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4.3. The Euler class. The Euler class is an unstable characteristic class for oriented vector bundles, arising because
the map H∗(BOn)→ H∗(BSOn) induced by the inclusion SOn ,→ On is not surjective. Throughout this section,
E→ M is an oriented real vector bundle of rank k.

Definition 4.10. The Euler class of E, e(E) ∈ Hk(M), is the Poincaré dual to the zero locus of a generic section of
E.6

That is, choose a section s ∈ Γ (E) that’s transverse to the zero section, and let N = s−1(0), which is a codimension-
k submanifold of M . Then, e(E) is Poincaré dual to the class N represents in Hn−k(M).

Proposition 4.11.

(1) The Euler class is natural.
(2) The Euler class satisfies the Whitney sum formula: e(E1 ⊕ E2) = e(E1)e(E2).
(3) If E possesses a nonvanishing section, e(E) = 0.
(4) If Eop denotes E with the opposite orientation, then e(Eop) = −e(E).
(5) If k is odd, e(E) is 2-torsion.

Most of these follow directly from the definition.

Proposition 4.12 (Relationship with other characteristic classes).

(1) Reduction mod 2 Hk(M)→ Hk(M ;Z/2) carries e(E)→ wk(E).
(2) If F → M is a complex vector bundle of rank 2k, e(F) = ck(F).
(3) e(E)2 = c(EC). Hence if k is even, e(E)2 = pk/2(E).

The characteristic number associated to the Euler class is familiar.

Proposition 4.13. For any oriented manifold M, 〈e(M), [M]〉= χ(M), its Euler characteristic.

Sometimes, people define the Euler class for sphere bundles, i.e. fiber bundles whose fibers are spheres. This
definition is equivalent to ours: given a sphere bundle Sk → E→ M , we can create a vector bundle V (E)→ M
whose unit sphere bundle is E. The Euler class of E is defined to be that of V (E).

Sphere bundles are good examples to play with: you can build them out of manifolds you already understand,
but they may twist in interesting ways. Moreover, there are tools for computing with them.

Definition 4.14. Let A be an abelian group and π: E→ M be a fiber bundle, where M is n-dimensional and the
fiber is k-dimensional, and (if A 6= Z/2) assume that both E and M are oriented. For each j, there’s a sequence of
maps

Hk+ j(E; A) PD // Hn− j(E; A)
π∗ // Hn− j(M ; A) PD // H j(M ; A),

where the first and third arrows are Poincaré duality. The composition of these maps is called the Gysin map
π! : Hk+ j(E; A)→ H j(M ; A).

The Gysin map goes by a variety of colorful names, including the wrong-way map, the umkehr map, the shriek
map, the pushforward map, and the surprise map. Indeed, it’s surprising: we have a covariant map in cohomology!

Remark 4.15. For intuition, you can look to de Rham cohomology, where the Gysin map is integration on the fiber.
That is, since E is locally Sk × U , we can integrate a differential ( j + k)-form over Sk to obtain a j-form on U . This
is precisely the Gysin map. (

Theorem 4.16 (Gysin long exact sequence). Let A be an abelian group and π: E→ M be a sphere bundle with fiber
Sk. Assume (unless A= Z/2) that the fibers of E→ M are consistently oriented. Then, there is a long exact sequence

· · · // Hm(E; A)
π! // Hm−k(M ; A)

·e(E) // Hm+1(M ; A) π∗ // Hm+1(E; A) // · · ·

That is, Gysin map, cup with the Euler class, pullback.

Remark 4.17. The Gysin long exact sequence is a special case of the Serre spectral sequence, and may be proven
in that way. (

6If k > dim M , this does not make sense, but then Hk(M) = 0 anyways, so we let e(E) = 0.
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4.4. The splitting principle. We discuss the general splitting principle for principal bundles for compact Lie
groups; this was first done by Borel and Hirzebruch, though we follow May’s exposition. Throughout this section,
unless otherwise specified, G is a compact, connected Lie group.

Recall that a compact, connected, abelian Lie group is isomorphic to Tn for some n.

Definition 4.18. A torus in G is a compact, connected, abelian Lie subgroup. A maximal torus T is maximal with
respect to inclusion, i.e. if T ′ ⊇ T , then T ′ = T .

Proposition 4.19. Maximal tori exist for G. Any two maximal tori are conjugate.

A maximal torus is a choice, but not a very strong one. So we choose such a maximal torus T , and let n denote
its rank (i.e. T ∼= Tn).

The inclusion i : T ,→ G defines a map Bi : BT → BG; concretely, BG := EG/G and BT := EG/T (since EG is a
contractible space with a free T -action, so it’s also an ET), so Bi is a fiber bundle with fiber G/T .

Let P → X be a principal G-bundle, where X is path-connected, and let fP : X → BG denote the classifying map.
Let q : Y → X denote the pullback of Bi, so q is also a fiber bundle with fiber G/T . We hence have a commutative
diagram

Y
g //

q

��

BT

Bi
��

X
fP // BG.

Theorem 4.20 (Generalized splitting principle).

• There is a canonical reduction of the structure group of q∗P → Y to T .
• The map q∗ : H∗(X ;Q)→ H∗(Y ;Q) is an inclusion.

Why do we care? If c ∈ H∗(BG;Q) is a characteristic class for principal G-bundles, then it defines a characteristic
class for principal T -bundles via Bi. Since fP ◦ q = Bi ◦ g, so if Q→ Y denotes the reduction of the structure group
to T , then c(Q) = q∗c(P), and since q∗ is injective, then c(Q) determines c(P) ∈ H∗(X ;Q).

An isomorphism T ∼= Tn determines a decomposition of Q as a product (in a suitable sense) of n principal
T-bundles, hence c(Q) as a product

(4.21)
n
∏

i=1

(1+ x i),

where the x i ∈ H2(Y ;Q) are called roots of P. So if you want to prove a fact about characteristic classes, it often
suffices to check on principal T-bundles and see what happens when you take products.

Proof sketch of Theorem 4.20. The first part follows from the commutativity of the pullback diagram. There’s a

reduction of structure group from (Bi)∗EG
G
→ BT to ET

T
→ BT (in fact, this is universal), and hence a reduction

of structure group from g∗(Bi)∗EG
G
→ Y to g∗ET

T
→ Y . By commutativity of the diagram, q∗P ∼= g∗(Bi)∗EG in

BunG(Y ), so q∗P also has this reduction.
The second part of the proof relies on computations of the cohomology of BG and G/T by Borel. First,

since H∗(BG;Q) is a polynomial on even-degree generators, then the Serre spectral sequence for the fibration
G/T → BT → BG with Q coefficients collapses, so as H∗(BG;Q)-modules,

(4.22) H∗(BT ;Q)∼= H∗(BG;Q)⊗H∗(G/T ;Q),

where H∗(BG;Q) acts on H∗(BT ;Q) through (Bi)∗.
Since G/T → Y → X is the pullback of G/T → BT → BG, there’s an induced map of Serre spectral sequences,

so the Serre spectral sequence for this fibration collapses, and

(4.23) H∗(Y ;Q)∼= H∗(X ;Q)⊗H∗(G/T ;Q).

Moreover, using the edge homomorphism, one can show that q∗ : H∗(Y ;Q)→ H∗(X ;Q) is the map induced by
x 7→ x ⊗ 1. �

Remark 4.24. The statement of Theorem 4.20 can be strengthened if you understand the cohomology of BG better
— in fact, you can replace Q with any ring R such that if H∗(G;Z) has p-torsion, then p−1 ∈ R. (
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Example 4.25. Let G = Un, so the diagonal matrices form a maximal torus of rank n. Passing to the bundle of
unitary frames, we can apply the splitting principle to complex vector bundles, and conclude that after pulling back
to Y , a complex vector bundle E→ X factors as a direct sum of line bundles L1, . . . , Ln with Chern roots x1, . . . , xn.
Then ck(E) is the kth symmetric polynomial in these roots.

In this case, Y → X has another, more concrete description.

Definition 4.26. Let V be a finite-dimensional complex Hilbert space. The flag manifold F`(V ) is the manifold
whose points are orthogonal decompositions of V as a direct sum of one-dimensional subspaces.

The diffeomorphism class of the flag manifold does not depend on the choice of Hermitian metric.
Then, Y → X is the flag bundle p : F`(E)→ M , the fiber bundle whose fiber at an x ∈ M is F`(Ex). The total

space is also called the flag manifold.
In this case, since H∗(BUn) is free, we can work over Z. (

Example 4.27. For G = SO2n, H∗(BSO2n;Q) is the polynomial algebra on the Pontrjagin classes and the Euler
class e, with e2 = pn. The maximal torus Tn sits as the diagonal matrices in Un ⊂ SO2n (realizing a complex
n-dimensional vector space as an oriented real 2n-dimensional vector space). In this case, the generalized splitting
principle implies that if E is an oriented real rank-2n vector bundle, then q∗E splits as a sum of (realifications of)
complex line bundles L1, . . . , Ln, and

(4.28) pi(q
∗E) = σ2

i (c1(L1), . . . , c1(Ln)).

The idea is that the Pontrjagin classes of E are the Chern classes of EC, and the Chern roots of EC come in pairs
±x1, . . . ,±xn, which is why we get σ2

i .
In a similar way, the Euler class splits as

(4.29) e(q∗E) = σn(c1(L1), . . . , c1(Ln)).

(

Example 4.30. For G = SO2n+1, H∗(BSO2n+1;Q) is the polynomial algebra on the Pontrjagin classes. The maximal
torus Tn sits as the diagonal matrices in Un ⊂ SO2n+1 (realizing a complex n-dimensional vector space as an
oriented real 2n-dimensional vector space, plus the last coordinate). In this case, the generalized splitting principle
implies that if E is an oriented real rank (2n+ 1) vector bundle, then q∗E splits as a sum of (realifications of)
complex line bundles L1, . . . , Ln and a trivial real line bundle, and its Pontrjagin classes split as in (4.28). (

Example 4.31. Since On isn’t connected, this doesn’t quite work for it. But enough of the structure persists with F2
coefficients, using the subgroup On

1 ; the spectral sequence arguments of Theorem 4.20 work with F2 coefficients,
and in particular we can conclude that q∗ is an injection on mod 2 cohomology and there’s a canonical reduction
to a principal On

1 -bundle. This implies that over Y , a real vector bundle E splits as a sum of n real line bundles
L1, . . . , Ln, and

(4.32) wk(E) = σi(w1(L1), . . . , w1(Ln)).

(

4.5. Exercises. Most important:
(1) Show that TCPn is not isomorphic to its complex conjugate.
(2) Show that CP4 cannot be embedded in R11.
(3) Let M be a manifold with an orientation-reversing diffeomorphism. Show that [M] ∈ ΩSO

∗ is torsion.
(Hint: this diffeomorphism sends [M] 7→ −[M]. How does it affect the Pontrjagin classes? Alternatively,
by a direct argument, you could find a manifold bounding M qM , showing [M] is 2-torsion.)

(4) Show that if E ⊂ TS2n, E is either trivial or all of TS2n.
(5) The Euler class of a complex vector bundle is equal to its top Chern class, but the Euler class is unstable

and Chern classes are stable. How can this be?
(6) Prove Proposition 4.13. Hint: use the definition of the Euler characteristic as the sum of local indices of a

vector field.
Also important, especially if you’re interested:

(1) Why is p(Sn) = 1?
(2) In contrast to Chern, Pontrjagin, and Stiefel-Whitney numbers, there are manifolds with nonzero Euler

characteristic that bound. What’s an example?
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(3) Exhibit two manifolds cobordant as unoriented manifolds, but not oriented manifolds.
(4) Show that ΩSO

5
∼= Z/2, and the Wu manifold is a generator. This is the lowest-degree torsion in ΩSO

∗ .
(5) Show that the mod 2 reduction of pk(E) is w2k(E)2.
(6) Show that odd Chern classes are 2-torsion.
(7) Let N ⊂ M be an embedded submanifold with normal bundle ν. Show that 〈[N], e(ν)〉 = I2(N , N) (i.e.

the mod 2 intersection number).
(8) Complexification of line bundles commutes with tensor product, hence defines a group homomorphism

H1(X ;Z/2)→ H2(X ) for any space X .
(a) Show this is a cohomology operation.
(b) Show this is the Bockstein homomorphism β0. Hence, if E→ M is a real line bundle, c1(E ⊗C) =

β0w1(E).
(c) Using the splitting principle, show that if E→ M is a real vector bundle, c1(E ⊗C) = β0w1(E).

(9) Let E, E′→ M be complex line bundles. Show E ∼= E′ iff c1(E) = c1(E′) iff c(E) = c(E′).
(10) Show that if E is an oriented real vector bundle, the tensor product of its Stiefel-Whitney roots is trivial.

Hint: use the way the determinant interacts with ⊕.
(11) Prove the claims made in Example 4.30 using the generalized splitting principle.

Additional exercises:

(1) For which n is CPn spin?
(2) Let u ∈ H4(HPn) be the generator. Show that p(HPn) = (1+ u)2n+2/(1+ 4u).
(3) Complexification turns a real vector bundle into a complex vector bundle. Hence it turns a principal

On-bundle into a principal Un-bundle. Describe this process.
(4) Let E→ M be an oriented (2k+ 1)-dimensional vector bundle. Show that e(E) = β0w2k(E).
(5) Prove part (3) of Proposition 4.12.
(6) Give an example of

(a) an even-dimensional stably almost complex manifold which is not almost complex, and
(b) an odd-dimensional stably almost complex manifold.

5. CHARACTERISTIC CLASSES IN GENERALIZED COHOMOLOGY

Today, we’re going to discuss some characteristic classes in generalized cohomology theories. This material is
not nearly as standard as what we’ve done over the last few days.

5.1. What are generalized cohomology theories? Over the past half century, algebraic topologists have investi-
gated constructions which behave like homology or cohomology, but are slightly different: they satisfy all of the
Eilenberg-Steenrod axioms except for the dimension axiom.

Definition 5.1. A generalized cohomology theory (also extraordinary cohomology theory) is a collection of functors
hn : T op∗→A b such that:

• Given a map f : A→ X , let X/A denote its cofiber. There is a natural transformation δ : hn(X/A)→ hn+1(A)
such that the following sequence is long exact:

· · · // hn(A)
hn( f ) // hn(X ) // hn(X/A) δ // hn+1(A) // · · ·

• hn takes wedge sums to direct sums: if X =
∨

i X i , then the natural map
⊕

hn(X i) −→ hn(X )

is an isomorphism.

The dual notion of a generalized homology theory is the same, except the differentials go in the other direction.
This defines a reduced homology theory, i.e. one for spaces with basepoints.

Example 5.2 (K-theory). Let X be a compact Hausdorff space. Then, the set of isomorphism classes of complex
vector bundles on X is a semiring, so we can take its group completion and obtain a ring K0(X ).

The following theorem is foundational and beautiful.

Theorem 5.3 (Bott periodicity). K0(Σ2X )∼= K0(X ).
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This allows us to promote K∗ into a 2-periodic generalized cohomology theory K∗, called complex K-theory, by
setting K2n(X ) = K0(X ) and K2n+1(X ) = K0(ΣX ).7

Like cohomology, K-theory is multiplicative, i.e. it spits out Z-graded rings. However, K i(X ) is often nonzero for
negative i.

K-theory admits a few variants.
• If you use real vector bundles instead of complex vector bundles, everything still works, but Bott periodicity

is 8-fold periodic. Thus we obtain a periodic, multiplicative cohomology theory called real K-theory,
denoted KO∗(X ). Its value on a point is encoded in the Bott song.

• Sometimes it will be simpler to consider a smaller variant where we only keep the negative-degree
elements. This is called connective K-theory, and is denoted ku∗ (for complex K-theory) or ko∗ (for real
K-theory). These are also multiplicative. (

Example 5.4 (Bordism). Let X be a space and define ΩO
n (X ) to be the set of equivalence classes of maps of

n-manifolds M → X , where [ f0 : M → X ]∼ [ f1 : N → X ] if there’s a cobordism Y : M → N and a map F : Y → X
extending f0 and f1. This is an abelian group under disjoint union, and the collection {ΩO

n } defines a generalized
homology theory called unoriented bordism.8

There’s a lot of variations, based on whatever flavors of manifolds you consider. Using oriented manifolds
produces oriented bordism ΩSO

∗ , spin manifolds produce spin bordism ΩSpin
∗ , and so forth. These are not direct sums

of ordinary cohomology theories in general. (

The bordism rings we saw earlier this week are the case when X = pt.

5.2. Generalized orientations and the generalized Euler class. There’s a lot to say about generalized orientation
theory. The idea is that if you have a multiplicative cohomology theory E and an n-manifold M which is “E-oriented,”
many of the properties of integer cohomology in the presence of a (usual) orientation carry over, including the
presence of a fundamental class [M] ∈ En(M), Poincaré duality, and a pushforward map.

Definition 5.5. Let E→ X be a vector bundle. Its Thom space τ(E) := D(E)/S(E), i.e. the unit disc bundle in E
modulo the unit sphere bundle. The map to X induces a map p : τ(E)→ X .

This definition requires a choice of a metric, but the homeomorphism type is independent of that choice.

Theorem 5.6 (Thom isomorphism theorem). Let E→ X be a vector bundle of rank k.
(1) There is a Thom class U ∈ Hk(τ(E);Z/2), and the map a 7→ p∗(a)^ U : H∗(X ;Z/2)→ H∗+k(τ(E);Z/2)

is an isomorphism.
(2) An orientation determines a Thom class U ∈ Hk(τ(E)), and the map a 7→ p∗(a)^ U is an isomorphism in

integral cohomology. Conversely, a Thom class determines an orientation.

Therefore we make the following definition.

Definition 5.7. Let R be a multiplicative cohomology theory. Then an R-orientation of a rank-k vector bundle
E→ X is a choice of a Thom class U ∈ Rk(τ(E)) implementing a Thom isomorphism.

There are a few fundamental examples.

Example 5.8. The somewhat trivial examples: Theorem 5.6 implies that every vector bundle has a unique
HF2-orientation, and that an HZ-orientation is the same thing as an orientation in the usual sense. (

Example 5.9. Atiyah-Bott-Shapiro constructed an orientation of KO-theory given a spin structure, and of K-theory
given a Spinc structure. In particular, complex vector bundles have a canonical K-theory orientation. This also
applies to connective ko and ku. (

Definition 5.10. Let E be an R-oriented vector bundle. Then its R-theory Euler class is the pullback of the Thom
class by the zero section.

In particular, if E has a nonvanishing section, its R-theory Euler class vanishes.
Orientation theory for complex vector bundles is a rich theory. We’ll say something about just the basics.
Let i : CP1→ BU1 = CP∞ be a map classifying the tautological bundle. Then, for any generalized cohomology

theory h, h∗(S2)∼= π0h by the suspension isomorphism, so have a map i∗ : h∗(BU1)→ π0h.
7Extending from compact Hausdorff spaces to all of T op is possible, but then one loses the vector-bundle-theoretic description.
8The corresponding cohomology theory is called cobordism.
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Theorem 5.11. A complex orientation of a multiplicative cohomology theory R is equivalent data to a choice of a
cR

1 ∈ eR
2(BU1) such that i∗cR

1 = 1 ∈ π0R.

In particular, this defines a first (generalized) Chern class for complex line bundles in R-cohomology.

Example 5.12.

• In ordinary cohomology, we have the usual first Chern class; the nontriviality condition is encoding that
the first Chern class of the tautological bundle S→ CP1 is the usual generator of H2(CP1)∼= Z.

• Complex K-theory has a complex orientation defined by the class of the tautological line bundle EU1 ×U1

C→ BU1 in K0(BU1) = K2(BU1). (

However, this Chern class does not follow the usual Whitney sum formula. In many cases, the way in which it
fails to do so uniquely determines R.

It turns out that the splitting principle holds for complex-oriented cohomology theories, and therefore one
can define higher Chern classes, called Conner-Floyd-Chern classes cR

k : if E = L1 ⊕ · · · ⊕ Ln, then cR
k (E) =

σi(cR
1 (L1), . . . , cR

1 (Ln)), and by the splitting principle this suffices.

Proposition 5.13. For each n, there’s an isomorphism R∗(BUn)∼= R∗[[cR
1 , . . . , cR

n]].

5.3. KO-characteristic classes. In this section, we’ll discuss two kinds of characteristic classes in real K-theory,
with different applications.

First, we’ll use KO-characteristic classes to attack embedding problems, in much the same way as one uses
Stiefel-Whitney classes. This is due to Atiyah; we follow Dan Dugger’s exposition. Sometimes they’re less effective,
and other times they’re more effective. Given a real vector bundle E→ X , let

(5.14) λt(E) :=
∞
∑

i=0

t i[Λi(E)] ∈ KO0(X )[t].

Hence, if L is a line bundle, λt(L) = 1+ t[L], and since Λ∗(E ⊕ F) = Λ∗(E)⊗Λ∗(F), then

(5.15) λt(E ⊕ F) = λt(E)λt(F).

The reason one does this is that the exterior product operation isn’t additive, but this is.

Definition 5.16. For an x ∈ÝKO
0
(X ), let γt(x) := λt/(1−t)(x). If E→ X is a rank-k vector bundle, its eγ-class is

eγt(E) := γt(E −Rk).

We’ll let eγi(E) denote the coefficient of t i in eγt(E).

Here are some elementary properties of these classes:

Proposition 5.17.

(1) eγt(Rn) = 1.
(2) eγt(E ⊕R) = eγt(E).
(3) The Whitney sum formula: eγt(E ⊕ F) = eγt(E)eγt(F).
(4) If L is a line bundle, then eγt(L) = 1+ t([L]− 1), so eγ1(L) = [L]− 1 and eγk(L) = 0 for k ≥ 2.
(5) If E is rank n, then eγk(E) = 0 for k > n.

Corollary 5.18. Let M be a manifold which immerses as a codimension-k submanifold of RN . Then eγ`(M) = 0 for
` > k.

Proof. In this setting, the normal bundle ν is rank k, and T M ⊕ ν ∼= i∗TRN = RN . Therefore the Whitney sum
formula implies eγt(T M)eγt(ν) = 1, so eγt(ν) = eγt(T M)−1, and it vanishes above degree k. �

There’s an analogous slightly stronger statement for embeddings.
In an exercise, you’ll prove that eγt(RPn) = (1+ t([S]− 1))n+1, where S denotes the tautological bundle.

Theorem 5.19 (Adams). Let ϕ(n) denote the number of s ∈ N with 0< s ≤ n and s ≡ 0, 1, 2, 4 mod 8. ÝKO
0
(RPn)∼=

Z/2ϕ(n), and [L]− 1 is a generator.

Corollary 5.20 (Atiyah). If RPn immerses into Rn+k, then 2ϕ(n)− j+1 |
�n+ j

j

�

for k < j ≤ ϕ(n).
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Proof. Since eγt(RPn) = (1+ t([S]− 1))n+1, then

(5.21) eγ(RPn)−1 =
∞
∑

j=0

(−1) j
�

n+ j
j

�

([S]− 1) j t j .

If this is 0, then
�n+ j

j

�

([S]− 1) j = 0 for j > k, i.e.
�n+ j

j

�

≡ 0 mod 2ϕ(n). We can do a little better by checking that

([S]− 1)2 = 2[S]− 2 in ÝKO
0
(RPn), so ([S]− 1) j = (−2) j−1([S]− 1). �

And in particular, let σ(n) denote the largest j in [1,ϕ(n)] for which
�n+ j

j

�

doesn’t divide 2ϕ(n)− j+1 (or 0 if none

exists). Then there is no immersion RPn ,→ Rn+σ(n)−1.
If you work all this out for RP8, you get σ(8) = 4, so RP8 doesn’t immerse in R11. This is better than what you

can prove with Stiefel-Whitney classes, that RP8 doesn’t immerse in R14.
The KO-Pontrjagin classes are characteristic classes for oriented vector bundles in KO-theory, defined using the

generalized splitting principle.

Lemma 5.22 (Atiyah-Hirzebruch). Let T be the usual maximal torus for SOn. Then the map Bi∗ : K0(BSOn)→
K0(BT ) is injective.

Hence to define a family of characteristic classes of principal SOn-bundles, or of oriented vector bundles, it
suffices to define them on complex line bundles.

Definition 5.23 (Anderson-Brown-Peterson). The KO-Pontrjagin classes are the unique characteristic classes
π j(E) ∈ KO0(X ) for oriented bundles E→ X in KO-theory satisfying:

• If L is a complex line bundle, π0(L) = 1, π1(L) = L − 2, and all other KO-Pontrjagin classes vanish.
• The Whitney sum formula: if πs(E) :=

∑

j π
j(E)s j ∈ KO0(X )[s], then πs(E ⊕ F) = πs(E)πs(F).

Theorem 5.24 (Anderson-Brown-Peterson). Two spin manifolds are spin cobordant iff they have the same Stiefel-
Whitney numbers and KO-Pontrjagin numbers. Two manifolds with SU-structure are SU-cobordant iff they have the
same Chern numbers and KO-Pontrjagin numbers.

Some of these characteristic numbers have geometric meanings.

Theorem 5.25 (Atiyah-Singer). Let M be an (8k+1)- or (8k+2)-dimensional spin manifold; then 〈π0(T M), [M]〉 ∈
KO−1 or 2(pt)∼= Z/2 is equal to the mod 2 dimension of the space of harmonic spinors of M.

What this means is: associated to M (and a Riemannian metric) is a spinor bundle S → M ; sections of this
bundle are called spinors. There is a Laplacian operator, so one may speak of harmonic spinors.

5.4. Exercises.
(1) Show that the Thom space of Rn→ X is ΣnX .
(2) Show that the Thom space of the tautological bundle on RPn (resp. CPn) is RPn+1 (resp. CPn+1).
(3) Show that in KO0(RPn), [TRPn] + 1= (n+ 1)[S], where S denotes the tautological line bundle.
(4) Using the previous exercise, conclude that eγt(TRPn) = (1+ t([S]− 1))n+1.
(5) Verify some of the properties in Proposition 5.17.
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