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Abstract

In this paper we propose new methods for solving huge-scale optimization problems.
For problems of this size, even the simplest full-dimensional vector operations are very
expensive. Hence, we propose to apply an optimization technique based on random partial
update of decision variables. For these methods, we prove the global estimates for the rate
of convergence. Surprisingly enough, for certain classes of objective functions, our results
are better than the standard worst-case bounds for deterministic algorithms. We present
constrained and unconstrained versions of the method, and its accelerated variant. Our
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ARC 04/09-315” from the “Direction de la recherche scientifique - Communautè française de Belgique”.
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1 Introduction

Motivation. Coordinate descent methods were among the first optimization schemes
suggested for solving smooth unconstrained minimization problems (see [1, 2] and refer-
ences therein). The main advantage of these methods is the simplicity of each iteration,
both in generating the search direction and in performing the update of variables. How-
ever, very soon it became clear that the coordinate descent methods can be criticized in
several aspects.

1. Theoretical justification. The simplest variant of the coordinate descent method
is based on a cyclic coordinate search. However, for this strategy it is difficult to prove
convergence, and almost impossible to estimate the rate of convergence1). Another pos-
sibility is to move along the direction corresponding to the component of gradient with
maximal absolute value. For this strategy, justification of the convergence rate is trivial.
For the future references, let us present this result right now. Consider the unconstrained
minimization problem

min
x∈Rn

f(x), (1.1)

where the convex objective function f has component-wise Lipschitz continuous gradient:

|∇if(x + hei)−∇if(x)| ≤ M |h|, x ∈ Rn, h ∈ R, i = 1, . . . , n, (1.2)

where ei is the ith coordinate vector in Rn. Consider the following method:

Choose x0 ∈ Rn. For k ≥ 0 iterate

1. Choose ik = arg max
1≤i≤n

|∇if(xk)|.

2. Update xk+1 = xk − 1
M∇ikf(xk)eik .

(1.3)

Then

f(xk)− f(xk+1)
(1.2)

≥ 1
2M |∇ikf(xk)|2 ≥ 1

2nM ‖∇f(xk)‖2

≥ 1
2nMR2 (f(xk)− f∗)2,

where R ≥ ‖x0−x∗‖, the norm is Euclidean, and f∗ is the optimal value of problem (1.1).
Hence,

f(xk)− f∗ ≤ 2nMR2

k+4 , k ≥ 0. (1.4)

Note that at each test point, method (1.3) requires computation of the whole gradient
vector. However, if this vector is available, it seems better to apply the usual full-gradient
methods. It is also important that for convex functions with Lipschitz-continuous gradient:

‖∇f(x)−∇f(y)‖ ≤ L(f)‖x− y‖, x, y ∈ Rn, (1.5)

1) To the best of our knowledge, in general case this is not done up to now.



February 1, 2010 2

it can happen that M ≥ O(L(f)). Hence, in general, the rate (1.4) is worse than the rate
of convergence of the simple Gradient Method (e.g. Section 2.1 in [6]).

2. Computational complexity. From the theory of fast differentiation it is known
that for all functions defined by an explicit sequence of standard operations, the complexity
of computing the whole gradient is proportional to the computational complexity of the
value of corresponding function. Moreover, the coefficient in this proportion is a small
absolute constant. This observation suggests that for coordinate descent methods the
line-search strategies based on the function values are too expensive. Provided that the
general directional derivative of the function has the same complexity as the function
value, it seems that no room is left for supporting the coordinate descent idea. The
versions of this method still appear in the literature. However, they are justified only by
local convergence analysis for rather particular problems (e.g. [3, 8]).

At the same time, in the last years we can observe an increasing interest to opti-
mization problems of a very big size (Internet applications, telecommunications). In such
problems, even computation of a function value can require substantial computational
efforts. Moreover, some parts of the problem’s data can be distributed in space and in
time. The problem’s data may be only partially available at the moment of evaluating
the current test point. For problems of this type, we adopt the term huge-scale problems.

These applications strongly push us backward to the framework of coordinate mini-
mization. Therefore, let us look again at the above criticism. It appears, that there is a
small chance for these methods to survive.

1. We can also think about the random coordinate search with pre-specified proba-
bilities for each coordinate move. As we will see later, the complexity analysis of
corresponding methods is quite straightforward. On the other hand, from techno-
logical point of view, this strategy fits very well the problems with distributed or
unstable data.

2. It appears, that the computation of a coordinate directional derivative can be much
simpler than computation of either a function value, or a directional derivative along
arbitrary direction.

In order to support this claim, let us look at the following optimization problem:

min
x∈Rn

{
f(x) def=

n∑
i=1

fi(x(i)) + 1
2‖Ax− b‖2

}
, (1.6)

where fi are convex differentiable univariate functions, A = (a1, . . . , an) ∈ Rp×n is an
p× n-matrix, and ‖ · ‖ is the standard Euclidean norm in Rp. Then

∇if(x) = f ′i(x
(i)) + 〈ai, g(x)〉, i = 1, . . . , n,

g(x) = Ax− b.

If the residual vector g(x) is already computed, then the computation of ith directional
derivative requires O(pi) operations, where pi is the number of nonzero elements in vector
ai. On the other hand, the coordinate move x+ = x + αei results in the following change
in the residual:

g(x+) = g(x) + αai.
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Therefore, the ith coordinate step for problem (1.6) needs O(pi) operations. Note that
computation of either the function value, or the whole gradient, or an arbitrary directional

derivative requires O

(
n∑

i=1
pi

)
operations. The reader can easily find many other examples

of optimization problems with cheap coordinate directional derivatives.
The goal of this paper is to provide the random coordinate descent methods with the

worst-case efficiency estimates. We show that for functions with cheap coordinate deriva-
tives the new methods are always faster than the corresponding full-gradient schemes. A
surprising result is that even for functions with expensive coordinate derivatives the new
methods can be also faster since their rate of convergence depends on an upper estimate
for the average diagonal element of the Hessian of the objective function. This value
can be much smaller than the maximal eigenvalue of the Hessian, entering the worst-case
complexity estimates of the black-box gradient schemes.

Contents. The paper is organized as follows. In Section 2 we analyze the expected
rate of convergence of the simplest Random Coordinate Descent Method. It is shown
that it is reasonable to define probabilities for particular coordinate directions using the
estimates of Lipschitz constants for partial derivatives. In Section 3 we show that for
the class of strongly convex functions RCDM converges with a linear rate. By applying
a regularization technique, this allows to solve the unconstrained minimization problems
with arbitrary high confidence level. In Section 4 we analyze a modified version of RCDM
as applied to constrained optimization problem. In Section 5 we show that unconstrained
version of RCDM can be accelerated up to the rate of convergence O( 1

k2 ), where k is
the iteration counter. Finally, in Section 6 we discuss the implementation issues. In
Section 6.1 we show that the good estimates for coordinate Lipshitz constants can be
efficiently computed. In Section 6.2 we present an efficient strategy for generating random
coordinate directions. And in Section 6.3 we present preliminary computational results.

Notation. In this paper we work with real coordinate spaces Rn composed by column
vectors. For x, y ∈ Rn denote

〈x, y〉 =
n∑

i=1
x(i)y(i).

We use the same notation 〈·, ·〉 for spaces of different dimension. Thus, its actual sense is
defined by the space containing the arguments. If we fix a norm ‖ · ‖ in Rn, then the dual
norm is defined in the standard way:

‖s‖∗ = max
‖h‖=1

〈s, x〉. (1.7)

We denote by s# an arbitrary vector from the set

Arg max
x

[
〈s, x〉 − 1

2‖x‖2
]
. (1.8)

Clearly, ‖s#‖ = ‖s‖∗.
For function f(x), x ∈ Rn, we denote by ∇f(x) its gradient, which is a vector from

Rn composed by partial derivatives. By ∇2f(x) we denote the Hessian of f at x. In the
sequel we will use the following simple result.
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Lemma 1 Let us fix a decomposition of Rn on k subspaces. For positive semidefinite
symmetric matrix A ∈ Rn×n, denote by Ai,i the corresponding diagonal blocks. If

Ai,i ¹ LiBi, i = 1, . . . , k,

where all Bi º 0, then

A ¹
(

k∑
i=1

Li

)
· diag {Bi}k

i=1,

where diag {Bi}k
i=1 is a block-diagonal (n×N)-matrix with diagonal blocks Bi. In partic-

ular,
A ¹ n · diag {Ai,i}n

i=1.

Proof:
Denote by x(i) the part of vector x ∈ Rn, belonging to ith subspace. Since A is positive
semidefinite, we have

〈Ax, x〉 =
k∑

i=1

k∑
j=1
〈Ai,jx

(i), x(j)〉 ≤
(

k∑
i=1
〈Ai,ix

(i), x(i)〉1/2

)2

≤
(

k∑
i=1

L
1/2
i 〈Bi,ix

(i), x(i)〉1/2

)2

≤
k∑

i=1
Li ·

k∑
i=1
〈Bix

(i), x(i)〉.

2

2 Coordinate relaxation for unconstrained

minimization

Consider the following unconstrained minimization problem

min
x∈RN

f(x), (2.1)

where the objective function f is convex and differentiable on RN . We assume that the
optimal set X∗ of this problem is nonempty and bounded.

Let us fix a decomposition of RN on n subspaces:

RN =
n⊗

i=1
Rni , N =

n∑
i=1

ni.

Then we can define the corresponding partition of the unit matrix

IN = (U1, . . . , Un) ∈ RN×N , Ui ∈ RN×ni , i = 1, . . . , n.

Thus, any x = (x(1), . . . , x(n))T ∈ RN can be represented as

x =
n∑

i=1
Uix

(i), x(i) ∈ Rni , i = 1, . . . , n.
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Then the partial gradient of f(x) in x(i) is defined as

f ′i(x) = UT
i ∇f(x) ∈ Rni , x ∈ RN .

For spaces Rni , let us fix some norms ‖·‖(i), i = 1, . . . , n. We assume that the gradient
of function f is coordinate-wise Lipschitz continuous with constants Li = Li(f):

‖f ′i(x + Uihi)− f ′i(x)‖∗(i) ≤ Li‖hi‖(i), hi ∈ Rni , i = 1, . . . , n, x ∈ RN . (2.2)

For the sake of simplicity, let us assume that these constants are known.
By the standard reasoning (e.g. Section 2.1 in [6]), we can prove that

f(x + Uihi) ≤ f(x) + 〈f ′i(x), hi〉+ Li
2 ‖hi‖2

(i), x ∈ RN , hi ∈ Rni , i = 1, . . . , n. (2.3)

Let us define the optimal coordinate steps:

Ti(x) def= x− 1
Li

Uif
′
i(x)#, i = 1, . . . , n,

Then, in view of the bound (2.3), we get

f(x)− f(Ti(x)) ≥ 1
2Li

(
‖f ′i(x)‖∗(i)

)2
, i = 1, . . . , n. (2.4)

In our random algorithm, we need a special random counter Rα, α ∈ R, which gener-
ates an integer number i ∈ {1, . . . , n} with probability

p
(i)
α = Lα

i ·
[

n∑
j=1

Lα
j

]−1

, i = 1, . . . , n. (2.5)

Thus, the operation i = Rα means that an integer random value, chosen from the set
{1, . . . , n} in accordance to probabilities (2.5), is assigned to variable i. Note that R0

generates a uniform distribution.
Now we can present the scheme of Random Coordinate Descent Method. It needs a

starting point x0 ∈ RN and value α ∈ R as input parameters.

Method RCDM(α, x0)

For k ≥ 0 iterate:

1) Choose ik = Rα.

2) Update xk+1 = Tik(xk).

(2.6)

For estimating the rate of convergence of RCDM , we introduce the following norms:

‖x‖α =
[

n∑
i=1

Lα
i ‖x(i)‖2

(i)

]1/2

, x ∈ RN ,

‖g‖∗α =
[

n∑
i=1

L−α
i

(
‖g(i)‖∗(i)

)2
]1/2

, g ∈ RN .

(2.7)
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Clearly, these norms satisfy Cauchy-Schwartz inequality:

‖g‖∗α · ‖x‖α ≥ 〈g, x〉, x, g ∈ RN . (2.8)

In the sequel, we use notation Sα = Sα(f) =
n∑

i=1
Lα

i (f) with α ≥ 0. Note that

S0(f) ≡ n.

Let us link our main assumption (2.2) with a full-dimensional Lipschitz condition for
the gradient of the objective function.

Lemma 2 Let f satisfy condition (2.2). Then for any α ∈ R we have

‖∇f(x)−∇f(y)‖∗1−α ≤ Sα‖x− y‖1−α, x, y ∈ RN . (2.9)

Therefore,

f(x) ≤ f(y) + 〈∇f(y), x− y〉+ 1
2Sα‖x− y‖2

1−α, x, y ∈ RN . (2.10)

Proof:
Indeed,

f(x)− f∗
(2.4)

≥ max
1≤i≤n

1
2Li

(
‖f ′i(x)‖∗(i)

)2

≥ 1
2Sα

n∑
i=1

Lα
i

Li

(
‖f ′i(x)‖∗(i)

)2
= 1

2Sα

(‖∇f(x)‖∗1−α

)2
.

Applying this inequality to function φ(x) = f(x)− f(y)− 〈∇f(y), x− y〉, we obtain

f(x) ≥ f(y) + 〈∇f(y), x− y〉+ 1
2Sα

(‖∇f(x)−∇f(y)‖∗1−α

)2
, x, y ∈ RN . (2.11)

Adding two variants of (2.11) with x an y interchanged, we get

1
Sα

(‖∇f(x)−∇f(y)‖∗1−α

)2 ≤ 〈∇f(x)−∇f(y), x− y〉

(2.8)

≤ ‖∇f(x)−∇f(y)‖∗1−α · ‖x− y‖1−α.

Inequality (2.10) can be derived from (2.9) by simple integration. 2

After k iterations, RCDM(α, x0) generates a random output (xk, f(xk)), which de-
pends on the observed implementation of random variable

ξk = {i0, . . . , ik}.

Let us show that the expected value

φk
def= Eξk−1

f(xk)

converges to the optimal value f∗ of problem (2.1).
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Theorem 1 For any k ≥ 0 we have

φk − f∗ ≤ 2
k+4 ·

[
n∑

j=1
Lα

j

]
·R2

1−α(x0), (2.12)

where Rβ(x0) = max
x

{
max

x∗∈X∗ ‖x− x∗‖β : f(x) ≤ f(x0)
}
.

Proof:
Let RCDM generate implementation xk of corresponding random variable. Then

f(xk)− Eik(f(xk+1)) =
n∑

i=1
p
(i)
α · [f(xk)− f(Ti(xk))]

(2.4)

≥
n∑

i=1

p
(i)
α

2Li

(
‖f ′i(xk)‖∗(i)

)2 (2.5)
= 1

2Sα
(‖∇f(xk)‖∗1−α)2.

(2.13)

Note that f(xk) ≤ f(x0). Therefore,

f(xk)− f∗ ≤ min
x∗∈X∗〈∇f(xk), xk − x∗〉

(2.8)

≤ ‖∇f(xk)‖∗1−αR1−α(x0).

Hence,
f(xk)−Eik(f(xk+1)) ≥ 1

C (f(xk)− f∗)2,

where C
def= 2SαR2

1−α(x0). Taking the expectation of both sides of this inequality in ξk−1,
we obtain

φk − φk+1 ≥ 1
C Eξk−1

[(f(xk)− f∗)2] ≥ 1
C (φk − f∗)2.

Thus,
1

φk+1−f∗ − 1
φk−f∗ = φk−φk+1

(φk+1−f∗)(φk−f∗) ≥ φk−φk+1

(φk−f∗)2 ≥ 1
C ,

and we conclude that 1
φk−f∗ ≥ 1

φ0−f∗ + k
C

(2.10)

≥ k+4
C for any k ≥ 0. 2

Let us look at the most important variants of the estimate (2.12).

• α = 0. Then S0 = n, and we get

φk − f∗ ≤ 2n
k+4 ·R2

1(x0). (2.14)

Note that problem (2.1) can be solved by the standard full-gradient method endowed
with the metric ‖ · ‖1. Then its rate of convergence can be estimated as

f(xk)− f∗ ≤ γ
kR2

1(x0),

where the constant γ is big enough to ensure

f ′′(x) ¹ γ · diag {Li · Ini}n
i=1, x ∈ E,

and Ik is a unit matrix in Rk. (Assume for a moment that f is twice differentiable.)
However, since the constants Li are the upper bounds for the block-diagonal elements
of the Hessian, in the worst case we have γ = n. Hence, the worst-case rate of
convergence of this variant of the gradient method is proportional to that one of
RCDM . However, the iteration of the latter method is usually much cheaper.
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• α = 1
2 . Consider the case ni = 1, i = 1, . . . , n. Denote by D∞(x0) the size of the

initial level set measured in the infinity-norm:

D∞(x0) = max
x

{
max
y∈X∗ max

1≤i≤n
|x(i) − y(i)| : f(x) ≤ f(x0)

}
.

Then, R2
1/2(x0) ≤ S1/2D

2∞(x0), and we obtain

φk − f∗ ≤ 2
k+4 ·

[
n∑

i=1
L

1/2
i

]2

·D2∞(x0). (2.15)

Note that for the first order methods, the worst-case dimension-independent com-
plexity of minimizing the convex functions over an n-dimensional box is infinite [4].
Since for some problems the value S1/2 can be bounded even for very big (or even
infinite) dimension, the estimate (2.15) shows that RCDM can work in situations
where the usual gradient methods have no theoretical justification.

• α = 1. Consider the case when all norms ‖ · ‖(i) are the standard Euclidean norms
of Rni , i = 1, . . . , n. Then R0(x0) is the size of the initial level set in the standard
Euclidean norm of RN , and the rate of convergence of RCDM(1, x0) is as follows:

φk − f∗ ≤ 2
k+4 ·

[
n∑

i=1
Li

]
·R2

0(x0) ≡ 2n
k+4 ·

[
1
n

n∑
i=1

Li

]
·R2

0(x0). (2.16)

At the same time, the rate of convergence of the standard gradient method can be
estimated as

f(xk)− f∗ ≤ γ

k
R2

0(x0),

where γ satisfies condition

f ′′(x) ¹ γ · IN , x ∈ RN .

Note that the maximal eigenvalue of symmetric matrix can reach its trace. Hence,
in the worst case, the rate of convergence of the gradient method is the same as the
rate of RCDM . However, the latter method has much more chances to accelerate.

3 Minimizing strongly convex functions

Let us estimate now the performance of RCDM on strongly convex functions. Recall
that f is called strongly convex on RN with convexity parameter σ = σ(f) > 0 if for any
x and y from RN we have

f(y) ≥ f(x) + 〈∇f(x), y − x〉+ 1
2σ(f)‖y − x‖2. (3.1)

Minimizing both sides of this inequality in y, we obtain a useful bound

f(x)− f∗ ≤ 1
2σ(f)(‖∇f(x)‖∗)2. (3.2)
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Theorem 2 Let function f(x) be strongly convex with respect to the norm ‖ · ‖1−α with
convexity parameter σ1−α = σ1−α(f) > 0. Then, for the sequence {xk} generated by
RCDM(α, x0) we have

φk − φ∗ ≤
(
1− σ1−α(f)

Sα(f)

)k
(f(x0)− f∗). (3.3)

Proof:
In view of inequality (2.13), we have

f(xk)− Eik(f(xk+1)) ≥ 1
2Sα

(‖∇f(xk)‖∗1−α)2
(3.2)

≥ σ1−α

Sα
(f(xk)− f∗).

It remains to compute the expectation in ξk−1. 2

At this moment, we are able to prove only that the expected quality of the output of
RCDM is good. However, in practice we are not going to run this method many times
on the same problem. What is the probability that our single run can give us also a
good result? In order to answer this question, we need to apply RCDM to a regularized
objective of the initial problem. For the sake of simplicity, let us endow the spaces Rni

with some Euclidean norms:

‖h(i)‖2
(i) = 〈Bih

(i), h(i)〉, h(i) ∈ Rni , (3.4)

where Bi Â 0, i = 1, . . . , n. We present the complexity results for two ways of measuring
distances in RN .

1. Let us use the norm ‖ · ‖1:

‖h‖2
1 =

n∑
i=1

Li〈Bih
(i), h(i)〉 def= 〈BLh, h〉, h ∈ RN . (3.5)

Since this norm is Euclidean, the regularized objective function

fµ(x) = f(x) + µ
2‖x− x0‖2

1

is strongly convex with respect to ‖ · ‖1 with convexity parameter µ. Moreover,

S0(fµ) = n

for any value of µ > 0. Hence, by Theorem 2, method RCDM(0, x0) can quickly approach
the value f∗µ = min

x∈RN
fµ(x). The following result will be useful.

Lemma 3 Let random point xk be generated by RCDM(0, x0) as applied to function fµ.
Then

Eξk
(‖∇fµ(xk)‖∗1) ≤

[
2(n + µ) · (f(x0)− f∗) · (1− µ

n

)k
]1/2

. (3.6)

Proof:
In view of Lemma 2, for any h = (h(1), . . . , h(n)) ∈ RN we have

fµ(x + h) ≤ f(x) + 〈∇f(x), h〉+ n
2 ‖h‖2

1 + µ
2‖x + h− x0‖2

1

(3.5)
= fµ(x) + 〈∇fµ(x), h〉+ n+µ

2 ‖h‖2
1.
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Thus, function fµ has Lipschits-continuous gradient (e.g. (2.1.6) in Theorem 2.1.5, [6])

with constant L(fµ) def= n+µ. Therefore, (see, for example, (2.1.7) in Theorem 2.1.5, [6]),

1
2L(fµ) (‖∇fµ(x)‖∗1)2 ≤ fµ(x)− f∗µ, x ∈ RN .

Hence,

Eξk
(‖∇fµ(xk)‖∗1) ≤ Eξk

([
2(n + µ) · (fµ(xk)− f∗µ)

]1/2
)

≤
[
2(n + µ) · (Eξk

(fµ(xk))− f∗µ)
]1/2

(3.3)

≤
[
2(n + µ) · (1− µ

n

)k (f(x0)− f∗µ)
]1/2

.

It remains to note that f∗µ ≥ f∗. 2

Now we can estimate the quality of the random point xk generated by RCDM(0, x0),
taken as an approximate solution to problem (2.1). Let us fix the desired accuracy of the
solution ε > 0 and the confidence level β ∈ (0, 1).

Theorem 3 Let us define µ = ε
4R2

1(x0)
, and choose

k ≥ 1 + 8nR2
1(x0)
ε ln 2nR2

1(x0)
ε(1−β) . (3.7)

If the random point xk is generated by RCDM(0, x0) as applied to function fµ, then

Prob (f(xk)− f∗ ≤ ε) ≥ β.

Proof:
Note that f(xk) ≤ fµ(xk) ≤ fµ(x0) = f(x0). Therefore, there exists x∗ ∈ X∗ such that

‖xk − x∗‖1 ≤ R1(x0)
def= R. Hence, ‖xk − x0‖1 ≤ ‖xk − x∗‖1 + ‖x∗ − x0‖1 ≤ 2R. Since

∇fµ(x) = ∇f(x) + µ ·BL(x− x0), (3.8)

we conclude that

Prob (f(xk)− f∗ ≥ ε) ≤ Prob (‖∇f(xk)‖∗1 ·R ≥ ε)

(3.8)

≤ Prob (‖∇fµ(xk)‖∗1 ·R + 2µR2 ≥ ε)

= Prob
(‖∇fµ(xk)‖∗1 ≥ ε

2R

)
.

Now, using Chebyshev inequality, we obtain

Prob
(‖∇fµ(xk)‖∗1 ≥ ε

2R

) ≤ 2R
ε · Eξk

(‖∇fµ(xk)‖∗1)

(3.6)

≤ 2R
ε ·

[
2(n + µ) · (f(x0)− f∗) · (1− µ

n

)k
]1/2

.
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Since the gradient of function f is Lipschitz continuous with constant n, we get

f(x0)− f∗ ≤ n
2 R2.

Taking into account that (n + µ)(1− µ
n)k ≤ n(1− µ

n)k−1, we obtain the following bound:

Prob
(‖∇fµ(xk)‖∗1 ≥ ε

2R

) ≤ 2nR2

ε · (1− µ
n

) k−1
2 ≤ 2nR2

ε · e−µ(k−1)
2n ≤ 1− β.

This proves the statement of the theorem. 2

For the current choice of norm (3.5), we can guarantee only L(f) ≤ n. Therefore, the
standard gradient method as applied to the problem (2.1) has the worst-case complexity
bound of

O
(

nR2
1(x0)
ε

)

full-dimensional gradient iterations. Up to a logarithmic factor, this bound coincides
with (3.7).

2. Consider now the following norm:

‖h‖2
0 =

n∑
i=1
〈Bih

(i), h(i)〉 def= 〈Bh, h〉, h ∈ RN , (3.9)

Again, the regularized objective function

fµ(x) = f(x) + µ
2‖x− x0‖2

0

is strongly convex with respect to ‖ · ‖0 with convexity parameter µ. However, now

S1(fµ) =
n∑

i=1
[Li(f) + µ] = S1(f) + nµ.

Since L(fµ) = S1(f) + µ, using the same arguments as in the proof of Lemma 3, we get
the following bound.

Lemma 4 Let random point xk be generated by RCDM(1, x0) as applied to function fµ.
Then

Eξk
(‖∇fµ(xk)‖∗0) ≤

[
2(S1(f) + µ) · (f(x0)− f∗) ·

(
1− µ

S1(f)+nµ

)k
]1/2

. (3.10)

Using this lemma, we can prove the following theorem.

Theorem 4 Let us define µ = ε
4R2

0(x0)
, and choose

k ≥ 2
[
n + 4S1(f)R2

0(x0)
ε

]
·
(
ln 1

1−β + ln
(

1
2 + 2S1(f)R2

0(x0)
ε

))
. (3.11)

If the random point xk is generated by RCDM(1, x0) as applied to function fµ, then

Prob (f(xk)− f∗ ≤ ε) ≥ β.
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Proof:
As in the proof of Theorem 3, we can prove that ‖xk − x0‖0 ≤ 2R ≡ 2R0(x0). Since

∇fµ(x) = ∇f(x) + µ ·B(x− x0), (3.12)

we conclude that
Prob (f(xk)− f∗ ≥ ε) ≤ Prob (‖∇f(xk)‖∗0 ·R ≥ ε)

(3.12)

≤ Prob (‖∇fµ(xk)‖∗0 ·R + 2µR2 ≥ ε)

= Prob
(‖∇fµ(xk)‖∗0 ≥ ε

2R

)
.

Now, using Chebyshev inequality, we obtain

Prob
(‖∇fµ(xk)‖∗0 ≥ ε

2R

) ≤ 2R
ε · Eξk

(‖∇fµ(xk)‖∗0)

(3.10)

≤ 2R
ε ·

[
2(S1(f) + µ) · (f(x0)− f∗) ·

(
1− µ

S1(f)+nµ

)k
]1/2

.

Since the gradient of function f is Lipschitz continuous with constant S1(f), we get

f(x0)− f∗ ≤ 1
2S1(f)R2.

Thus, we obtain the following bound:

Prob
(‖∇fµ(xk)‖∗1 ≥ ε

2R

) ≤ 2R2

ε · (S1(f) + µ) ·
(
1− µ

S1(f)+nµ

) k
2

≤ 2R2

ε · (S1(f) + µ) · e−
µk

2(S1(f)+nµ) ≤ 1− β.

This proves the statement of the theorem. 2

We conclude the section with some remarks.

• The dependence of complexity bounds (3.7), (3.11) in the confidence level β is very
moderate. Hence, even very high confidence level is easily achievable.

• The standard gradient method (GM) has the complexity bound of O
(

L(f)R2
0(x0)

ε

)

full-dimensional gradient iterations. Note that in the worst case L(f) can reach
S1(f). Hence, for the class of objective functions treated in Theorem 4, the worst-
case complexity bounds of RCDM(1, x0) and GM are essentially the same. Note
that RCDM needs a certain number of full cycles. But this number grows propor-
tionally to the logarithms of accuracy and of the confidence level. Note that the
computational cost of a single iteration of RCDM is very often much smaller than
that of GM.

• Consider very sparse problems with the cost of n coordinate iterations being pro-
portional to a single full-dimensional gradient iterations. Then the complexity
bound of RCDM(1, x0) in terms of the groups of iterations of size n becomes
O∗

(
1 + S1

n · R2
0(x0)
ε

)
. As compared with the gradient method, in this complexity

bound the largest eigenvalue of the Hessian is replaced by an estimate for its average
eigenvalue.
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4 Constrained minimization

Consider now the constrained minimization problem

min
x∈Q

f(x), (4.1)

where Q =
n⊗

i=1
Qi, and the sets Qi ⊆ Rni , i = 1, . . . , n, are closed and convex. Let us

endow the spaces Rni with some Euclidean norms (3.4), and assume that the objective
function f of problem (4.1) is convex and satisfies our main smoothness assumption (2.2).

We can define now the constrained coordinate update as follows:

u(i)(x) = arg min
u(i)∈Qi

[
〈f ′i(x), u(i) − x(i)〉+ Li

2 ‖u(i) − x(i)‖2
(i)

]
,

Vi(x) = x + UT
i (u(i)(x)− x(i)), i = 1, . . . , n.

(4.2)

The optimality conditions for these optimization problems can be written in the following
form:

〈f ′i(x) + LiBi(u(i)(x)− x(i)), ui − u(i)(x)〉 ≥ 0 ∀u(i) ∈ Qi, i = 1, . . . , n. (4.3)

Using this inequality for u(i) = x(i), we obtain

f(Vi(x))
(2.3)

≤ f(x) + 〈f ′i(x), u(i)(x)− x(i)〉+ Li
2 ‖u(i)(x)− x(i)‖2

(i)

(4.3)

≤ f(x) + 〈LiBi(u(i)(x)− x(i)), xi − u(i)(x)〉+ Li
2 ‖u(i)(x)− x(i)‖2

(i).

Thus,
f(x)− f(Vi(x)) ≥ Li

2 ‖u(i)(x)− x(i)‖2
(i), i = 1, . . . , n. (4.4)

Let us apply to problem (4.1) the uniform coordinate decent method (UCDM).

Method UCDM(x0)

For k ≥ 0 iterate:

1) Choose randomly ik by uniform distribution on {1 . . . n}.

2) Update xk+1 = Vik(xk).

(4.5)

Theorem 5 For any k ≥ 0 we have

φk − f∗ ≤ n
n+k ·

[
1
2R2

1(x0) + f(x0)− f∗
]
.

If f is strongly convex in ‖ · ‖1 with constant σ, then

φk − f∗ ≤
(
1− 2σ

n(1+σ)

)k ·
(

1
2R2

1(x0) + f(x0)− f∗
)

. (4.6)
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Proof:
We will use notation of Theorem 1. Let UCDM generate an implementation xk of corre-
sponding random variable. Denote

r2
k = ‖xk − x∗‖2

1 =
n∑

i=1
Li〈Bi

(
x

(i)
k − x

(i)
∗

)
, x

(i)
k − x

(i)
∗ 〉.

Then

r2
k+1 = r2

k + 2Lik〈Bik

(
u(ik)(xk)− x

(ik)
k

)
, x

(ik)
k − x

(ik)
∗ 〉+ Lik‖u(ik)(xk)− x

(ik)
k ‖2

(ik)

= r2
k + 2Lik〈Bik

(
u(ik)(xk)− x

(ik)
k

)
, u(ik)(xk)− x

(ik)
∗ 〉 − Lik‖u(ik)(xk)− x

(ik)
k ‖2

(ik)

(4.3)

≤ r2
k + 2〈f ′ik(xk), x

(ik)
∗ − u(ik)(xk)〉 − Lik‖u(ik)(xk)− x

(ik)
k ‖2

(ik)

= r2
k + 2〈f ′ik(xk), x

(ik)
∗ − x

(ik)
k 〉

−2
[
〈f ′ik(xk), u(ik)(xk)− x

(ik)
k 〉+ 1

2Lik‖u(ik)(xk)− x
(ik)
k ‖2

(ik)

]

(2.3)

≤ r2
k + 2〈f ′ik(xk), x

(ik)
∗ − x

(ik)
k 〉+ 2 [f(xk)− f(Vik(xk))] .

Taking the expectation in ik, we obtain

Eik

(
1
2r2

k+1 + f(xk+1)− f∗
)

≤ 1
2r2

k + f(xk)− f∗ + 1
n〈∇f(xk), x∗ − xk〉. (4.7)

Thus, for any k ≥ 0 we have

1
2r2

0 + f(x0)− f∗ ≥ φk+1 − f∗ + 1
n

[
〈∇f(x0), x0 − x∗〉+

k∑
i=1

Eξi−1(〈∇f(xi), xi − x∗〉)
]

≥ φk+1 − f∗ + 1
n

k∑
i=0

(φi − f∗)
(4.4)

≥
(
1 + k+1

n

)
(φk+1 − f∗).

Finally, let f be strongly convex in ‖ · ‖1 with convexity parameter σ.2) Then, (e.g.
Section 2.1 in [6]),

〈∇f(x), x− x∗〉 ≥ f(x)− f∗ + σ
2 ‖x− x∗‖2

1 ≥ σ‖x− x∗‖2
1.

Define β = 2σ
1+σ ∈ [0, 1]. Then, in view of inequality (4.7), we have

Eik

(
1
2r2

k+1 + f(xk+1)− f∗
)

≤ 1
2r2

k + f(xk)− f∗

− 1
n

[
β(f(xk)− f∗ + σ

2 r2
k) + (1− β)σr2

k

]

=
(
1− 2σ

n(1+σ)

)
·
(

1
2r2

k + f(xk)− f∗
)

.

It remains to take expectation in ξk−1. 2

2) In view of assumption (2.2), we always have σ ≤ 1.
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5 Accelerated coordinate descent

It is well known that the usual gradient method can be transformed in a faster scheme
by applying an appropriate multistep strategy [5]. Let us show that this can be done also
for random coordinate descent methods. Consider the following accelerated scheme as
applied to the unconstrained minimization problem (2.1) with strongly convex objective
function. We assume that the convexity parameter σ = σ1(f) ≥ 0 is known.

Method ACDM(x0)

1. Define v0 = x0, a0 = 1
n , b0 = 2.

2. For k ≥ 0 iterate:

1) Compute γk ≥ 1
n from equation γ2

k − γk
n =

(
1− γkσ

n

) a2
k

b2
k
.

Set αk = n−γkσ
γk(n2−σ)

, and βk = 1− 1
nγkσ.

2) Select yk = αkvk + (1− αk)xk.

3) Choose ik = R0 and update

xk+1 = Tik(yk), vk+1 = βkvk + (1− βk)yk − γk
Lik

Uikf ′i(yk)#.

4) Set bk+1 = bk√
βk

, and ak+1 = γkbk+1.

(5.1)

For n = 1 and σ = 0 this method coincides with method [5]. Its parameters satisfy the
following identity:

γ2
k − γk

n = βk
a2

k

b2
k

= βkγk
n · 1−αk

αk
. (5.2)

Theorem 6 For any k ≥ 0 we have

φk − f∗ ≤ σ
[
2‖x0 − x∗‖2

1 + 1
n2 (f(x0)− f∗)

]
·
[(

1 +
√

σ
2n

)k+1 −
(
1−

√
σ

2n

)k+1
]−2

≤
(

n
k+1

)2 ·
[
2‖x0 − x∗‖2

1 + 1
n2 (f(x0)− f∗)

]
.

(5.3)

Proof:
Let xk and vk be the implementations of corresponding random variables generated by
ACDM(x0) after k iterations. Denote r2

k = ‖vk − x∗‖2
1. Then using representation

vk = yk + 1−αk
αk

(yk − xk),
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we obtain

r2
k+1 = ‖βkvk + (1− βk)yk − x∗‖2

1 + γ2
k

Lik

(
‖f ′ik(yk)‖∗(ik)

)2

+2γk〈f ′ik(yk), (x∗ − βkvk − (1− βk)yk)
(ik)〉

≤ ‖βkvk + (1− βk)yk − x∗‖2
1 + 2γ2

k(f(yk)− f(Tik(yk)))

+2γk〈f ′ik(yk),
(
x∗ − yk + βk(1−αk)

αk
(xk − yk

)(ik)〉.

Taking the expectation of both sides in ik, and we obtain:

Eik(r2
k+1) ≤ βkr

2
k + (1− βk)‖yk − x∗‖2

1 + 2γ2
k [f(yk)− Eik(f(xk+1))]

+2γk
n 〈∇f(yk), x∗ − yk + βk(1−αk)

αk
(xk − yk)〉

≤ βkr
2
k + (1− βk)‖yk − x∗‖2

1 + 2γ2
k [f(yk)− Eik(f(xk+1))]

+2γk
n [f∗ − f(yk)− 1

2σ‖yk − x∗‖2
1 + βk(1−αk)

αk
(f(xk)− f(yk))]

(5.2)
= βkr

2
k − 2γ2

kEik(f(xk+1)) + 2γk
n [f∗ + βk(1−αk)

αk
f(xk)].

Note that
b2
k+1 = 1

βk
b2
k, a2

k+1 = γ2
kb2

k+1, γk
βk(1−αk)

nαk
= a2

k

b2
k+1

.

Therefore, multiplying the last inequality by b2
k+1, we obtain

b2
k+1Eik(r2

k+1) ≤ b2
kr

2
k − 2a2

k+1(Eik(f(xk+1))− f∗) + 2a2
k(f(xk)− f∗).

Taking now the expectation of both sides of this inequality in ξk−1, we get

2a2
k+1(φk+1 − f∗) + b2

k+1Eξk
(r2

k+1) ≤ 2a2
k(φk − f∗) + b2

kr
2
k

≤ 2a2
0(f(x0)− f∗) + b2

0‖x0 − x∗‖2
1.

It remains to estimate the growth of coefficients ak and bk. We have:

b2
k = βkb

2
k+1 =

(
1− σ

nγk

)
b2
k+1 =

(
1− σ

n
ak+1

bk+1

)
b2
k+1.

Thus, σ
nak+1bk+1 ≤ b2

k+1 − b2
k ≤ 2bk+1(bk+1 − bk), and we conclude that

bk+1 ≥ bk + σ
2nak. (5.4)

On the other hand,
a2

k+1

b2
k+1

− ak+1

nbk+1

(5.2)
= βka2

k

b2
k

= a2
k

b2
k+1

. Therefore,

1
nak+1bk+1 ≤ a2

k+1 − a2
k ≤ 2ak+1(ak+1 − ak),
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and we obtain
ak+1 ≥ ak + 1

2nbk. (5.5)

Further, denoting Q1 = 1 +
√

σ
2n and Q2 = 1 −

√
σ

2n and using inequalities (5.4) and (5.5),
it is easy to prove by induction that

ak ≥ 1√
σ

[
Qk+1

1 −Qk+1
2

]
, bk ≥ Qk+1

1 + Qk+1
2 .

Finally, using trivial inequality (1 + t)k − (1− t)k ≥ 2kt, t ≥ 0, we obtain

Qk+1
1 −Qk+1

2 ≥ k+1
n

√
σ.

2

The rate of convergence (5.3) of ACDM is much better than the rate (2.14). However,
for some applications (e.g. Section 6.3), the complexity of one iteration of the accelerated
scheme is rather high since for computing yk it needs to operate with full-dimensional
vectors.

6 Implementation details and numerical test

6.1 Dynamic adjustment of Lipschitz constants

In RCDM (2.6) we use the valid upper bounds for Lipschitz constants {Li}n
i=1 of the

directional derivatives. For some applications (e.g. Section 6.3) this information is easily
available. However, for more complicated functions we need to apply a dynamic adjust-
ment procedure for finding appropriate bounds. Let us estimate the efficiency of a simple
backtracking strategy with restore (e.g. [7]) inserted in RCDM(0, x0). As we have already
discussed, such a strategy should not be based on computation of the function values.

Consider the Random Adaptive Coordinate Decent Method. For the sake of notation,
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we assume that N = n.

Method RACDM(x0)

Setup: lower bounds L̂i := L0
i ∈ (0, Li], i = 1, . . . , n.

For k ≥ 0 iterate:

1) Choose ik = R0.

2) Set xk+1 := xk − L̂−1
ik
· ∇ikf(xk) · eik .

while ∇ikf(xk) · ∇ikf(xk+1) < 0 do

{
L̂ik := 2L̂ik , xk+1 := xk − L̂−1

ik
· ∇ikf(xk) · eik

}

3) Set Lik := 1
2Lik .

(6.1)

Theorem 7 1. At the beginning of each iteration, we have

L̂i ≤ Li, i = 1, . . . , n.

2. RACDM has the following rate of convergence:

φk − f∗ ≤ 8nR2
1(x0)

16+3k , k ≥ 0. (6.2)

3. After iteration k, the total number Nk of computations of directional derivatives in
method (6.1) satisfies inequality

Nk ≤ 2(k + 1) +
n∑

i=1
log2

Li

L0
i
. (6.3)

Proof:
For proving the first statement, we assume that at the entrance to the internal cycle in
method (6.1), we have L̂ik ≤ Lik . If during this cycle we get L̂ik > Lik then immediately

|∇ikf(xk+1)−∇ikf(xk)|
(2.2)

≤ L̂−1
ik

Lik |∇ikf(xk)| < |∇ikf(xk)|.

In this case, the termination criterion is satisfied. Thus, during the internal cycle

L̂ik ≤ 2Lik . (6.4)

Therefore, after execution of Step 3, we have again L̂ik ≤ Lik .
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Further, the internal cycle is terminated with L̂ik satisfying inequality (6.4). Therefore,
using inequality (2.1.17) in [6], we have:

f(xk)− f(xk+1) ≥ ∇ikf(xk+1) ·
(
x

(ik)
k − x

(ik)
k+1

)
+ 1

2Lik
(∇ikf(xk+1)−∇ikf(xk))

2

= L̂−1
ik
· ∇ikf(xk+1) · ∇ikf(xk) + 1

2Lik
(∇ikf(xk+1)−∇ikf(xk))

2

(6.4)

≥ 1
2Lik

[
(∇ikf(xk+1))

2 + (∇ikf(xk))
2 −∇ikf(xk+1) · ∇ikf(xk)

]

≥ 3
8Lik

(∇ikf(xk))
2 .

Thus, we obtain the following bound:

f(xk)−Eik(f(xk+1)) ≥ 3
8n (‖∇f(xk)‖∗1)2 ,

(compare with (2.13)). Now, using the same arguments as in the proof of Theorem 1, we
can prove that

φk − φk+1 ≥ 1
C (φk − f∗)2

with C = 8n
3 R2

1(x0). And we conclude that

1
φk−f∗ ≥ 1

f(x0)−f∗ + k
C ≥ 2

nR2
1(x0)

+ 3k
8nR2

1(x0)
.

Finally, let us find an upper estimate for Nk. Denote by Ki a subset of iteration
numbers {0, . . . , k}, at which the index i was active. Denote by pi(j) the number of
computations of ith partial derivative at iteration j ∈ Ki. If L̂i is the current estimate
of the Lipschitz constant Li in the beginning of iteration j, and L̂′i is the value of this
estimate in the end of this iteration, then these values are related as follows:

L̂′i = 1
2 · 2pi(j)−1 · L̂i.

In other words, pi(j) = 2+ log2

[
L̂′i/L̂i

]
. Taking into account the statement of Item 1, we

obtain the following estimate for Mi, the total number of computations of ith partial in
the first k iterations:

Mi ≤ 2 · |Ki|+ log2
Li

L0
i
.

It remains to note that
n∑

i=1
|Ki| = k + 1. 2

Note that the similar technique can be used also in the accelerated version (6.1). For
that, we need to choose its parameters from the equations

4
3γ2

k − γk
n =

(
1− γkσ

n

) a2
k

b2
k
,

βk = 1− γkσ
n ,

1−αk
αk

= n
βk
·
(

4
3γk − 1

n

)
.

(6.5)

This results in a minor change in the rate of convergence (5.3).
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6.2 Random counters

For problems of very big size, we should treat carefully any operation with multidimen-
sional vectors. In RCD-methods, there is such an operation, which must be fulfilled at
each step of the algorithms. This is the random generation of active coordinates. In a
straightforward way, this operation can be implemented in O(n) operations. However,
for huge-scale problems this complexity can be prohibitive. Therefore, before presenting
our computational results, we describe a strategy for generating random coordinates with
complexity O(lnn) operations.

Given the values Lα
i , i = 1, . . . , n, we need to generate efficiently random integer

numbers i ∈ {1, . . . , n} with probabilities

Prob [i = k] = Lα
k/

[
n∑

j=1
Lα

j

]
, k = 1, . . . , n.

Without loss of generality, we assume that n = 2m. Define m + 1 vectors Pk ∈ R2m−k
,

k = 0, . . . , m, as follows:

P
(i)
0 = Lα

i , i = 1, . . . , n.

P
(i)
k = P

(2i)
k−1 + P

(2i−1)
k−1 , i = 1, . . . , 2m−k, k = 1, . . . , m.

(6.6)

Clearly, P
(1)
m = Sα. Note that the preliminary computations (6.6) need n

2 additions.
Let us describe now our random generator.

1. Choose i = 1 in Pm.

2. For k = m down to 1 do:

Let the element i of Pk be chosen. Choose in Pk−1

either 2i or 2i− 1 with probabilities
P

(2i)
k−1

P
(i)
k

or
P

(2i−1)
k−1

P
(i)
k

.

(6.7)

Clearly, this procedure implements correctly the random counter Rα. Note that its com-
plexity is O(lnn) operations. In the above form, its execution requires generating m
random numbers. However, a simple modification can reduce this amount up to one.
Note also, that corrections of vectors Pk, k = 0, . . . , m due to the change of a single entry
in the initial data needs O(lnn) operations.

6.3 Numerical test

Let us describe now our test problem (sometimes it is called the Google problem). Let
E ∈ Rn×n be an incidence matrix of a graph. Denote e = (1, . . . , 1)T and

Ē = E · diag (ET e)−1.
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Since, ĒT e = e, it is a stochastic matrix. Our problem consists in finding a right maximal
eigenvector of the matrix Ē:

Find x∗ ≥ 0 : Ēx∗ = x∗, 〈e, x〉 = 1.

Clearly, this problem can be rewritten in an optimization form:

f(x) def= 1
2‖Ēx− x‖2 + γ

2 [〈e, x〉 − 1]2 → min
x∈Rn

, (6.8)

where γ > 0 is a penalty parameter for the equality constraint, and the norm ‖ · ‖ is
Euclidean. If the degree of each node in the graph is small, then the computation of
partial derivatives of function f is cheap. Hence, we can apply to (6.8) RCDM even if the
size of the matrix Ē is very big.

In our numerical experiments we applied RCDM(1, 0) to a randomly generated graph
with average node degree p. The termination criterion was

‖Ēx− x‖ ≤ ε · ‖x‖

with ε = 0.01. In the table below, k denotes the total number of groups by n coordinate
iterations. The computations were performed on a standard Pentium-4 computer with
frequency 1.6GHz.

n p γ k Time(s)
65536 10 1

n 47 7.41
20 30 5.97
10 1√

n
65 10.5

20 39 7.84
262144 10 1

n 47 42.7
20 32 39.1
10 1√

n
72 76.5

20 45 62.0
1048576 10 1

n 49 247
20 31 240
10 1√

n
82 486

20 64 493

We can see that the number of n-iteration groups grows very moderately with the dimen-
sion of the problem. The increase of factor γ also does not create for RCDM significant
difficulties. Note that in the standard Euclidean norm we have L(f) ≈ γn. Thus, for
the black-box gradient methods the problems with γ = 1√

n
are very difficult. Note also

that the accelerated scheme (6.1) is not efficient on problems of this size. Indeed, each
coordinate iteration of this method needs an update of n-dimensional vector. Therefore,
one group of n iterations takes at least n2 ≈ 1012 operations (this is for the maximal
dimension in the above table). For our computer, this amount of computations takes at
least 20 minutes.

Note that the dominance of RCDM on sparse problems can be supported by compar-
ison of the efficiency estimates. Let us put in one table the complexity results related
to RCDM (2.6), accelerated scheme ACDM (5.1), and the fast gradient method (FGM)
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working with the full gradient (e.g. Section 2.2 in [6]). Denote by T the complexity of
computation of single directional derivative, and by F complexity of computation of the
function value. We assume that F = nT . Note that this can be true even for dense
problems (e.g. quadratic functions). We will measure distances in ‖ · ‖1. For this metric,
denote by γ the Lipschitz constant for the gradient of the objective function. Note that

1 ≤ γ ≤ n.

In the table below, we compare the cost of iteration, cost of the oracle and the iteration
complexity for these three methods.

RCDM ACDM FGM

Iteration 1 n n
Oracle T T F

Complexity nR2

ε n R√
ε

√
γR√
ε

Total (F + n)R2

ε (F + n2) R√
ε

(F + n)
√

γR√
ε

(6.9)

We can see that RCDM is better than FGM if R√
ε

<
√

γ. On the other hand, FGM is

better than ACDM if F < n2√
γ . For our test problem, both conditions are satisfied.
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