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Topics in algorithmic, enumerative and geometric com-
binatorics
Ragnar Freij

ABSTRACT
This thesis presents five papers, studying enumerative and extremal problems

on combinatorial structures.

The first paper studies Forman’s discrete Morse theory in the case where

a group acts on the underlying complex. We generalize the notion of a Morse

matching, and obtain a theory that can be used to simplify the description of

the G-homotopy type of a simplicial complex. As an application, we determine

the S2 × Sn−2-homotopy type of the complex of non-connected graphs on n

nodes. In the introduction, connections are drawn between the first paper and

the evasiveness conjecture for monotone graph properties.

In the second paper, we investigate Hansen polytopes of split graphs. By

applying a partitioning technique, the number of nonempty faces is counted,

and in particular we confirm Kalai’s 3d-conjecture for such polytopes. Further-

more, a characterization of exactly which Hansen polytopes are also Hanner

polytopes is given. We end by constructing an interesting class of Hansen

polytopes having very few faces and yet not being Hanner.

The third paper studies the problem of packing a pattern as densely as

possible into compositions. We are able to find the packing density for some

classes of generalized patterns, including all the three letter patterns.

In the fourth paper, we present combinatorial proofs of the enumeration of

derangements with descents in prescribed positions. To this end, we consider

fixed point λ-coloured permutations, which are easily enumerated. Several for-

mulae regarding these numbers are given, as well as a generalisation of Euler’s

difference tables. We also prove that except in a trivial special case, the event

that π has descents in a set S of positions is positively correlated with the event

that π is a derangement, if π is chosen uniformly in Sn.

The fifth paper solves a partially ordered generalization of the famous sec-

retary problem. The elements of a finite nonempty partially ordered set are

exposed in uniform random order to a selector who, at any given time, can

see the relative order of the exposed elements. The selector’s task is to choose



ii

online a maximal element. We describe a strategy for the general problem

that achieves success probability at least 1/e for an arbitrary partial order,

thus proving that the linearly ordered set is at least as difficult as any other

instance of the problem. To this end, we define a probability measure on the

maximal elements of an arbitrary partially ordered set, that may be interesting

in its own right.

Keywords: Discrete Morse theory, simplicial G-complex, centrally

symmetric polytope, split graph, derangement, pattern packing, com-

position, finite poset, optimal stopping, secretary problem.
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thank my co-advisor Johan Wästlund, for great collaboration and many
interesting discussions about all aspects of mathematics.

My coauthors all deserve a word of thanks. To Niklas Eriksen, Matthias
Henze, Toufik Mansour, Moritz Schmitt, Johan Wästlund and Günter
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INTRODUCTION





1
INTRODUCTION

The present thesis consists of five different papers. Roughly spoken, they
treat three different research areas: pattern containment in words, com-
binatorial geometric structures occuring in graph theory, and optimal
stopping. A common theme in the first four papers is the enumeration of
combinatorial structures, in one way or another. Some of the papers can
also be said to have a common flavour of extremal combinatorics, where
we prove that certain “extremal structures” have some natural “standard
form”. These “extremal structures” are as diverse as

• Hansen polytopes of split graphs, that have few faces,

• compositions that densely pack a given pattern, and

• partial orders in which maximal elements are “difficult to identify”.

3



4 CHAPTER 1. INTRODUCTION

In the following, we will discuss these and other aspects of the thesis more
closely. Throughout the thesis, all graphs considered will be assumed to
be finite. To avoid overloading words, a vertex will always mean a vertex
of some geometric object, such as a simplicial complex or a polytope. The
sites of graphs will be called nodes. Similarly, a simplex will always mean
the convex hull of d + 1 points in general position in Euclidean d-space,
while the elements of an abstract simplicial complex will be called cells.

1.1 Discrete Morse theory and graph com-

plexes

Discrete Morse theory was first introduced by Forman in [17]. In essence,
it provides a method to drastically reduce the number of cells in a (usually
combinatorially defined) simplicial complex, in order to simplify compu-
tation of its homotopy type. Let us start by a basic definition, to fix
notation.

Definition 1 (Simplicial complexes). An abstract simplicial complex is
a collection Σ of finite sets (which we will call cells), such that if σ ∈ Σ
and τ ⊆ σ, then τ ∈ Σ. (The simplicial complexes occuring in this thesis
will all be finite.)

An abstract simplicial complex has a geometric realization |Σ|, ob-
tained by embedding the points of ∪σ∈Σ(σ) in general position in Eu-
clidean space, denoting by |σ| the simplex spanned by the points in σ, and
defining |Σ| = ∪σ∈Σ|σ|.

Any two geometric realizations of Σ are clearly homeomorphic. This
allows us to talk about the topology of an abstract simplicial complex, by
which we simply mean the topology of any of its geometric realizations.

Just like a simplicial complex, a CW complex is constructed by glu-
ing (homeomorphic images of) discs of different dimensions together. The
main difference is that in a CW complex the boundary of cells may be
decomposed into lower-dimensional cells in many ways, and in particular
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the same cell may appear many times along the boundary of a higher-
dimensional cell. Hence, the notion of CW complexes is much more flex-
ible than that of simplicial complexes, but also much less combinatorial
in nature. For a proper definition and fundamental properties of CW
complexes, consult any book on algebraic topology, eg. [31].

Discrete Morse theory describes how certain matchings on a (typi-
cally large) simplicial complex Σ induce simplicial collapses of Σ onto a
(typically much smaller) CW complex, whose homology can hopefully be
calculated more easily. More precisely, let P (Σ) be the partially ordered
set (poset) of the cells in Σ, ordered by inclusion. A matching on a poset
P is a set M of pairs (σ,τ) ∈ P × P such that:

• Every element in P is in exactly one pair in M .

• σ ≤ τ for every (σ,τ) ∈ M .

• There is no ρ such that σ < ρ < τ for any (σ,τ) ∈ M .

In other words, M is a collection of intervals of height 1 or 2. If (σ,σ) ∈ M ,
then σ is said to be unmatched. For technical reasons, we will also say
that σ is unmatched if (∅,σ) ∈ M

If M is a matching on a poset P , let P/M be the digraph whose
objects are the pairs in M , with an arrow (σ,τ) → (σ′,τ ′) if τ > σ′. It
is possible that the digraph P/M has directed cycles, but if it does not,
then we can think of it as a poset. With this notation, the following is
the main theorem of discrete Morse theory.

Theorem 1. Let M be a matching on P (Σ) such that P (Σ)/M has no
directed cycles. Then, there is a CW complex M that is homotopy equiv-
alent to Σ, and whose cells are in one-to-one correspondence (with di-
mension preserved) with the unmatched cells in Σ.

In particular, if there is a complete matching on P (Σ), then Σ has
trivial homotopy type. A matching satisfying the conditions in Theorem
1 is called a Morse matching on Σ.
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1.1.1 Graph complexes

A graph property is a property defined on graphs on a fixed set of nodes,
which is invariant under permutations of the nodes. Properties such as
“the nodes labelled one and two being connected” are hence not graph
properties. Examples of graph properties are being connected, being
planar, being cycle-free, and so on.

Let Q be a graph property, which we identify with the set of graphs
having this property. Assume that, whenever G ∈ Q and H ⊆ G is
obtained by deleting some edges from G (but keeping all the nodes), then
H ∈ Q. Then we say that the property Q is monotone. For example, the
property of being non-connected is monotone.

A (non-trivial) monotone graph property Q, defined on graphs with n

nodes, can be viewed as an abstract simplicial complex ΣQ. Indeed, the
vertices of ΣQ are indexed by the edge set E(Kn) of the complete graph
Kn. A set σ ⊆ E(Kn) is in ΣQ if the graph with the corresponding edge
set has the property Q. A simplicial complex ΣQ that is constructed
in this way will be called a graph complex, and clearly contains all in-
formation about Q. An excellent general reference on graph complexes
is [33].

A very interesting open problem about graph properties is the eva-
siveness conjecture, normally attributed to Aanderaa, Karp and Rosen-
berg [50]. To state the conjecture, we must first introduce some termi-
nology on decision trees for properties (or equivalently, for set systems or
Boolean functions).

Let S be a finite set, and suppose we are interested in whether an
unknown set A ⊆ S has the property Q ⊆ 2S . The (deterministic)
complexity of Q is the maximum number of questions of the form “is
x ∈ A?” that you can be forced to ask, in order to determine whether
A ∈ Q. In other words, it is the smallest depth of a decision tree for the
propertyQ. It is clear that any property on subsets of S has complexity at
most |S|, and a property is called evasive if its complexity equals |S|. We
are now ready to state the evasiveness conjecture for graph properties [50].
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Conjecture 1. Any non-trivial monotone graph property is evasive.

The trivial graph properties Q ⊆ 2S are just ∅ and 2S . Partial results
on Conjecture 1 for special classes of properties are known. For example,
Bollobás [6] proved that the property of containing a k-clique is evasive
for every k and n, and Chakrabarti, Khot and Shi [9] proved that any
non-trivial property that is closed under taking graph minors is evasive
for large enough n.

As we have seen, monotone graph properties are special cases of sim-
plicial complexes on

(
n
2

)
vertices, with an Sn-action inherited from the

natural Sn-action on the edge set of the complete graph Kn. It is re-
markable that while there is no proof of Conjecture 1 for general graph
properties, there is also (to our present knowledge) no counterexample
known to the following stronger conjecture.

Conjecture 2. Any non-trivial monotone property Q ⊆ 2S, which is
invariant under some transitive group action on S, is evasive.

Observe that Sn acts transitively on the edges of Kn, so Conjecture 2
generalizes Conjecture 1. Conjectures 1 and 2 are both proven in the
special cases where the number of nodes of the graph, respectively the
cardinality of S, are prime powers [35, 49]. Note that the special case of
Conjecture 2 where |S| is a prime power has no relevance for Conjecture
1, since the number of vertices of a graph complex is

(
n
2

)
, which is never

a prime power except in the trivial cases n ≤ 3.
Interestingly, although the paper [35], which proved Conjecture 1 in

the prime power case, preceded the introduction of discrete Morse theory
in [17] by more than a decade, its methods can be described very well in
the language of discrete Morse theory. Indeed, assume Σ is a subcomplex
of a d-dimensional simplex (or equivalently a monotone Boolean function
of d + 1 variables). Let T be a decision tree to decide whether an un-
known set s of vertices span a cell in Σ. Then T induces a matching on
Σ, as is explained and proven in [18]. The unmatched elements in this
Morse matching are the cells for which all d + 1 questions are needed
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by T . Any other cell σ is matched to a cell τ from which it cannot be
distinguished when T terminates. So by construction, any non-evasive
simplicial complex has a Morse matching with no unmatched cells, and
thus collapses to a point, and in particular has the homotopy type of a
point.

To prove Conjecture 1, it would thus suffice to prove that any non-
trivial graph complex never collapses to a point. This is exactly what
Kahn, Saks and Sturtevant proved in [35] in the case of properties of
graphs with n nodes, where n is a prime power. They applied results
from [45] on fixed points of acyclic complexes, together with the trivial
observation that if a vertex transitive action on a simplicial complex Σ
has a fixed point, then Σ is a simplex.

Similarly, to prove Conjecture 2 it would suffice to prove that any
non-trivial simplicial complex whose symmetry group acts transitively
on the vertices, never collapses to a point. However, this appears to be a
much harder task, since there exist non-trivial complexes with transitive
group actions that have the homotopy type of a point (though they may
not collapse simplicially). The first such example was provided by Oliver,
cf. [35], and a collection of examples is presented in Lutz’s thesis [41].

1.1.2 Equivariant discrete Morse theory

In Paper I we develop a method suitable for studying simplicial complexes
of particular graph properties, although most of the theory is developed
in a more general context. The general setting is a simplicial complex,
with a group G acting on it. This action induces an G-module structure
on the homology groups H∗(Σ). In the graph complex case, Σ = ΣQ
will have

(
n
2

)
nodes, and there will be a group action by the symmetric

group Sn, induced by the natural Sn-action on the complete graph Kn.
When we study this G-module structure, all the operations we per-

form on ΣQ must respect the group action, and unfortunately discrete
Morse theory is ill suited for this. The main theorem of Paper I general-
izes and strengthens Theorem 1. The generalization is that we consider
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more general “matchings”, and the strengthening is that if such a match-
ing is invariant under G, then the homotopy equivalence M' Σ between
the corresponding Morse complex M and the underlying complex Σ is
G-equivariant. The theory relies on the notion of GCW complexes, which
is described more carefully in Paper I. For here, it suffices to know that
a GCW complex is a CW complex with an intrinsic G-action on it.

An interval of a poset is

[σ, τ ] = {ρ : σ ≤ ρ ≤ τ}.

Just as we constructed P/M when M was a matching, we can also con-
struct P/I where I is a partition of P into intervals, with an arrow
[σ, τ ] → [σ′, τ ′] if τ > σ′. As before, we will say that σ is unmatched by
I if [σ, σ] ∈ I or if |σ| = 1 and [∅, σ] ∈ I.

Theorem 2. Let Σ be a simplicial complex with an action by G. Let I

be a partition of P (Σ) into intervals such that P (Σ)/I has no directed
loops. Assume that I is G-equivariant, i.e. if [σ, τ ] is in I, then so is
[gσ, gτ ] for g ∈ G.

Then, there is a GCW complex M ' Σ, whose cells are in one-to-
one correspondence (with dimension preserved) with the unmatched cells
in Σ.

Assume that Q is a graph property on graphs with n nodes. For
practical purposes, one can often not consider the full Sn action on ΣQ,
but must restrict attention to some subgroup. Indeed, one often wants to
collapse ΣQ to a wedge of spheres, and to do this G-equivariantly G ⊆ Sn

must fix some vertex of Σ, i.e. some edge of Kn. So the largest subgroup
G ⊆ Sn that we can use is in such cases Γ := S2 ×Sn−2 ⊆ Sn.

Paper I is essentially a rewritten version of [19], and contains a cal-
culation of H∗(ΣQ), where Q is the collection of non-connected graphs
on n nodes. The homology groups are considered as Γ–modules, where
Γ = S2 ×Sn−2 ⊆ Sn acts by permuting the nodes {1, 2} and the nodes
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{3, . . . , n} independently. The homology groups, without the group ac-
tion by Γ, are well known, and were calculated in [55].

1.2 Centrally symmetric polytopes with few

faces

In Paper II, we consider face numbers of certain centrally symmetric
polytopes, motivated by the still unresolved 3d-conjecture (Conjecture 3)
by Kalai [36]. The following few definitions are intended to fix notation.
For general questions about polytopes, we refer to [56].

Definition 2 (Polytopes). A polytope is the convex hull of finitely many
points in Euclidean space.

Equivalently, a polytope is the bounded intersection of finitely many
half-spaces in Euclidean space.

The dimension of a polytope is the dimension of the smallest affine
space containing it.

Definition 3 (Faces). A face of a polytope P is

{x ∈ P | 〈f ,x〉 = c},

where 〈f ,x〉 ≤ c is an inequality that holds for every x ∈ P .

In particular, ∅ and P are faces of P , as are all the vertices of P . It is
easy to prove (see [56]) that every polytope has finitely many faces, that
every face is a polytope itself, and that the faces, ordered by inclusion,
form a lattice. If dim(P ) = d, a maximal face F ( P has dimension d−1
and is called a facet. We denote the number of i-dimensional faces of P

by fi(P ), and call the vector (f−1(P ), f0(P ), . . . , fd(P )) the f -vector of
P . The empty set is considered to be a (−1)-dimensional face.

Two polytopes are said to be combinatorially equivalent if their face
lattices are isomorphic as posets. They are said to be affinely (respec-
tively projectively) equivalent if there is an invertible affine (projective)
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map between them. Combinatorial equivalence is thus a weaker equiva-
lence relation than projective equivalence, which is in turn weaker than
affine equivalence.

Definition 4 (Full flags). A sequence of d faces F0, F1, . . . , Fd−1 of a
d-dimensional polytope P is called a full flag of P if dim(Fi) = i and
Fi ⊆ Fi+1 for every i.

Finally, the following notion of duality will be crucial in Paper II.

Definition 5 (Polar polytope). Let P ⊆ Rd be a polytope with the origin
in its interior (so in particular P has dimension d). Define the polar of
P to be the polytope

P ∗ = {x ∈ Rd | ∀v ∈ P : 〈v,x〉 ≤ 1}.

We will use the words “polar” and “dual” interchangeably. The face
lattice of P ∗ is isomorphic to the reversal of the face lattice of P , so in
particular we have fi(P ∗) = fd−i−1(P ) for i = −1, . . . ,d. The polar of
the cube is called a cross-polytope, and is exactly the unit ball in the L1

metric.

1.2.1 Combinatorially extremal polytopes

Questions about which polytopes have extremal f -vectors are very nat-
ural, and still not completely understood. It is trivial to prove by in-
duction that when d is fixed,

∑
i fi is minimized by the simplex. Much

more profound are the upper bound theorem by McMullen [43] and the
lower bound theorem by Barnette [2, 3], giving optimal bounds on fk(P ),
when the dimension d and number of vertices n = f0 are fixed. Interest-
ingly, the upper bound is obtained by the so-called cyclic polytope Cd(n)
for every k simultanously. The lower bound is reached by the so-called
stacked polytopes—constructed by stacking (n − d) simplices on top of
each other—also simultanously for every k. It should be said, however,
that while the statements of these two theorems sound quite similar, their
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results are very different in spirit. More examples of extremal results on
f -vectors are included in Ziegler’s standard reference book [56].

Another set of interesting questions on polytopes is what more can
be said about the combinatorics of polytopes satisfying some particular
geometric constraints, in particular polytopes with certain symmetries.
In this spirit lies the classical subject of regular polytopes, stemming from
the ancient study of the platonic solids. A regular polytope is a polytope
with a symmetry group that acts transitively on its full flags, and a great
survey on this topic is Coxeter’s book [12].

More modern, and less restrictive, is the study of centrally symmetric
polytopes, by which we mean polytopes P such that P = −P . Many
naturally occuring polytopes have centrally symmetric embeddings, but
what restrictions central symmetry induces on the combinatorics of P ,
and in particular on the f -vector, is quite poorly understood. For exam-
ple, there still does not seem to be any upper bound theorem for centrally
symmetric polytopes, although there is a nice centrally symmetric ana-
logue of the cyclic polytope [4, 5], which conjecturally should provide an
upper bound, at least asymptotically.

One way in which the study of centrally symmetric polytopes is much
more involved than that of generic polytopes, seems to be that there is no
good centrally symmetric analogue to the simplex. A natural, recursively
constructed, class of candidates are the so-called Hanner polytopes.

Definition 6 (Hanner polytopes). A line segment is a Hanner polytope.
A d-dimensional polytope P with d > 1 is a Hanner polytope if it can be
written as the Cartesian product of two Hanner polytopes or as the polar
of a Hanner polytope.

A line segment has three non-empty faces, namely its two endpoints
and the segment itself. The face number is preserved when taking polars,
and is multiplicative when taking products. Hence any d-dimensional
Hanner polytope will have 3d non-empty faces. This is conjectured by
Kalai [36] to be minimal among all centrally symmetric polytopes. Sur-
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prisingly enough, this conjecture is still open, and provides the main
inspiration for Paper II.

Conjecture 3 (Kalai, 1989). Any centrally symmetric d-dimensional
polytope P has at least 3d non-empty faces. Equality holds if and only if
P is combinatorially equivalent to a Hanner polytope.

This conjecture can be placed in the tradition of trying to determine
the “least round” centrally symmetric convex body, where the notorious
Mahler conjecture [42] may be the most famous.

Conjecture 4 (Mahler, 1939). For any centrally symmetric convex body
P ⊆ Rd, let P ∗ be its polar body. Then vol(P ) ·vol(P ∗) ≥ 4d/d!. Equality
holds if and only if P is affinely equivalent to a Hanner polytope.

Notice that the product vol(P ) · vol(P ∗) is an affine invariant for cen-
trally symmetric bodies, because scaling P by a factor λ along one axis,
scales P ∗ by a factor λ−1 along the same axis. One should observe that
the Mahler conjecture cannot be resolved to the positive using combi-
natorial methods only, since it is a statement about convex bodies in
general, not necessarily polytopes. Still, some light can be shed on the
Mahler conjecture by looking at particular examples of polytopes whose
Mahler volume can be calculated explicitly. In fact, [20] includes some
computations carried out in polymake [34], suggesting strong relation-
ships between Mahler volume, face numbers and the number of full flags
of the Hansen polytopes studied.

1.2.2 Independence complexes and Hansen polytopes

While Paper I studies simplicial complexes originating from graph proper-
ties, Paper II considers geometric structures constructed from particular
graphs. Recall that a set I ⊆ G of nodes is called independent in G, if
there is no edge between two elements of I. The dual notion is that of
a clique C ⊆ G, where every pair of nodes in C have an edge between
them.
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A graph G on n nodes gives an abstract simplicial complex on n

vertices, whose simplices are the independent sets in G. This complex is
called the independence complex of G, and is denoted ΣG. It is worth
observing that the 1-skeleton (i.e. the union of the 1-dimensional cells)
of the independence complex of G is just the complement graph G. In
this respect, it would be more natural to look at the clique complex of G,
whose 1-skeleton is G itself, but we stick to the independence complex
for historical reasons.

For a finite abstract simplicial complex Σ, with vertex set [n], one can
define the dual simplicial complex

Σ = {τ ⊆ [n] | ∀σ ∈ Σ : |σ ∩ τ | ≤ 1}.

For example, the dual of the independence complex of a graph is the
clique complex of the same graph. It follows from the definition that
Σ ⊆ Σ. The inclusion can be strict, as is seen in the following example.

Example 1. Let Σ = {∅,{1},{2},{3}, {1,2},{2,3},{3,1}} be the complex
whose geometric realisation is the empty triangle. Then Σ is the three
point set, and Σ = Σ ∪ {1,2,3} is the filled triangle.

To any finite abstract simplicial complex Σ with n vertices, Hansen [30]
associates a polytope in n + 1 dimensions. This is constructed as

H (Σ) = conv

{
±

(
e0 +

∑
i∈σ

ei

)
| σ ∈ Σ

}
, (1.1)

where {ei}n
i=0 is the standard basis for Rn+1. We see that H (Σ) has two

vertices for every cell in Σ, and is centrally symmetric by construction.
If ΣG is the independence complex of G, we will abuse notation slightly,
and write H(G) rather than H(ΣG). It is elementary to see that H(Kn) is
affinely equivalent to a cross-polytope, and H(Kn) is affinely equivalent
to a cube, where Kn is the complete graph on n nodes.

It follows from the definition of Σ that, for any C ∈ Σ, and any
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x ∈ H(Σ), we have −1 ≤ −x0 + 2
∑

i∈C xi ≤ 1. It is easily seen that
there are no redundancies among these inequalities, and it is natural to
ask whether these conditions are sufficient, i.e. whether we have

H(Σ) =

{
x ∈ Rn+1 | ∀C ∈ Σ : −1 ≤ −x0 + 2

∑
i∈C

xi ≤ 1

}
. (1.2)

In [30] it is proven that this is the case if and only if Σ is the inde-
pendence complex of a so-called perfect graph.

Definition 7 (Perfect graphs). A graph G is perfect if, for every induced
subgraph H ⊆ G, the chromatic number χH equals the size of the largest
clique in H.

Equivalently, by the strong perfect graph theorem [11], G is perfect if
and only if it contains no odd cycle C2k+1 or complement of an odd cycle
C2k+1 as an induced subgraph, for k ≥ 2.

A reason to study Hansen polytopes of perfect graphs is their com-
binatorial simplicity, which makes their face lattice relatively easy to
understand. Also, they often turn out to have “few faces”. More pre-
cisely, in [51], certain Hansen polytopes show up as counterexamples to
the so-called B- and C-conjectures of Kalai, posed in [36]. These were
stronger versions of Conjecture 3, the latter still being open.

We are now looking for possible counterexamples to Conjectures 3 and
4, and in particular to the first one, with its strong combinatorial flavour.
In a centrally symmetric embedding, facets come in parallel pairs, and
geometric intuition suggests that a vertex that is situated between two
parallel facets would typically increase the face number. Hence it should
not be a big restriction to only look at the following class of polytopes.
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Definition 8 (Weakly Hanner polytopes). A polytope is weakly Hanner
if it is centrally symmetric, and each facet contains exactly half of the
vertices.

It is not hard to show that—as the names suggest—every Hanner
polytope is weakly Hanner. A weakly Hanner polytope is clearly the
twisted prism over any of its faces Q, meaning that

P ∼= conv({−1} × −Q, {1} ×Q),

where the equivalences are affine. Again, the intuition that a minimal
polytope should not live in too many different hyperplanes suggests that
we should focus on subpolytopes of a cube. So we assume Q ⊆ Cd−1,
where Cd is the d-dimensional cube.

Very heuristically, “pushing Q to one corner of the cube” should add
structure to the polytope, and decrease the risk of getting unnecessary
faces. This means we should let Q be spanned by the indicator vectors
{
∑

i∈σ ei | σ ∈ Σ} of a simplicial complex Σ, so our twisted prism P

becomes a Hansen polytope. Admittedly, this restriction from centrally
symmetric 0-1–polytopes to Hansen polytopes is quite dubious, since we
even lose some Hanner polytopes here. Indeed, the Cartesian product of
two octahedra can be shown to not be combinatorially equivalent to a
Hansen polytope. However, when looking for counterexamples to Con-
jecture 3, this heuristic seems to suggest a good place to start searching.

However, in [30], it is proven that (1.2) is equivalent not only to Σ
being the independence complex of a perfect graph, but also to H(Σ)
being a weakly Hanner polytope. So there are vague, heuristic, reasons
to believe that we do not lose any counterexamples to the 3d–conjecture
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in the chain of restrictions

Centrally symmetric polytopes ⊇

0-1–polytopes ⊇

Hansen polytopes ⊇

H(G) for perfect graphs G.

In Paper II, we consider Hansen polytopes of split graphs, which are
graphs whose node sets can be partitioned into one clique and one inde-
pendent set. It is easy to see that all split graphs are perfect. Moreover,
computer simulations using polymake [34] suggest that Hansen polytopes
of split graphs have remarkably few faces. However, we show that if S is a
split graph on d−1 nodes, then H(S) has at least 3d faces. Equality holds
only if H(S) is indeed combinatorially equivalent to a Hanner polytope,
and otherwise the difference is at least 16. The approach we take is to
use a partitioning technique, that gives a neat combinatorial description
of the number of faces of Hansen polytopes of split graphs.

We also consider the following, very natural operation on split graphs:
Add a new node, and connect it to every node in the clique of S. We
then get a new split graph S′ (where the new node can be considered to
be an element of either the clique or the independent set). We prove that
s(H(S)) − 3d = s(H(S′)) − 3d+1, so the number of “additional faces” is
invariant under this construction.

Finally, we look at the special case where S can be obtained by ap-
plying the S 7→ S′ operation repeatedly to a four-path. This graph gives
exactly 16 “additional faces”. In this case, some experimental results re-
lated to the Mahler conjecture are presented in [20], not included in this
thesis.



18 CHAPTER 1. INTRODUCTION

1.3 Pattern containments in words

Papers III and IV concern enumerative problems related to pattern con-
tainments. Let π = π1 · · ·πm and τ = τ1 · · · τ` be two words over the
positive integers. An occurrence of τ in π is a subsequence

1 ≤ i1 < i2 < · · · < i` ≤ m

such that πi1 , . . . ,πi`
is order-isomorphic to τ . In such a context, τ is

called a pattern.
A word of positive integers is reduced if it contains exactly the letters

1, . . . , k for some k. Patterns are usually studied in the special case where
π and τ are permutations, meaning that they are reduced and have no
repeated letters. Patterns also behave reasonably well with respect to
“permutation structure”, for example an occurence of τ in π gives an
occurence of τ−1 in π−1. However, the definitions and most questions
regarding pattern containment are just as naturally stated for words over
a linearly ordered alphabet in general.

For a word τ = τ1 · · · τ` over the totally ordered alphabet [n] =
{1, . . . ,n}, we define its reversal τ to be the word τ` · · · τ1. We also
define the complement of τ with respect to the alphabet [n] to be the
word τ c = (n +1− τ1) · · · (n +1− τ`). It is easy to see that an occurence
of τ in π gives an occurence of τ in π, and of τ c in πc.

In [1], Babson and Steingŕımsson introduced a notion of generalized
patterns. A generalized pattern is a word τ with dashes - between some
letters. An occurrence of τ in π is an occurrence of τ in π as an ordi-
nary pattern, where the letters corresponding to τi and τi+1 must occur
immediately after each other in π, unless there is a dash between τi and
τi+1. For example, the subsequence 243 in 2413 is an occurrence of 13-2,
but is not an occurrence of 1-32. Note that among generalized patterns
on permutations, there are no inverses. However, the reversal and com-
plement operations remain, and it is still true that an occurence of τ in
π gives an occurence of τ in π, and of τ c in πc.
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There is a developing theory of partially ordered patterns [38], where
the pattern τ is over a finite partially ordered set while π is still a word
of integers, and an occurence of τ is a subsequence 1 ≤ i1 < · · · < i` ≤ m

such that the map τj 7→ πij is an order homomorphism. This theory
has so far mainly been a tool to study ordinary pattern containment in
permutations.

1.3.1 Packing patterns in words

Much of the work on permutation patterns has been concerned with fix-
ing a pattern τ , and studying the distribution of τ on permutations. By
this we mean the numbers N(τ,m,k) of m letter permutations with k

occurences of τ , where k and m are parameters. Usually the case of
pattern-avoiding permutations, i.e. the case k = 0, is much better under-
stood than the situation for k > 0. A nice account of some of the results
on pattern-avoiding permutations are given in [7].

The work in Paper III is in another direction, following [8]: Fix a
pattern τ , and study the maximal number µ(τ,n) of times that τ can
occur in a word π, when |π| is given. The norm |π| can be measured
in different ways, the most straightforward norm being the length of the
word π, which is the situation studied in [8]. It is then fairly easy to see
that µ(τ,n) scales like

(
n
`

)
, where ` is the number of maximal dash-free

subwords in τ , or simply the length of τ when τ is a classical pattern.
Indeed, there are at most

(
n
`

)
substrings of an n letter word that can

appear as an occurence on τ . On the other hand, if we let πk be the
concatenation of k copies of π, then τ occurs at least

(
k
`

)
times as often

in πk as in π. Since the size |πk| grows linearly with k, this proves that the
number of occurences grows at least linearly in

(
n
`

)
. With a little more

work, one sees that µ(τ,n)/
(
n
`

)
actually approaches a limit as n → ∞.

We call this limit the packing density of τ , and denote it by δ(τ). In [8],
δ(τ) is calculated for certain classes of patterns.

This can be generalized to assigning different weights to different let-
ters, and it may be interesting to study how the packing density changes
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when adjusting these weights. The same argument as before shows that
limn→∞ µ(τ,n)/

(
n
`

)
exists also in this case. An interesting special case is

assigning weight i to the letter i, so the size of π is n = ‖π‖ =
∑

i πi.
Looking at words (over Z+) of fixed norm n is thus equivalent to looking
at integer compositions of n. In Paper III, we determine the packing
densities into compositions of all patterns of length 3, and prove some
more general results for patterns of special kinds.

1.3.2 Fixed points and descending runs

Among the most elementary patterns are descents 21 and inversions 2-1.
Their distributions on permutations are well known. Indeed, N(21,m, k)
are the so-called Eulerian numbers, while N(2-1,m, k) are called the Ma-
honian numbers, and while they have no simple closed form, recursive for-
mulas are easy to derive. In Paper IV, we take a closer look at the descent
statistic and study its joint distribution with the fixed point statistic.

Specifically, decompose [n] in blocks of length ai, with a1+· · ·+ak = n,
and consider the set Sa = S(a1,...,ak) of permutations that descend within
each of these blocks. It is clear that |Sa| =

(
n

a1,...,ak

)
, since a permutation

in Sa is determined by which letters go in which block. For example,
the 6 permutations in S(2,2) are

21|43, 31|42, 41|32, 32|41, 42|31 and 43|21.

With this notation, the symmetric group Sn is just S(1,...,1), and should
not be confused with S(n) (which contains only the strictly decreasing
permutation).

Paper IV enumerates the derangements in Sa, i.e. the permutations
with no fixed points. We denote the set of derangements in Sa by Da.
For example, we have

D(2,2) = {21|43, 31|42, 43|21}.
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It is well known, and easy to prove by an inclusion-exclusion argument,
that the number of derangements in Sn is the integer closest to n!/e, for
every n ≥ 1.

If having descents in specified subsets of the positions and being fixed-
point free were almost independent events, we would hence have

|Da| ·
∏

i

ai! ≈
n!
e

,

with the squig ≈ interpreted properly. However, the events can be pretty
far from independent. To see this, consider again the one block compo-
sition a = (n). There is only one permutation in S(n), and this one is a
derangement if and only if n is even.

For fixed k, the generating function of |Da| is

∑
a

|Da|xa1
1 · · ·xak

k =
1

(1 + x1) · · · (1 + xk)(1− x1 − · · · − xk)
, (1.3)

where the sum is taken over all compositions a with at most k blocks,
allowing some of the blocks to be empty. The generating function was
first given by Han and Xin in [28], using symmetric function methods.
We reprove their theorem with a simple recursive method.

From the generating function, we derive a closed formula for Da,
namely

|Da| =
1∏
i ai!

∑
0≤b≤a

(−1)
P

bj

(
n−

∑
bj

)
!
∏

i

(
ai

bi

)
bi!. (1.4)

Before stating further results of Paper IV, we need to introduce the
number of fixed point λ-coloured permutations to be

fλ(m) =
∑

π∈Sm

λfix(π),

where fix(π) is the number of fixed points in π, and we use the convention
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00 = 1. It follows directly that f1(m) = m!, and that f0(m) = |D(1,...,1)|
is just the number of derangements of [m]. In fact, fλ(m) is just the
special case α = 1, u = λ− 1 of the Charlier polynomials [25]

Cn(α,u) =
∑

k

(
n

k

)
α(α + 1) · · · (α + k − 1)un−k.

A key property of the numbers fλ(n) is that

d

dλ
fλ(n) = nfλ(n− 1). (1.5)

Since the publication of Paper IV, the numbers fλ(n) and the differenti-
ation rule 1.5 have been successfully applied by Sun and Zhuang [54] to
give a unifying proof of Riordans formula [48] on tree enumeration, and
other related identities. Riordan’s formula says that

∑
k

(
n

k

)
(k + 1)!(n + 1)n−k = (n + 1)n+1, (1.6)

and was generalized in [54] to

∑
k

(
n

k

)
fλ(k + 1)(n + 1)n−k = (n + λ)n+1. (1.7)

Similarly, (1.4) still holds if we replace every occurence of m! by fλ(m)
in the summation, for any λ. The independence of λ in (1.4) is proven
in two ways in Paper IV, by differentiation and by using bijections. The
most interesting application of this independence is writing

|Da| =
1∏
i ai!

∑
0≤b≤a

(−1)
P

bj f0

(
n−

∑
bj

)∏
i

(
ai

bi

)
f0(bi). (1.8)

Noting that f0(1) = 0, we reduce the number of non-zero terms in the
summation quite substantially.

Finally, we look back at the question of dependence between the events
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of being in Sa and being a derangement. We prove that, except in
the trivial case where a = (n) and n is odd, the two events are always
positively correlated. In other words, we always have

|Da| ≥
1∏
i ai!

f0(n).

Noting that the right hand side corresponds to the term with b = 0 in
(1.8), we consider all other terms as “correlation terms”, and conclude
that their sum is negative.

This correlation result is actually proven via a stronger monotonicity
result. Consider h(a) = |Da|

∏
i ai!, which is the number of permuta-

tions in Sn, that become derangements when sorted decreasingly within
the blocks. Suppose that a′ is not a single block of odd length, and
is constructed from a by moving a position from a smaller block to a
larger one. Then we prove that h(a′) ≥ h(a). In particular, this implies
that h is monotone with respect to the natural “containment order” on
compositions of n.

Since the publication of Paper IV, there has been some further progress
in the same direction. In [53], Steinhardt studies the more general con-
cept of (a, S)-permutations. As before, a = (a1, . . . , ak) is a composition
of n, and we let S ⊆ [k] be a subset of the blocks. An (a, S)-permutation
is a permutation that descends in the blocks indexed by S, and that as-
cends within each of the other blocks. With this notation, Sa is just the
set of (a, [k])-permutations.

In [53], a bijection that goes back to [24] is used, to study (a, S)-
permutations according to their cycle structure. In particular, it is shown
combinatorially that for any conjugacy class C, and any permutation
σ ∈ Sk, the (a1, . . . , ak, S)-permutations in C are in bijection with the
(aσ(1), . . . , aσ(k), σ

−1(S))-permutations in C. Since the class of derange-
ments is just the union of all conjugacy classes with no 1-cycle, this
answers the open Problem 3 posed in Paper IV, which asked for a direct
combinatorial explanation of why the numbers Da are invariant under
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permutations of the blocks in a.
The fact that the function

1∏
i ai!

∑
0≤b≤a

(−1)
P

bj fλ

(
n−

∑
bj

)∏
i

(
ai

bi

)
fλ(bi)

is constant in λ is also given a neat combinatorial proof in [53]. Moreover,
the generating function from Paper IV, and the closed formula that fol-
lows from it, are generalized to the case of (a, S)-derangements. Indeed,
it is shown that the generating function for (a, S)-derangements is∏

i 6∈S(1− xi)
(1− x1 − · · · − xk)

∏
i∈S(1 + xi)

.

This result answers our open Problem 4 from paper IV, and is proven in
two ways by Steinhardt, one of which is completely analogous with our
proof of the case S = [k].

The bijection from [24] is also recycled to prove the following enumer-
ation of (a, S)-derangements: Let c(a,S)(π) = 0 if π has any odd length
cycle contained in a block of a, or if it has any cycle contained in an
ascending block of a. Otherwise, let c(a,S)(π) = 2m, where m is the
number of (even length) cycles contained in a (descending) block of a.
Then the number of (a, S)-derangements is

1∏
ai!

∑
π∈Sn

c(a,S)(π).

Several results of Steinhardt’s paper were also proven independently
by Kim and Seo [37] and by Elizalde [13].



1.4. OPTIMAL STOPPING ON FINITE POSETS 25

1.4 Optimal stopping on finite posets

1.4.1 The secretary problem

The secretary problem is a famous, motivating example for much of opti-
mal stopping theory. It is also known under several other names, such as
the marriage problem, the googol game and the best choice problem. A
nice survey of the problem and related results is [15]. The formulation of
the problem that motivates its name is the following. There are n candi-
dates for a job being interviewed one after the other, in uniform random
order. After each interview, the selector must decide whether or not to
accept the present candidate, based only on the relative rankings of the
candidates she has seen so far. The selector’s task is to maximize the
probability of hiring the very best candidate. Selecting any other candi-
date than the best one, or altogether failing to hire one, are considered
failures.

It is well known that there is a strategy that succeeds with probability
approaching 1/e from above as n grows, and that this strategy is optimal.
Proving this relies on the observation that an optimal strategy must have
the form that you discard all the first k = k(n) candidates regardless of
their relative rankings, and after this threshold time you accept the first
candidate that is better than everyone you have seen before. This is a
(very simple) special case of the monotone case theorem [10], and once
this observation has been made, simple calculations yield that the success
probability is maximized when k(n) = bn/ec, and is approximately 1/e.

Actually, calculations are further simplified if we, rather than letting
n be known to the selector, assume that the candidates arrive at indepen-
dent uniform random times in [0,1]. This formulation, which we will use
henceforth, is clearly at least as difficult for the selector as the original
problem, because if n were known the selector could produce n random
times in [0,1] herself, and then follow her strategy from the continuous
time case.

Since the problem first appeared, it has seen many generalizations
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and alternative versions. Some quite natural versions appear when the
applicants do not only possess relative rankings, but have some absolute
real valued ranking, drawn from a distribution that may or may not be
known to the selector. The problem where the selector has full informa-
tion about the distribution was treated in [26], where it is proven that the
success rate decreases to a limit α ≈ .58 as n →∞. An interesting result
by Petruccelli [46] shows that if the selector knows that the distribution
is normal with variance 1, then the asymptotic success rate is still α, so
knowing the mean gives no advantage asymptotically. In such versions,
we may also want to maximize not only the probability of selecting the
best candidate, but rather the expected ranking of the selected candidate.
Other versions include letting the objective be to select one among the
r best candidates for some r > 1, or to punish selection of a suboptimal
candidate less harshly than failure to hire. A selection of such variations
of the secretary problem were treated in [14].

1.4.2 The partially ordered secretary problem

Several generalizations and versions of the secretary problem ask for state-
gies for the selector, when the applicants are not necessarily linearly or-
dered, but are rather elements of some partially ordered set (poset). The
selector then succeeds if the element she selects is a maximal element
in P . We will denote the set of maximal elements in P by max(P ).
The rank rk(x) of an element x ∈ P is the maximum length of a chain
xn < xn−1 < · · · < x1 = x in P , and the height of P is defined to be

h(P ) = max{rk(x) : x ∈ P}.

Analogously, the width of a poset is the largest size of a set of pairwise
unrelated elements in P .

The secretary problem has been solved for particular posets, such as
binary trees [44], stacks of antichains [21] and disjoint unions of chains
with restrictions on the order in which the candidates appear [27, 40].
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The very interesting problem on whether there exists a strategy that wins
with probability bounded away from zero for any possible poset remained
open for many years. Finally, in [47] Preater constructed a strategy that
solves the problem even when the poset is not known to the selector. The
strategy is the following:

Strategy 1 (Preater). Wait until time 1/2 without accepting any of the
elements seen. Denote by Y the induced poset formed by the elements
that have arrived by time 1/2. Tag all the elements of rank h(Y ) in Y ,
and with probability 1/2 tag also the elements of rank h(Y ) − 1 in Y .
Finally, accept the first candidate that dominates a tagged element, when
it appears.

Preater [47] proved that this strategy succeeds with probability at
least 1/8 for any poset. From this point, the most interesting question
about the partially ordered secretary problem was whether one can uni-
versally win with the same probability 1/e as one can if the poset is
known to be linear. It might be natural to think so, since the linear order
extends all other orders, and has the property (which is unfortunate for
the selector) that all its k-element subposets are isomorphic. However,
extracting a strategy that works for all posets from the strategy in the
linear order case, turned out to be quite difficult.

In [23], Georgiou et al improved the analysis of Preater’s strategy to
prove that it actually wins with probability at least 1/4 for any poset.
There are two parameters—the waiting time and the probability of tag-
ging elements of second-to-maximal rank—with which Preater’s strategy
can be modified. However, by considering the behaviour on simple classes
of posets, it can be shown that such modifications can never give a uni-
versal success probability of 1/e [32].

Kozik [39] constructed a quite different strategy, based on a sequence
of threshold times, and proved that his strategy succeeds for any poset
with at least a probability that is strictly greater than 1/4. The proof
is quite technical, by division into cases. There is to our knowledge no



28 CHAPTER 1. INTRODUCTION

better analysis of his strategy, but Kozik himself says that “although the
improvement might be considerable, we do not think it is possible to
approach the value e−1 in this way” [39]. Kozik’s strategy is as follows:

Strategy 2 (Kozik). If an element arrives at time t, and is one of
m maximal elements in the induced poset seen at the time, accept it if
t > e−1/m.

1.4.3 The solution for general partial orders

In Paper V, we present the first strategy that does not depend on the
poset, and has a success rate at least 1/e for any poset. Here, we will
describe the strategy slightly differently from Paper V, to hint at further
open questions. The strategy crucially depends on the greedy maximum
distribution µGr(P ), defined as the distribution of the random variable
Gr(P ) ∈ P , constructed recursively for all posets P as follows: If P has
only one element, then this element is Gr(P ). Otherwise, first select
x uniformly at random in P . If x is maximal in P , then Gr(P ) = x.
Otherwise, select Gr(P ) according to the distribution µGr((x,∞)), where
(x,∞) is the order ideal {y ∈ P : y > x}.

We are now ready to define our strategy from Paper V, which we
prove to succeed with probability at least 1/e for any poset P .

Strategy 3 (Freij, Wästlund). Wait until time 1/e without accepting
any of the elements seen. If an element x arrives at a time after 1/e,
denote by Px the induced poset seen when x arrives. Accept x with prob-
ability µGr(Px)(x).

For any fixed x ∈ max(P ), and any t ∈ [0, 1], let Pt,x be the random
subposet of P that contains x, and for all other elements y ∈ P r {x}
contains y with probability t, independently for different y. We can think
of this as the induced poset as seen at time t, conditioned on x arriving
at time t. It is interesting that the only property that we need from the
class of distributions {µGr(P )}P , for Strategy 3 is the following inequality
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for every x ∈ max(P ) and t ∈ [0, 1]:

E[µGr(Pt,x)(x)] ≥ µGr(P )(x). (1.9)

The expectation on the left hand side is obviously taken over the random
subposet Pt,x. This inequality follows quite directly from the construction
of {µGr(P )}P , and is proven in Paper V. It is natural to ask for what other
classes of distributions on maximal elemets of posets, the inequality (1.9)
holds.

It is easily seen that (1.9) does not hold for the uniform distribu-
tion on maximal elements. Indeed, trying Strategy 3 with µGr(P ) re-
placed by uniform distribution fails for the following reason. Let Pk,n be
the poset with maximal elements x1, . . . , xn, and non-maximal elements
{yi,j}1≤j≤k

1≤i≤n , and relations xi > yi,j for every i, j. Then, if n is fixed and
k → ∞, the probability of accepting any xi other than the last one to
arrive will be negligible. On the other hand, the probability of accepting
the last xi will be exactly 1/n. So this modified strategy does not even
give success rates bounded away from zero.

On the other hand, let µLin(P )(x) be the probability that x is the
unique maximal element of a uniformly chosen linear extension of P . We
conjecture that (1.9) still holds with µGr(P ) replaced by µLin(P ). This
does not seem to follow from any known correlation inequalities for the
uniform distribution on linear extensions, such as the ones in [16]. It may
be helpful to understand this inequality from the viewpoint of correlations
between coordinates in the 0-1–polytope associated to P , perhaps using
geometric methods similar to those in [52]. The 0-1–polytope associated
to a poset P with elements p1, . . . , pn is the n-dimensional polytope

KP := {x ∈ Rn | 0 ≤ xi ≤ 1 , xi ≤ xj whenever pi < pj in P} .

Note that the polytope associated to a linear order is a simplex, and that
KQ ⊆ KP if Q is an extension of P .

Independently of (but chronologically after) our results in Paper V,
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Garrod and Morris contributed to the partially ordered secretary problem
in [22]. They present, for every poset, a strategy that succeeds with
probability at least 1/e. Their result is significantly weaker than ours in
the sense that the strategy depends on the poset. However, for special
classes of posets their strategy performs better than strategy 3.

Strategy 4 (Garrod, Morris). Assume that we know that P has m max-
imal elements. If m = 1, let τ = 1/e, and if m > 1, let τ = m−(m−1)/2.
Wait until time τ without accepting any of the elements seen. If an el-
ement x arrives at a time after τ , denote by Px the induced poset seen
when x arrives. Accept x if x ∈ max(Px) and |max(Px)| ≤ m.

For any poset, Strategy 4 has success rate at least 1/e, and if P

has m > 1 maximal elements and width m, the success rate is at least
m−(m−1)/2. It is conjectured that the result holds even if the width
assumption is ignored. Strategy 3 is not analyzed in depth for special
classes of posets, but it is safe to say that Garrod’s and Morris’ strat-
egy performs better for a known number m > 1 of maximal elements.
However, the problem it solves is less general than the one considered in
Paper V.
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