
RESEARCH ARTICLE

Subject-independent decoding of affective

states using functional near-infrared

spectroscopy

Lucas R. TrambaiolliID
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Abstract

Affective decoding is the inference of human emotional states using brain signal measure-

ments. This approach is crucial to develop new therapeutic approaches for psychiatric reha-

bilitation, such as affective neurofeedback protocols. To reduce the training duration and

optimize the clinical outputs, an ideal clinical neurofeedback could be trained using data

from an independent group of volunteers before being used by new patients. Here, we

investigated if this subject-independent design of affective decoding can be achieved using

functional near-infrared spectroscopy (fNIRS) signals from frontal and occipital areas. For

this purpose, a linear discriminant analysis classifier was first trained in a dataset (49 partici-

pants, 24.65±3.23 years) and then tested in a completely independent one (20 participants,

24.00±3.92 years). Significant balanced accuracies between classes were found for positive

vs. negative (64.50 ± 12.03%, p<0.01) and negative vs. neutral (68.25 ± 12.97%, p<0.01)

affective states discrimination during a reactive block consisting in viewing affective-loaded

images. For an active block, in which volunteers were instructed to recollect personal affec-

tive experiences, significant accuracy was found for positive vs. neutral affect classification

(71.25 ± 18.02%, p<0.01). In this last case, only three fNIRS channels were enough to dis-

criminate between neutral and positive affective states. Although more research is needed,

for example focusing on better combinations of features and classifiers, our results highlight

fNIRS as a possible technique for subject-independent affective decoding, reaching signifi-

cant classification accuracies of emotional states using only a few but biologically relevant

features.

Introduction

Multivariate brain decoding (MBD) might allow the inference of mental states based solely

on specific brain signals’ features [1]. In comparison to conventional analytic methods, this

approach has the advantage of considering the various brain regions simultaneously, thus
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providing information on the neural networks level [2]. One particular application of MBD is

to identify emotional or affective experiences, a critical step to develop brain-computer inter-

faces or neurofeedback protocols [3]. The clinical application of affective neurofeedback is of

interest since it can putatively enable volitional control over abnormal neural activities or con-

nectivity associated with emotional symptoms, potentially relieving symptom’s severity [4, 5].

Conventional clinical neurofeedback approaches are based on subject-specific designs [4].

In other words, the patient is first submitted to an initial screening to create a calibration data-

base for the neurofeedback algorithm and, later, starts the proper neurofeedback training.

However, although reliable to the participant’s neural data, this initial step leads to long ses-

sions that might increase physical and mental exhaustion and, consequently, reduce the thera-

peutic benefits [6]. Thus, ideally, therapeutic affective neurofeedback should be trained using a

set of volunteers and then applied with little or no calibration to a new individual. However,

subject-independent identification of affective mental states remains an open technical chal-

lenge to neurofeedback implementation [1].

Subject-independent emotion classification has been previously reported on facial and

body expressions [7, 8], and voice tone [7]. A critical limitation of those previous studies is

that volunteers can easily handle the records used in order to achieve the desired result, even

without changing their affective states. Moreover, such exclusively behavioral measures do not

provide neural information, which is crucial to a properly designed neurofeedback system.

Thus, investigations using neurophysiological records such as electrophysiology (EEG) and

functional magnetic resonance imaging (fMRI) should be used in order to develop affective

interfaces. Using EEG data, for example, different studies using a subject-independent design

combined several features and classifiers to predict the affect experienced by new participants,

achieving accuracies between 70 and 95% [9–12]. Using fMRI data, accuracy varied from 60%

to 80% depending on the number of voxels (from 2000 to 4000) included as predictors [13].

Another challenge for fostering clinical affective neurofeedback applications is the high-

cost and limited mobility of the so far most accurate imaging measurements, particularly

fMRI [6]. In this context, functional Near-Infrared Spectroscopy (fNIRS) emerges as an

attractive neuroimaging technique for affective decoding. This method is based on low-

energy light detectors and transmitters for measuring the light absorption through the corti-

cal surface [14]. It makes it possible to investigate local changes in the concentrations of oxy

and deoxyhemoglobin in response to functional brain activity, similarly to the widely applied

fMRI BOLD effect [15]. Furthermore, fNIRS presents a good trade-off between spatial and

temporal resolutions, with low susceptibility to instrumental and biological noise, and con-

siderably lower cost and higher portability when compared to other non-invasive neuroim-

aging approaches [16]. Affective neuroscience experiments are benefited from fNIRS usage

due to its reliability to record the prefrontal cortex activation, as well as allowing both strictly

controlled and naturalistic emotion-related experimental designs [16–18]. To date, several

studies showed a significant subject-specific offline prediction of affective states using differ-

ent fNIRS protocols [19–23].

Using a fronto-occipital fNIRS setup, our research group achieved 80 to 95% of within-sub-

ject affective classification accuracy [22], and developed a functional subject-specific neuro-

feedback protocol [24]. Here, considering the above-mentioned technical challenges for

subject-independent affective decoding, we aimed to evaluate whether these fronto-occipital

fNIRS signals provide enough information to the subject-independent offline classification of

affective states as a pilot investigation of the feasibility of fNIRS-based subject-independent

affective decoding. To achieve this goal, we collected two completely independent datasets

with reactive and active affective tasks. The reactive task was based on the visualization of a set

of images from the International Affective Pictures System (IAPS) that were thought to induce
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positive, negative or neutral affective states [25]. Critically, those images were selected to bal-

ance the arousal dimension for the different valences. In the active task, participants were

instructed to imagine personal situations with positive, negative or neutral affective contexts.

We expected decoding performances higher than the chance level when comparing two differ-

ent affective states in each task. Also, based on the affective-workspace model [26, 27], we

expected the relevant information used in classification to come from nodes of neural net-

works mainly comprising frontal and occipital areas [28, 29].

Methods

Ethical approval for this study was obtained from the Federal University of ABC Ethics

Committee.

Participants

Forty-nine healthy participants (25 female, 24.65±3.23 years) were enrolled in the first part of

the experiment. Inclusion criteria were no previous (self-reported) diagnosis of neurological

(ICD-10: G00-G99) and/or psychiatric disorders (ICD-10: F00-F99), and normal or corrected-

to-normal vision. All participants were attending college or graduated and provided written

informed consent to participate in this study.

Two years later, a second (and independent) sample of twenty healthy participants (10

female, 24.00±3.92 years) was collected by a different researcher, and in a separate laboratory

(at the same university). The inclusion criteria and the experimental protocol were equal to the

first sample. However, considering that subjects, environmental noises, and experimenter bias

are different between datasets, we treat them as two independent datasets. For both cases, ethi-

cal approval was obtained from the local Ethics Committee, and no payment was provided to

the participants, according to the national rules.

Functional NIRS acquisition

fNIRS measurements were conducted using the NIRScout System (NIRx Medical Technolo-

gies, LLC. Los Angeles, California) using an array of optodes (12 light sources and 12 detec-

tors) covering the prefrontal, temporal and occipital areas. Optodes were arranged in an elastic

band, with nine sources and nine detectors positioned over the frontal and temporal regions,

and three sources and three detectors over the occipital region. Four positions of the Interna-

tional 10–20 System were adopted as reference points during the setup: sensors 1 and 9 were

positioned approximately over the T7 and T8 locations, respectively, while the Fpz and Oz

positions were in the center of channels 5–5 and 11–11, respectively, as shown in Fig 1. The

source-receptor distance was 30 mm for adjacent optodes, and the used wavelengths were 760

and 850 nm. Signals obtained from the thirty-two channels were measured with a sampling

frequency of 5.2083 Hz (determined by the maximum sampling frequency of the equipment—

62.5 Hz—divided by the number of sources—12) using the NIRStar 14.0 software (NIRx Medi-

cal Technologies, LLC. Los Angeles, California).

Experimental protocol

During the test, participants sat in a padded chair with armrest, positioned 1-meter distance in

front of a monitor. They were asked to remain relaxed, with hands within sight resting on the

armrests or the table. They were also requested to avoid eye movements, as well as any body

movement. The recording room remained dark during registration and the subject used

earplugs.
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Fig 1. Channel configuration. Red circles represent sources; blue circles represent the detectors and dotted lines the

channels. Colors show channel positions according to the International 10–20 system.

https://doi.org/10.1371/journal.pone.0244840.g001
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Each subject completed an eleven-point Likert mood scale immediately before and after the

session, to evaluate the possible influence of mood on our results. This test quantifies her/his

agitation, strength, confusion, agility, apathy, satisfaction, worry, perspicacity, stress, attention,

capacity, happiness, hostility, interest, and introspection [30].

Reactive task. For the reactive task, we used images available on the international affective

picture system (IAPS) catalog [25]. First, images were filtered according to their average values

of arousal and then were ranked according to their valence values. We selected the 30 pictures

with higher average values of valence, the 30 with lowest values and 60 of intermediate values,

as follows:

• Positive pictures (Valence = 7.884±0.220; Arousal = 5.036±0.448): 1811, 2057, 2080, 2209,

5210, 5830, 7200, 2040, 2058, 2091, 2340, 5700, 5833, 7330, 1440, 2045, 2070, 2150, 2347,

5825, 5910, 7502, 1710, 2050, 2071, 2165, 2550, 5829, 5982, 8420;

• Negative pictures (V = 2.007±0.183; A = 5.549±0.339): 2375.1, 3101, 3261, 9181, 9322, 9560,

2703, 3180, 3301, 9185, 9326, 9571, 2095, 2800, 3191, 3350, 9253, 9332, 2205, 3016, 3225,

9040, 9300, 9421, 2345.1, 3062, 3230, 9140, 9301, 9433;

• Neutral pictures (V = 5.234±0.060; A = 3.770±0.813): 2122, 2514, 5520, 7019, 7182, 7550,

2191, 2635, 5531, 7021, 7207, 7632, 2211, 2702, 5532, 7043, 7242, 7830, 1122, 2308, 2745.1,

5533, 7052, 7248, 8065, 1350, 2377, 2850, 5740, 7053, 7249, 1616, 2381, 2870, 5920, 7058,

7365, 1675, 2385, 2880, 6910, 7062, 7497, 1820, 2487, 5395, 7001, 7080, 7500, 1908, 2495,

5471, 7014, 7090, 7506, 2102, 2499, 5510, 7017, 7100.

This task consisted of twenty trials (5 for positive stimuli, 10 for neutral and 5 for negative).

For the first 2 seconds of each trial, a white cross was presented in the center of a blank screen.

During the next 30 seconds, a new figure was displayed every 5 seconds, totaling six randomly

selected figures per trial corresponding to the desired affective class (Fig 2). Presenting a group

of images with the same valence ensures the maintenance of cognitive engagement [31] and

the required duration to achieve the peak of oxygen concentration change relative to baseline

[32]. At the end of the trial, a new screen was presented asking the participant to assign a

score from 1 to 9 for the subjective valence (1 –extremely negative valence; 9 –highly positive

valence) and subjective arousal (1 –lower arousal; 9 –higher arousal) experiences. After this,

a blank screen appears for a random duration between 2–4 seconds and participants were

instructed to blink and/or move in this period but not in the other phases.

Active task. The active task (affective imagination) consisted of twenty trials (5 trials for pos-

itive affect, 5 for negative affect and 10 for resting with eyes open, also referred as neutral affect).

Each trial started with a baseline period of a blank screen with a white cross in the center. After 2

seconds, the instruction (representing the desired emotion) appeared to the left of the display,

remaining on the screen for 2 s (Fig 2). The instruction consisted of either a green arrow pointing

up (positive affect), a red arrow pointing downward (negative affect) or a blue circle (neutral

affect). For 30 seconds after the instruction was presented, the screen remained unchanged, cor-

responding to the participant’s affective imagination period. At the end of the trial, a new screen

was presented asking the participant to assign a score from 1 to 9 for the subjective valence (1 –

extremely negative valence; 9 –highly positive valence) and subjective arousal (1 –lower arousal;

9 –higher arousal) experiences. After this, a blank screen appears for a random duration between

2 to 4 seconds and participants were instructed to blink and/or move in this period.

Data analysis

Preprocessing. Preprocessing was performed using Matlab (Mathworks, MA, USA) with

the nirsLAB v2014.12 toolbox (NIRx Medical Technologies, LLC. Los Angeles, California).
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Considering that Mayer waves-related noise around 0.1 Hz might interfere in the classification

of fNIRS data [33, 34], we used a conservative frequency range in our analysis (0.01–0.1 Hz) (a

supplementary analysis with a broader filter is included in the S1 File). Thus, each participant’s

raw data were digitally band-pass filtered by a linear-phase FIR filter (0.01–0.1 Hz). Besides

Mayer waves, this range also filters noises due to heartbeat (0.8~1.2 Hz) and respiration (0.3

Hz) [35, 36]. Then, each wavelength was detrended by their respective whole length record

(without segmentation), and variations in concentration of oxyhemoglobin and deoxyhemo-

globin were calculated by the modified Beer-Lambert law (differential pathlength factor set to

7.25 and 6.38, respectively) [37]. Each concentration curve was then segmented into the 30 s of

interest of each trial, for all studied conditions (Fig 3a).

The mean concentration of oxyhemoglobin and deoxyhemoglobin for each segment was

calculated for each channel using the average of moving 2s-window means with 50% overlap.

Thus, each subject’s database was composed of 64 features of average concentration (32 chan-

nels × 2 chromophores) in 20 experimental conditions (10 neutral trials + 5 positive trials + 5

negative trials), for both tasks.

Machine learning procedure. To decode affective states across databases, we used the

Linear Discriminant Analysis (LDA) implementation provided by the BCILAB toolbox [38].

To avoid overfitting the model to our dataset, the LDA was computed with its default parame-

ters. This analysis was divided in two main steps represented in Fig 3b.

Fig 2. Visual stimuli order in reactive and active trials. The order of trials into the block is random, but always alternating neutral trials with positive

and negative affect trials.

https://doi.org/10.1371/journal.pone.0244840.g002
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First, we performed an LDA-based feature selection using the whole feature space from the

first experimental sample (49 participants) (steps in blue in Fig 3b). The LDA model searches

for a linear projection of multivariate observations to univariate ones [39]. During the LDA-

based feature selection, the eigenvalues of the within-class covariance matrix in the LDA can

be used as a measure of feature relevance [40–44]. Thus, after sorting these eigenvalues, larger

values provide the most discriminative information, while smaller values indicate less relevant

features. This approach was successfully employed as a feature selection step in different neu-

roimaging studies [41, 43–45], even outperforming other classifier-based feature selection

approaches [45]. In this study, we first ranked the absolute eigenvalues from all features, and

then created different subsets selecting the best 5 to 100% (with steps of 5%) features with

Fig 3. (a) Feature extraction procedure, showing steps from the whole raw signal until the creation of a feature table per subject. (b) Machine learning

procedure: Initially, we performed an LDA-based feature selection using the first experimental sample (49 subjects). Then, based on these selected

features, we created training and test sets for the LDA classifier using the first (49 subjects) and second (20 subjects) experimental samples, respectively.

https://doi.org/10.1371/journal.pone.0244840.g003
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highest eigenvalues (in other words, one subset using the top 5% features, another subset using

the top 10%, and so on).

For each obtained feature subset, projections of the training and testing datasets described

by the selected features only were built using the first (49 participants) and second (20 partici-

pants) experimental samples, respectively (steps in red in Fig 3b). Then, we evaluated the pre-

dictive performance on each corresponding test set. This approach was applied to evaluate

affective conditions in pairs, following “Positive versus Neutral”, “Negative vs. Neutral” and

“Positive vs. Negative” combinations, for reactive and active tasks separately. Here we followed

this binary approach since many current affective neurofeedback protocols are mainly based

on two-states designs [24, 46–51].

Since the train and test sets are composed of two independent datasets, cross-validation

analyses do not apply to this case. Thus, to evaluate the prediction performance in each com-

parison, we applied the trained model to decode data from each subject from the test set, and

calculated accuracy as: (trials correctly classified from first class + trials correctly classified

from second class)/2. This ratio avoids the potential unbalance of sample size in each compari-

son, and this random result should be 50%.

Two complementary analysis are described in the S1 File: one repeating exactly the same

procedure using a Support Vector Machine classifier; other using the LDA classifier in a leave-

one-subject-out cross-validation including all 69 subjects.

Statistical analysis. Considering that the results here presented are sum-based propor-

tions, and no ceiling-effect was observed, these data assume approximately normal distribu-

tions. Thus, here we applied parametric t-test to evaluate our results.

First, the subject scores of valence and arousal of the second database were evaluated by a

two-sample t-test. The comparisons used the mean values of valence and arousal assigned dur-

ing positive, negative and neutral trials. This procedure was repeated for both tasks. The p-

values were Bonferroni corrected for multiple comparisons (2 subjective measures × 3 com-

parisons of conditions × 2 tasks).

To evaluate possible influences of mood fluctuations on the classification performance, we

calculated the Spearman’s correlation between the best classification accuracies in each block

and the pre-experiment mood scores, as well as between the best classification accuracies and

the delta (post-experiment minus pre-experiment) mood scores. P-values were Bonferroni

corrected for 64 multiple comparisons (2 experiment blocks x 2 time points x 16 mood

measures).

The significance of classification accuracy of each comparison was evaluated by a one sam-

ple t-test, comparing the prediction performance from all participants in this comparison

against the chance level (50%). Each result was independently adjusted by using the Bonferroni

correction for 120 multiple comparisons (20 different percentages of features × 3 comparisons

of conditions × 2 tasks).

Results

Subjective scores of arousal and valence

Table 1 presents the mean subjective scores of arousal and valence relative to the positive, neg-

ative and neutral conditions, during both active and reactive tasks. Moreover, the corrected p-

values of each comparison are also presented.

Valence scores presented significant differences for all the comparisons. It is relevant, how-

ever, that no significant difference of the arousal scores was found during “Positive vs. Nega-

tive” comparisons, as well as during “Positive vs. Neutral” comparison during the reactive task.
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No significant correlations were found between pre-experiment mood scores and classifica-

tion accuracies, or delta mood scores and classification accuracies. These results suggest that

the classification results resulted from temporary affective changes induced during the respec-

tive trial, and not due to mood fluctuations not related to the experiment.

Classification results

Boxplots describing the LDA accuracy are presented in Fig 4. Classification accuracy for the

reactive task significantly exceeded chance level in “Positive vs. Negative” comparisons, with

highest mean result as 64.50 ± 12.03% (mean ± standard-deviation, p<0.01) using 20% of fea-

tures (12 channels), and in “Negative vs. Neutral” comparisons (68.25 ± 12.97%, p<0.01, 30%

of features– 19 channels). No significant differences were found for “Positive vs. Neutral”

comparisons.

For the active task, accuracies were greater than chance level in “Positive vs. Neutral” com-

parisons, and the highest mean accuracy was 71.25 ± 18.02% (p<0.01, with maximum value

for one single participant equals to 100%) using only 5% of the features (3 channels). No

significant differences were found for “Positive vs. Negative” and “Negative vs. Neutral”

comparisons.

Relevant channels

In Fig 5, the channels selected in each of the highest significant results reported in Section 3.2

are shown alongside their respective weights assigned by the LDA classifier. The location of

the channels follows the same order shown in Fig 1.

Among the “Positive vs. Negative” classification during the reactive task, the highest accu-

racy was achieved using 12 features. Nine of these features correspond to information about

Table 1. In the first half of the table, mean ± standard-deviation of subjective scores (ranging from 1 to 9)

assigned by each subject and for each trial of the second database during negative, neutral and positive trials. In

the second half, p-values of the comparison between the scores assigned for each trial type.

Mean subjective scores

Valence Arousal
Reactive task

Negative 2.52 ± 1.38 6.05 ± 1.34

Neutral 5.11 ± 0.73 2.71 ± 1.29

Positive 6.79 ± 0.92 4.82 ± 1.60

Active task
Negative 2.57 ± 0.97 5.85 ± 1.71

Neutral 4.84 ± 0.24 2.09 ± 1.39

Positive 7.20 ± 0.77 5.67 ± 1.75

Statistical comparisons (p-values)

Valence Arousal
Reactive task

Positive vs. Negative <0.01 0.14

Positive vs. Neutral 0.02 1.00

Negative vs. Neutral <0.01 <0.01

Active task
Positive vs. Negative <0.01 1.00

Positive vs. Neutral <0.01 <0.01

Negative vs. Neutral <0.01 <0.01

https://doi.org/10.1371/journal.pone.0244840.t001
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the deoxyhemoglobin concentration. According to the 10–5 EEG electrode positioning system

[52], four channels are approximately at the frontopolar area, two at the anterofrontal area,

and three at the occipital area. Complementary, three features included information about the

oxyhemoglobin concentration at the frontopolar (two channels) and the occipital (one) areas.

For the “Negative vs. Neutral” classification during the reactive task, 19 channels carried

relevant information: six frontopolar, five anterofrontal, one frontal, and three occipital chan-

nels for the deoxyhemoglobin concentration; and two frontopolar and two occipital channels

for the oxyhemoglobin concentration.

Finally, the “Positive vs. Neutral” decoding during the active task used only three channels

to achieve the highest performance: two frontopolar and one anterofrontal. These channels

provided information about the deoxyhemoglobin concentration. The corresponding aver-

aged time series are shown in Fig 6, as well as the averaged values used as inputs to the LDA

classifier. It is notable that the time series from second sample have higher variability, since the

number of subjects (20) is smaller than the first sample (49). However, it is also notable that

Fig 4. Box plots showing the results using the LDA classifier and different feature subsets. (a) presents the “Positive vs. Negative”, (b) the “Positive

vs. Neutral”, and (c) the “Negative vs. Neutral” comparisons for reactive elicitation block, while (d-f) follows the same order for active elicitation block.

Black dots present the means, red lines the medians, red crosses the outliers and black asterisks the statistical difference for chance level (p<0.05).

https://doi.org/10.1371/journal.pone.0244840.g004
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the averaged features follow the same patterns in both samples, with positive trials presenting

higher concentration levels in channel 6–7, and neutral trials presenting higher concentrations

in channels 5–4 and 4–4. This is also consistent with the directions of the LDA weights showed

in Fig 5c.

Discussion

Affective decoding

First, it is essential to highlight the absence of statistical significance in the subjective arousal

score during the “Positive vs. Negative” comparisons. In addition to the significant difference

in the valence scores, it suggests that any classification result in these comparisons is exclu-

sively related to valence differences between positive and negative affect. Further, during both

“Positive vs. Neutral” and “Negative vs. Neutral” comparisons, statistical differences were

found for valence and arousal scores. It is expected that Positive and Negative present differ-

ences in arousal and valence when compared to absent affective content (Neutral). Some stud-

ies suggest valence and arousal not as two orthogonal dimensions, but as a single V-shaped

dimension [53]. Accordingly, these two dimensions cannot be separated in most of the emo-

tional stimuli systems (for example, the International Affective Pictures System) [27, 54].

Given this, we have demonstrated that it is possible to detect distinct patterns of hemodynamic

activity generated by different affective valence elicitation tasks. Our results also provide

Fig 5. Weights assigned by the LDA classifier for each feature during the (a) "Positive vs. Negative" comparisons using 20% of features and (b)

"Negative vs. Neutral" comparisons using 40% of features. In (c), the weights for each feature during the "Positive vs. Neutral" comparisons using 5% of

features. Hottest colors indicate positive weights while cooler colors indicate negative weights. Channels filled with gray dots were not used during the

test.

https://doi.org/10.1371/journal.pone.0244840.g005
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evidences for the feasibility of decoding affective states in a new, untested subject, based on a

model trained in previously collected and independent dataset.

For the decoding of the reactive task, only the accuracies for “Positive vs. Negative” and

“Negative vs. Neutral” comparisons were higher than chance level. This finding is in line with

previous inter-subject studies using the IAPS database to decode affective states, but with

fMRI [13]. In a qualitative evaluation, some participants described, after the experiment, that

the negative affect induced by the pictures presented during the reactive block was more

intense than the positive one. Negative figures into the IAPS catalog are mainly related to

death, malnutrition, sickness, poverty, and disgust [25], which are more consensual than the

content of some positive stimuli, such as babies, pets or beaches. Moreover, some studies sug-

gest that processing negative stimuli are more demanding in the brain [55], which might gen-

erate more clear signals to our classifiers than the neural processing of positive stimuli.

The decoding of the active task, on the other hand, presented significant accuracy for the

“Positive vs. Neutral” condition exclusively. The participants also described that the positive

imagery during active condition was more natural to achieve and more intense than the

Fig 6. Averaged time series and features used as inputs to the LDA classifier during “Positive vs. Neutral” comparison in the

active task. Data from Channel 6–7 is shown in (a-b), Channel 5–4 in (c-d) and Channel 4–4 in (e-f) for the training and test

samples, respectively. Blue curves and boxes represent Neutral trials, and red curves and boxes Positive trials.

https://doi.org/10.1371/journal.pone.0244840.g006
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negative representation. This result is particularly interesting for potential neurofeedback

applications [4, 56]. For example, in psychiatric applications where patients present increased

levels of negative emotions and decreased levels of positive emotions [57], improving the self-

regulation between Positive and Neutral states might be clinically relevant [24].

Relevant features and the neural networks of affect

For both results in the reactive task, relevant features included both fNIRS derived oxyhemo-

globin and deoxyhemoglobin concentrations measures. In fact, each chromophore is expected

to provide different and complementary information. Deoxyhemoglobin is thought to be an

indicator of functional activation and is more directly related to the fMRI BOLD signal [15,

58], while a recent work found a correlation between oxyhemoglobin signal and the EEG band

power variation in some cortical regions [59]. Other decoding experiments also reported both

hemoglobin concentrations as relevant for classification [19]. These results suggest a non-

redundancy of these measures.

In accordance with two meta-analyses of neuroimaging data in affective tasks, we found

that occipital areas signals were among the relevant features for classification [28, 29]. Addi-

tionally, fNIRS studies also described activation of the occipital cortex during affective stimula-

tion [60, 61]. Minati and colleagues, for example, found increased occipital response to

positive and negative affects relative to neutral pictures of the same database we have used

(IAPS) [62]. Moreover, it is interesting to note that the classifier assigned high absolute weights

for a considerable number of channels from frontopolar and anterofrontal regions. A frontal

lateralization of activity during the experience and regulation of emotional responses is a clas-

sical effect [63–66]. However, a broader theoretical account of affective processing, affective

workspace hypothesis, states that activity patterns of the same core neural network could

implement both positive and negative affective responses [26, 27]. Our application of subject-

independent affective decoding, which considers distributed brain activity, is in line with the

theoretical assumptions of such model. Frontal regions, which were consistently relevant for

classification in our experiments, superpose to the network nodes that have been proposed as

core regions of the affective neural workspace [28, 67].

Subject-independent designs

fNIRS-based affective neurofeedback protocols were recently applied to healthy [24, 68] and

psychiatric populations [69], including patients with schizophrenia [70], autism disorder [71],

and attention-deficit/hyperactivity disorder (ADHD) [72, 73]. However, all these protocols

have subject-specific designs which require training blocks or calibration trials for every exper-

imental session. In addition to the expected duration of the setup preparation, these demands

can act as stressors for patients presenting anxiety symptoms, or cause physical and mental

fatigue shortly after the initial blocks [6]. Consequently, patients may not achieve their best

performance, or the therapeutic benefits associated with the protocol. All these aspects make

the investigation of subject-independent fNIRS protocols a timely research topic.

Critically, classification accuracies presented in this paper are lower than those presented in

our previous subject-specific study [22]. However, the performance drop during subject-inde-

pendent designs is an expected effect due to the inter-subject variability of anatomy, level of

stress, rest, among others. For example, Robinson and colleagues report more than 10% of per-

formance reduction from a subject-dependent to a subject-independent fNIRS-based motor

imagery neurofeedback [74].

Also, the mean accuracy for “Positive vs. Neutral” discrimination in the active block was

slightly over the 70% threshold suggested by the brain-computer interface and neurofeedback
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communities as sufficient to perform device control and communication [19, 75]. This is a

crucial finding since the differentiation between the active elicitation of positive affect and a

neutral (resting-state) condition is the state of the art of hemodynamic-based neurofeedback

protocols applied to both healthy and psychiatric populations [24, 47, 49, 50, 76, 77]. It is also

important to emphasize that this result was reached using only three channels. Considering

future applications, the use of only three channels means shorter setup procedure, lower

instrumental and computational costs, and the possibility of even more portable systems.

Limitations and future perspectives

In subject-independent designs using fMRI data, the maximum accuracy for decoding data

from new individuals is 100%, and averages varying from 60% to 80% depending on the num-

ber of voxels (from 2000 to 4000) included as predictors [13]. Although our best results belong

to the same accuracy range from fMRI studies, fMRI studies outperform fNIRS experiments.

However, comparisons should consider the differences in the spatial resolution of both meth-

ods. While these experiments include voxels from subcortical regions, such as the amygdala

[13], or even from specific neuron populations [78], affect decoding using fNIRS relies on data

from external layers from prefrontal gyri [16, 17]. This is a relevant limitation that should be

considered when planning future experiments.

Despite the controls we implemented in our experimental design, collection and analysis,

limitations should be recognized. First, although fNIRS signal is mainly related to the near-

infrared light absorption into the cortical surface, it also encompasses peripheral responses,

including changes in skin, muscular and cranial blood flow and the aerobic process of energy

consumption related to muscle contractions [16]. Consequently, some authors refer to fNIRS

applications for control of devices such as corporeal machine interfaces [19]. As this consti-

tutes one fundamental issue of this method, further validation using this approach is war-

ranted. Here, one approach that could be explored in future studies is the use of short-

separation channels to filter systemic hemodynamic fluctuations from non-neural sources

[79, 80].

Also, we used minimal preprocessing steps, classifying fNIRS data using the mean changes

in oxy and deoxyhemoglobin concentrations as features. This approach was used in order to

test fNIRS based MDB of affective state with the least assumptions possible, to avoid introduc-

ing spurious artifact in the signal and to test the feasibility for posterior real-time analysis [81,

82]. In comparison, recent studies identified that combining the mean hemoglobin concentra-

tion with other temporal and time-frequency features improves the decoding accuracies reach-

ing values close to 90% in within-subject decoding [19, 83, 84]. Therefore, future studies

should also evaluate the effect of different feature extraction techniques to the inter-partici-

pants MBD of affective states. Regarding experimental design, it is important to emphasize

that potential differences in perceptual and semantic complexity of positive and negative

images and of the phenomenological features of the affective states (e.g., vividness, content of

memory retrieval) were not controlled in depth detail. Exploring the effects of such differences

on valence decoding and investigating the possibility of disentangling such differences using

subject-independent fNIRS-based classification approaches would constitute prolific lines of

enquiry in affective neurofeedback.

However, even with these limitations, we reinforce the advantages of fNIRS compared to

other neuroimaging techniques in implementing MBD systems. Particularly, the portability,

benefit-cost relation and the good balance between spatial and temporal resolutions makes

fNIRS especially suitable for this purpose [16]. In fact, these aspects create a solid base for an

increasing number of studies using fNIRS for MBD of motor, cognitive, and more recently for
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decoding of affective states [19, 20, 22]. In subject-independent designs, experiments can also

be found classifying semantic experiences [85] or audiovisual processing [86]. Additionally,

the portability of fNIRS systems allow a fast evolution of naturalistic experiments targeting

real-world applications [87, 88], such as affective neurofeedback systems for therapeutic pur-

poses [24, 69].

Conclusion

Although more experiments are necessary to increase the classification accuracies reached

here, the results from this pilot study suggest that fNIRS is a potential tool for subject-indepen-

dent decoding of affective states. The accuracy in discriminating positive and neutral emotions

during the affective task was significant and above the threshold desired for effective control of

BCI or neurofeedback protocols. Thus, the construction of fNIRS-based subject-independent

neurofeedback devices should be attempted.
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