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Abstract: Nowadays, Edge Information System (EIS) has received a lot of attentions. In EIS, Distributed Machine

Learning (DML), which requires fewer computing resources, can implement many artificial intelligent applications

efficiently. However, due to the dynamical network topology and the fluctuating transmission quality at the edge,

work node selection affects the performance of DML a lot. In this paper, we focus on the Internet of Vehicles (IoV),

one of the typical scenarios of EIS, and consider the DML-based High Definition (HD) mapping and intelligent driving

decision model as the example. The worker selection problem is modeled as a Markov Decision Process (MDP),

maximizing the DML model aggregate performance related to the timeliness of the local model, the transmission

quality of model parameters uploading, and the effective sensing area of the worker. A Deep Reinforcement Learning

(DRL) based solution is proposed, called the Worker Selection based on Policy Gradient (PG-WS) algorithm. The

policy mapping from the system state to the worker selection action is represented by a deep neural network. The

episodic simulations are built and the REINFORCE algorithm with baseline is used to train the policy network.

Results show that the proposed PG-WS algorithm outperforms other comparation methods.

Key words: edge information system; internet of vehicles; distributed machine learning; deep reinforcement learning;

worker selection

1 Introduction

In recent years, the Edge Information System (EIS) has
received a lot of attentions for its powerful capabilities
that integrate edge caching, edge computing, and edge
Artificial Intelligence (AI)[1]. As a typical scenario of
edge intelligent services, the Internet of Vehicles (IoV)
can provide reliable internet services through Vehicle-to-
Everything (V2X) communication in the global network
of vehicles[2]. With the assistance of EIS, intelligent
vehicles will have more sensitive perceptions and lower
latency communications to complete vehicular tasks and
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improve traffic efficiency than traditional IoV.
As a foundation of the autonomous driving, the High

Definition (HD) mapping is essential for the intelligent
IoV. The HD mapping models the surface of the roads,
which integrates the important elements of the roads,
such as the slope, curvature, lane-making types as well
as dynamic obstacles. And the process of generating
HD map involves three phases: data acquisition, data
accumulation, and data confirmation. Great efforts have
been made for HD mapping in the industry[3, 4]. However,
there are still some difficulties in the implementation
of this application. For example, most of the driving
decisions need to be made in time[4], and HD map is
dynamic which needs to be updated in real time[5]. Due
to bandwidth, storage, and privacy issues in IoV, it is
often impractical to transmit all the data to a centralized
facility to process.

Distributed Machine Learning (DML) which has
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received a lot of research attentions recently is a
promising solution for the HD mapping. With the
support of the DML framework, the massive original
data do not need to be transmitted to a centralized
location[6] (such as the Cloud), and the bandwidth
is saved. The raw map data can be processed, the
HD mapping and intelligent driving model can be
trained on multiple local servers (such as the intelligent
vehicles), and the update of the model can be done timely.
The existing research of DML includes aggregation
method[7], the trade-off between local update and global
parameter aggregation[8], etc.

In fact, there are still some issues related to
HD mapping and intelligent driving decision model
leveraging DML. Due to the various latencies caused
by the fluctuation of the wireless communication
environment, the timeliness of the local model and
parameters of each intelligent vehicle might be different.
And the asynchronous stochastic gradient descent
based aggregation method is more practical than the
synchronous Stochastic Gradient Descent (SGD) based
method. Although asynchronous SGD-based method
can converge faster, the final convergence performance
may be poor as some of the outdated gradients are
collected[7]. Therefore, how to select suitable vehicles
for parameter aggregation in HD mapping becomes a
primary consideration.

Generally, the above-mentioned vehicles scheduling
problem can be considered as a resource allocation
problem in EIS, which has aroused a lot of attentions
in academia. Using the Deep Reinforcement Learning
(DRL) method, the smart contract execution nodes
selection in blockchain scenario is addressed[9], the task
scheduling problem maximizing the long-term revenue
of the edge server in the mobile blockchain for internet of
things is solved[10], and the joint optimization framework
about caching, computation, and security for delay-
tolerant data is considered[11]. But most of the existing
researches did not pay attention to the characteristics
of DML-based HD mapping, such as the timeliness of
the local model and parameters and the effective sensing
area of each vehicle.

In this paper, the intelligent IoV with the support of
DML is studied, and the DML-based HD mapping and

intelligent driving decision model training are considered
as the example. A Road Side Unit (RSU) with edge
intelligent functions is deployed as the aggregator to
interact with intelligent vehicles in its coverage. All
the intelligent vehicles are workers within the DML
framework. The worker selection problem is modeled
as a Markov Decision Process (MDP), in which the
aggregation performance related factors are used to
design the reward. A DRL-based solution is proposed,
called the Worker Selection based on Policy Gradient
(PG-WS) algorithm. The episodic simulations are built
and the REINFORCE algorithm with baseline is used
to train the policy network. Testing results confirm the
effectiveness of the proposed PG-WS algorithm. The
main contributions of this paper are summarized as
follows:
� We focus on a typical scenario of edge intelligent

services, the intelligent IoV, and design a DML
framework based on the interaction between RSU and
the intelligent vehicles to enable the applications, such
as HD mapping and intelligent driving decision model
training.
� The characteristics and requirements of the typical

applications which include HD mapping and intelligent
driving decision model training with the support of DML
in IoV are fully considered. The timeliness of the local
model, the transmission quality of model parameters
uploading, and the effective sensing area of the worker,
which are closely related to the aggregation performance,
are taken into account in the worker selection problem.

The rest of this paper is organized as follows. The
system model is presented in Section 2. The MDP of
the worker selection problem is modeled in Section 3.
Then the DRL-based solution method and the episodic
simulation are given in Section 4. Important results
of the experiment are presented in Section 5. Finally,
Section 6 concludes this paper.

2 System model

2.1 System architecture

The intelligent IoV scenario is considered in this paper,
and the system architecture is given in Fig. 1. To
realize the typical applications, such as HD mapping
and intelligent driving decision model training with
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Fig. 1 System architecture.

the assistance of DML, an RSU with edge computing
capabilities is deployed in the scenario. It performs as
the aggregator node (denoted as aggregator) within the
DML framework. N vehicles are active in the coverage
area of the RSU, which act as worker nodes (denoted
as workers). They are responsible for collecting road
information related to the roadway and traffic to train
the local model. A series of indexes of all the workers
are denoted by N D f1; 2; : : : ; N g, jN j D N .

The RSU communicates with vehicles within its
coverage in multiple rounds, and each round of
interaction is divided into two parts. During the uplink,
the worker uploads the intelligent model parameters,
then the RSU performs the aggregation of global
parameters. As for downlink, the RSU broadcasts the
latest parameters, and the workers which successfully
received the new parameters will update their own local
model parameters.

According to the investigation, the important factors
that affect the aggregation performance of the DML-
based HD mapping and intelligent driving decision
model training include the timeliness factors and
regional factors. The former ones reflect the time of the
onboard model parameters from last update and the delay
of uploading the local model parameters to the RSU. The
regional factors represent the spatial distribution of all
vehicles and the sensing range of each onboard sensor,
which is defined as the effective sensing area in this
paper. The definitions of these metrics are presented
below.
2.2 Global parameter broadcast

The timeliness of the onboard intelligent driving decision

model is related to the downlink transmission quality,
which measures the interval of the onboard model
parameters from last global update. The interval of the
current local model of the i-th worker from the last
global parameter updating is denoted by Li , and its
initial value is 1, indicating that the local model is in the
latest state. The size of the intelligent model parameters
is the same, and the outage possibility of each worker
can be obtained according to the downlink transmission
quality[12]. Once a worker’s link outage is greater than
the threshold, the downlink global parameter broadcast
information of this round can not be successfully
received and Li is increased by 1. Otherwise, Li is
reset to the initial value to represent that it has updated
the intelligent model. Based on Li , the timeliness of the
local model can be defined as

Fi D max
�
1 �

1

25
L2i ;�1

�
(1)

where the range of the values of Fi is Œ�1; 1/, and Fi is
negative when Li is greater than 5, which reflects that
the local parameters are outdated. The larger the Fi is,
the “fresher” the local parameters are.

2.3 Local parameter uploading

The delay corresponding to the process of uploading
model parameters by the worker is defined considering
the uplink transmission quality. When multiple workers
perform uploading process at the same time, the
aggregator needs to arrange a schedule and allocate
the channel resources for these workers. Obviously,
the delay of the worker is highly depending on its
order in the schedule and the uplink channel quality.
Di represents the upload delay of the i-th worker.
Obviously, the larger the Di is, the larger the upload
delay is.

2.4 Effective sensing area

Considering that the intelligent driving decision model
and HD mapping are based on HD live road information,
the effective sensing area related to the spatial
distribution of workers and the range of onboard sensors
is defined. The scene is abstracted as a convex area, and
the whole workers are randomly distributed in it. Each
worker has a sensing area, and Ei represents the sensing
area of the i-th worker. In reality, the sensing area
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between vehicles may overlap. To study the impact of
different geographical information, we used the Voronoi
diagram to calculate the area of each worker. The larger
the sensing area Ei is, the more HD live information it
can obtain.

3 Problem formulation

3.1 MDP model

Considering the long-term system performance, the
worker selection of the aggregator can be modeled as an
MDP. The necessary elements are defined as quadruple
.S;A;P ;R/, where S and A represent the state
space and the action space, respectively. P.S 0 jS;A/
represents the transaction probability from state S 2 S
to S 0 2 S with action A 2 A; and R denotes the space
of reward. In the following of this section, the state,
action, reward, and policy of each time step are described
in detail.

(1) System state
The system state includes the available channel

resources of the RSU, the channel resources
requirements of the workers, the reward of model
timeliness, and effective sensing area of the workers. To
compromise between accuracy and complexity, we only
observe the system from time step t to t C T � 1.

At each time step t of the MDP, the available channel
resources states of the RSU are denoted as a matrix
C .t/ D ŒC1;mn�T�B1 , of which the m-th row represents
the number of the available channel resources at time
step t Cm by a binary number. Similarly, the channel
resource demand of the i-th worker is denoted as
CS;i .t/= ŒCi2;mn�T�B2 and CL;i .t/= ŒCi3;mn�T�B3 , of
which each row is a binary number. The m-th row
of CS;i .t/ and CL;i .t/ is the required number of
channel resources and the time duration of the parameter
uploading according to the estimated wireless channel
quality of the i-th worker at time step t C m. The
limitation of system resources is represented by the
number of digits By ; y 2 f1; 2; 3g of binary numbers,
and the parameter upload delay Di is implied in these
matrixes.

The normalized value of timeliness of the local
model Fi;norm and the effective sensing area Ei;norm

are also contained in the system state, denoted by
Gi .t/= ŒGi;m1; Gi;m2�T�2, where Gi;mn 2 Œ0; 1�, i 2
f1; 2; : : : ; N g. Gi;m1 and Gi;m2 represent the estimated
value of Fi;norm and Ei;norm at time step t C m,
respectively.

Combining the states defined above, the state of the
whole system can be obtained as

S.t/ D fC.t/;CH;1.t/; : : : ;CH;i .t/; : : : ;CH;N .t/g
(2)

where CH;i .t/ D ŒCS;i .t/ ;CL;i .t/ ;Gi .t/� if the i-
th worker has not been selected at current time step t ,
Otherwise, CH;i .t/ is set to be 0 matrix as an indicator
of a selected worker.

(2) Action space
The action at time step t is the worker selection

decision. Note that multiple workers can be selected
at the same time step. To simplify the problem, we
decompose the worker selection decision at each time
step into a sequential decision:

At D
�
at;1; : : : ; at;k; : : : ; at;Kt

�
(3)

whereAt � N is a subset of N , at;k 2 N represents the
index of worker selected at the k-th decision of time step
t , and Kt 6 N is the number of all the selected users
at time step t . Actually, the system state and reward are
also decomposed according to the sequential decision.
To ensure the potential resource reservation in the MDP,
a null action, which means no worker is selected, is also
included in the action space. Thus, the total number of
the actions is N C 1. When the null action is selected
or the available channel resources can not satisfy the
requirement of worker to be selected, the system will
move on to the next time step.

(3) Reward
According to the system model in Section 2, the

factors that affect the performance of the intelligent
driving decision model and HD mapping include the
timeliness of the local model, the delay of uploading
parameters, and the effective sensing area. As the ranges
of the values of Fi , Di , and Ei can be quite different
in the system, the normalized values Ei;norm, Fi;norm,
and Di;norm are used to design the reward to ensure the
fairness of different factors. The reward of each time
step t is expressed as
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RtC1 .At / D
X
i2J1.t/

Œr1Ei;norm.At /C r2Fi;norm.At /��X
i2J2.t/

r3Di;norm.At / (4)

where r1, r2, and r3 are the weights, J1 .t/ is the
set of workers that have been selected and scheduled
successfully at time step t , and J2 .t/ is the set of workers
waiting in the queue and the workers who are uploading
parameters at time step t .

Further, the long-term optimization function is the
cumulated value function v of the initial state S0,
expressed as

f .U/ D v .S0/ D
TMX
tD1

�t�1Rt (5)

where U D ŒA1; A2; : : : ; At ; : : :� is the worker selection
scheme of the whole MDP, � is the discount factor, and
TM is the maximum number of time steps of the MDP.

(4) Policy
The policy � is the mapping from the states to

the probability distribution of the actions, �W S ! A,
which indicates the probability that each worker may
be selected. At the k-th decision of time step t , the
vector of probabilities can be calculated by the policy
Vt;k D �.St;k/, and at;k can be decided according to
Vt;k using the roulette method.

3.2 Complexity analysis

According to what we designed in Section 3.1,
the dimension of the state space is ns D

2T.B1CB2NCB3N/ � 10012TN since each element
of Gi .t/ keeps three decimal places between 0 and

1. According to Ref. [13], it is inconvenient to adopt
Dynamic Programming (DP) methods such as value
iteration and policy iteration because the complexity is
O.n2s /. The complexity will decrease if the DRL-based
method is used. A neural network is used to represent
the policy, of which the input is the system state and
the output is a vector of probabilities. Therefore, the
complexity is mainly depending on the number of
neurons in the input layer ni. When ni equals the number
of elements in each state, the corresponding complexity
is ni D T .B1 C B2N C B3N/C 2TN . Besides, the
greedy algorithm is a potential method because it ranks
the aggregator’s return corresponding to all the actions
and selects the action with the maximum return in each
decision directly. The computational complexity of the
greedy algorithm is ng D .B2 C B3 C 2T /N , and it is
reasonable to use it as one of the comparison algorithms.

4 DRL-based solution

The DRL-based solution framework is given in Fig. 2,
and the ultimate target is to seek an ideal policy to
maximize the cumulative reward. The policy network ��
takes the state St;k as input and outputs the probability
distribution of the actions at the k-th decision of the
time step t . The agent chooses the appropriate action
at;k and the system state transits to St;kC1. When the
decisions of the current time step are finished, the
corresponding reward RtC1 is calculated. Therefore,
a trajectory of the system behavior is obtained and
denoted by � D fSt ; At ; RtC1gt2Œ0;TM�1�

� �� , where
St D ŒSt;1; : : : ; St;k; : : : ; St;Kt �.

Input layer Output layer

Policy network

Hidden layer

EnvironmentState

Agent

Reward

Action

,1 , ,, , , ,
tt t t k t KA a a a =  

( ) ( ) ( ) ( ) ( ) ,1 , ,, , , , ,C C C CH H i H NS t t t t t=

tS 1tS +

1tR + 2tR +

Fig. 2 DRL-based solution framework.
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In this paper, the policy gradient method is used,
and the Monte Carlo REINFORCE algorithm with
baseline is used to train the policy network. Thus, the
proposed method is named as the PG-WS algorithm. The
parameter � of the policy network is initialized firstly. It
consists of the weight W and the bias b of the neural
network. The Gaussian distribution with a standard
deviation of 0.01 and a mathematical expectation
of 0 is used to initialize the weight W , and the
bias b uses the constant value 0 as the initial value.
Several snapshots of the scenario are imported into
the simulation platform for episodic simulations. For
each training iteration, Q episodes for each snapshot
are simulated to obtain corresponding trajectories � D˚
S
q
t ; A

q
t ; R

q
tC1

	
t2Œ0;TM�1�

� �� , q 2 Œ1;Q�, and each
trajectory is used as a training sample. The process of
one episodic simulation is presented in Algorithm 1.

In the training process, we use the average
of the state’s value function as the baseline b D

Q�1
X
q

vq
�
S
q
0

�
. The update rule[14] of parameters can

be denoted as

�� D

QX
qD1

.vq.S
q
0 / � b/r� ln�� .A jS / (6)

5 Performance evaluation

5.1 Training phase

The main parameters adopted in the simulation are
shown in Table 1. The system has one observed RSU
with other 18 interference RSUs loated around, the
bandwidth is set to 10 MHz, and the node transmission
power is 23 dBm. The relevant parameter settings refer
to the 3GPP technical specifications for V2X scenario[15].

The policy network is a neural network with a
fully connected hidden layer of 50 neurons. In order
to compromise between training time and model
accuracy, we sampled 50 snapshots of the scenario
given in Section 2, each of which contains 30 vehicle
nodes with continuous distributed model parameter
uploading requests. For each snapshot, I D 5 episodes
are simulated to visit more system states in the training
process, and each episode lasts for TM D 150 time
steps.

Greedy and random algorithms are evaluated as

Algorithm 1 Process of one episodic simulation in HD
mapping

1. input: a differentiable policy parameterization � .a js; � /;
2. initialize policy parameter � : W � N.0; 0:01/; b D 0I
3. run episodes q D 1; 2; : : : ;Q;
4. t D 0, k D 1;
5. while time step t < TM do
6. if time step t is for global parameter broadcast then
7. for each worker do
8. If the link outage of the global parameter broadcast is

greater than threshold, then
Li  Li C 1I

9. else Li D 1;
10. elseif time step t is for local parameter uploading
11. for each worker do
12. Li  Li C 1;
13. end if
14. get an action aq

t;k
based on �� ;

15. if aq
t;k

is null or the available resources are insufficient
then
16. compute Rq

tC1
according to Eq. (4);

17. update Sqt ;
18. record fSqt ; A

q
t ; R

q

tC1
g;

19. t  t C 1, k D 1;
20. else
21. the aggregator selects the worker aq

t;k
;

22. update C .t/;
23. CH;aq

t;k
.t/ is set to be 0 matrix;

24. k  k C 1;
25. end if
26. end while

27. calculate v.Sq
0
/ D

TMX
tD1

�t�1Rt .

Table 1 Simulation parameters.
Parameter Setting

Inter sites distance (m) 100

Number of vehicle nodes N 30

Noise density (dBm/Hz) �174

Size of intelligent information (bits) 12 000

Number of channel resource units 48

Moving speed of vehicle nodes (km/h) [45, 90]

Time of tasks in uplink transmission f1, 2, 4, 8g

Threshold of link outage 0.05

Time length of observed states T 20

Discount factor � 0.9

Initial weights r1; r2; and r3 1

comparison methods. In our experiments, the aim
of greedy algorithm is to select the worker with the
maximum reward at each time step.
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Fig. 3 Performance of average value in the training
process.

Figure 3 shows the average value corresponding to
three different methods in the training phase, and the
learning rate of PG-WS is 0.0005. We used a sliding
window to average the value of different iterations in
Fig. 3 to reduce accidental factors. As the policy network
is initialized with random parameters, the average value
of the PG-WS algorithm begins with that of random
algorithm. Then the policy network tries to explore more
possible probability distributions of the actions, and
the average value of the PG-WS algorithm decreases
at the first 10 iterations. However, through the guide of
the reinforce signal, the policy network becomes wiser
after more training iterations. Then the value rises to
a level slightly lower than greedy algorithm at 10–20
iterations. After 20 iterations, the performance of our
method exceeds greedy algorithm and the average value
converges to around 0.19. It is reasonable that the total
reward of random algorithm is negative which means the
delay in uplink is a large proportion of the total reward.
Since the three aggregate rewards have been normalized
in simulation, the difference instead of percentage of two
methods is used to reflect how much the performance has
improved. The average reward of the proposed method
is 0.165 more than greedy algorithm.

The effect of different learning rates (lr) on the
training performances is shown in Fig. 4. All the training
processes experience the performance decrease during
the exploration period at the beginning, and there is a
plateau when the average value is around 0. It can be
seen that the most appropriate learning rate is about
0.0005. When the learning rate is greater than 0.0005,

Fig. 4 Training performance with different learning rates.

the policy network is trapped into the plateau. Since the
learning rate is large, the policy network might miss the
right direction to the optimal point. When the learning
rate is less than 0.0005, the convergence speed of model
decreases, but the average reward can still reach about
0.19.

5.2 Testing phase

The performance of the proposed method is tested in
the environments with different parameter settings. 250
snapshots are sampled for each test set, and 5-episode
simulation is performed for each snapshot.

In Fig. 5, the performance comparison is given when
the weight of model timeliness and effective area is
varied from 1.0 to 1.5. The average reward of PG-WS
is 0.154, 0.078, and 0.116 higher than that of the greedy
algorithm with different ratio values. From the problem
formulation and the simulation results, the advantages
of PG-WS compared to other methods mainly reflect
that DRL is “far-sighted” and can make appropriate
reservations of resources for the future.

Fig. 5 Performance comparison with different reward weights.
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6 Conclusion

In this paper, we focus on the intelligent IoV, and design
a DML framework based on the interaction between
RSU and the intelligent vehicles for HD mapping
and intelligent driving decision model training. The
timeliness of the local model, the transmission quality of
model parameters uploading, and the effective sensing
area related to these two applications are taken into
account in the worker selection problem. To optimize
the long-term return of RSU, MDP is modeled and
a DRL-based worker selection method called PG-
WS is proposed as the solution. Simulation results
show that the proposed PG-WS algorithm outperforms
other comparation methods. In the future research, the
proposed PG-WS algorithm will be used to implement
the worker selection for a real DML-based intelligent
application in the IoV scenario and the performance
of the real DML-based intelligent application will be
evaluated to validate the effectiveness of the proposed
node selection algorithm in practice.
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