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Kurzfassung

Graphdatenbanken werden immer öfter verwendet um vernetzte Daten abzuspeichern.
Viele dieser Systeme bieten ein flexibles Datenmodell basierend auf property graphs,
das sind Graphen wo Knoten und Kanten mit Tags gekennzeichnet und weitere Eigen-
schaften in Schlüssel-Wert Paaren gespeichert werden können. Um auf Daten in solch
einer Datenbank zuzugreifen verwendet man Anfragesprachen. Im Unterschied zu re-
lationalen Datenbanken, wo SQL die standardisierte Anfragesprache ist, gibt es noch
keine standardisierte Anfragesprache für Graphdatenbanken. Nutzer können daher von
einer breiten Palette an Sprachen wählen die sich in dem verwendeten Datenmodell, der
Ausdrucksstärke, der Einfachheit der Verwendung und so weiter unterscheiden.

Das Ziel dieser Arbeit ist ein systematischer Vergleich von solchen Sprachen. Daraus
wollen wir Hilfestellungen zur Sprachauswahl bei bestimmten Anwendungsfällen ableiten.
In einem ersten Schritt identifizieren und analysieren wir Kernfunktionen die in allen
Anfragesprachen für Graphdatenbanken vorhanden sind. Dazu zählt das Finden von
Teilgraphen anhand von Graphmustern (patterns), von Pfaden mittels Pfadanfragen
(path queries) und die Kombination dieser beiden zu Navigationsanfragen (navigatio-
nal queries). Wir erweitern diese Funktionen um strukturunabhängige Anfragen sowie
Datenmanipulations- und Datendefinitions- Operationen.

Anhand dieser Funktionen analysieren wir fünf moderne Anfragesprachen für Graphda-
tenbanken: Cypher, Gremlin, PGQL, GSQL und G-CORE. Wir analysieren die Sprachen
nicht nur anhand von generellen Charakteristika, sondern implementieren auch Teile
des “Social Network Benchmarks” und analysieren diese Anfragen. Es stellt sich heraus,
dass Cypher, PGQL und G-CORE eine ähnliche Syntax verwenden sowie ähnlich aus-
drucksstark und einfach zu verwenden sind. Auf der anderen Seite ähneln sich GSQL und
Gremlin: beide sind Turing-vollständig und unterstützen nicht nur deklarative, sondern
auch imperative Konstruktionen.
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Abstract

Graph databases are increasingly adopted in industry as they offer native support for
graph-like data. Many such systems use a flexible data model based on property graphs,
these are graphs where vertices and edges can be labeled and augmented with key-value
pairs, the properties. Data stored in such a database is accessed via graph query languages.
Unlike SQL, that is the standardized query language for relational databases, there is
no standard for a graph query language yet. Users can therefore choose from a range of
languages that vary in their specific data model, expressiveness, ease of use and so on.

The goal of this thesis is a systematic comparison of graph query languages and to give
guidelines for choosing a language for specific application scenarios. Towards achieving
this goal, we identify and analyze core features inherent to such languages. The most
common ones are subgraph discovery by matching graph patterns, path discovery using
path queries and the combination of both in navigational queries. We extend these
features to also include structure independent queries as well as data manipulation and
data definition operations.

Based on these features, we then analyze five contemporary graph query languages:
Cypher, Gremlin, PGQL, GSQL and G-CORE. The analysis is not only based on
general characteristics of the languages as we also implement parts of the Social Network
Benchmark and analyze these queries. It turns out that Cypher, PGQL and G-CORE
are quite similar in their syntax, expressiveness and ease of use. On the other hand,
GSQL and Gremlin share some similarities as they are both Turing-complete languages
that are not solely declarative but also offer imperative constructs.
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CHAPTER 1
Introduction

Relational databases are well studied and optimized for data that can be modeled via
tabular relations. However, using a relational database comes with serious restrictions,
especially when the information is highly interconnected. In this case, querying data
often means to move along some relationships between the entities. This is typically done
by joining multiple relations, which adds computational overhead compared to systems
tailored for such queries. Furthermore, relational databases are not well suited to handle
a dynamic model where the structure changes over time.

Graph databases are a type of a NoSQL database and specifically developed to handle
graph-like data, where information coming from relationships is at least as important as
information stored in entities [Ang12]. They are increasingly adopted in industry as for
example chemistry-, biology-, or social network- related data can often be modeled as
a graph with information stored in nodes and relationships connecting them. In these
cases graph databases offer a more natural and flexible model as well as native support
for queries on a graph structure, like navigating along the relationships [AG08, RWE15].
Graph databases have been around since the 1980s and enjoyed a rise in popularity over
the last decade. This comes from technical advancements that allow large graphs like
social networks with millions or even billions of nodes to be stored and processed [AG18].

Data stored in a graph database is accessed via a query language. Unlike for relational
database management systems1 , where SQL is the standardized query language, there
is no standard for a graph query language yet, as work on such a standard started in
2019. Therefore, many vendors of graph database systems define and use their own query
language that differs from others in their expressiveness, their supported data types,
their ease of use and so on. The rise of interest in graph databases is accompanied by

1We use the terms database management system, database system or simply database interchangeably
for the system that “enables users to define, create, maintain and control access” [CB05] to a collection
of data.
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1. Introduction

academia putting more focus on this area as well. This resulted in a better understanding
of some systems and their underlying structures, and also in the invention of more query
languages.

Choosing a system therefore involves not only the properties of the system but also the
supported query language. With many languages to choose from, it is important to get an
overview about their expressiveness, their characteristics and their ease when formulating
queries. But to our knowledge there is no comprehensive comparison of current major
and most promising languages regarding these factors.

This thesis provides a comparison of common query languages, especially regarding their
expressiveness and ease of use. To get a comprehensible comparison, core features of
query languages are identified and analyzed, and the comparison is done based on these
features. We analyze four languages from industry (Cypher, Gremlin, PGQL, GSQL)
and one promising language from a research project (G-CORE). The analysis is not
only based on general information as we also implement parts of the Social Network
Benchmark. Whereas a full implementation of all chosen queries can be found on our
GitHub repository2, we analyze only some of them in detail in this thesis.

It turns out that Cypher is a good choice, both when first starting with graph databases
and for the use in applications, as long as more expressive path queries and a schema
are not needed. PGQL is very similar to Cypher, and what it lacks in functionality it
makes up for with sophisticated path querying capabilities. Although Gremlin allows for
expressive queries, its low-level approach with a focus on imperative traversals makes
it harder to get into for someone familiar with high-level declarative query languages.
GSQL is designed for huge graphs with support for native parallel query execution. That
results in a slightly different syntax compared to Cypher and PGQL, but the major
difference is the support of a strong type system and schema. We conclude with G-CORE,
an expressive research language that combines useful features from existing languages,
achieves full composability and elevates paths to first-class citizens in the graph.

The remainder of this thesis is structured as follows: Chapter 2 introduces graph databases
in general, including their underlying data models and the query languages we focus on in
our comparison. We then identify common features of query languages and analyze these
languages regarding the expressiveness they enable in Chapter 3. The five query languages
are introduced and analyzed in Chapter 4. We end this chapter with a general comparison
and provide guidelines for selecting a language for specific application scenarios. Finally,
Chapter 5 concludes the thesis and includes notes on future work.

2https://github.com/martin-kl/Diploma_Thesis_01526110_code
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CHAPTER 2
Graph Databases

Since the 1980s, a multitude of database systems supporting different graph models
and query languages targeting different applications have been introduced. We start
with a description of graph databases in general and give some historical background
in Section 2.1. The basic concepts of graph databases and underlying data models are
introduced in Section 2.2 and Section 2.3, respectively. Section 2.4 gives an introduction
to five of the most common graph query languages. These are the languages we analyze
and compare in Chapter 4.

2.1 Brief History and Scope
Graph databases and query languages have been around for multiple decades. Initially
introduced in the 1980s, with the invention of graph databases like G-BASE in 1987
[Kun87] and corresponding data models and query languages like G [CMW87], interest
in the area declined in the later 1990s as databases targeting for example spatial and
geographical data emerged [AG08]. In the late 2000s and especially during the last decade
we saw a breakthrough of graph databases, as the need for frequent schema changes and
real-time query responses on databases containing vast amounts of interconnected data
became more relevant [FB18]. They are now used to handle data from a wide range
of fields: from transport networks over biological information like genes and protein
interactions to social networks [RWE15].

Using a graph database became a requirement to handle vast amounts of interconnected
data in fields like these, as they are designed to allow a more natural and faster access
to graph-like data [Ang12]. As an example for this, assume that we model such data in
a relational database. This could be done by storing the edges in a table where each
row represents an edge that contains two foreign key references, one for each adjacent
node. We end up with lots of many-to-many relationships for all the connections carrying
data. Although we are able to model graphs in this way, querying the structure can

3



2. Graph Databases

become quite cumbersome. In contrast to conventional data management we are not only
interested in the values stored in the tables but also in the connection patterns [EAL+15].
If we search for such patterns or query not only information stored in a single relation, we
use join operations to move along a path 1 in the graph. These joins can easily become
complex, therefore computationally demanding and impact the performance, even if only
a small part of the graph is queried. Graph databases on the other hand are designed to
store and process such interconnected data. They can handle large graphs while providing
a high performance, especially for queries traversing them [HP16].

One can split the numerous available systems handling graph data into two main categories
based on their focus on either transactional or analytical processing: [RWE15, RH19]

Transactional Systems that are focused on transactional processing are usually online,
meaning that they are built for real-time access to the current data. Similar to the
world of relational databases they are designed for Online Transactional Processing
(OLTP) and called graph database management systems or simply graph databases.
We focus on these tasks and systems in our thesis.

Analytical Systems focused on analyzing graph-like data can either be online or offline,
i.e. they can work on the current data or on an offline copy of it. Regardless of this
design choice, these tasks are often called Online Analytical Processing (OLAP)2

and are typically done in batch-processing fashion. Graph databases support these
tasks to some degree but are not optimized for them and sometimes even lack the
ability to perform them at all. Therefore, special technologies exist that are often
called graph compute engines or graph analytics systems.

2.2 Basic Concepts
Unlike relational databases that are built on tabular relations as underlying data structure,
graph databases are built on the mathematical structures of graphs. Although there are
multiple different data models used in various graph databases (see Section 2.3), they all
represent their domain using its structure via nodes (vertices), edges (relationships, links)
and in most cases properties. Unless mentioned otherwise, we assume directed graphs as
most systems do not support undirected edges. Let’s look at an example for such a data
structure. Figure 2.1 depicts a small social network containing three nodes representing
its users that are connected via multiple edges. Edges and nodes are either labeled as
User or FOLLOWS and each node has a property called name. The structure tells us
that Alice follows Bob, Carol follows Alice and Carol and Bob follow each other. This
is a small motivating example of a social network that could easily be extended to also
contain further information about the users or relationships by adding more properties.

1Moving along a path, that is a concatenation of adjacent edges, means to traverse the path from its
start to its end node.

2They are sometimes also denoted as Offline Analytical Processing [BPG+19].
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2.2. Basic Concepts

Figure 2.1: A small social graph.

Furthermore, the graph could also be extended to include other entities like posts or
messages by adding appropriate nodes and edges.

Depicting information in such a connected data model allows a graph database to handle
highly interconnected data well, but one has to keep in mind that building on graphs
comes with its own drawbacks. While querying for related data and traversing the graph
can be done efficiently, querying the global structure is often challenging and shows
notably worse performance compared to relational databases in some cases. An example
for such a global query would be to search for all users at a specific age or for persons
that have at least one friend following them (i.e. one incoming edge labeled FOLLOWS in
our example). As graph databases do not provide particularly efficient solutions for all
problems, they are not seen as a replacement for their relational counterparts but more
as a complementary system that is used especially to analyze strongly interrelated data.
[FB18]

2.2.1 Native vs Non-Native Graph Representation
Databases with built-in support for graphs can be split into two categories that differ in
their internal data representation: native (also pure) graph databases and multi-model
(also non-native) ones [EAL+15, AG18, BPG+19].

• Native graph databases like Neo4j3 and TigerGraph4 focus solely on data structured
in graphs. As their data model and query languages are specifically designed with
graphs in mind, graphs are first class citizens in these systems. Most of these
databases do not only present the data as a graph to the user but also use a graph
data structure internally. This allows them to be optimized for certain graph
queries. An example would be the provision of constant time adjacency retrievals
regardless of the size of the graph that is possible in such systems. Furthermore,

3https://neo4j.com/
4https://www.tigergraph.com/
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2. Graph Databases

many such systems provide graph specific functions like the shortest path algorithm
or breadth-first search out of the box.

• Multi-model databases support other models apart from graphs, like the relational
or document oriented one, as well. Many of these systems transform the data into
a different model to store it. Consequently, a global index is commonly used to
store and retrieve adjacency information. Although some of these systems also
provide graph specific functions out of the box, they are in many cases not that
performant caused by the use of different storage and processing mechanisms. On
the other hand, multi-model databases can integrate data coming in various different
structures and possibly from multiple sources into a single system. Having all data
in a single system allows for a uniform access via a single query language and the
data can be analyzed over different structures. Examples for such systems are
ArrangoDB5 and Azure Cosmos DB6.

Regardless of a graph database being categorized as native or multi-model we can identify
two major components in such a system: the storage and the processing component
[RWE15]. Although these components are common in both database categories, they
differ substantially and their design and mechanisms influence the category of a database.

Storage The storage component is responsible for reliable storage and access to the data.
One possibility to achieve this is to serialize the graph and store it in a relational
table. This allows for the use of a single copy of the data that can be accessed by
either SQL queries or queries written in a graph query language, depending for
example on the knowledge of the engineers or the ease-of-use for the given problem.
However, serializing the graph and keeping it in a data model that is not specifically
designed and optimized for such interconnected data comes with all performance
drawbacks mentioned earlier. This is one of the reasons why databases with such a
non-native storage component are not categorized as native graph databases, but
as multi-model ones.
Another possibility is to store data directly in a connected structure that allows for
faster, in many cases constant time, retrievals of adjacent entities. By using such a
storage component, these databases are usually able to scale notably better to large
graphs containing millions of nodes while still providing a high performance for
most graph related queries. A storage component built on such a design is referred
to as native graph storage. As mentioned earlier, most native graph databases
represent the data internally as a graph and use such a native graph storage.

Processing The processing component connects to the storage component and is re-
sponsible for all operations on the data. As the choice of the storage mechanism
heavily influences the inner workings of the processing component, like the use of a

5https://www.arangodb.com/
6https://azure.microsoft.com/services/cosmos-db/
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2.2. Basic Concepts

native graph storage that provides different performance characteristics and query
possibilities to the processing component, the border between these components
is quite blurry. Therefore, the most interesting part of the processing component
concerns also the storage technique and is about the question whether the system
relies on index-free adjacency or not.
When using index-free adjacency, adjacent nodes and edges are physically stored
next to each other with direct references to each other. These components are also
referred to as native graph processing and are used in most native graph databases.
As an example, assume that we have the nodes x, y and the relationship e = (x, y)
in a system. With index-free adjacency, the processing component can “move” from
x to e and further to y by directly retrieving their information without the need of
a global index containing the relationships. Having these direct pointers allows for
constant time retrieval of an adjacent node or relationship, regardless of the size of
the whole graph. On the downside, graph databases in general and especially native
graph processing systems that rely on their local adjacency information instead of
global indexes have the problem that sharding a graph is very hard. Sharding is
the process of partitioning a graph into multiple subgraphs that can be stored on
different machines to achieve horizontal scalability. [RN11]
Another option for the design of a processing component is to use a global index
that contains references to relationships and the nodes in these relationships. To
navigate the graph, data is joined with the global index. This approach is used in
multi-model graph databases.

2.2.2 Indexes
Indexes are used to speed up access to relevant data. Relational databases rely heavily
on these indexes, as they enable tables to be efficiently joined and data entries to be
efficiently found. Graph databases also rely on indexes in various ways. Systems not built
on the principle of index-free adjacency use an index containing adjacency information.
This index can then be used to move between connected entities in the graph by joining
the data with the index. Depending on the system, this can work similar to relational
databases. Graph databases relying on index-free adjacency have local indexes integrated
into the graph structure. As briefly explained in the processing component above, every
node and edge in such a system keeps direct pointers to all adjacent nodes and edges.
These are stored together with the entity and form a local index for every node and edge.
Once the start node of a traversal is found, they can traverse the neighborhood without
accessing a dedicated or global index by using the pointers in their local index [BPG+19].
This is a significant advantage compared to systems without index-free adjacency where
performance usually deteriorates as the graph becomes bigger, caused by an increase in
the size of the index. However, these databases also use additional indexes to find specific
nodes in the graph, like the start node in a query, and to accelerate other operations,
especially global ones. As an example, assume that our social network from Figure 2.1
also contains the age of every user. If we want to get the names of all users older than 20

7



2. Graph Databases

years for example, an index on the age allows the system to check for the condition on
the index, and limits the access to nodes that satisfy it. [RN11]

2.3 Graph Data Models
Depending on the definition, the term data model (also database model, db-model or
model) comprises not only the underlying data structure used by a database system
but also the data description, integrity constraints, maintenance and even access and
query mechanisms [AG08, Ang18]. We focus on the underlying data structure used by a
database system in this section. As briefly mentioned earlier, it is defined around the
mathematical structures of graphs, nodes and edges [Ang12]. Unlike in the world of
relational databases there is no standard data model used in graph databases. Figure 2.1
is an example of a labeled property graph that is widely used, especially in native graph
databases. Other notable models include the Resource Description Framework (RDF)
model used in the domain of Semantic Web and hypergraphs that generalize the notion
of a graph to allow edges between more than two nodes [AG18]. We now take a closer
look at the RDF and various property graph models as these are the data models used
in most graph databases of our time.

2.3.1 RDF
The RDF model encodes data in subject-predicate-object expressions and databases using
this model are therefore also denoted as Triplestore. In contrast to other models, it uses
a schema that is integrated together with the data into a single graph. The schema is a
small part of the graph and contains information about possible connections as well as
node and edge types. Since it is a World Wide Web Consortium (W3C) recommendation,
it enjoys widespread recognition, good documentation and the available systems are
unified by a common and standardized query language: SPARQL. It was originally
developed to represent web metadata, but can also be used in a more general way to
model interconnected resources using the aforementioned triples. On the other hand,
these systems are usually not native graph databases as many transform the triples into
other formats and store them for example in relational tables. Nonetheless, they fall
under the category of graph databases as larger amounts of these triples can form a body
of interconnected nodes and therefore a graph structure. [RWE15, AG08, AG18]

Figure 2.2 gives an example of an RDF graph containing the data from our social network
example. An example of a triple in this case is “Alice follows Bob”, where Alice is
the subject (the resource that is described), follows the predicate (property) and Bob
the object (or property value) [AG08]. The schema is given in a separate part of the
graph that is connected to the instances via type-edges. These connections represent the
information given by the labels in Figure 2.1. Apart from the missing labels there are also
no inherent properties on nodes. Such a property is stored in a triple that introduces a
node containing the value and an edge labeled by the name of the property. An example
for this is the node "Alice" connected by the name-edge to the node user1.

8



2.3. Graph Data Models

Figure 2.2: A small social graph in the RDF data model.

Despite being endorsed by W3C and having, in contrast to other graph databases, a
standardized query language, these RDF stores are mainly used in the domain of Semantic
Web. A reason for the lack of utilization in other domains could be the comparably
bloated data structure that uses an additional node and edge for every label and property.
Another reason could be the use of a schema that limits the flexibility of the data model
[SS19].

2.3.2 Labeled (Property) Graphs
Edge-labeled graphs are one of the simplest form of graphs where nodes and edges can be
each labeled with one label. Labels assigned to edges indicate the type of the relationship
between the nodes. This allows us to model different relationships as well as multiple
edges between any two nodes in a single graph. RDF-graphs are built on the basis of
edge-labeled graphs but differ in their use of a schema and therefore the use of node and
edge types. Edge-labeled graphs do not provide a schema and types can only be given
implicitly by setting an appropriate label. Figure 2.3 shows the data from our small
social network example encoded in an edge-labeled graph. We added the information
that Carol is the sister of Alice to show the power of edge labels. Without these labels,
we would simply have two edges from Carol to Alice without being able to distinguish
them. [AAB+17]

(Labeled) Property graphs, also LPGs or simply property graphs, extend this model by
adding labels to nodes and including properties directly in the nodes and edges. Properties,
also called attributes, are key-value pairs containing non-graphical information like name:
Carol. The inclusion of properties allows for a more natural data modeling and faster
retrieval of the data related to a node or edge [Ang12]. Therefore, property graphs can
be described as a "directed, labeled, attributed multigraph" [AG18], where multigraph
denotes that multiple edges between any two nodes are possible. Although this model

9



2. Graph Databases

Figure 2.3: A small social graph in the edge-labeled data model.

is more popular than others [FGG+18b, BPG+19] and used in many graph databases,
it is not standardized and many variants of it exist. Angles [Ang18] presents a formal
definition of the property graph data model that allows nodes and edges to be labeled
with multiple labels and every property to be assigned a set of values. Other definitions
for example restrict edges to be labeled by only a single label [FGG+18b]. Some papers
also require the use of a unique identifier for every node and edge, or restrict properties
to only store single values instead of sets [AAB+17].

Let’s look at an enriched example based on our small social network. The property graph
in Figure 2.4 contains a unique identifier for every node and edge. This allows for fast
and clear identification of entities and is also used in many graph databases. As property
graphs do not have an explicit schema, the types of nodes and edges are given through
labels attached to them. Our example allows a node to have multiple labels, like User
and Admin on node n1. In contrast to the RDF model from Figure 2.2, the properties
of a node are stored inside the node itself. This results in a more compact model as we
do not need an additional node for every property. As mentioned before, edges can also
have properties like the since attributes on the follows relationships.

Property graphs are very flexible as they do not use an explicit schema. One can simply
omit properties that are not available for some parts in the graph, like the missing age
attribute in the node n3. Likewise, other properties can be added to nodes, like the
mail property in n3. Furthermore, if we want to add new information like a picture
that is posted by one of our users, we can add a node labeled Picture and connect it
via an edge labeled posted to the user that posted it.

Since most native graph databases use the property graph data model, they do not
have a defined schema and are therefore more flexible compared to relational or other
schema-dependent databases. We will focus on the property graph model and some
variations of it in the rest of this thesis as many popular graph query languages are
designed to operate on some variation of that model.

2.4 Query Languages
A query language is a high-level language used to access data stored in a database
[ARV19]. In the strictest definition, a query language only supports operations to retrieve
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Figure 2.4: A small social graph in the property graph data model.

data. Codd describes such a language more formally as “a collection of operators or
inferencing rules, which can be applied to any valid instances of the data types (of the
model), to retrieve or derive data from any parts of those structures in any combinations
desired” [Cod80]. This description limits queries to only retrieve data, and such operators
form the class of Data Query Language (DQL). Most definitions extend this strict form to
also include manipulation operations that allow to add, modify and remove data. These
operations form the class of the Data Manipulation Language (DML). Databases that rely
on, or support a schema furthermore include operations of the Data Definition Language
(DDL). Analogously to the relational world where the Structured Query Language (SQL)
also supports more than just data retrieval operations but is denoted as query language,
a graph query language supports DML and sometimes DDL operations as well. Taken
together, a graph query language defines operations to access and manipulate data that
is structured as a graph and provides support for graph specific operations [ARV19].
[Cha12, Ang12]

Figure 2.5 gives an overview of some graph query languages that are specifically designed
for graph data models. As briefly mentioned earlier, the graphical query language G
[CMW87] was introduced in 1987 and is one of the first such languages. We will briefly
analyze this language as it introduced important concepts that are still in use in modern
query languages. G is built on the data model of edge-labeled graphs and introduced
the concept of a graphical query. A query Q consists of a set of labeled and directed
graphs, called query graphs. Nodes in a query graph are labeled by either constants or
variables, and edges can be labeled by regular expressions over constants and variables.
These query graphs can be seen as graph patterns that are matched to subgraphs of the
graph database G to evaluate the query.

Figure 2.6 shows an example of a query Q = {Q1, Q2} that contains two query graphs.
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Figure 2.5: Evolution of graph query languages. Source: An Introduction to Graph Data
Management, Figure 1.7 [AG18].

Q1 :

’Tor’ x

’AC’

’AC’

Q2 :

’Tor’

y

z
’A

C’

w+

’AC’

Figure 2.6: An example of a graphical query in the query language G. Source: A Graphical
Query Language Supporting Recursion, page 2, example 2 [CMW87].

Each node in the database G represents a city and is labeled by its name while the edges
represent airline connections between the cities and are labeled by the name of the airline.
The query Q finds the first and last cities visited by round trips from ’Tor’ (Toronto),
with the restriction that the first and last connections are via ’AC’ (Air Canada). Another
restriction is given by the regular expression w+ that limits all connections between the
cities y and z, the first and last cities in a round trip, to be with the same airline. Such
a regular expression is depicted as a dashed line to highlight that this is a path and does
not have to be a single edge. The support for regular expressions in query graphs allows
for a more general and simpler expression of recursive queries compared to other query
languages like Structured Query Language (SQL) for example [AG18].

All major property graph query languages introduced in this millennium are built around
some core language features. The structure of a query graph as a graphical pattern, like
the simple pattern depicted by Q1, is arguable the most popular feature supported by
most, if not all, graph query languages. Depending on the language, these patterns can
be either given directly as a graph pattern like in G, or as a textual representation of the
pattern as in many modern query languages. We define this pattern and other features of
query languages and provide examples for them in Chapter 3. Another notable difference
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between many graph query languages and their relational counterpart SQL is, that their
input format differs from their output format. Unlike in the relational world, where a
query takes a table (relation) as input and outputs a table, a graph query takes a graph
as input but in many languages outputs a table containing values [Ang18]. This is the
main reason why many graph query languages are not composable. We give more details
on the composability of queries in Section 3.6.

The language G evolved into G+ [CMW88] that added support for graph specific functions
like the computation of the size of the shortest path, and extended the capabilities of
query graphs. Since then, many different graph query languages built on various data
models were introduced. Examples are the languages THQL [WS90] and HQL [The02]
for hypergraphs, Graphlog [CM90], GRE [Woo90], Gram [AS92] and PDL [ABR13]
(as PDQL in Figure 2.5) for edge-labeled graphs and SPARQL version 1.0 [PS08] and
version 1.1 [HS13] for RDF graphs. Many of the query languages in Figure 2.5 are
more theoretical and not used in real world database system. The rise in popularity of
graph databases that mainly use the property graph data model was accompanied by
the introduction of query languages built on this model. Examples of such languages are
PRPQ [LS06], Gremlin [Rod15], Cypher [FGG+18b] and PGQL [vRHK+16], the latter
three being actively used in current graph databases.

Apart from SPARQL, that is standardized by the W3C, there are a variety of languages
built on other data models than RDF as no standard exists for these models. Furthermore,
at the time of writing, no query language that is currently used by a native graph database
has a complete and formal specification. One reason for this is that these query languages
have not been around for that long and researchers are only starting to formalize parts
of them, like with the popular query language Cypher and its open source variant
openCypher [MSV17, FGG+18a]. As many of these query languages are still being
actively developed, they evolve and change frequently which makes an effort for a formal
specification somewhat impractical at the current time. Another reason for the lack of such
a specification could be that querying graph patterns is computationally hard [BLR11].
We will see that querying such patterns is one of the main features of every graph query
language in Chapter 3. Therefore, querying graph databases is also computationally hard
[Bar13]. This is also one of the reasons for the existence of the multitude of graph query
languages that provide different possibilities, functionalities and expressiveness.

The ISO/IEC JTC 1/SC 327 is the committee responsible for data management and
interchange in the International Organization for Standardization (ISO). Members of
their working group 3, that is responsible for database languages, raised the idea of
a standalone graph query language that complements SQL in 2017 [MHM17]. This
idea was further publicized in the GQL manifesto [Gre18] in 2018 that motivated the
move towards the creation of a standardized query language for the property graph data
model. National standardization bodies around the world voted in favor of a proposal for
such a new language standard, called Graph Query Language (GQL), in 2019 [Gre19b].

7https://www.iso.org/committee/45342.html
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This was the first time in the last 35 years that the ISO considered the creation and
standardization of a new database language [Gre19a].

The project is planned to take four years and even then it will most likely take some time
until the vendors of graph databases implement and support the new standard, if they
choose to do so in the first place. Therefore, choosing a graph database system before the
widespread support of GQL involves not only the properties of the system but also the
supported query language. We will now briefly introduce the five graph query languages
that we focus on in our comparison.

2.4.1 Cypher
Cypher [FGG+18b] is a high-level, declarative query language that was originally invented
for the use in the graph database Neo4j. As that database is one of the most used and
well known native graph databases8, Cypher is regarded as perhaps the most well-known
property graph query language [AAB+17]. Its syntax is inspired by SQL to ease the
transition for users coming from relational databases and the language is identified as
“expressive” compared to other languages [RABM17]. Apart from being inspired by SQL,
it also incorporates concepts from other languages like Python and SPARQL as well as
from functional programming in general. The development of Cypher came hand in hand
with the development of Neo4j and was largely an invention of Andrés Taylor in 2011.
Since then, the language has been continually improved and extended. [FGG+18b]

The company behind Neo4j, Neo4j Inc., announced the openCypher project9 in 2015 that
opened up the development of the language and the current version of the language is
now referenced as version 9 [ope18]. The project provides an open platform that should
enable Cypher to become a fully-specified standard [GJK+18]. This would enable other
vendors of graph databases to provide implementations of Cypher in their products. Even
though the language is not yet fully-specified or standardized, it has been implemented in
other products like SAP HANA Graph, Redis Graph or Memgraph. The move towards
standardization came from the goal of the company to establish Cypher “as the property
graph query language” [FGG+18b]. That company was also behind, or at least involved in,
some of the more influential pushes towards the creation of GQL as a new query language
standard by ISO/IEC. An influential and driving figure in this area is for example their
product manager for Cypher, Alastair Green, who published the aforementioned GQL
manifesto [Gre18] among other things. That also explains why some information about
the progress of GQL is published on the website of Neo4j, like the notification that the
GQL project was approved by the national standardization bodies [Gre19a].

2.4.2 Gremlin
Gremlin [Rod15] is a low-level graph query language that supports both, the declarative
pattern matching style but also the imperative graph traversal style [HP16, RWE15].

8https://db-engines.com/en/ranking/graph+dbms
9https://www.opencypher.org/
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This allows the language to be used in any graph computing system, be it an OLTP
graph database or an OLAP graph processing system [TPAV19]. Although Gremlin
supports both styles, it is more imperative in nature with the main focus on traversing
the graph [AAB+17]. Together with the compact syntax used in its queries, it is not that
easy to read, especially compared to a higher-level language like Cypher [HP16].

Gremlin was introduced together with the Apache TinkerPop open-source project10 in
2009 and is still designed and developed by this project [Rod15]. TinkerPop provides a
graph computing framework that is not bound to a specific vendor but can be integrated
into other database and processing systems. Gremlin is an integral part of this framework
and denotes not only the query language, but also the graph traversal machine called
Gremlin Traversal Machine (GTM). The GTM processes queries and allows the user
to define and use a domain specific query language that is “compiled” to the GTM.
Systems that integrate the TinkerPop framework are called TinkerPop enabled. Notable
examples of such systems are the Amazon Neptune11 graph database and the multi-model
databases OrientDB12 and Azure Cosmos DB13.

As an interesting side node, parts of the TinkerPop framework including the Gremlin APIs
originated in the development of the Neo4j database from 2007 onwards [FGG+18b, Lin18].
While early versions of the Neo4j database supported the direct use of Gremlin, this has
been removed but is still possible via a plugin like Neo4j-Gremlin14.

2.4.3 PGQL

PGQL [vRHK+16] is a high-level, declarative graph query language designed and devel-
oped by Oracle as part of their Parallel Graph AnalytiX (PGX)15 framework. The first
version of the language was introduced in 2016 and it is still under active development,
with version 1.3 [Ora20] being released in March 2020. In contrast to other languages
like Gremlin, PGQL is closely aligned to SQL and supports many concepts and keywords
from SQL. These are extended by graph specific concepts and algorithms like powerful
path expressions and graph pattern matching [AAB+18, AG18]. As in many other graph
query languages, the output of a query is structured in tabular form. This allows PGQL
queries to be nested inside, and used seamlessly together with SQL queries.

The language is published as an open source specification together with a parsing
software16. Implementations of the language exist in research projects as a distributed
[RTH+17] and non-distributed version [SHvR+16] and it is used in the Oracle (Big Data)

10http://tinkerpop.apache.org/
11https://aws.amazon.com/neptune/
12http://orientdb.com/
13https://azure.microsoft.com/services/cosmos-db/
14https://github.com/neo4j-contrib/neo4j-tinkerpop-api-impl
15https://www.oracle.com/middleware/technologies/parallel-graph-analytix.

html
16https://github.com/oracle/pgql-lang
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Spatial and Graph databases 17. These databases support the property graph as well
as the RDF data model but one has to keep in mind that while in some configurations
an in-memory native graph storage via the PGX framework is used, the data is kept in
a relational database in other configurations [BPG+19]. Overall, the SQL-like syntax
of PGQL tries to lure the SQL community that is already using Oracle products but
lacks standardization and support by the broader community and other database vendors
[TPAV19].

2.4.4 GSQL
GSQL [Tig] is a high-level query language developed by TigerGraph Inc, the company
behind the TigerGraph database. A white paper for the language [WD18] together with
one for the database [DXWL19] were published in 2018 and 2019, respectively. Similar
to PGQL, GSQL has an SQL-like syntax and goes even further, as a GSQL query that
does not contain graph-specific primitives is a standard SQL query. In that sense, GSQL
extends the relational SQL to include primitives to query and analyze graphs.

The goal when developing the TigerGraph database was to design “a property graph
database for tomorrow’s big data and analytics” [HLP+19]. To achieve reasonable perfor-
mance in graph analytics workloads on graphs spanning billions- or trillions of nodes and
edges, the database provides computation in massively parallel processing fashion. This
objective also influenced the design of GSQL that provides not only primitives for OLTP
workloads but also allows for the specification of iterative algorithms and supports the
MapReduce interpretation [Wu18]. Another design decision towards better performance,
that also came from the tight alignment with SQL, is the use of a schema and type
system. In contrast to all other systems and languages we looked at until now, one has
to specify the schema of a graph in GSQL’s data model. The schema defines the types of
vertices and edges in the graph and their possible relationships to each other [Tig]. This
allows for a better query optimization, space savings when storing huge graphs as well
as more sophisticated security and privacy features like limited access to parts of the
graphs for some users [Wu18].

Although the language and the system built around the language is designed to handle
and analyze huge graphs, the support for OLTP workloads and unique usage of a schema
made us include the language in our comparison.

2.4.5 G-CORE
G-CORE [AAB+18] is a high-level query language designed in a collaboration between
industry and academia under the patronage of the Linked Data Benchmark Council
(LDBC)18. Introduced in 2018, the query language integrates some of the main features
from multiple existing languages like Cypher, Gremlin and PGQL in order to provide

17https://www.oracle.com/database/technologies/spatialandgraph.html, https://
www.oracle.com/database/technologies/bigdata-spatialandgraph.html

18http://ldbcouncil.org/
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a core for future graph query languages [AG18, ARV19]. As it is a core and reference
for future developments, the query language does not support DML or DDL operations.
One of the major differences compared to other query languages is that G-CORE is a
composable language, meaning that a query takes a graph as input, processes it and
outputs a graph as well. This allows queries to be chained or nested, as an output of a
query can be directly used as the input of another query. A second major novelty is the
treatment of paths as first-class citizens. They can be stored next to nodes and edges in
an extended property graph data model and can also have properties similar to nodes
and edges. We will analyze and explain this in more detail in Section 3.6.

As G-CORE is a research language, there are only partial implementations in open-source
research projects like a parser that is available on GitHub19.

2.5 LDBC Social Network Benchmark
We analyze these languages based on their characteristics and common language features
and compare them by implementing multiple queries in Chapter 4. To pick queries
that represent a potential use case in a real world scenario, we use the schema and
some queries from the interactive workload of LDBCs Social Network Benchmark (SNB)
[EAL+15]. The goal of this benchmark is “to define a framework where different graph
based technologies can be fairly tested and compared” [AAA+20] and is therefore a perfect
fit to test and compare graph query languages. It is developed by an initiative from
major actors in industry and academia and currently contains two groups of workloads:
the business intelligence workload that focuses on OLAP queries, and the interactive
workload with a focus on transactional queries. We limit ourselves mostly to the interactive
workload as this one fits our focus on OLTP queries.

The latest stable version at the time of writing is v0.3.2 [AAA+20] and we use mainly
this version in our experiments. On one occasion, namely for queries that remove data
items, we use the current snapshot of version 0.4.0 [LDB20] as data deletions are not
present in earlier versions. The underlying schema as well as all other queries in use did
not change between these versions, so we can safely use the new additions together with
the model from the stable version.

The interactive workload itself contains queries that are grouped into the following query
classes:

• Short Reads (IS, interactive short): This class contains 7 short read-only queries
that touch only a small part of the graph.

• Complex Reads (IC, interactive complex): This class contains 14 complex read-only
queries that touch a rather significant amount of nodes and edges, most often in
the neighborhood of a starting node.

19https://github.com/ldbc/ldbc_gcore_parser
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• Insertions (IU, interactive update; in the snapshot of version 0.4.0: INS, insert but
with the same queries): This class contains insertions of either single edges or nodes
together with connections to other, existing nodes. Contrary to the name of these
queries in the stable version, interactive update, the benchmark does not contain
any queries that focus solely on the update of existing entities.

We furthermore use the class that contains deletion queries (DEL), that is now contained
in the business intelligence workload. This class is only present in the current snapshot
of version 0.4.0 and contains queries that remove either a single edge or a node together
with all incident edges and, if needed, nodes that depend on the initially deleted one.

The queries are enumerated inside each class and use the abbreviation of the class as
a prefix, i.e. the first query in the class of short reads is IS1. We will state which
queries were taken from the benchmark in the next chapter when we introduce queries
representing the language features.

2.5.1 Schema
The queries of the SNB are defined on the model of a social network, hence the name.
The schema in UML notation can be seen in Figure 2.7. It revolves mainly around
persons interacting with one or multiple forums. Tags associated with forums or messages
allow groups for specific topics or interests. A person can create or like a message, which
in turn can be either a text or an image, but not both. Persons in a forum can further
reply to posts or previous comments by replying with a new comment. The schema also
supports friendship relationships between multiple persons via the knows edge. Although
this edge is given as a directed edge in Figure 2.7, the newer version of the benchmark
states that it should be treated as undirected, therefore representing mutual relationships
between two persons [LDB20]. The schema also allows for further information to be
stored, including the city that a person is living in and the university or company they
are studying respectively working at.

Apart from the queries, the benchmark comes with a data generator20 that generates
parts of the data statically and parts of it dynamically. This can also be seen in the
schema but is of no further concern to us as we focus on the queries working on that
model. The generated data using the default parameters represents a snapshot of a
potential social network during a period of roughly 3 years with many characteristics
taken from real world social networks. As we do not compare the database systems
but only the query languages, it is not necessary to generate data and store it in a
database. Nonetheless, we did generate and import the data into a Neo4j, a TigerGraph
and a Titan21 database. Titan is a scalable graph database with native support of the
TinkerPop stack, therefore supporting Gremlin as a graph query language. This allows
us to run the queries from the benchmark as well as implement and test our own queries
on these databases and the supported query languages.

20https://github.com/ldbc/ldbc_snb_datagen
21http://titan.thinkaurelius.com/
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Figure 2.7: The data model in UML notation of the SNB. Source: The LDBC Social
Network Benchmark, Figure 2.1 [AAA+20].
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CHAPTER 3
Query Language Features

Although there are many graph query languages based on different ideas that vary in
their style, expressiveness or purpose, they all share a conceptual core [AAB+17]. This
core includes primitives that are based on graph features like graph patterns, paths
and neighborhoods (adjacency) [AG18]. As briefly mentioned when we introduced the
language G in Section 2.4, Pattern Matching Queries form the basis of every graph query
language. Apart from them, primitives that allow us to navigate a graph on its paths
form a second major feature that we denote as Path Queries. We add the feature of
Structure Independent Queries for queries and primitives that do not consider the graph
structure. This is an extension of the summarization queries from Angles [Ang12], that
contains simple aggregate functions to summarize the results as well as further operations
that do not rely on the graph structure.

As these features form the basis of every graph query language, their underlying primitives
are well studied [CM90, BLR11, LV12, Woo12, Bar13, LMV16, TKL19]. We will intro-
duce these groups of queries in more detail and give examples for them. The examples
are then implemented in Chapter 4 to compare the languages. We start with an introduc-
tion of structure independent and other summarization queries in Section 3.1. Pattern
matching and path queries are explained in Section 3.2 and Section 3.3, respectively. We
continue with two further features that do not concern the querying part of the languages
but their ability to manipulate and potentially define the structure of the data: Data
Manipulation in Section 3.4 and Data Definition in Section 3.5.

3.1 Structure Independent Queries
This feature of a graph query language provides primitives that allow for queries that
mainly do not consider the graph structure but focus on the information stored in entities.
In its simplest form, a structure independent query operates on the entities (either
nodes or edges). It provides primitives that allow the user to select such entities and
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their properties as well as aggregate functions that summarize structure independent
information. A simple example of such a query in the setting of the LDBC Social Network
Benchmark (SNB) would be to select the user with a given first and last name. We do
not set the name in the query but expect the user to pass it via the $firstName and
$lastName parameters:

Select the person with firstName=$firstName and lastName=$lastName. (1)

Another example, this time from the benchmark itself, would be the query IS4 (interactive
short 4) that selects a message with a given id. The query expects the $messageId as input
and returns the content and the creation date of the message. It is more sophisticated
compared to the previous one as a message can be either a post that contains an
imageFile, a post that contains a text-only content or a comment with a textual
content. If there is an image, the result should contain the image file, otherwise the
content.

Given a $messageId, retrieve the content of the message and the creation date. (2)

These structure independent queries are not limited to select a single entity, they can
for example also return all entities of a given type, like all edges labeled with knows, or
contain more complicated selection criteria than simple equality.

As briefly mentioned before, the feature also includes summarization queries and therefore
primitives that allow us to summarize a graph, or parts of it. These primitives are often
applied on the intermediate result of a query that selects parts of a graph, and aggregate
the intermediate values to return a single one. Many graph query languages support the
same basic aggregate operations as SQL, namely count, sum, max, min and average, and
possibly further domain- or graph-specific ones [Ang12]. An example of such a query
would be to calculate the average number of spoken languages over all persons:

Retrieve the average number of spoken languages per person. (3)

Most query languages also contain primitives that allow us to compute properties of a
graph itself, not the data contained in the graph. Examples for such properties are the
number of vertices (order), the diameter, the average degree of a node and so on. In some
definitions, like in [Ang12], queries based on such primitives also belong to the group of
Summarization queries. However, we do not include these primitives in our definition of
this feature as queries using them focus on the structure of the graph and therefore are
not structure independent anymore.

3.2 Pattern Matching Queries
Before we start with an explanation of pattern matching queries we will introduce an
extension of our small social graph from Figure 2.4 that allows us to go into more detail
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Figure 3.1: A variation of our small social network example including posts in the
property graph data model.

in this section. The variation of the network is given in Figure 3.1 where we removed
Alice from the network and instead added two posts, i.e. nodes labeled as Post, each
containing its title. Furthermore, the graph now contains relationships between the users
and the posts, given by edges labeled likes and created.

As mentioned before, matching graph query patterns on a graph form a, if not the, major
operation on graphs and therefore are at the core of many graph query languages. Most
languages are designed starting with graph patterns and other features are added to
these patterns [ARV19]. The idea behind such a graph pattern is to specify the shape of
the result via a property graph 1 itself. In difference to the data graph, a query graph is
not limited to constants but can also contain variables instead of any constant [AAB+17].
This allows us to query for information and return the values matched by the system.
Such a query pattern defines a class of subgraphs [BPG+19]. The system in turn matches
the query pattern to the data graph by finding occurrences of these subgraphs that maps
possible variables to constants while preserving the structure.

In its simplest form, as explained until now, such a pattern is denoted as basic graph
pattern (bgp). As an example of such a bgp we can query for relationships between the
post with the title “GQL” and users in our small social network. Figure 3.2 depicts such
a query as a possible pattern in a property graph data model.

Many modern query languages do not support queries in a graphical representation but
only in a textual one. A Datalog related syntax is often used when studying the theory
behind query languages and consists of (node, edge, node) triples. Assuming a
simpler data model without node and edge IDs, the query could be represented in such a
syntax as: (?W, ?X, GQL), (?Y, ?Z, GQL) where W and Y represent node variables

1Assuming that the system uses a property graph data model. In other words, such a graph pattern
is given in the same shape and style as the data model used by the system and query language.
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Figure 3.2: An example of a basic graph query searching for relationships between a
specific post and users in a hypothetical graphical query language.

and X and Z edge variables that are matched against constants in the data graph. Most
modern query languages used in industry rely on an ASCII art representation of the query
that mimics connections between entities via “−”, “>” and “<” signs. The greater and
smaller signs are used to specify the direction of a relationship, whereas the lack of these
signs describes an undirected relationship in many languages. A possible representation
of the query in a Cypher-related syntax looks like this:
(w:User) -[x]-> (:Post {title:GQL}) <-[y]- (z:User)

In terms of relational operations, basic graph patterns allow for selection based on equality
via the use of constants, like title:GQL, as well as natural joins via the pattern and the
graph structure itself. These basic graph patterns can be extended by further relational
operations: union, difference, projection, left outer join (optional) and more sophisticated
filtering (selection) rules. The optional operator is especially interesting in most graph
databases as it allows us to query incomplete information that is caused by the lack of a
schema in many such systems [ARV19]. A query pattern using such extended primitives
is denoted as complex graph pattern (cgp). The rising interest in graph databases over
the last decade brought the invention of further additions like inexact and approximate
matching to graph patterns [CL14, AG18, FPSW19]. However, we limit ourselves to bgps
and cgps as mentioned above as these form the core of most modern query languages.
Furthermore, additions like inexact matching are still in a research state and not yet
supported by any of the major graph query languages. [AAB+17]

We have already seen an example of such patterns in the previous chapter: the query
graph Q1 in Figure 2.6 is a basic graph pattern with a single variable. Furthermore, if
we disregard the regular expression in Q2 for now, the query Q = {Q1, Q2} forms a cgp
using the union operator.

3.2.1 Evaluation Semantics
We will now look at different evaluation semantics in use by the query languages and
the systems using these languages as the semantics can influence the outcome of a query.
Since cgps are an extension of bgps, their evaluation semantics are also based on the ones
from bgps. For this reason, we limit ourselves to bgps in this part. As briefly mentioned
before, a bgp is evaluated by matching the pattern onto the data graph such that the
variables are replaced by constants while the structure is preserved, at least in some
way. This means, that the system searches for all subgraphs in the data graph that are
isomorphic to the bgp [AG18] and therefore closely resembles the subgraph isomorphism
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problem that is NP-complete [Yan90]. One can identify two major approaches for the
evaluation semantics of a bgp: the homomorphism- and the isomorphism-based approach
[AAB+17].

• In the homomorphism-based semantics, the matches of a pattern on the data graph
are not restricted. This means that the evaluation of a bgp Q on a graph G consists
of all homomorphisms from Q to G and therefore resembles the semantics of queries
in relational databases. As it is used in the relational world and heavily studied
in theory, this is the most common semantics [ARV19]. However, when using this
strategy the database designer has to deal with the potential problem of infinite
result sets when enumerating the paths in a pattern as we do not restrict the
matches [AAB+18].

• Under the type of isomorphism-based semantics, the matches of a pattern are
restricted in some sense. This restriction mostly concerns the distinctness of
matchings from variables to constants. We can further refine this type of semantics
based on the restriction it enforces:

– If no two variables can be bound to the same data item in a match, we are
limited to injective mappings and this is denoted as no-repeated-anything
semantics. As an effect, the evaluation of a pattern under this semantics
preserves the structure of the query pattern as neither edges nor nodes can
“collapse” by binding to the same data item.

– If the restriction only applies to variables on nodes, we call it no-repeated-node
semantics.

– Consequently, if the restriction only applies to variables on edges we speak of
no-repeated-edge semantics.

Note that the limitations on the no-repeated-node and -edge semantics apply only
to variables that map to IDs, i.e. variables for labels or properties can still map to
the same data item.

If we evaluate the basic graph pattern from Figure 3.2 on the new variation of our social
network given in Figure 3.1, we get the following non-restricted matches:
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x1 x2 x3 x4 x5 x6 x7 x8 x9
n2 Carol e5 created n1 e4 likes n3 Bob
n3 Bob e4 likes n1 e5 created n2 Carol
n2 Carol e1 likes n1 e4 likes n3 Bob
n3 Bob e4 likes n1 e1 likes n2 Carol
n2 Carol e5 created n1 e1 likes n2 Carol
n2 Carol e1 likes n1 e5 created n2 Carol
n2 Carol e1 likes n1 e1 likes n2 Carol
n2 Carol e5 created n1 e5 created n2 Carol
n3 Bob e4 likes n1 e4 likes n3 Bob

As the homomorphism-based semantics does not restrict the matches, all of them are
valid. Only the first two matches are valid under the no-repeated-anything semantics as
the latter ones bind at least two variables to the same data item. Note that we do not
only restrict the variables mapping to IDs but all variables, including the ones mapping
to labels or properties, in this semantics. An example of this is the third result that
is not valid as the variables x4 and x7 are both mapped to the label likes. The first
four matches are valid under the no-repeated-node semantics since they do not bind
variables that map to node IDs to the same ID. As we do not restrict the mapping of
edge variables there can be multiple such variables mapping to the same edge label, as
is the case in the matches 3 and 4 with the label likes on x4 and x7. Therefore, an
evaluation under this semantics still preserves the structure of the query pattern as the
nodes cannot “collapse”, while it does not further restrict the relations between them.
Under the no-repeated-edge semantics the first 6 matches are valid as the last three bind
the two variables mapping to edge IDs, x3 and x6, to the same ID.

The semantics explained above solely focus on a single match and possibly restrict such
a match. This is enough in the setting of bgps where no two such patterns can be
evaluated to the exact same match. However, when dealing with the evaluation of cgps
and therefore with further operators like union, we can have duplicate matches regardless
of the chosen semantics. In that case we can further distinguish between a set semantics,
meaning that the evaluation of a pattern is accumulated in a set of matches and therefore
cannot contain duplicates, and a bag semantics that allows duplicates of matches in the
result. According to the choice of either set or bag semantics we can for example speak
of a homomorphism-based bag semantics or a no-repeated-node-based set semantics.
[AAB+17]

Each of the semantics can be desired in some application scenarios and therefore there
is no single one used in all database systems and query languages but each system is
based on one semantics. While some systems only support a single semantics, others
like Neo4j with the Cypher query language allow for query constructs that result in a
different evaluation semantics. Still other languages like PGQL even provide keywords
that allow the user to switch to a different semantics on a query by query basis.
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3.2.2 Queries
Now that we understand the concept behind these queries we will look at some examples
from the LDBC SNB. The query IS1 (interactive short 1) represents a simple example of
a query using a basic graph pattern.

Given a $personId, retrieve the first name, last name, birthday, IP address, browser,
gender, the creation date of the entry as well as the city of residence of the person.

(4)

This query can also be given via the graph pattern in Figure 3.3 that shows the single
directed relationship between the two entities in question.

Figure 3.3: Query 4 (IS1) as a graphical query pattern. Source: The LDBC Social
Network Benchmark, page 56 [LDB20].2

Note that if the query did not ask for the city of residence, it is a structure independent
query as the other information is stored directly with the person.

A typical query in the setting of a social network is to search for friends of a person. IS3
represents this in a simple manner where all friends of a given person and the creation
date of their relationship are returned.

Given a $personId, retrieve the id, first name and last name of all their friends
as well as the date of the friendship-creation. (5)

Such pattern matching queries can also generate boolean values that indicate whether
there exists a possible relationship between some entities. As an example, the query IS7
fetches the author of a given message as well as all persons that created a direct comment
to it. The optional relationship, denoted as knows, indicates whether these two persons
know each other.

Given a $messageId, get all direct comments replying to this message
and a boolean value that indicates if the authors know each other. (6)

2The graphical representations of this query and all following ones are taken from the current snapshot
of version 0.4.0 of the benchmark [LDB20]. The queries themselves are identical between the stable
version 0.3.2 [AAA+20] and the current snapshot, but some graphical patterns in version 0.3.2 do not
depict the specified query.
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A graphical visualization of this pattern can be seen in Figure 3.4, where the dotted line
indicates the flag, or optional relationship.

Figure 3.4: Query 6 (IS7) as a graphical query pattern. Source: The LDBC Social
Network Benchmark, page 60 [LDB20].

3.3 Path and Navigational Queries
Graph patterns as explained until now allow us to query for bounded and fixed rela-
tionships between entities in a graph. However, they are not powerful enough for many
queries that navigate more complex relationships in a graph. This in turn is one of the
core motivations of using a graph database, as relationships either contain information
themselves or tell us something about the entities they connect. Path queries tackle this
problem by providing queries that especially focus on one thing: paths. Navigational
queries then integrate path queries into patterns to allow for more sophisticated data
retrievals.

3.3.1 Path Queries
In its simplest form, a path query can test for the existence of an unrestricted path
between two nodes. This is an inherently recursive operation as the database engine
traverses from one node to another, often without any bounds on the length of the path.
Compared to the world of relational databases, where recursive operations are supported
only in a limited way, these operations are heavily used in graph databases and form one
of the major advantages when querying related information. Apart from this simplistic
form that tests for the existence of an unrestricted path, we can add some criteria that
the path has to satisfy. A simple way to achieve this is to allow restrictions on the path by
requiring the edges to have a specific label. If we think about a social network, this allows
us to search for a path between two users that is limited to friend-relationships (edges
labeled with follows or friend for example). In general, such queries can be grouped
as Reachability Queries and we will explain further characteristics and ways to specify
restrictions on paths in the following part on Regular Path Queries. [AG08, vRHK+16]

Apart from testing for the existence of a path, path queries can also be used to retrieve
nodes connected by a path. As an example, this allows us to retrieve all nodes on paths
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of the form friends-of-friends in a social network, either with a restricted length or even
with arbitrary length. Friends-of-friends, or friends-of-a-friend denotes a commonly used
query in social networks. Starting from a given node v, the query navigates to all adjacent
nodes with the restriction that a traversed edge has to denote a friend-relationship. After
the friends of v are explored, it continues to their friends. Note here that, caused by the
lack of a definition for this query, it is either used as explained where the result contains
all friends and the friends of the friends, stopping at paths of length 2. On the other
hand, friends-of-friends can also denote the query that does not stop at paths of length
2 but either at a user-specified length or when the full graph is explored, meaning an
unrestricted length. Assuming that we stop after two hops, the query does not only
contain the existing friends of a person, but also the friends of their friends, which can be
used to suggest new friends or to analyze the network around a person [AAB+17]. More
generally, this operation traverses the neighborhood, or adjacency, of a given node. This
is an important operation and many graph databases provide dedicated operators for
such queries, that are also denoted as Adjacency Queries [AG18]. An example of such an
operators would be a k-neighborhood one that returns the neighbors up to distance k
from a given node [Ang12].

Taken together, Angles et al. summarize the concept behind path queries as follows:
“The idea of a path query is to select pairs of nodes in a graph whose relationship is
given by a path (of arbitrary length) satisfying certain properties.” [ARV19]. This can be
rewritten to derive a compact form of a path query P given in [AAB+17]: P = x

α−→ y,
where α specifies the restrictions a path between x and y has to satisfy such that the
node pair (x, y) is selected. What we lack until now is a notion that allows us to express
the conditions on the path, i.e. α.

Regular Path Queries

When looking for possible notations for this, we probably end up with some variant of
regular expressions over the set of edge labels, as this form is used in most languages until
now [LMV16, AAB+17]. This notation is formalized as a Regular Path Query (RPQ)
and was introduced in [CMW87] together with the graphical query language G. At its
core, an RPQ “selects nodes connected by a path that belongs to a regular language over
the labeling alphabet” [LV12]. That tells us two things. First, that such a query only ever
selects pairs of nodes that are connected by a path. And second, that a node pair is only
selected if the concatenation of the labels on a path connecting them form a word in the
language of the regular expression [AAB+17]. As a simple example of this, we can write
the friends-of-friends query with unrestricted length for Carol in the compact form of a
path query as:

P = Carol
follows+
−−−−−−→ y.

This retrieves all node-pairs (Carol, y) that are connected by a path of length at
least 1, with the restriction that all edges on the path are labeled as follows. Note
that we can also use the Kleene Star “∗” in our query, and, depending on the chosen
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evaluation semantics, the query:

P = Carol
follows∗
−−−−−→ y

can either give the same result as the one from above, or can additionally contain the
node pair (Carol, Carol). Furthermore, we can also query for the union of paths
via the “|” symbol. As an example, we can search for all posts that are either created or
liked by a user that Carol follows as:

P = Carol
follows·(likes|created)−−−−−−−−−−−−−−→ y

where the “·” denotes a concatenation.

We can summarize the notation of an RPQ as a query of the form P = x
reg−−→ y, where

reg is a regular expression over the alphabet Σ that contains all possible edge labels
[LMV16].

The path querying functionality of most modern query languages is based on this notation
as it proved to be a good fit to specify restrictions or conditions on the inherently recursive
nature of a path [vRHK+16]. As RPQs have been around since the late 1980s and are used
in languages until now, the class is well studied, especially also regarding its complexity
[Woo12, Bar13, LMV16]. Over time, RPQs have been extended in many ways. An RPQ
as explained until now can only traverse edges in a forward direction, but one can also be
interested in traversing them backwards. This gives rise to a notable extension, namely
the class of the Two-way Regular Path Query (2RPQ) [CGLV00b, CGLV03]. 2RPQs
add support for an inverse operator a− for a ∈ Σ that denotes that the edge labeled a is
to be traversed backwards. Let’s look at an example of this in our small social network
from Figure 3.1. We can query for the friends of all users that liked a post p with the
following two-way regular path query:

P = p
likes−·follows−−−−−−−−−→ y.

Starting from a given node p, the post in our case, the query follows all incoming likes-
edges in a backward manner and from there all outgoing follows-edges in a forward
manner.

There are further variants of RPQs that for example add variables [Woo90] or node
tests [BPR12] to path queries. We will introduce some of these as we progress with our
explanation of navigational queries. As RPQs allow us to express path queries and are
used in most modern query languages, at least in some variant, the terms path query and
RPQ are both used to denote this class of queries. The difference is that a path query
denotes such a query in general, regardless of the underlying variant used by the query
language, be it for example a simple RPQ or a 2RPQ. In contrast, the term RPQ is more
relevant in theoretical literature where it is important to state and define the variant
that is used. We will also use this approach from now on and denote the general class of
these queries as path queries and use the corresponding theoretical terms when we speak
about the underlying variants.
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3.3.2 Navigational Queries
Early graph query languages, like the language G that we looked at in the previous
chapter, allow us to restrict the labels on a path, which is enough to express the friends-
of-friends query for example. However, one often wants to express more sophisticated
constraints that are not limited to the edge labels on the path alone. With path queries
as explained above, we can query for a path between two users in our social network over
friends-relationships. If we want to query for such a path with the further restriction that
a specific user is visited on the path, path queries are not expressive enough as we have
no way to express such an intermediary node. This leads us to navigational queries, also
called navigational graph patterns (ngps), that allow for a combination of path queries
and basic graph patterns. When looking at it from the perspective of a pattern, we are
now able to replace an edge in a pattern by a path that is given by a regular expression
[AAB+17]. Therefore, we can write the query that requires a specific user n to be on the
path as follows:

x n yfriend+ friend+

We have already seen another basic example of such a navigational query when we
introduced the language G. The expression w+ on the query graph Q2 in Figure 2.6 is a
regular expression that is embedded in a basic graph pattern.

As paths in ngps are given as regular expressions over edge labels, and these are nothing
else then RPQs, we can also look at ngps from the perspective of regular path queries.
From there, ngps are an extension of RPQs and form the class of Conjunctive Regular
Path Query (CRPQ) [CM90, FLS98]. Queries in that class can deal with intermediate
nodes on paths [BLR11], which is exactly what we needed in our motivating example.
The term “conjunctive” in CRPQ comes from the fact that by allowing intermediate
nodes on a path, we essentially query for the conjunction of multiple paths, each given
by an RPQ, that share the intermediary node(s) [LMV16].

Taken together, a navigational graph pattern is a graph pattern where nodes are either
constants or variables, and edges can be labeled by constants, variables or RPQs [AAB+17].
Similar to basic graph patterns and the query in Figure 3.2, the patterns in a system
built on the property graph model can be further enriched by elements from the property
graph. Therefore, we can for example also restrict the nodes to have a specific label, as
we did in the example with bgps in said figure.

Further Variants

CRPQs, and navigational graph patterns in general, received lots of attention throughout
the last decades as they form the base of many modern graph query languages [TKL19].
This manifested in the theoretical study of this class [CGLV03, BLR11, Bar13] as well as
the invention of new variations of it. As explained until now, the addition of path queries
is limited to basic graph patterns. Therefore, a natural variation also allows path queries
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on complex graph patterns, forming complex ngps (cngps). However, we want to note
that this differentiation, and the class of cngps, is not always enforced, most likely since
the term ngp often denotes the whole class and all its variations. In the more theoretical
terminology of RPQs, we can also add the inverse operator of 2RPQs to CRPQs and
derive the class of conjunctive 2PRQs (C2RPQs, also 2CRPQs) [CGLV00a]. U2CRPQs
in turn denote a further extension that also includes unions.

However, all of these variations are still not expressive enough for several queries in
modern use cases and applications. Under the definitions of RPQs and their variants
until now, the evaluation of the query P = x

α−→ y on a graph G, P (G), contains the node
pairs (x, y) that are connected by a path that satisfies α. However, we cannot output
the path or process it, for example by comparing it to others in this evaluation. The
class Extended Conjunctive Regular Path Query (ECRPQ) [BFL12, BLLW12] tackles
this problem by allowing paths to be named, included in the output and compared to
others [LMV16]. This essentially raises paths to first-class citizens and as of now seems
to be one of the most promising variants for current and future graph query languages.
[Bar13]

There is a myriad of further variants using multiple concepts, but, as this is not the focus
of the thesis, we will only introduce two more approaches. In all variants introduced
until now, we are limited to a single recursion on a path via a regular expression. Nested
regular expressions (NREs) [PAG10, BPR12], originally developed to query data in the
Semantic Web, also allow for another form of recursion. They are an extension of 2RPQs3

with the addition of a branching operator · that allows RPQs to be nested. The class
Regular Expressions with Memory (REM) [LV12, LMV16] on the other hand covers a
different use case, namely that of the integration of so called data values on a path. A
data value in this case is another word for a property of a node in the property graph
data model. An example of this would be the age of a person in a social network. The
basic idea is that one can specify when a data value is stored and can than use these
stored values. This allows for queries that are not only limited to restrictions of the path
via a regular expression, but can also deal with the data values of the nodes on the path.
Assume that we are interested in a variation of the friends-of-friends query where we
only traverse to friends of the same age. With REMs, we are able to store the data value
(age) of the first node on the path, then traverse an outgoing friends-relationship, read
the stored data value and compare it to the new one.

3.3.3 Query Evaluation: Semantics, Output and Complexity
Now that we have introduced path and navigational queries we will take a closer look at
their evaluation in general as well as some semantics, possible outputs of such queries
and finish with a note on the evaluation complexity. We limit ourselves to path queries
in this section as the evaluation of navigational ones can be derived from this, together
with the evaluation of bgps (and possibly cgps).

3Note that they are a class of path queries in their original form, therefore there are no patterns in
these queries.
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Query evaluation and semantics

As mentioned above, the evaluation of an RPQ P = x
α−→ y on a graph G contains the

node pairs (x, y) that are connected by a path that satisfies α. ECRPQs on the other
hand also allow us to retrieve paths as a result of a query. From the practical perspective
of a database system however, the system has to find all paths that match a given pattern
before it can project to the desired elements. As an example, let’s look at the evaluation
of the RPQ P from above. In a first step, the system has to find all paths in the graph
that satisfy α, and can then project to the start and end nodes of these paths to get (x, y)
as output. Therefore, when looking at the evaluation semantics of path queries from a
practical perspective, it does not make a difference whether the query language allows
the output of paths or not. To explain the evaluation semantics in this section, we will
look at the paths that are found during the evaluation of a query in a database system.

Before we can explain the evaluation of path queries, we need a formal definition of a
path and its label in a graph G. A path π is a sequence n0e1n1e2 . . . nk−1eknk | k ≥ 0
where each ei is an edge between the nodes ni−1 and ni. As briefly mentioned before, the
evaluation of a path query contains only paths whose concatenation of the edge-labels
form a word in the language of the regular expression. Lab(π) denotes the label of π,
given as Lab(π) = a1a2 . . . ak−1 ∈ Σ∗, where each ai denotes the label of ei and ai ∈ Σ 4.
The evaluation of a path query P = x

α−→ y on a graph G, denoted as P (G), contains all
paths in the database whose label Lab(π) satisfies α. Note that our definition of a path
also allows for paths of length 0 that contain only the node n0. If we use the regular
expression that accepts all words over Σ, Σ∗, in an RPQ P = x

Σ∗−−→ y, we do not impose
any constraint on the path. Therefore, the evaluation of this query also contains the
empty path with k = 0 and the single node n0. [AAB+17, ARV19]

This definition allows us to evaluate path queries on graphs but also leads to a potential
problem: the evaluation can result in an infinite number of paths. As an example, we
can look at an extension of the friends-of-friends query (with unlimited length) where we
are not interested in the transitive closure of the friends but in the posts that they liked.
Starting form a fixed node n2 (the user Carol), this query can be written as:

P = n2 follows+·likes−−−−−−−−−→ y.

If we evaluate this query on the graph G from Figure 3.1, we get an unlimited number of
paths caused by the cycle between Carol and Bob. The evaluation P (G) contains, among
others, the following paths that are given by their nodes and edges as well as their label:

4As a reminder, Σ contains all possible edge labels.

33



3. Query Language Features

π Lab(π)
n2 e3 n3 e4 n1 follows·likes = follows1·likes
n2 e3 n3 e2 n2 e1 n1 follows2·likes
n2 e3 n3 e2 n2 e3 n3 e4 n1 follows3·likes
n2 e3 n3 e2 n2 e3 n3 e2 n2 e1 n1 follows4·likes

...
...

...

Similar to the different semantics when evaluating graph patterns, there are multiple
ones for the evaluation of path queries that differ mainly in their handling of duplicates
in the evaluation P (G). We will now describe four common evaluation semantics in use
by graph query languages [AAB+17].

• Under arbitrary path semantics, the paths in P (G) are not restricted in any way.
Therefore, all paths that satisfy the restrictions of the path query are present in
the evaluation. If we look at our example query above, the evaluation contains an
infinite number of paths caused by the loop in the original graph that satisfies the
condition in P . As it is not feasible to enumerate an infinite number of paths, one
solution is to restrict them in some way. In some scenarios we are only interested
in whether there is such a path or not, and the system can stop as soon as the first
such path is found. Another possibility is to return not the paths, but the pairs of
nodes that are connected by them, which results in a finite number of node pairs.
This results in an output as defined for RPQs. There are further possibilities to
deal with this problem but the main takeaway is that P (G) may contain an infinite
number of paths under such an unrestricted semantics.

• The shortest path semantics restricts the paths in P (G) to be shortest paths only.
That means, only paths of minimal length between any two nodes that satisfy the
conditions in P are contained in P (G). In the evaluation above, only the first path
is valid under this semantics as all further ones are not paths of minimal length
between the nodes n2 and n1.

• In case of the no-repeated-node semantics, a path that satisfies the conditions in P is
only included in P (G) if no node appears more than once on the path. These paths
are also known as simple paths and the evaluation of RPQs under this semantics
has been studied extensively [MW89, ACP12, LM13], which cannot be said for
many of the other semantics. Using this semantics, only the first path given in the
table above is valid as at least one node appears more than once on the others.

• The evaluation under the no-repeated-edge semantics contains only matching paths
where no edge occurs more than once. In our evaluation of P (G) above, only the
first two paths satisfy this as the latter ones repeatedly take the same route.
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Output

Now that we have seen some evaluation semantics for path queries, we will briefly look
at different forms of possible outputs for such queries. Again, we look at this from
a practical perspective, where a user may for example only be interested in a simple
true/false-answer and not in nodes, properties or paths. In such a case, it is enough to
output a boolean value. As an example, the query P = a

α−→ b with given nodes a and b
asks whether the nodes are connected by a path satisfying α and can be answered by a
boolean value depicting whether P (G) is empty or not. In other cases, the start and end
nodes (a and b in the previous example) are not given but we are searching for them,
i.e. we want to find the nodes connected by a path satisfying α. The output of such a
query contains these node pairs and therefore coincides with the definition of the output
of RPQs.

Apart from these outputs that have a fixed arity, we could also be interested in the paths
themselves which are inherently of variable length. As we have seen before, including
all paths that satisfy a query under the arbitrary path semantics can result in a large,
and potentially infinite, number of paths. Furthermore, a database system offering such
outputs also has to deal with paths of potentially unlimited length. One approach to
get a compact representation of the output is to return a graph consisting of the paths
that are contained in the evaluation of the query. This in turn would allow for query
composition as a query takes a graph as input and would output a graph as well. We will
look at this in more detail in Section 3.6. However, this is not supported by any modern
database system or graph query language except in the research language G-CORE as of
now. Generally, the representation of paths in the output of a query differs from system
to system as there is no consensus for this until now. [AAB+17].

Complexity

Evaluating a path query on a graph is a complex undertaking in general. Caused by
their recursive nature, the system often needs to load, or at least go through sizable
data space. For example, a search for all node pairs connected by a path that satisfies a
regular expression under the simple path semantics (no-repeated-node) is NP-complete
in the graph size [MW89, Bar13]. This has led to the development of many semantics
based on the arbitrary-path one, that for instance stop as soon as one path is found.
Barcelò showed that such a semantics leads to tractable complexity when evaluating
RPQs [Bar13]. However, this does not mean that all modern query languages and
database systems use a variant of arbitrary path semantics as we will see in our analysis.
[AG18, AAB+18]

3.3.4 Queries:
Now that we understand the concepts and evaluation semantics of navigational queries,
we will look at some examples from the LDBC SNB. In our explanation of path queries,
we started with reachability queries that test for the existence of a path between two
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nodes. We also mentioned the possibility to constrain such a path, for example by only
allowing edges with a specific label. The query IC13 (interactive complex 13) is an
example of that, with the addition that we do not only test for the existence of such a
path, but are also interested in the path itself and the length of it.

Given two persons by their id, find the shortest path between them in the subgraph
induced by the knows relationships. Furthermore return the length of

the path, 0 if both ids are equal and -1 if there is no such path. (7)

Figure 3.5 depicts the query as a navigational graph pattern that uses a slightly different
notation for the regular expression knows∗, namely “knows∗0..”. The “∗” signalizes a
path of some length where 0.. gives the lower bound. Likewise, knows∗1..3 would denote
a path of length at least one and maximum three, where all edges have to be labeled
with knows. Note that we are not able to specify that we are only interested in the

Figure 3.5: Query 7 (IC13) as a graphical query pattern. Source: The LDBC Social
Network Benchmark, page 54 [LDB20].

shortest path in this representation. The same limitation applies to the representation as
an RPQ:

P = person1 knows∗−−−−→ person2.

In our introduction of path queries, we then moved on to adjacency queries that explore
the surroundings of a given node. Query IC1 is an example of such a query that examines
the adjacency of a person.

Given a person, find persons with a given first name in their adjacency over knows
relationships of at most 3 steps. Return these persons, their distance as well as

summaries of their workplaces and place of studies. (8)

Figure 3.6 depicts this query as a navigational pattern. As an advantage of such a
representation, we can get a feeling of the difficulty of a query in terms of accesses to
different elements, like the ones on City, Company and Country here.

Now that we have seen an example of both, a reachability and an adjacency query, we
will look at general navigational query. Query IS2 gives us the last messages created by
a user, the original posts in the conversations as well as the persons that created these
posts. An application could then use this information to analyze relationships between
these persons for example.
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Figure 3.6: Query 8 (IC1) as a graphical query pattern. Source: The LDBC Social
Network Benchmark, page 42 [LDB20].

Retrieve the last 10 messages created by a given person. For each of those messages,
return that message, the original post in its conversation as well as the author

of that post. (9)

This is a navigational query as we have a path of variable length between the message
and the original post in its conversation. What makes this query a bit challenging is the
fact that a message can also be a post. In this case, the original post of the conversation
will be the same message and should occur twice in the output. Figure 3.7 depicts this
query as a navigational pattern.

Figure 3.7: Query 9 (IS2) as a graphical query pattern. Source: The LDBC Social
Network Benchmark, page 57 [LDB20].

Summary:
These features, namely graph patterns, paths and their combination in navigational
queries form the core of most, if not all, modern graph query languages. In all example
queries that we looked at until now, we used queries that retrieve data from a given
graph. Such queries form a sub-language of a general query language that is denoted
as DQL. As briefly mentioned in the introduction of query languages in Section 2.4, a
general query language also contains operations to manipulate the data and sometimes
even the schema. These sub-languages are in turn denoted as DML and DDL and we
will now look at them, their underlying mechanics and potential problems.
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3.4 Data Manipulation
Queries that manipulate the data allow us to change the graph by adding nodes or
edges, but also by removing or updating existing ones. These graph transformations are
specified in a query using primitives that are based on the previously introduced patterns
and paths [AG18]. Therefore, queries that manipulate the data are expressed similarly
to queries that retrieve data as both rely on graph-oriented operations [AG08].

In order to update or remove an entity, we first have to identify it. This can be problematic
in some scenarios. Think about a social network that can contain multiple people with
the same first and last name. To avoid an identification problem, many graph databases
use globally unique IDs that are associated to each entity, similarly to the world of
relational databases. Therefore, if one wants to remove a person with the name of “John
Doe”, we could first query for all such persons, select the ID of the one that we want to
delete and then send the DML query to remove the entity.

Another thing that we have to keep in mind when removing nodes are their relationships
to other nodes. When we remove such an entity, all incoming and outgoing edges become
invalid as they are left with only one adjacent node. It is up to the system to either
remove these stale relationships together with the node or to manipulate them in order
to achieve a valid graph again. There is no correct behavior for all scenarios. While some
systems remove such edges with the node, others provide explicit operators to either
delete only the node or also the adjacent relationships and there are even proposals for
algorithms that can deal with stale edges [SW14]. In some scenarios, the removal of a
node could also imply that other, often adjacent, nodes should be removed. Let’s look at
the relationships between a forum and the posts in this forum in the data model of the
SNB in Figure 2.7. If we are to remove a post, all comments that reply to this post hang
in the air. Similarly, removing a forum renders all posts in that forum to be without a
container.

Apart from the removal of entities we can also insert and update entities using such
queries. This allows for a dynamic change of the data itself and, assuming that the
database does not use a schema as is the case for some graph databases, also the data
model. Let’s look at our small social network where a node is identified as a person only
by its User label. If we update such an entity and change the label to Person, we
are left with a data model containing both, nodes labeled as User and Person. This
gives us a glance at the extreme flexibility of such systems as one is not bound to any
schema. On the other hand, querying a completely schema-less graph becomes nearly
impossible as for example persons can be labeled as User, Person, Man, Woman
.... This problem does not only concern node labels but also edge labels and properties
in property graphs as we could store the name of a person in a single property or split it
up into multiple ones for example. That means, that even if the database system does
not enforce a schema it is in the interest of the users to agree on a set of labels and
properties and to use them throughout the database. The flexibility that remains then is
the adaptability to future changes where a new label can be seamlessly added to either
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existing entities or new ones and can then be used in future queries. We do not have
these problems in systems relying on a schema as the schema defines the available labels
and potentially also the properties. However, we have to adapt the schema before we can
introduce a new label, property or entity.

3.4.1 Queries:
Now that we have highlighted some of the potential problems and types of queries that
are possible with this sub-language, we will look at a few examples.

In the setting of our social network, adding a new person to the graph is an important
operation. However, we do not only want to add a node containing the information about
the person but also relate it to other entities in a single query. The query INS15does
exactly that by adding a node as well as edges depicting their location, interests and so
on.

Add a node denoting a person and connect it to existing nodes depicting their
location, interests and place(s) of work and/or study. (10)

Figure 3.8 depicts this query as a graphical pattern and the various parameters (pre-
ceded by a dollar-sign) that will either be set as properties or are needed to build the
relationships.

Figure 3.8: Query 10 (INS1, IU1 in [AAA+20]) as a graphical query pattern. Source:
The LDBC Social Network Benchmark, page 61 [LDB20].

As an example of a query that deletes one or multiple entities we have to look at a
snapshot of version 0.4.0 as deletions are not present in earlier version. The query DEL7
removes a comment together with the corresponding relationships as well as all further
comments that reply to the initial one.

Delete a comment, its incident edges and recursively all comments
replying to the intitial one. (11)

5Remember: the insertion queries INS1-INS8 in the snapshot of the most recent version 0.4.0 [LDB20]
equal the queries IU1-IU8 (interactive update) in the stable version 0.3.2 [AAA+20].
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Figure 3.9 depicts this query as a graphical pattern. We can see that the removal triggers
the invocation of a recursive delete on the replying comment(s). This in turn deletes also
their edges until there are no dangling comments left. Therefore, this query potentially
touches many entities and, depending on the level of support for such transitive removals
from the system and the query language, can be quite sophisticated.

Figure 3.9: Query 11 (DEL7) as a graphical query pattern. Source: The LDBC Social
Network Benchmark, page 87 [LDB20].

The SNB does not contain queries that update an already existing entity, be it a node or
an edge. To this end, we include Query 12 that updates the property of an edge, namely
the year a person graduated at a university.

Update the year (classYear) a given person graduated at a given university. (12)

3.5 Data Definition
When we introduced the different data models in Section 2.3, we highlighted that some
of them support a schema while others do not. An example of such a schema can be seen
in the RDF data model in Figure 2.2. We also mentioned that the widely used property
graph data model does not support a schema out of the box. However, even if a database
system and the underlying data model do not support a schema, it is in the interest of
the users to agree on some sort of a schema as we have motivated in the previous section.
Therefore, many graph databases allow, or even require, the specification of some sort of
schema or restrictions on the graph, even if they are built on the property graph data
model.

Using a strong type system where labels, properties and their data types as well as
possible relationships are specified in the schema limits the flexibility. This loss is
traded for performance as a schema can be used to optimize query execution, improve
access to entities or even reduce the space needed to store them [DXWL19]. Apart
from performance improvements, a schema also allows for security and privacy features
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[WD18]. One can limit for example the access to parts of the graph for certain users and
hide other parts from them. In applications dealing with data in a known and structured
form, using a pre-defined schema representing this structure does not limit the flexibility
while providing the aforementioned performance and security benefits. Therefore, we
cannot derive a single best setting regarding the use of a schema for all applications.

The varying trade-offs between the flexibility and having at least some sort of schema
are one of the reasons for the existence of the various graph databases and often a major
differentiation between them. Even if we limit ourselves to databases and languages
relying on a schema we end up with multiple variants of such schemata. Where one
language for example allows an edge to be related to its reverse edge as in GSQL, we
cannot express this relationship in other languages like Cypher.

While DML queries allow us to manipulate the data graph, Data Definition Language
(DDL) queries are used to manipulate the schema. This includes the initial creation of
the schema as well as adaptions later on.

3.5.1 Queries:
The SNB does not contain any queries that manipulate the schema as it assumes the
pre-defined model from Figure 2.7. In our comparison of the query languages we will
describe whether a language supports or relies on a schema as well as the type of the
schema. As an example of such a DDL query we try to add a street to our data model in
Query 13, meaning that we adapt it such that a person is not directly located in a city
but in a street which in turn is located in a city.

Add a street entity to the data model and change the relationship
Person[0..*]-isLocatedIn->[1]City to

Person[0..*]-isLocatedIn->[1]Street[0..*]-isLocatedIn->[1]City.
(13)

3.6 Further Features
The first three features that we introduced, namely structure independent, pattern
matching and navigational queries, are the major building blocks used in many graph
query languages. These features allow us to query data and are also used in DML queries
to modify it. In a database that supports a schema, DDL queries are used to modify it.
Depending on the representation of the schema, they can also be built on top of these
three features as one could for example specify a schema using a pattern. Apart from
these features that form the basis and group possible queries, more general features of
graph query languages have been identified and we will now look at two of them. These
two features are more a characteristic of a language and tell us something about its
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expressiveness in certain use cases. The LDBC Technical User Community identified
these as two of the major issues in existing graph query languages [AAB+18].

• Composability
The first one, composability, denotes that the output or result of a query can
be used as input to another query in the same language. This allows for nested
subqueries as in SQL but also for a linear composition of queries where the first part
of a query selects some data which is then passed on as the input to a second query.
A composable query language encourages a modular approach and interoperability
between queries as we can plug one query into another one. This in turn allows for
an abstraction of problems as we can decompose bigger queries into smaller pieces
where the inputs and outputs are compatible [AAB+18].
The input is only compatible to the output if they have the same, or at least a
compatible, data model [ARV19]. As briefly mentioned in the introduction of query
languages, a graph query takes a graph as input but in many languages outputs
not a graph but a table containing values [Ang18]. Therefore, queries are not
composable in these languages. The paper that introduced the research language
G-CORE goes even one stop further and states that “current query languages do
not provide full composability because they output tables of values, nodes or edges.”
[AAB+18]. Following this argument, a graph query language is fully composable if
it outputs the result of a query as a graph. Unfortunately, as of now this is not
supported by any of the current graph query languages except by G-CORE itself.

• Paths as first-class citizens
The second feature deals with the representation of paths in the data model.
We already mentioned this feature when we introduced the class of ECRPQ in
Section 3.3.2. Paths are raised to first-class citizens for ECRPQs as they can be
named, included in the output and compared to others [LMV16]. An entity in any
programming language is said to be a first-class citizen if it supports the operations
that are generally available also to other entities. If it cannot be returned or stored
however, it is reduced to a second-class citizen [Sco06]. Consequently, raising paths
to first class citizens allows us to add labels and properties not only to nodes and
edges but also to paths [AAB+18]. These changes require a more sophisticated
data model, as the models explained until now cannot deal with stored paths.
As of now, the feature is again primarily supported by the research language G-
CORE. To achieve this, G-CORE uses an extension of the property graph data
model, namely the Path Property Graph (PPG) data model, that allows paths to be
stored and enriched with properties and labels. Figure 3.10 depicts a small social
network in this model where node labels are depicted as shapes and edge labels
as lines with either an arrow or rhombus. The novelty in this data model lies in
the lower left part where we find two stored paths, one from John to Alice and
one from John to Celine. As the users on the start and end node on both of these
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Figure 3.10: A small social network in the path property graph data model that includes
stored paths. Source: G-CORE A Core for Future Graph Query Languages, Figure 5
[AAB+18].

paths live in the same city, namely Houston, we could label them for example by
sameCityRelation. Furthermore, we can store the length of such a path as a
property of it such that a query can directly access this attribute without needing
to compute it.
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CHAPTER 4
Query Language Analysis

Now that we have introduced the features that form the conceptual core of all graph
query languages, we analyze 5 contemporary languages based on those features. The 5
languages are: Cypher as it is perhaps the most well-known property graph language,
Gremlin for its imperative approach, PGQL for its powerful path patterns, GSQL for its
use of a schema and natively parallel approach and G-CORE, that builds upon the other
languages and offers full composability. We did not only choose those languages for their
different features and approaches, as nearly every major contemporary graph database
supports at least one of those query languages.

To achieve a comprehensible comparison, we analyze the languages one after another. For
each language, we start with a general introduction that includes the core principles of the
language and give examples for the structure of a query. We then analyze the languages
in depth based on the previously identified features. We go through the implementations
of the queries from Chapter 3, highlight differences to other languages and look at the
expressiveness of a language by the support for specific functions as well as potential
shortcomings. Although we implemented all queries from the previous chapter in the
5 languages, we limit ourselves to those that are different to other implementations in
this thesis. Furthermore, the query definitions in the SNB expect an implementation
to rename each variable in the result. We omit this for brevity on most queries in this
chapter as this does not further our cause of comparing the languages. Nonetheless, a
full implementation of all queries can be found on our GitHub repository1.

1https://github.com/martin-kl/Diploma_Thesis_01526110_code
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4.1 Cypher
Cypher is perhaps the best-known query language for property graphs and focuses heavily
on patterns. The language is used in multiple databases and projects, with the version
in the Neo4j database [Neo20] and the one from the openCypher project [ope18] being
the most influential ones. As the language is not yet standardized, it is still subject
to change and the versions and implementations of it differ in some areas. Unless
specifically mentioned, the concepts and functions apply to all current implementations
of the language, especially also Cypher 9, the current version of openCypher, and the
version in the Neo4j database. [AAB+17]

Whereas programming languages like Java and other graph query languages like Gremlin
are imperative in nature, meaning that they focus on the description of the program’s
operation and in terms of query languages on how to compute the result, Cypher is a
declarative language. Therefore, it focuses on what a query should retrieve instead of
how it achieves the result. This is one of the areas where Cypher is similar to SQL, that
is declarative as well. Apart from that, many keywords in Cypher are inspired by SQL
to ease the transition for users coming from the world of relational databases. Being
a declarative query language and using many of the same keywords as SQL, it comes
only natural that the general structure of a Cypher query resembles the one of an SQL
query. A query in both languages consists of clauses that are chained together [ope18]. In
contrast to SQL however, Cypher queries are conceptually structured linearly. Therefore,
we can think of the execution of a query as starting with the evaluation of the first clause
by generating a result for it, which in turn is passed on as input to the second clause
and so on. This linear combination leads to another difference as it does not allow the
projection (the RETURN statement, Cypher’s variant of SQL’s SELECT) to be at the
beginning of the query as first clause, it has to be at the end of it. [FGG+18b]

Algorithm 4.1 depicts a simple Cypher query consisting of three clauses, one in each line.
The MATCH clause is the entry point of a query and contains the basic graph pattern (bgp)
that the query is searching for. Together with the WHERE clause that further restricts
the pattern, this query searches for relationships between the person John Doe and other
nodes. Parentheses “( )” in the pattern depict a node whereas edges are depicted by
“-[ ]-”. As we can see in our example, these brackets can contain either a single word
that denotes a variable (rel, dst) or a variable together with a filter on a label that
is given after the colon. (pe:Person) for example matches only these nodes to the
variable pe that are labeled as Person. [AAB+17]

1 MATCH (pe:Person) -[rel]- (dst)
2 WHERE pe.firstName=’John’ AND pe.lastName=’Doe’
3 RETURN p, rel, dst

Listing 4.1: A Cypher query that selects the neighborhood of the person John Doe.

We can also see the conceptually linear structure of a query and observe that it can
be evaluated one clause after the other, starting from the topmost that selects all such
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patterns, followed by the restriction on the variable p to the person John Doe, to the
projection in the RETURN clause. However, a system implementing the query language can
re-order clauses as long as the semantics of the query is retained [FGG+18b]. Therefore,
the linear structure holds only conceptually and an implementation is not bound to the
order of clauses when evaluating a query. That allows an implementation to use the
restrictions given in the WHERE clause already when searching for patterns in the MATCH
clause, therefore improving the evaluation efficiency. The strong dependence between the
WHERE and MATCH clauses lead to a short form that allows a restriction on properties
also in the pattern. The query in Algorithm 4.2 is equivalent to the previous one as it
contains the restrictions on properties in the “{ }” brackets. [ope18]

1 MATCH (p:Person {firstName: ’John’, lastName: ’Doe’}) -[rel]- (dst)
2 RETURN p, rel, dst

Listing 4.2: Query 4.1 in a more compact notation.

Now that we have seen a simple example of a query, we will look at the evaluation of
queries and clauses and the information passing between clauses in more detail. A clause
resembles a function that, analogously to SQL, operates on an input table and produces
a table as output. In other words, each clause gets an input table, applies a function on
the values in that table, and produces an output table that in turn is the input table
for the next clause. These tables are also called binding tables in Cypher as they bind
variables from the query to elements in the graph or other values. However, the definition
of a query consisting of clauses that operate on these tables leads to a problem, as a
Cypher query in an abstracted sense outputs a table but takes a property graph as input.
We can generate the output as a table under the definition of a clause, but until now
each clause expects a table as input as well. That is especially also true for the first
clause in a query, meaning that such a clause gets an empty table as input. The MATCH
clause is the main representative for a special group of clauses regarding these binding
tables 2, as they usually take an empty table as input and can populate it with entries
from the property graph. Therefore, we need such a clause in every query that interacts
with the graph, even if we simply select all nodes in the database as does the query in
Algorithm 4.3. This also highlights the status of patterns as an integral part of Cypher.
[FGG+18b]

1 MATCH (n)
2 RETURN n

Listing 4.3: A simple Cypher query that selects all nodes.

Linear Composition and the WITH clause
Apart from the conceptually linear flow between clauses in a single query as seen until
now, Cypher also supports the WITH clause that allows for a linear composition of queries.
As an example, the query in Algorithm 4.4 starts at John Doe and in a first step traverses

2If we restrict ourselves to the DQL, MATCH is the only such clause, but there are others like MERGE
that are part of the DML.
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to all persons m connected to him. Since we are only interested in the person with the
alphabetically last first name, we have to order them by their first name in descending
order before we can select the top result. We then want to pass that person as input
to the second part of the query, namely the second MATCH. However, ORDER BY is a
sub-clause in Cypher that has to follow a projecting clause, meaning either RETURN
or WITH. To this end, we have to use the WITH clause to specify which variables are
passed on from the binding table of the first part of the query to the second MATCH.
Furthermore, only these variables can be used in the ORDER BY clause, that in turn
is evaluated before the second MATCH as it is a sub-clause of WITH. We highlight this
dependence of ORDER BY on WITH in the algorithm by the indentation of line 3, which
is however not required or motivated by the Cypher guidelines and should only help the
reader in this case. The second MATCH clause in the query now uses both, the input
variable m it got from the previous part and the property graph, to populate its binding
table with entries for the variable o and return properties of them. [ope18]

1 MATCH (p:Person {firstName: ’John’, lastName: ’Doe’}) -[rel]- (m:Person)
2 WITH m
3 ORDER BY m.firstName DESC LIMIT 1
4 MATCH (m) -[r]- (o:Person)
5 RETURN o.firstName, o.lastName

Listing 4.4: A Cypher query that contains a linear composition of queries via the MATCH
clause.

Grouping
One well-known keyword from SQL however is missing in Cypher, namely GROUP BY. The
functionality is instead provided directly by the RETURN clause, as each non-aggregate
function is implicitly taken as key to group by. This can be seen in Algorithm 4.5 where
n becomes the grouping key and we count the number of neighbors o.

1 MATCH (n) -[rel]- (o)
2 RETURN n, count(*) LIMIT 10

Listing 4.5: A simple Cypher query showing an alternative to SQL’s GROUP BY.

Apart from grouping in the last clause, we can also use WITH to specify the group(s) and
the aggregate operation. This allows us to work with the result of the aggregation, for
example by filtering out parts of the result. As an example, the query in Algorithm 4.6
selects all friends of John Doe that have at least ten outgoing relationships 3. It includes
some new concepts, starting with a directed edge where the direction is given by an arrow
(“<-[]-” or “-[]->”). Note however that the data model of Cypher does not support
undirected edges at all, meaning that we cannot create or store undirected edges. The
pattern -[]- that we used in the queries until now allows us to test for the existence
of some directed relationship, regardless of the direction. Furthermore, there are two
anonymous edges and one anonymous node in this query. These are entities that have no

3Note again that the edge label KNOWS depicts a friendship relation in the benchmark.
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variable in their corresponding brackets and can therefore not be accessed later on in
the query or included in the output. In this scenario however, we are not interested in
the edges that match the directed edge-pattern, but only in the amount of such edges.
Cypher also provides a short form for such anonymous edges: “- -” for edges where
we do not specify the direction as well as “<- -” and “- ->” for directed ones. The
WITH clause is needed in this query as we want to further limit our selection to friends
that have at least 10 such edges. To this end, we group by the friends f and call the
aggregate operation COUNT in the WITH clause that in turn forwards the resulting table
to the WHERE clause where we can use the previously computed values.

1 MATCH (p:Person {firstName: ’John’, lastName: ’Doe’}) -[:KNOWS]- (f:Person)
-[]-> ()

2 WITH f, COUNT(*) AS out
3 WHERE out >= 10
4 RETURN f.firstName, f.lastName

Listing 4.6: A Cypher query that selects all friends of John Doe that have at least ten
outgoing relationships.

Now that we have seen some of the general principles of Cypher, we will go over the
queries from Chapter 3 and highlight advantages and disadvantages compared to other
graph query languages. We took most implementations of the benchmark queries from
their reference implementations on GitHub4. To ensure the correctness of the queries, we
executed all of them on a Neo4j Community Edition 4.1.0 database. However, unless
stated otherwise, the queries use only these functions and procedures that are also
available in Cypher 9.

4.1.1 Structure Independent
We have already seen how we can formulate Query 1: either by restricting the matched
nodes in the WHERE clause as in Algorithm 4.1 or by using the short form as in Algo-
rithm 4.2. Cypher also supports the parameterization of queries such that the user can
pass arguments to the query. An argument is then accessible by preceding its name with
a dollar sign as we can see in Algorithm 4.7.

1 MATCH (p:Person {firstName:$firstName, lastName:$lastName})
2 RETURN p

Listing 4.7: Query 1 as a Cypher query.

The implementation of Query 2 in Cypher is given in Algorithm 4.8. As mentioned in the
introduction of the query in Chapter 3, it returns the creation date of a given message
and either the textual content in case there is one, or the image file (that is also saved
as string). This differentiation can be seen in lines 4-6 of the algorithm where a CASE
expression distinguishes between the two cases. To determine whether a message has the

4https://github.com/ldbc/ldbc_snb_implementations
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property content, Cypher provides the EXISTS function. This function can be used
on nodes and edges to test for the existence of properties.

1 MATCH (m:Message {id:$messageId})
2 RETURN
3 m.creationDate AS messageCreationDate,
4 CASE EXISTS(m.content)
5 WHEN true THEN m.content
6 ELSE m.imageFile
7 END AS messageContent

Listing 4.8: Query 2 (IS4) as a Cypher query.

Before we take a look at the implementation of Query 3, we have to look at Cypher’s
capabilities regarding collections such as lists. The benchmark states that the languages
spoken by a person are stored in a list of strings and Cypher indeed supports lists as
well as maps. Lists can be created simply by surrounding elements of the same type by
square brackets as in [0,2,4] or by using the collect aggregation. Algorithm 4.9
depicts a Cypher implementation of Query 3. After selecting all persons in line 1, we
use SIZE to get the number of entries in the speaks property of an individual Person
(which is a list of strings). Thereafter, Cypher implicitly groups all of these values and
calculates the average over the sizes. Apart from the aggregate operation AVG, Cypher
also supports MAX, MIN, COUNT, SUM as well as functions to calculate the standard
deviation and percentiles.

1 MATCH (p:Person)
2 RETURN AVG( SIZE( p.speaks ) )

Listing 4.9: Query 3 as a Cypher query.

We have already mentioned the collect function and we will now go briefly over the
query in Algorithm 4.10 to give an example of it. The query selects all entities (edges
and nodes) that are directly related to a continent whose name starts with ’A’. At the
end of the first query part we collect the names of these continents into the list conts
that is passed to the UNWIND clause. There, the list is dissected again and each element
in the list is passed on as cont to the remaining query part, meaning that this results
in one execution of the latter MATCH for each entry in the list. The matches from these
executions are then implicitly brought together and we can access all of them in the
RETURN clause. Note that there are simpler ways to specify this query and we only use
this as it allows us to show both, collect and UNWIND in one query.

1 MATCH (c:Continent)
2 WHERE c.name STARTS WITH ’A’
3 WITH collect(c.name) as conts
4 UNWIND conts AS cont
5 MATCH (c:Continent {name: cont}) -[r]- (n)
6 RETURN c, r, n

Listing 4.10: A Cypher query that selects all entities that are directly related to a
continent that starts with ’A’.
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4.1.2 Pattern Matching
We have already seen that patterns are used as main building blocks in Cypher queries.
Caused by the fact that we have already given multiple examples of queries that contain
simple bgps, we skip the code of Query 4 and continue with the similar looking Query 5.
Algorithm 4.11 shows an implementation of this query. It includes an ORDER BY clause
that works as expected for developers coming from SQL, meaning that the results are
first ordered by the friendshipCreationDate in descending order and, on identical
values on that variable, on the personId in ascending order.

1 MATCH (n:Person {id:$personId}) -[r:KNOWS]- (friend)
2 RETURN
3 friend.id AS personId, friend.firstName, friend.lastName,
4 r.creationDate AS friendshipCreationDate
5 ORDER BY friendshipCreationDate DESC, toInteger(personId) ASC

Listing 4.11: Query 5 (IS3) as a Cypher query.

To understand the implementation of Query 6 in Algorithm 4.12, we first have to introduce
the OPTIONAL MATCH clause. Similarly to MATCH, we can specify a pattern in this
clause and the database system searches for matches in the data. However, if there is no
such match or only a partial one, meaning that for example only some variables of the
OPTIONAL MATCH clause can be matched, all unmatched ones are set to null. This
resembles the semantics of outer join in SQL. In our example, we first search for a pattern
between a given message m, a replying comment c and its creator p. To test whether p
knows the person that created the original message m, we optionally match the path from
m to its creator and furthermore over a KNOWS edge to p. However, we do not know if the
KNOWS edge exists as this is exactly what we want to find out. Therefore, we can then
use a CASE expression in the RETURN clause to test whether such a match was found.

1 MATCH (m:Message {id:$messageId}) <-[:REPLY_OF]- (c:Comment)
2 -[:HAS_CREATOR]-> (p:Person)
3 OPTIONAL MATCH (m) -[:HAS_CREATOR]-> (a:Person) -[r:KNOWS]- (p)
4 RETURN
5 c.id, c.content, c.creationDate AS commentCreationDate,
6 p.id AS replyAuthorId, p.firstName, p.lastName,
7 CASE r
8 WHEN null THEN false
9 ELSE true

10 END AS replyAuthorKnowsOriginalMessageAuthor
11 ORDER BY commentCreationDate DESC, replyAuthorId

Listing 4.12: Query 6 (IS7) as a Cypher query.

Evaluation Semantics
Regarding the evaluation semantics of a bgp, Cypher uses relationship isomorphism as
a default. That resembles our no-repeated-edge semantics where no two edge variables
can be matched to the same edge in a single match. This avoids a potential infinite
result in patterns with variable length [AAB+18]. It is envisioned that future versions of
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Cypher, i.e. Cypher 10 under the openCypher project, allow the user to switch between
a homomorphism-based, a no-repeated-node and the current no-repeated-edge semantics
on a query-by-query base. [GJK+18]

However, we can influence the semantics of a query by our choice of the query structure
even today. As an example, assume that we are searching for all friends-of-friends (of
length exactly 2) of a given person n. We can then collect all these friends in a list and
test whether n is in that list or not. The first example in Algorithm 4.13 contains a
single MATCH clause and, caused by the no-repeated-edge semantics, returns false as
the same edge will not be matched to both edges in the pattern. However, the version in
Algorithm 4.14 returns true as there are no two edges in a single MATCH but they are
split up into multiple ones.

1 MATCH (n:Person {id:$id}) -[:KNOWS]- (friend) -[:KNOWS]- (foaf)
2 WITH n, collect(foaf) as foafs
3 RETURN n IN foafs //returns false

Listing 4.13: A cypher query that returns false as the same edge will not be matched
to both edges in the pattern.

1 MATCH (n:Person {id:$id}) -[:KNOWS]- (friend)
2 MATCH (friend) -[:KNOWS]- (foaf)
3 WITH n, collect(foaf) as foafs
4 RETURN n IN foafs //returns true

Listing 4.14: A cypher query that returns true as the same edge will be matched to the
edges in both MATCH clauses.

Apart from that, Cypher also provides UNION and UNION ALL clauses that allow for
a combination of results from multiple queries. Regarding the evaluation semantics of
such queries, Cypher uses a bag semantics which is not problematic as we know that the
evaluation of a single query results in a finite number of matches. [AAB+17, ARV19]

4.1.3 Path
Cypher supports a subset of RPQs as it allows for variable length paths. These paths can
be further restricted by a single relationship type or a disjunction of such [FGG+18b]. In
the most general form, we can abbreviate an otherwise unrestricted path with three edges
and four nodes by (a) -[*3]- (b). Furthermore, we can specify an upper bound y
on the length via [*..y], a lower bound x via [*x..] and a combination of both via
[*x..y]. This can be extended to also include edge labels. As an example, we can
search for the friends-of-friends of length 3 via (a)-[:KNOWS*3]-(p). Besides paths
of variable length, a disjunction of labels is given as (a)-[:KNOWS|WORK_AT]-(b).
However, Cypher does not support full composition of regular expressions over edge
labels and its path querying functionality is therefore not as expressive as RPQs.

Apart from restrictions on paths, Cypher also allows paths to be assigned to variables.
As an example, we can assign a path to a variable as in Algorithm 4.15. This allows
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us to further restrict a path, for example in a WHERE clause, and to return it. Cypher
provides functions like nodes and relationships to access these entities on a path
in order to restrict or return them as well as length to get the length of a path.

1 MATCH p = (n:Person {id:$id}) -[:KNOWS*..5]-> ()
2 WHERE length(p) > 2
3 RETURN relationships(p), length(p) LIMIT 10

Listing 4.15: A Cypher query that demonstrates named paths (paths that are assigned
to variables).

Algorithm 4.16 depicts an implementation of the reachability query 7. This is an
interesting query as it searches for the shortest path between two nodes with a restriction
on the edges that can be traversed. Cypher provides the shortestPath function for
exactly that, meaning that the function finds “a single shortest path between two nodes”
[ope18, Neo20]. However, it is not specified which path is returned when there are
multiple shortest ones. As we do not know if such a path exists at all in our case, we use
the function in an OPTIONAL MATCH so that we can later test whether such a path was
found or not. Apart from the shortestPath function that returns a single shortest
path, Cypher also provides the allShortestPaths function that returns all shortest
paths between two nodes.

1 MATCH (person1:Person {id:$person1Id}), (person2:Person {id:$person2Id})
2 OPTIONAL MATCH path = shortestPath((person1)-[:KNOWS*]-(person2))
3 RETURN
4 CASE path IS NULL
5 WHEN true THEN -1
6 ELSE length(path)
7 END AS shortestPathLength;

Listing 4.16: Query 7 as a Cypher query.

Algorithm 4.17 contains an implementation of the adjacency query 8. The query incorpo-
rates multiple concepts and clauses that we explained before and at a first glance looks
quite complicated. However, this comes mostly from the fact that it starts with a simple
pattern that gathers friends up to distance 3 and then proceeds by collecting further
information about them in multiple steps. As there can be more than one path of length
1 to 3 between two persons that know each other, we use the shortestPath function
to get a single one. After excluding the start person in line 2, we pass the required
information to the next query part via the WITH clause. This part is then evaluated
once for every friend from the first part and gathers information about the place the
friend is living at and optionally the place(s) he or she studied at. Information about
a single university is gathered in a manually created list in line 12. As a person can
have relations to none, a single or multiple universities, we iterate over them and collect
the information in a list using collect. The information is combined in another WITH
clause, forwarded to the next query part where information about the work-relationships
of the friend are added and finally returned. This query shows how we can iteratively
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gather information and that the information we want to finally return has to be passed
to the end via WITH clauses.

1 MATCH p=shortestPath((person:Person {id:$personId}) -[path:KNOWS*1..3]- (
friend:Person {firstName:$firstName}))

2 WHERE person <> friend
3 WITH friend, length(p) AS distance
4 ORDER BY distance ASC, friend.lastName ASC, toInteger(friend.id) ASC
5 MATCH (friend) -[:IS_LOCATED_IN]-> (friendCity:Place)
6 OPTIONAL MATCH (friend) -[studyAt:STUDY_AT]-> (uni:Organisation) -[:

IS_LOCATED_IN]-> (uniCity:Place)
7 WITH
8 friend,
9 collect(

10 CASE uni.name
11 WHEN null THEN null
12 ELSE [uni.name, studyAt.classYear, uniCity.name]
13 END
14 ) AS unis,
15 friendCity,
16 distance
17 OPTIONAL MATCH (friend) -[workAt:WORK_AT]-> (company:Organisation) -[:

IS_LOCATED_IN]-> (companyCountry:Place)
18 WITH
19 friend,
20 collect(
21 CASE company.name
22 WHEN null THEN null
23 ELSE [company.name, workAt.workFrom, companyCountry.name]
24 END
25 ) AS companies,
26 unis,
27 friendCity,
28 distance
29 RETURN friend, distance, friendCity.name, unis, companies

Listing 4.17: Query 8 as a Cypher query.

We skip the implementation of Query 9 as it does not provide any new insights and can
be written as a relatively simple navigational query.

Evaluation Semantics
Similar to the evaluation semantics of pattern matching queries, Cypher uses a no-repeated-
edge semantics when evaluating path queries [DXWL19]. Therefore, the evaluation of
such a query will never take the same edge in a path, which in turn avoids paths of
unlimited length. Regarding possible outputs of a query, Cypher supports everything
from fixed arity outputs like Booleans, single properties and entities to variable arity
outputs like paths and lists. However, we are not able to return a graph in Cypher as of
now, although something in that regard should be supported in Cypher 10 [FGG+18b].
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4.1.4 Data Manipulation
Now that we have seen a variety of queries that select data from the graph, we will
look at DML queries. As mentioned in Chapter 3, queries that manipulate data are
expressed similarly to ones that only retrieve data. This can be seen in the simplified
implementation of Query 10 in Algorithm 4.18 that uses the same patterns also to create
nodes and relationships. The query inserts a new person node via the CREATE clause as
well as a relationship labeled IS_LOCATED_IN to connect the new node to the city the
person is living in. All of that is done in the first two lines and the code in the following
lines then creates a variable number of relationships to already existing nodes. We use
UNWIND to unroll the list of tags, study and work information and each such entry is
then passed to one MATCH-CREATE combination. As an interesting side note, we have
to include count(*) in the WITH clauses to avoid an unexpected behavior: if we pass
for example two tags in tagIds, this results in two evaluations of the MATCH-CREATE
combination in lines 5 and 6 which in turn would result in two calls of the WITH clause
in line 7. By adding count(*) in that clause, we implicitly group on the single key p
which in turn is the only value that is then passed to the next query part.

1 MATCH (c:City {id:$cityId})
2 CREATE (p:Person {id: $personId, firstName:$fn, birthday: date($bd),

creationDate: timestamp($cd), emails: $emails}) -[:IS_LOCATED_IN]-> (c)
3 WITH p
4 UNWIND $tagIds AS tagId
5 MATCH (t:Tag {id: tagId})
6 CREATE (p) -[:HAS_INTEREST]-> (t)
7 WITH p, count(*) AS dummy1
8 UNWIND $studyAt AS s
9 MATCH (u:Organisation {id: s[0]})

10 CREATE (p) -[:STUDY_AT {classYear: s[1]}]-> (u)
11 WITH p, count(*) AS dummy2
12 UNWIND $workAt AS w
13 MATCH (comp:Organisation {id: w[0]})
14 CREATE (p) -[:WORKS_AT {workFrom: w[1]}]-> (comp)

Listing 4.18: Simplified version of Query 10 (INS1) in Cypher that inserts only some
properties.

Apart from CREATE, Cypher also provides the MERGE clause that ensures that a given
pattern exists in a graph. If the pattern already exists, it works similar to MATCH as the
variables are bound to the existing and matched entities. Otherwise, the entities are first
created and then bound to the variables.

Cypher provides two clauses to remove entities from the graph: DELETE removes a single
node or edge whereas DETACH DELETE removes a node together with all incident edges.
Regarding the removal of connected nodes from the graph, stale edges are not allowed at
any time. Therefore, a query that deletes a node without also removing its relationships
will fail. That also means that the removal of a connected node will fail via the DELETE
command. Using DETACH DELETE however, we are able to remove connected nodes and
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trigger recursive removals via a short query. This can be seen in the implementation of
Query 11 in Algorithm 4.19.

1 MATCH (comment:Comment {id: $commentId}) <-[:REPLY_OF*]- (replies:Comment)
2 DETACH DELETE comment, replies

Listing 4.19: Query 11 (DEL7) as a Cypher query.

Apart from inserting and deleting nodes and edges, we can also update their properties,
add new ones or remove existing ones. An example of such an update can be seen in Algo-
rithm 4.20 where we change an existing property. The SET command is also used to insert
a new property, meaning that Cypher does not test whether the property classYear
already exists but simply saves it with the new value, overwriting a potentially existing
one or creating it anew. To remove a property from a node or an edge, Cypher provides
the REMOVE clause. Nodes in Cypher’s data model can have multiple labels where the
same commands are used to update, add or remove them. Edges however can only have
one label that is set at edge creation and cannot be updated or removed later on.

1 MATCH (:Person {id:$personId}) -[r:STUDY_AT]-> (u:University {id:$univId})
2 SET r.classYear=2020

Listing 4.20: Query 12 that sets (updates or adds) the property classYear.

4.1.5 Data Definition
Cypher in its original version does not support a schema and “was originally conceived
in a dynamically typed, schema-less context” [FGG+18b] that works on a single graph
only. That is still true in the current version governed by openCypher [ope18], but other
implementations like Morpheus: Cypher for Apache Spark5, SAP HANA Graph6 and
Cypher in Neo4j support at least some kinds of (schema) constraints and more than
one graph. We will now look at the constraints available in Neo4j as these will likely
also be available in future versions of openCypher as there exists a Cypher Improvement
Proposal7 for them in openCypher. Unique node property constraints ensure that the
values of a property on a node with a specific label are unique. This constraint however
does not enforce that the property has to exist on all nodes with this label but only
that if the property exists, its value is unique. Node property existence constraints allow
us to specify that all nodes with a specific label have to have a specific property and
relationship property existence constraints are the counterpart for edges. Finally, node
key constraints ensure that a set of properties has to exist on each node with a given label
and the combination of the property values has to be unique. We could enforce at least
parts of a schema using the latter three constraints. However, they are only available
in the Enterprise Edition of the Neo4j database whereas the open source Community
Edition is limited to unique node property constraints.

5https://github.com/opencypher/morpheus
6https://www.sap.com/products/hana.html
7https://github.com/opencypher/openCypher/pull/166
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Even if we were to use Cypher as in Neo4j’s Enterprise Edition, we could not implement
Query 13 as there is no way to specify allowed patterns. The only thing we can do is to
change the existing relationships in a way that they comply with the the query. To cope
with the lack of a schema in general, Cypher provides functions like EXISTS, that can
also test for the existence of patterns, or the OPTIONAL MATCH clause. However, having
a schema would allow a system to fully type check queries up-front and add additional
optimization potential for the query planner and the execution [FGG+18b].

4.1.6 Further Features

• Composability: We have already seen that Cypher supports linear composition
of queries via the WITH clause. If we look into (nested) subqueries, we are again
limited to versions of Cypher different from openCypher. There is however a Cypher
Improvement Proposal8 that targets version 10 of the language and introduces this
feature in the openCypher version. We will now look at an example of a correlated
subquery as it is currently supported by the version of Cypher in Neo4j. As an
example, assume that we want to calculate the number of persons that are older
than John Doe. Algorithm 4.21 depicts an implementation of this query where we
use the “CALL {}” clause9 to evaluate the subquery. Again, we have to use WITH
to specify which elements of the binding table from the outer query are passed to
the subquery.

1 MATCH (p:Person {firstName: ’John’, lastName: ’Doe’})
2 CALL {
3 WITH p
4 MATCH (o:Person)
5 WHERE o.birthday < p.birthday
6 RETURN COUNT(o) as youngerCount
7 }
8 RETURN p.firstName, p.lastName, youngerCount

Listing 4.21: A Cypher query in Neo4j’s version that selects John Doe and counts the
number of older persons.

However, Cypher allows us to formulate many such queries in a way that avoids
subqueries altogether. The query in Algorithm 4.22 is equivalent to the previous
one but achieves this via two (uncorrelated) matches that are then related to each
other in the WHERE clause. We use WITH in this implementation to group by p and
count the matches of younger persons before we return them.

1 MATCH (p:Person {firstName: ’John’, lastName: ’Doe’})
2 MATCH (o:Person)
3 WHERE o.birthday < p.birthday

8https://github.com/opencypher/openCypher/pull/100
9Note that there is also a “CALL” clause available in both, Neo4j’s and openCypher’s version, that

invokes a procedure. The “CALL {}” clause that invokes a subquery however is only available in Neo4j’s
version.
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4 WITH p, COUNT(o) as youngerCount
5 RETURN p.firstName, p.lastName, youngerCount

Listing 4.22: An alternative version of the query from Algorithm 4.21 that avoids the
subquery.

Neo4j’s version of Cypher furthermore allows for existential subqueries using a
combination of WHERE and EXISTS. Unlike explained above, queries nested through
WHERE EXISTS can access variables from the outer scope even without WITH. On
the other hand, such queries can often be reformulated in a way that they avoid
existential subqueries altogether by using a more sophisticated pattern, OPTIONAL
MATCH or specifying the requirements in the WHERE clause.

Apart from that, Cypher in its current state is not a composable language as a
query outputs a table but takes a graph and an (empty) table as input. There
is however again a Cipher Improvement Proposal10 to include this in Cypher 10
via a change of the binding tables. The plan is to adapt these tables so that they
not only include tabular information but also one or multiple graphs, therefore
becoming table-graphs [FGG+18b]. This would enable query composability but also
requires a change of other structures as Cypher 9 cannot deal with multiple graphs.
There is already one implementation of Cypher that supports these features, namely
Morpheus, the version for Apache Spark.

• Paths as first-class citizens:
We mentioned before that Cypher allows paths to be matched and returned.
However, this is not enough for it to treat them as first-class citizens as we cannot
save paths or add properties to them and to the best of our knowledge, there is no
attempt to change this as of now.

As we have seen in this section, Cypher focuses heavily on patterns and provides a syntax
that allows for compact queries in many cases. It provides a myriad of mathematical
and string functions that we did not introduce as well as aggregating and graph-specific
functions like shortestPath, nodes, labels. The version of Cypher in Neo4j also
includes temporal functions for dates, times including time zones and durations as well as
spatial functions. Apart from these functions that are included in the language, we can
extend Cypher via user-defined functions. These functions are deployed into the database
and can then be called similar to Cypher functions in queries. The Neo4j database also
supports user-defined procedures that can take arguments and interact with the database
before returning a result. In Neo4j, these functions and procedures are written in Java
and the company provides some of them in bundles. Awesome Procedures On Cypher
(APOC)11 and a bundle especially for data scientists12 are examples for them.

10https://github.com/opencypher/openCypher/pull/241
11https://neo4j.com/labs/apoc/, https://github.com/neo4j-contrib/

neo4j-apoc-procedures
12https://github.com/neo4j/graph-data-science/
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4.2 Gremlin
Unlike Cypher that is a high-level declarative language, the Gremlin query language
[Tin20] is a low-level language that offers imperative as well as declarative constructs
[Rod15]. Although it is a functional language at its core, it is more imperative in nature
and focuses on graph traversals instead of pattern matching [AAB+17]. However, apart
from its focus on traversals and therefore navigational queries in the imperative style,
Gremlin provides pattern matching features in a declarative construct [TPAV19]. From
the earliest prototypes onwards, Gremlin extensively uses XPath to provide complex
graph traversals [Lin18, AAB+18].

As briefly mentioned in the introduction of Gremlin in Chapter 2, Gremlin denotes not
only the query language but also the traversal machine GTM used in the TinkerPop
framework. A query written in the Gremlin query language is compiled to generate a
traversal that is then executed on the GTM. In the imperative traversal mode, that is
also used in some sense to match patterns as we will see later on, the user specifies so
called motifs, that are traversal instructions containing multiple steps. These steps are
then executed by a traverser, an instance of a traversal, in the GTM. In other words, a
single traversal has a set of traversers attached to it that walk on a graph according to
the steps from the query. The result of such a traversal then contains all locations where
a traverser halted. From now on, we mean the query language and not the traversal
machine when we speak about Gremlin. [Rod15, AAB+17]

Before we can examine our first query on the third line in Algorithm 4.23, we have to
create a traversal source on a graph. Such a source is needed to create a traversal that in
turn resembles a query and interacts with a graph. After connecting to some graph and
assigning it to the graph variable in line 1, we create the traversal source g in line 2.
This traversal source can be used not only for a single query but for all queries on the
graph. The query in line 3 selects all properties (values) of John Doe. Similar to the
linear structure of Cypher queries, a query in Gremlin is always evaluated from left to
right. Starting from the traversal source g, we first generate a traversal that starts at
the vertices in the graph via V(). Intuitively, there is now one traverser on each vertex
in the graph and the following steps specify how they proceed. If the query was to end
here, meaning that it only contains g.V(), we get all nodes as a result since there is
one traverser on each node after the execution of V(). In our query in Algorithm 4.23
however, we continue with a has() step to remove all traversers where the corresponding
element (a node in our case) does not have the given key/value property. Therefore, we
are left with traversers on only those nodes that have a ’firstName’/’John’ property. Note
that this also removes all traversers on nodes that do not resemble a person as these do
not have a firstName property. After repeating this step to also remove traversers on
nodes that do not have the ’lastName’/’Doe’ property, we select all property values of
the node with values.

Note that the commands can be run as given in the algorithm in the Gremlin Console,
an interactive terminal that connects to the GTM and allows for ad hoc queries to be
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executed. For queries in applications however, one normally uses an implementation of
Gremlin in a programming language and interacts with a GTM from there. We will go
into more details regarding such implementations and their differences detail later on.

1 gremlin> graph = TitanFactory.open(<graph>)
2 gremlin> g = graph.traversal()
3 gremlin> g.V().has(’firstName’,’John’).has(’lastName’,’Doe’).values()

Listing 4.23: An example on how to connect to a graph, create a graph traversal source
on the graph and spawn a traversal in the Gremlin Console. The query then selects the
properties of node(s) with the name John Doe.

The query in Algorithm 4.24 selects the names of all friends of John Doe. In the previous
query, we removed all traversers on nodes that do not resemble a person implicitly by
requiring the property firstName. We can also state such a label requirement explicitly
via the hasLabel() step. After the steps in line 1 are executed, we are left with a
traverser on the node representing John Doe (assuming that there is only one such node).
The next step, out(), is a vertex step that allows us to traverse over an outgoing edge to
an adjacent vertex, denoted as outgoing adjacent in Gremlin. In our query, we limit the
traversal to knows edges (edges labeled with “knows”). In case there are multiple such
adjacent vertices, this step essentially spawns new traversers and assigns each of those
vertices one traverser. Apart from moving to outgoing adjacent vertices, Gremlin also
supports in() to move to incoming adjacent vertices (adjacent vertices connected over
incoming edges) and both() to move to both, incoming and outgoing adjacent ones. In
the last line of this query, we select the first and last name of the friends of John Doe.

1 g.V().hasLabel(’person’).has(’firstName’,’John’).has(’lastName’,’Doe’)
2 .out(’knows’)
3 .values(’firstName’, ’lastName’)

Listing 4.24: A Gremlin query that selects the names of John Doe’s friends.

As we have seen in this query, we are forced to think in a graph-perspective when writing
a query in Gremlin [Rod15]. Until now, this perspective is mostly limited to vertices as
we can select and filter them and move from one to another. However, we can also move
to edges which can be seen in Algorithm 4.25. This query selects a map containing all
key/value pairs of outgoing knows edges of John Doe via valueMap(). The outE()
step is again a vertex step but unlike the ones mentioned before, moves to outgoing
incident edges. Similar to the vertex steps from above, Gremlin also provides steps like
inE() to move to incoming incident edges and bothE() to move to both, incoming and
outgoing ones. All steps mentioned until now can be invoked on traversers on vertices.
Furthermore, steps like outV(), inV(), bothV() and otherV() can be used on
traversers on edges that allow us to move from an edge to a vertex.

1 g.V().has(’firstName’,’John’).has(’lastName’,’Doe’).outE(’knows’).valueMap()

Listing 4.25: A Gremlin query that selects properties of outgoing knows edges of John
Doe.
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All of our queries until now are composed as a concatenation of steps which looks similar
to a general programming language. And indeed, Gremlin is sometimes denoted as a
“programming language for property graphs” [AAB+18]. This sets it apart from most
other query languages, especially also Cypher, and allows us for example to store the
result from one query in a variable and use it later on in a different query. Algorithm 4.26
contains some examples for this where each line depicts a single query. The query in the
first line assigns the node depicting John Doe to the variable john. In order to assign it,
we have to use the next() step that triggers the evaluation. This is needed as Gremlin
uses a lazy evaluation on most queries. We were able to omit this step in the previous
queries as queries entered in the Gremlin Console are evaluated automatically after
pressing Enter. However, that does not work when assigning a query result to variables,
where we have to manually trigger the evaluation of the query to assign the result. Now
that we have a reference to this node, we can use this variable in the following queries.
As an example, we directly start from the node john in the query in line 3 and traverse
to vertices connected over knows edges and select their firstName.

Another area where Gremlin differs from most query languages is the support for lambdas.
Lambda steps like map(), flatMap() and filter() allow for custom functions that
can be used to restructure or filter data. Although these steps “represent the foundational
constructs of the Gremlin language” [Tin15, Tin20], they should be avoided if possible as
they cannot be inspected and optimized by the compiler. Nonetheless, having the ability
to use lambdas in case there is no lambda-less step directly provided by Gremlin allows
a user to essentially run any function. Therefore, it is also not surprising that Gremlin
is a Turing-complete language [WD18]. The queries in lines 3, 4 and 5 are equivalent
and while the first version uses Gremlin functions, the latter ones use the lambda step
map().

1 gremlin> john = g.V().has(’firstName’,’John’).has(’lastName’,’Doe’).next()
2 //the following three queries are equivalent:
3 gremlin> g.V(john).out(’knows’).values(’firstName’)
4 gremlin> g.V(john).out(’knows’).map(values(’firstName’))
5 gremlin> g.V(john).out(’knows’).map {it.get().value(’firstName’)}

Listing 4.26: Multiple Gremlin queries that assign and use a variable and demonstrate
the use of lambda functions.

Each query until now started with the V() step, that spawns a traversal on the vertices
from the traversal source g. Gremlin also allows a traversal that starts on the edges via
the E() step as can be seen in Algorithm 4.27. groupCount() is a step that counts
how often an object has been part of a traversal and can therefore not only summarize
labels but also any other information like the names or ages of persons.

1 g.E().label().groupCount()

Listing 4.27: A Gremlin traversal starting from the edges that generates a summary of
the edge labels.
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We can furthermore use union() to combine the results of multiple traversals or query
parts. As we can see in Algorithm 4.28, we can save a reference to an object using
as(<ref>) and can later on in the query access it via select(<ref>). This query
selects a person with a given id13 and combines the first name of the person with
the number of outgoing knows edges in the union() step. The last step, fold(),
aggregates these two values into a list and emits it.

1 g.V().has(’iid’,’person:933’).as(’person’).
2 union(
3 select(’person’).values(’firstName’),
4 outE(’knows’).count()
5 ).fold()

Listing 4.28: A gremlin query that outputs information about a specific person and
counts the number of outgoing edges.

All queries in this chapter were tested on a Titan 1.0.0 database14 that natively supports
the TinkerPop graph stack and therefore also the Gremlin query language. However, as
Titan is no longer maintained (but a fork of it, JanusGraph15, is), it does not use the
most recent version of TinkerPop and therefore Gremlin [Tin20] but the older version
3.0.1-incubating [Tin15]. As we ran all queries on Titan, they are compatible with version
3.0.1 and do not use additions that were introduced in later versions. An example of such
an addition is the propertyMap() step that extends valuesMap() to also include
the id and the label of an entity. However, all of the core functionalities and steps are
also available in version 3.0.1.

Apart from the database we will briefly explain the workings of the Gremlin Console,
why there are implementations of Gremlin in multiple programming languages and which
one we use in our queries. The TinkerPop project provides a reference implementation
of Gremlin in Java 8: Gremlin-Java. However, users are free to implement a variant of
Gremlin in any other programming language as long as the language supports function
composition and function nesting. Such an implementation provides the step functions
and is responsible for the translation of queries to Gremlin Bytecode that in turn can be
executed on a GTM. Apart from the implementation in Java, TinkerPop also provides an
implementation in Apache Groovy: Gremlin-Groovy. This language variant is used in the
Gremlin Console. Therefore, the Gremlin queries we have seen until now can all be run on
every Groovy-system that includes the required libraries for Gremlin. However, the only
notable differences between these two language variants regards the use of single versus
double quotes for strings (Groovy allows single quotes, Java requires double quotes), and
a small change in syntax on anonymous entities. The following queries are implemented
in Gremlin-Java. We pooled the benchmark queries from two GitHub repositories: the

13We use the property iid in our data model for our custom ids as id() is a native Gremlin function
that accesses the id generated by Gremlin and not the one generated by the LDBC data generator.

14http://titan.thinkaurelius.com/
15https://janusgraph.org/

62

http://titan.thinkaurelius.com/
https://janusgraph.org/


4.2. Gremlin

original implementation from PlatformLab16 and a fork and extension of this from Anil
Pacaci17.

4.2.1 Structure Independent
We have already seen how a person node with a given first and last name can be selected,
which is exactly what the query in Algorithm 4.29 does. Nonetheless, we give this as an
example of a query written in Gremlin-Java, where the only difference to queries from
before is the usage of double quotes for strings That means, the query can be executed
directly in any Java application that includes the Gremlin-Java libraries. Therefore, the
usage of Gremlin differs from the use of query languages like SQL in application code as
SQL code is usually provided as a string that is passed over an interface to the database.
In contrast, a Gremlin query is implemented in the programming language itself and
compiled to Bytecode to be executed. The query also shows an extension of the has()
step that can require a node to have a label (the first argument) and a key/value property
in a single statement.

1 String firstname = "John";
2 String lastname = "Doe";
3 System.out.println(g.V().has("person", "firstName", firstname).has("lastName"

, lastname).valueMap());

Listing 4.29: Query 1 as a Gremlin query in the Gremlin-Java language variant.

Another example where we can see the interaction between code written in Java and the
Gremlin query is given in Algorithm 4.30. Whereas the query itself is given in lines 1-3,
the result of the query is accessed in the following lines where we check whether the post
contains an imageFile or a textual content. Nonetheless, we run into a limitation of
Gremlin when implementing this query as the data model only supports a single label on
vertices. In our case however, posts and comments are both messages and we labeled
them either with “post, message” or “comment, message” when working with
Cypher. Since the corresponding nodes in Gremlin can only have a single label, they are
either labeled by “post” or “comment”, and we cannot directly search for a message.
We achieve this functionality in Gremlin using the within predicate in a has() step to
filter nodes labeled with post or comment. Apart from that, the algorithm shows that
accessing the results from Java is not as straightforward as one might think since we need
to repeatedly cast variables of type Object to List<String> in order to get the first
entry of these lists. On a side note, the T and P prefixes are only needed in Gremlin-Java
as a restriction from Java and can for example be omitted in Gremlin-Groovy.

1 Map<String, Object> values = g.V().has(T.label, P.within("post", "comment")).
2 has("iid", messageID).
3 valueMap("iid", "creationDate", "content", "imageFile").next();
4 List<String> result = new LinkedList<>();

16https://github.com/PlatformLab/ldbc-snb-impls
17https://github.com/anilpacaci/graph-benchmarking
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5 result.add(((List<String>) values.get("iid")).get(0));
6 result.add(((List<String>) values.get("creationDate")).get(0));
7 if (((List<String>) values.get("content")).get(0).equals(""))
8 result.add(((List<String>) values.get("imageFile")).get(0));
9 else

10 result.add(((List<String>) values.get("content")).get(0));

Listing 4.30: Query 2 (IS4) as a Gremlin query in Gremlin-Java. We can see how results
of a query can be accessed in Java.

Algorithm 4.31 contains two different implementations of Query 3. For this query, we
have to access the multi-value property speaks of a person. Gremlin’s data model allows
for such multi-value properties, meaning that a single property key on a vertex can have
multiple values attached to it. The first version saves a reference to a traversal in Java
and iterates manually over the traversal to trigger the lazy evaluation and access the
results. In the second version, we use two queries that calculate the two sums and then
calculate the average in Java. However, both versions compute the average in Java and
not in the query directly. While Gremlin provides steps to group, count and compute the
average, it is not clear how to formulate this with the access to a multi-value property in
a single query.

1 //Version 1:
2 Map<String, Object> map;
3 GraphTraversal<Vertex, Map<String, Object>> tr = g.V().hasLabel("person").

values("speaks");
4 while(tr.hasNext()) {
5 map = tr.next();
6 overall += ((List<Object>) map.get("speaks")).size();
7 entries++;
8 }
9 double result = overall * 1.0 / entries;

10 log.info("Result of Query 3 (avg. spoken languages): " + result);
11
12 //Version 2:
13 long sumLangs = g.V().hasLabel("person").properties("speaks").count().next();
14 long sumPersons = g.V().hasLabel("person").count().next();
15 double res = sumLangs * 1.0 / sumPersons;

Listing 4.31: Two versions of Query 3 in Gremlin.

The two queries in the second variant implicitly group in the count() step. Apart from
this, Gremlin provides a group() step where the user can specify the key to group by. Al-
gorithm 4.32 contains some examples of group-by in the setting of a simple social network
where users are stored as vertices with a name and year property. The query in line 1
uses groupCount() together with a by() step that specifies the key to group by. by()
is not an actual step as it has no meaning on its own and can only be used together with
steps like groupCount(), group() or select() as we will see later on. The query
in line 3 is equivalent to the one in the first line, but shows how we can manually trigger
the grouping and specify the key in the following by() step. Since we want to count

64



4.2. Gremlin

the persons for each year (grouping key), we end this query with another by(count()).
Taken together, we can conclude that a group-by operation that aggregates the val-
ues in the groups is given as group().by(grouping_axis).by(reducing_step).
Apart from this, the same construct can also be used to project instead of reduce via
group().by(grouping_axis).by(projection_axis). The query in line 6 pro-
vides an example of this as it groups by year and returns a list of person names for each
year.

1 g.V().hasLabel("person").groupCount().by("year")
2 //is equivalent to:
3 g.V().hasLabel("person").group().by("year").by(count())
4
5 //this creates a map with the year being the key and the names the values:
6 g.V().hasLabel("person").group().by("year").by("name")
7
8 //by can also contain a traversal, groups by the number of incident edges:
9 g.V().group().by(bothE().count())

Listing 4.32: Grouping operations in Gremlin queries.

Gremlin allows us to not only group by a property or a label but also on the result of
a traversal. To this end, we can have a traversal inside any of the two occurrences of
by() in a grouping operation, where the result either specifies the key to group or the
projection. An example of this is given in line 9 where we group all vertices by their
number of incident edges, both incoming and outgoing. Furthermore, by() also accepts
functions in the reducing_step. Similar to other query languages, Gremlin provides
common aggregate functions like min, max, mean, count and sum. Together with
lambda functions, we can essentially provide any function as a function to reduce-by
(aggregate function), even if it is not provided by Gremlin out of the box.

4.2.2 Pattern Matching
All queries until now used imperative traversals that are at the focus of Gremlin as
query language, especially for navigational queries. However, Gremlin also provides the
declarative pattern matching step match() that can be used in any traversal. That
allows a query to switch from imperative traversals to declarative pattern matching and
back again in a single query and with the same traversal source [Rod15]. In contrast to
other graph query languages like Cypher, Gremlin also uses traversals and therefore a
navigational approach to encode the structure of a pattern [AAB+17]. The navigational
approach however results in pattern matching queries that are often not as compact or
easy to understand as in higher level, declarative languages like Cypher. Caused by the
focus on navigational queries, some pattern matching queries can be written even without
match() as we will see in the following two algorithms.

The first query in Algorithm 4.33 is such an example where we do not have to use the
match() step to depict the pattern. This is especially caused by the fact that we are
looking for a small pattern in this case as we are only interested in the connection between
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a person and the city he/she is living in. As mentioned before, the as() step allows
us to store a reference to an entity that we can later access. This is not limited to
the pattern matching part. In this case, we select the person node with the given iid
and store a reference under the name person. We then proceed by navigating over an
outgoing edge labeled by isLocatedIn and store that node as city. Now that we have
those references, we can select the corresponding entities and project to some values.
To this end, we append one by() for each entry in select to specify the projection for
the corresponding entity.

An implementation of the same query using the pattern matching step is given in lines
6-9. The query starts, similar to many navigational queries, from the traversal source
by spawning a traversal on the vertices. We then switch to the pattern matching step
via match(). After saving a reference to the start node of the traversal (person), we
proceed as we would in a navigational query. Therefore, the implementation using pattern
matching in this scenario looks very similar to the one using navigational constructs only.
However, we will see a more sophisticated example later on in Algorithm 4.35. On a
side note, the query selects all properties of the person and the iid of the city. That
does not exactly match the definition of the query in the SNB. However, the version
of Gremlin that we use (3.0.1-incubating) does not provide a step to project to certain
properties and we will show a way to deal with that in the next query.

1 g.V().has("person", "iid", personId).as("person").
2 out("isLocatedIn").as("city").
3 select("person", "city").by(valueMap()).by("iid");
4
5 //equivalent version using match:
6 g.V().match(
7 __.as("person").has("person", "iid", personId).
8 out("isLocatedIn").as("city")
9 ).select("person", "city").by(valueMap()).by("iid")

Listing 4.33: Query 4 (IS1) as a Gremlin query.

As an implementation of Query 5 using the pattern matching constructs looks very
similar to the one from the previous query, we will only look at the implementation
using traversals in Algorithm 4.34. The traversal starts at the person with a given iid
and then switches from that node to outgoing knows edges. Line 2 therefore operates
entirely on those outgoing edges and includes the order().by() steps that order them
according to the descending creationDate. We then move to the other vertex on the
edge, the one that we did not came from, via the otherV() step. As the output should
contain three properties of these vertices, we save three references to them. Finally, we
select all these references and specify the projection-axis for each of them. This achieves
the same functionality as the project() step that was introduced in newer versions of
Gremlin.

1 g.V().has("person", "iid", personId).
2 outE("knows").order().by("creationDate", decr).as("knows").
3 otherV().as("a", "b", "c").
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4 select("a", "b", "c", "knows").
5 by("iid").by("firstName").by("lastName").by("creationDate")

Listing 4.34: Query 5 (IS3) as a Gremlin query.

The implementation of Query 6 in Algorithm 4.35 is an example of a pattern matching
query where we use the match() step in a more sophisticated way. We have to start
the pattern matching construct by saving a reference to the start node m. With that
reference, we proceed with a navigational query in the rest of line 2. The comma at the
end of line 2 intuitively ends this traversal and a new one is started at the beginning
of line 3. We can either create a new reference, or, as we do here, re-use an existing
one. Therefore, we start again at the node that we saved in m and proceed with another
navigational query. As soon as we have all references that we need, we leave the match()
step, therefore switching again to the imperative traversal where we select the values
that should be included in the output. In this case, we omit the by() steps such that a
reference to the entities themselves will be returned. This is again not what the definition
of the query in the benchmark states. However, the query also lacks the boolean value
that depicts whether the creator of the original message (cr) and the creator of the
replying comment (replyAuthor) know each other. This value could be generated by
a simple check in the programming language whether cr is included in friends. When
working with Gremlin, many applications aggregate and sort the required information
after the extraction, meaning that the query often selects more information than needed
and a data structure in the programming language is then populated with the desired
information afterwards.

1 g.V().match(
2 __.as("m").hasLabel("post").has("iid", messageId).out("hasCreator").as("cr"

),
3 __.as("m").in("replyOf").hasLabel("comment").as("co"),
4 __.as("co").out("hasCreator").hasLabel("person").as("replyAuthor"),
5 __.as("replyAuthor").out("knows").hasLabel("person").fold().as("friends")
6 ).select("m", "co", "replyAuthor", "friends")

Listing 4.35: Query 6 (IS7) as a Gremlin query. Note however that we are not able to
generate the boolean value depicting whether cr and replyAuthor know each other
inside the query.

Now that we have seen examples of patterns in Gremlin, we will go over some general
remarks and further capabilities regarding patterns. Generally, Gremlin supports bgps,
filters (for example the where() and has() steps), projection to some extent but
also cgps using steps like union() [AAB+17, AAB+18]. Apart from the union of two
traversals we can also specify branches via the choose() step and even cyclic occurrences
via repeat(). Since traversals are used inside the declarative matching step to encode
the pattern, we can use all of those constructs also when describing patterns. That
enables expressive patterns and the documentation even states that it allows for “patterns
of arbitrary complexity” [Tin15]. Furthermore, as Gremlin uses function composition
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and nesting, and match is nothing but a function, we can recursively nest match()
steps. Taken together, we can say that patterns in Gremlin add a declarative flavor to
the language which however relies heavily on imperative constructs like the traversals.
Compared to other graph query languages, this approach together with the language
being low-level and having a compact syntax results in queries that are often not easy to
read [HP13].

Evaluation Semantics
In contrast to Cypher, Gremlin uses the homomorphism-based bag semantics when
evaluating a pattern [AAB+17]. Therefore, the matches are not restricted which can
result in infinite result sets. That is also one of the reasons why Gremlin uses a lazy
evaluation on most queries. Users have to be aware of this when writing queries as the
evaluation of an unrestricted query can be non-terminating, depending on the concrete
implementation of the language-variant.

4.2.3 Path
As briefly mentioned before, Gremlin focuses on navigational queries and provides many
constructs to specify and traverse paths. Traversals are at the core of every query and
we specify path-patterns via steps on these traversals. Apart from simple, non-repeating
path-patterns, Gremlin also supports arbitrary or fixed iterations of traversals via the
repeat() step. Therefore, Gremlin supports full RPQs and is even more expressive
as it allows iterations of whole traversals [AAB+18]. We can also return paths in their
own data structure, which is essentially a list of objects and therefore similar to Cypher.
However, as the data model does not support paths, we cannot augment them with
properties or store them. [AAB+17]

Reachability query 7 asks for the length of the shortest path between two person nodes.
Gremlin does not provide a function that selects such a path but we can find notes on this
on the Recipes page on the TinkerPop website18. Before we limit ourselves to the shortest
path in Algorithm 4.36, we start with a description of the path in general. Starting at
the node representing one person, we use repeat() together with until() to specify
a path of arbitrary length over knows edges. The simplePath() step ensures that
the traversers do not repeat their paths, therefore avoiding cycles. Gremlin also provides
a path() step that does not restrict the traversers and a cyclicPath() step that
ensures that the traversers do repeat their paths. In our case, we loop until we find the
vertex with the given iid. We use path() to get that path and count the number of
vertices on it via count(). Since our understanding of a path length usually regards
the number of edges, we subtract 1. This query selects a single shortest path as we pick
the first one via next() and the first path will always be a shortest one in Gremlin.

Note however that this implementation cannot deal with the two special cases given in the
definition of the query: if person1Id=person2Id, this implementation will not return
0 but search for a path with length at least 1. However, this case can be easily handled

18https://tinkerpop.apache.org/docs/current/recipes/#shortest-path
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in the programming language by a comparison of the two parameters. Furthermore, if
the two persons are not connected over knows edges, the query will either test all
simple paths or run into a timeout depending on the concrete implementation of the
language-variant. Whereas some versions of Gremlin provide access to the number of
iterations via loops() and therefore allow for a bounded repetition, we did not manage
to use this function in our version.

1 length = g.V().has("person", "iid", person1Id).
2 repeat(out("knows").simplePath()).until(has("person", "iid", person2Id)).
3 path().count(Scope.local).next();
4 length = length - 1; //as length contains the number of vertices

Listing 4.36: Parts of Query 7 (IC13) as a Gremlin query.

The query in Algorithm 4.37 integrates the pattern matching functionality of Gremlin
with a path-query. We start with a selection of the person and move up to three times
(the argument of times() specifies an upper bound) over an outgoing knows edge. In
line 3, we remove duplicates via dedup() to avoid cycles and limit ourselves to nodes
with the given firstName. Now that we have a reference p to those persons, we switch
to the declarative pattern matching style and gather more information related to p.

If we compare this query to its implementation in Cypher in Algorithm 4.17, this version
looks quite compact. However, this query does not fully match the definition of the
query given in the benchmark and is only given to get a feeling for such scenarios19.
The implementation given here for example does not include the distance between the
starting person and the person with the given firstName. Furthermore, the query
below matches only on those nodes p where the complete pattern matches, i.e. when
a node p has outgoing isLocatedIn, workAt and studyAt relationships. As not
every person has to have work and study related information in our data model, we used
OPTIONAL MATCH for this in the Cypher query. However, there is no step in Gremlin
that matches a pattern only if it exists. We can achieve this functionality by splitting
the query into multiple ones, where the first one collects the friends with the given first
name and their location. Passing this information on to subsequent queries, we can then
check whether work and study related information exists and, if applicable, collect this.

1 g.V().has("person", "iid", personId).
2 repeat(out("knows")).times(3).
3 dedup().has("firstName", firstName).as("p").
4 match(
5 __.as("p").out("isLocatedIn").as("locationCity"),
6 __.as("p").out("workAt").as("company").out("isLocatedIn").as("cc"),
7 __.as("p").out("studyAt").as("uni").out("isLocatedIn").as("uc")
8 ).select("p", "locationCity", "company", "cc", "uni", "uc").by(valueMap());

Listing 4.37: Parts of Query 8 (IC1) as a Gremlin query.

19As for the other queries, an implementation of this query as it matches the benchmark’s definition
can be found in our GitHub repository. This implementation however is notably longer with around 150
lines of code, uses multiple, more sophisticated Gremlin queries and aggregates all information in Java.
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The query in Algorithm 4.38 does not contain any new concepts apart from the limit()
step that, as the name suggests, limits the number of traversers from that point on.
We use this step to output information regarding the 10 most recent messages from
the user, by first sorting them by their creationDate in descending order and then
limiting the result to 10 entries. Again, the query as given here cannot deal with a special
case, namely that one of the most recent messages is a post and not a comment. In
that scenario, the query would not match the message at all as a post has no outgoing
replyOf edge. We could achieve this by splitting it into multiple queries where we
first select the 10 most recent comments or posts, and gather the rest in another query
depending on their type.

1 g.V().has("iid", personId).
2 in("hasCreator").as("message").order().by("creationDate", decr).
3 repeat(out("replyOf").simplePath()).until(hasLabel("post")).as("post").
4 out("hasCreator").as("op").
5 select("message", "post", "op").by(valueMap()).by("iid").by(valueMap("iid",

"firstName", "lastName")).
6 limit(10);

Listing 4.38: Partial implementation of Query 9 (IS2) in Gremlin. Note that this
implementation cannot deal with the case that a recent message is a post.

Evaluation Semantics
Under default settings, Gremlin uses arbitrary path semantics where paths in the evalu-
ation are not restricted. Therefore, the evaluation of a Gremlin query can contain an
infinite number of paths but also paths of infinite lengths. As briefly mentioned before,
we can also switch to no-repeated-node semantics using the simplePath() step that
avoids non-terminating traversals. We have also mentioned the cyclicPath() step
that uses a special semantics where only traversers that repeat any of their entities (nodes
or edges) on their path are kept. That does not avoid non-terminating traversals as
such a query can forever loop over a cycle in the graph if the length is not restricted.
Regarding possible outputs of queries, Gremlin behaves very similar to Cypher as it
supports fixed arity outputs like single values, properties or entities as well as variable
arity outputs like paths and lists. [DXWL19]

4.2.4 Data Manipulation
A node can be inserted in a traversal using the addV() step that takes a list (or array in
Gremlin-Java) as input and creates a node. The array can be used to set the label, id and
properties of the entity at creation time as we can see in Algorithm 4.39. Properties can
be added to an existing entity either via a reference as in line 4 or in a traversal as in line
5. Similarly, we can remove a property either from a reference (line 6) or in a traversal
(line 7). Note however that there are two different steps for this: whereas properties and
entities are deleted via remove() when using a reference, drop() provides the same
functionality for traversals. Regarding the insertion of edges (lines 9-10), we first select
the target node and connect the existing node to the target via the addEdge(<label>,
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<target>) step. Note that this can also be done in a traversal but since the syntax for
this differs heavily between the version we are using and newer ones, we omit such an
example and refer the reader to the documentation. The query given below depicts only
a small part of Query 10 and the full query is again given in our GitHub repository.

1 Object[] keyValues = new Object[]{T.label, "person", "iid", personId, "
firstName", firstName};

2 Vertex person = g.addV(keyValues).next(); //store reference to vertex
3
4 person.property("lastName", lastName); //add property via reference
5 g.V(person.id()).property("cd", "test"); //add property via traversal source
6 person.property("lastName").remove(); //remove property via reference
7 g.V(person.id()).properties("cd").drop(); //remove property via trav. source
8
9 Vertex place = g.V().has("iid", cityId).next(); //get target vertex

10 person.addEdge("isLocatedIn", place); //add edge
11 [...]

Listing 4.39: Simplified version of Query 10 (INS1) in Gremlin that inserts only some
properties and a single edge.

Unlike Cypher, there is no way in Gremlin to remove a vertex without also removing its
incident edges. To that end, the drop() step, when called on a vertex, automatically
removes all incident edges together with the vertex. This step is also used to remove
properties as we have seen above, and can also be used to remove edges. As we can see
in Algorithm 4.40, the syntax is notably more complicated compared to Cypher’s when
triggering the removal of adjacent entities. In this example, we select the initial comment
in the first line and pass this through union() via the identity function __() in line
3. We repeatedly move to adjacent vertices that are connected over incoming replyOf
edges and emit them such that all those vertices are contained in the result of union().

1 g.V().has("iid", commentId).
2 union(
3 __(), //identity function to pass the node with iid=commentId
4 repeat(in("replyOf")).emit() //emit all replies, not only the leaves
5 ).drop();

Listing 4.40: Query 11 (DEL7) as a Gremlin query.

Properties can be updated the same way as they are inserted: using the property()
step. When evaluating property("key","value"), the system will first remove all
properties under the key on the given entity before the new key-value property is added.
Therefore, the query in Algorithm 4.41 can simply set the new property without having
to delete the previous value.

1 g.V().has("iid", personId).outE("studyAt").as("e").
2 otherV().has("iid", univId).
3 select("e").property("classYear", "2011")

Listing 4.41: Query 12 as a Gremlin query.
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On a side node, Gremlin supports multi-value properties on vertices, meaning that a
vertex can have multiple property values under the same key. When adding or updating
such a property using the version of Gremlin in Titan, we can specify that the values
under a given key are stored as a list (allowing duplicates), as a set (no duplicates) or as
a single value (ruling out multi-values on that property key). Apart from multi-value
ones, Gremlin also supports meta-properties, that are properties on properties. This can
for example be used to store access permissions on certain properties that can be checked
by an application as we can see in Algorithm 4.42.

1 v = g.V().has("name", "John Doe").next();
2 g.V(v).properties("name").property("permission", "all"); //set permission
3 g.V(v).properties("name").hasValue("permission", "all"); //check permission

Listing 4.42: Example of the creation and access to meta-properties in Gremlin.

4.2.5 Data Definition
The data model used by Gremlin is a directed, attributed multi-graph where each entity
can only have a single, immutable label. Therefore, we cannot change the label of an
existing edge or vertex after its creation. Gremlin also allows us to connect to multiple
graphs. A traversal however can only access a single graph as it is spawned from a
traversal source (g in our examples), that in turn is associated with a graph as we have
seen in Algorithm 4.23. Regarding a schema, Gremlin as specified by the TinkerPop
project does not provide any steps or functions to view, create, update or delete a schema
and is therefore completely schema-less. Each vendor that integrates the TinkerPop
framework to become TinkerPop enabled can choose whether a schema is required,
supported, or if it is a schema-less system. To this end, a vendor can provide functions
to access and modify a schema or other constraints.

4.2.6 Further Features

• Composability:
The version of Gremlin used in our examples does not support multiple occurrences
of either the V() or E() steps and therefore no (linear) composition of queries.
However, there is support for this in newer versions as in lines 1-2 in Algorithm 4.43.
We can also nest multiple traversals as we can see in lines 4-6, where next()
triggers the evaluation of the inner traversal (line 5) that returns a list of strings
which in turn is used as parameter in the outer one that returns all persons with
the same firstName as the person with id 102 or 103.

1 g.V().has("name", within("John", "Mary")).as("person").
2 V().hasLabel("software").as("software").select("person","software")
3
4 g.V().has("firstName", within(
5 g.V().has("iid", within("102","103")).values("firstName").fold().

next())
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6 )

Listing 4.43: Example of a query using multiple V() steps (as it is supported in newer
version of Gremlin) and of a query with a nested traversal.

As briefly mentioned before, we can also nest many steps, as a step is essentially
a function and Gremlin supports, and even relies on, function composition and
nesting. Apart from such applications where we convert the output for example to a
string or a list of strings and compare properties, Gremlin queries are generally not
composable. That restriction might come from the design of the language, where a
query is represented by a traversal that is lazily evaluated by default. Furthermore,
the setting of Gremlin as a language that is implemented as language variant and
embedded into a programming language places the query language in a different
position compared to most other query languages. That for example allows us to
split a bigger query into smaller ones, save the outputs in data structures of the
programming language and even outsource some computation or query logic to
the programming language. This allows for a completely different way of writing
queries, composing them and relaying their logic to one another.

• Paths as first-class citizens:
Similar to Cypher, Gremlin provides the possibility to output paths in their own
data structure. However, paths are not raised to first-class citizens as there is no
support for them in the data model which means that we cannot save them in the
model.

We have seen some of the OLTP functionality of Gremlin and its rather unusual approach
as a low-level query language that is more imperative and merges with the implementing
programming language. This approach however allows vendors to augment the language
with further functions that are not part of the version in the TinkerPop framework. If
we look at Gremlin as a domain specific language built to traverse graphs, and using
the fact that we can implement our own language-variant, a natural extensions leads to
Domain Specific Languages (DSL) that abstract from the underlying graph structure
to the domain itself. As an example, we can write a social DSL that abstracts from
the general structure of a graph to the domain of a social network. This allows us to
introduce domain specific steps that allow for more compact queries as we can see in
Algorithm 4.44. Here, we assume that the DSL provides two new steps: persons()
that starts traversers on the nodes, filters on their label and on the given name, and
knows() that traverses to adjacent persons and filters on the given name.

1 g.V().has("person", "name", "John Doe").out("knows").has("person", "name",
"Mary Ann")

2 g.persons("John Doe").knows("Mary Ann")

Listing 4.44: Example of two equivalent queries: first in Gremlin and then in a hypothetical
social DSL.
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Apart from this, Gremlin provides other interesting functions that set it apart from many
graph query languages. The subgraph() step, that produces an edge-induced subgraph
from a traversal, is such an example. One could think that this step makes Gremlin
at least somewhat composable, but this is not the case as a traversal source can only
query a single graph. In other words, we have to create a new traversal source on the
subgraph before it can be queried. Most functions of the language that we mentioned are
especially relevant in OLTP workloads. However, the imperative nature of Gremlin makes
it “more suitable for expressing graph analysis algorithms such as PageRank, Betweenness
Centrality, etc” [vRHK+16]. To this end, there is a dedicated API in the TinkerPop
framework that provides many such functions. As we focus on OLTP workloads, we do
not look into these functions in more detail and refer the reader to the documentation
for more information on this.

4.3 PGQL
We have already seen a declarative query language that aligns closely with SQL: Cypher.
The Property Graph Query Language (PGQL) was inspired by both, SQL and Cypher,
and takes the alignment to SQL a step further as it “aims to follow SQL syntax where
possible” [Pla18]. This does not come as a surprise as the language is developed by
Oracle and offered in some of their products. Unlike Cypher queries that are conceptually
structured linearly, PGQL queries use the select-from-where structure inherent to SQL.
As PGQL is not standardized, Oracle aims to keep the language in sync with the
standardized features of SQL by providing the same query structure, the same clauses
and most functions [HLP+19]. As a side note, there is also ongoing work inside ISO/IEC
JTC 1/SC 32’s working group 3, the same group that is working on the new GQL
standard, to add graph querying functionality to SQL itself under SQL/PGQ. Although
there is no final specification of this functionality as of now, PGQL aims to provide
pattern matching capabilities that roughly resemble the ones on this extension [HLP+19].
PGQL, among other languages like Cypher or G-CORE influence the creation of this
addition and it is therefore possible that a future version of SQL has capabilities similar
to PGQL regarding graph queries.

Similar to SQL, a query in PGQL is at least composed of a SELECT and FROM clause that
can be followed by optional clauses like WHERE, ORDER BY or GROUP BY [SHvR+16].
Graph patterns form the basis of PGQL and can be specified in the FROM clause using
one or more MATCH clauses [vRHK+16]. As patterns are specified using an ASCII art
representation similar to Cypher, these MATCH clauses closely resemble their counterparts
in Cypher [FGG+18b]. The SELECT clause in turn resembles its counterpart in SQL
as it allows users to specify the projections or aggregations that are contained in the
output of a query. Algorithm 4.45 shows a simple PGQL query and its select-from-where
structure that matches a single node p:Person.

1 SELECT p.firstName, p.lastName
2 FROM MATCH (p:Person)
3 WHERE p.id = 123
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Listing 4.45: A simple PGQL query that retrieves the first and last name of the person
with a given id.

Another similarity between PGQL and SQL as well as Cypher regards the evaluation of
a query. We have already mentioned that a Cypher query outputs a table containing
bindings form query variables to elements. Oracle’s PGQL works analogously as it returns
tables containing variables and their bindings. These tabular result sets closely resemble
the ones from SQL queries, which allows PGQL queries to be nested inside SQL queries
[vRHK+16]. As the graph query language extends the relational query language also
with graph specific data types like vertex, edge and path, variables of these types
can be included in the output. Nonetheless, the output is always structured in a tabular
form and such graph specific types can only be included as entries in that table. Using
these graph related types, we can for example output vertices and their ids and labels via
the query in Algorithm 4.46. On a side note, vertices as well as edges can be augmented
with none, one or multiple labels in the data model used by PGQL. Assuming that an
entity has only a single label, we can use the LABEL function to retrieve it. However, this
function produces an error on entities with none or multiple labels. The LABELS function
on the other hand produces a set of labels and can deal with all cases by returning an
empty set on entities without labels and a set containing the label(s) on entities with at
least one.

1 SELECT id(p), labels(p) AS lbl, p FROM MATCH (p:Person) LIMIT 5

Listing 4.46: A PGQL query that selects the ids, labels and the vertices themselves of 5
persons.

When looking at the MATCH clauses in the queries in Algorithm 4.47, we can see the
close resemblance to the syntax of patterns in Cypher. Similar to Cypher, anonymous
nodes are depicted via empty () brackets and anonymous edges via empty [] brackets
or by omitting them altogether. Furthermore, edges in the data model used by PGQL
have to be directed but we can match edges in both directions using an any-directed
edge pattern (“-[]-” or “- -”) as in the fourth query. In contrast to Cypher however,
there is no compact syntax to specify restrictions on entities like in Algorithm 4.2, as
this would not be compatible with the goal of following the SQL syntax where possible.

Apart from the pattern matching part in the MATCH clause(s), most of the functions
and clauses used outside of MATCH are coming directly from SQL. That includes for
example the dedicated GROUP BY clause as we can see in the first two queries 20. Another
resemblance to SQL regards the composition of queries using either existential subqueries
via (NOT) EXISTS or scalar subqueries as in the third and fourth query. If we compare
the fourth query to the implementation of the same query in Cypher in Algorithm 4.4,

20Remember: Cypher for example takes a different approach to grouping as the result is either grouped
implicitly or on the key specified in the WITH clause.
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we can observe the difference between the conceptually linear structure in Cypher where
queries can be evaluated linearly from top to bottom, and the structure of PGQL and
SQL where inner queries are often evaluated before outer ones. Furthermore, we can
parameterize queries using a bind variable “?” as we do with the lastName in line 16.

1 SELECT p.age, COUNT(*) FROM MATCH (p:Person) GROUP BY p.age
2
3 SELECT label(e) AS lbl, COUNT(*)
4 FROM MATCH () -[e]-> () /*anonymous nodes*/
5 GROUP BY lbl ORDER BY COUNT(*) DESC
6
7 SELECT p.name AS name,
8 (SELECT COUNT(o) FROM MATCH (p) -> (o)) AS outgoingConnections,
9 (SELECT COUNT(DISTINCT(o)) FROM MATCH (p) -[:KNOWS]- (o)) AS knows

10 FROM MATCH (p:Person)
11
12 SELECT o.firstName, o.lastName
13 FROM MATCH (m) -- (o:Person) /*short form of anonymous, any-directed edge*/
14 WHERE m.firstName IN (
15 SELECT m1.firstName FROM MATCH (p:Person) -- (m1:Person)
16 WHERE p.firstName = ’John’ AND p.lastName = ? /*bind variable*/
17 ORDER BY p.firstName DESC LIMIT 1)

Listing 4.47: Four PGQL queries that show the resemblance between PGQL and SQL.

As PGQL is only implemented in some research projects and commercial products of
Oracle, we did not manage to test the queries in this chapter on a database. However, we
used a parsing software from Oracle21 to ensure that the queries are syntactically correct.

4.3.1 Structure Independent
We omit the code of Queries 1 and 2 here as both of them use only a very simple pattern
matching part that matches a single node and the rest of the query is SQL code. To
implement Query 2, we use the CASE construct that we will also see in Algorithms 4.49
and 4.54. Regarding Query 3, we run into a problem of the data model used by PGQL
as, similar to Gremlin’s data model, it does not support lists. Therefore, we cannot store
the languages spoken by a person in a list in the first place. We could concatenate the
languages in a string, store this string and split it up again when retrieving it to count
the number of entries for this query. As this would be done in a programming language
and not in PGQL, we cannot implement this query directly in the query language.

If we look at the functions provided by PGQL to aggregate data and work with numeric
or other data types, we find many functions that are also available in SQL. We can for
example use SUM, COUNT, AVG, ABS, CEIL(ING), FLOOR, ROUND on numeric
data types but also a regex checker on strings. PGQL furthermore adds vertex and edge
functions like LABEL(S), ID, IN_DEGREE and OUT_DEGREE where the latter ones
are not structure independent but nonetheless interesting in a graph query language.

21https://github.com/oracle/pgql-lang
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4.3.2 Pattern Matching
We have already seen parts of the pattern matching functionality and the resemblance to
the Cypher syntax in the previous examples. As Query 4 contains only a very basic graph
pattern, we omit its implementation and continue with the query in Algorithm 4.48. The
pattern in this query connects a Person to some node over a single knows edge. We
can see in line 1 that edges can have properties and we can access them in the same way
as properties on vertices. Furthermore, we can order the result using the same syntax as
in SQL: in an ORDER BY clause.

1 SELECT f.id AS personId, f.firstName, f.lastName, e.creationDate AS
friendshipCreationDate

2 FROM MATCH (p:Person) -[e:knows]-> (f) WHERE p.id = ?
3 ORDER BY friendshipCreationDate DESC, personId ASC

Listing 4.48: Query 5 (IS3) as a PGQL query.

To implement Query 6, we have to check for the existence of an edge between two nodes.
While we use the OPTIONAL clause for this in our Cypher implementation, there is no
equivalent clause in Gremlin and we could not implement this in a single query. PGQL
also lacks a dedicated clause for this but we can simulate such an optional pattern using
an optional path expression [AAB+18]. As we can see in Algorithm 4.49, we specify
the fixed pattern in the first MATCH clause in line 3 and use a second MATCH for the
optional pattern. In our case, the connection is optional which is depicted by the question
mark after the edge. We test for the existence of this edge using a CASE predicate in
line 2 and, depending on that result, set a value for the knowsAuthor variable. This
implementation shows that there can be multiple correlated MATCH clauses in a single
query. PGQL also supports uncorrelated ones that are evaluated as a Cartesian product
of the individual evaluations.

1 SELECT c.id, c.content, c.creationDate, p2.id, p2.firstName, p2.lastName,
2 CASE k IS NOT NULL WHEN true THEN true ELSE false END AS knowsAuthor
3 FROM MATCH (p1:Person) <-[:hasCreator]- (m:Message) <-[r:reply_of]- (c:

Comment) -[:hasCreator]-> (p2:Person),
4 MATCH (p1) -[k:knows]-? (p2)
5 WHERE m.id = ?

Listing 4.49: Query 6 (IS7) as a PGQL query.

Evaluation Semantics
Earlier versions of PGQL used a no-repeated-node semantics as default and included
special keywords to switch to a homomorphism-based semantics [vRHK+16]. From
version 1.0 onward, a homomorphism-based semantics is used as default as it translates
better to and from SQL, among other things [vR17]. Nonetheless, we can switch to an
isomorphism-based semantics using the ALL_DIFFERENT predicate. As this predicate
can deal with vertices as well as edges, we can achieve no-repeated-node, no-repeated-edge
and even no-repeated-anything semantics.
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4.3.3 Path
The graph query language extends SQL not only with a pattern matching functionality
but was also the first property graph query language with full support of RPQs [Pla18].
To this end, users can specify named path pattern macros at the beginning of a query.
These patterns can be referenced later on in the query, either when specifying other path
pattern macros or in a MATCH clause. Such named path patterns were first proposed in
PGQL [FGG+18b] and can contain arbitrary regular path patterns and also an optional
WHERE clause. The WHERE clause allows us to not only access labels on the path but also
specify requirements on properties of both, vertices and edges [vRHK+16]. This is needed
for more sophisticated patterns in the property graph data model as we otherwise cannot
compare properties along a path. On the other hand, this exceeds the functionality of
RPQs and we land in the area of REMs that allow for exactly that, namely to compare
data values on a path. Nonetheless, PGQL supports only a subset of REMs as it is “hard
to come up with a syntax for REMs that is declarative” [vR17] and PGQL is a declarative
language. Since PGQL furthermore provides a path data type that allows us to outputs
paths, the query language also supports ECRPQs [Bar13].

Algorithm 4.50 contains a query that uses a path pattern macro. The pattern is specified
and named eq_voltage_hop in the first line and used in the third one via a reference
on that name. Forward slashes “-//-” instead of square brackets “-[]-” on edges
denote the reachability semantics. This semantics is useful when we are only interested
in whether there exists at least one path between two vertices and not in all those paths.
We will see later on that we can also use this semantics on other, non-macro, paths.
However, path pattern macros can only be used with this semantics. In this query, we use
a functionality of REMs as we compare the voltage properties of nodes on the paths.

1 PATH eq_voltage_hop AS (n:Device) -> (m:Device) WHERE n.voltage = m.voltage
2 SELECT y.name
3 FROM MATCH (x) -/:eq_voltage_hop+/-> (y)
4 WHERE x.name = ’generator_x29’

Listing 4.50: A PGQL query using a path pattern macro with data comparison. The
query selects all devices reachable from generator_x29 via a path where each device
has the same voltage. Source: GQL - Status Update And Comparison to LDBC’s
Graph QL proposals, slide 21 [vR17].

Although this is a functionality that sets PGQL apart from many other graph query
languages, we will not use it in the following queries as we do not need them for the SNB
queries. As we can see in Algorithm 4.51, PGQL provides a SHORTEST function that
matches a single shortest path that satisfies the pattern. We can compute the length
of the path by counting the number of edges on it as we do in line 1. In this query, we
are not sure if such a path exists at all, which is why we use a CASE expression to test
whether the variable e is null22.

22Note that the specification does not state if e would indeed be null if there is no such path. This
would have to be tested and we can only assure that the query is syntactically correct.
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1 SELECT CASE e IS NULL WHEN true THEN -1 ELSE COUNT(e) END AS
shortestPathLength

2 FROM MATCH SHORTEST ( (p1:Person) -[e:knows]-* (p2:Person) )
3 WHERE p1.id = ? AND p2.id = ?

Listing 4.51: Query 7 (IC13) as a PGQL query.

Apart from querying for a single shortest path, we can also query for the “TOP K
SHORTEST” ones as in Algorithm 4.52. This query furthermore specifies a restriction
on the weight value(s) of the edges on the path directly inside the pattern. As a side
note, PGQL also provides cheapest path finding based on a cost function via “(TOP K)
CHEAPEST”.

1 SELECT src, ARRAY_AGG(e.weight), dst
2 FROM MATCH TOP 3 SHORTEST ( (src) (-[e]-> WHERE e.weight > 10)* (dst) )

Listing 4.52: A PGQL query that queries for the 3 shortest paths between src and
dst where each edge along the path has a weight greater 10. Source: PGQL 1.3
Specification [Ora20].

As mentioned when we analyzed Query 3, PGQL does not support lists. There is
however one exception for query outputs: the horizontal aggregation function ARRAY_AGG
aggregates the given values into an array/list. Whereas vertical aggregation functions
work similar to ones in SQL, where a group of values from different rows are aggregated,
horizontal functions aggregate over a path. However, we cannot aggregate over arbitrary
variables or properties on a path which would be needed to collect study- and work-
related information in Query 8. Algorithm 4.53 contains some parts of the query that
we will briefly go through. We use ARRAY_AGG to show how we can aggregate multiple
occurrences of the same property, for example university names, in a list. Furthermore,
{1,3} specifies a lower and upper bound for the number of knows edges that can be
traversed. Apart from such specific bounds, we can use “*” for paths of any length
(including 0), “+” for paths of length at least 1 and “?” for paths of length 0 or 1.

1 SELECT /* [...] */
2 ARRAY_AGG(u.name) AS friendUNames, ARRAY_AGG(es.classYear) AS friendUYears,

ARRAY_AGG(uc.name) AS friendUCities
3 FROM MATCH SHORTEST ( (p:Person) -[e:knows]-{1,3} (f:Person) ),
4 MATCH (f) -/es:studyAt?/-> (u:University) -/:isLocatedIn/-> (uc:City),
5 /* [...] */

Listing 4.53: Parts of Query 8 (IC1) as a PGQL query.

Algorithm 4.54 contains a simplified version of Query 9 where we integrate reachability
semantics into a larger pattern. Furthermore, this algorithm and also the previous one
show that we can use reachability not only on a path pattern macro but also on simpler
paths directly given in MATCH.

1 SELECT m.creationDate AS creationDate, po.id, op.id, op.firstName,
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2 CASE m.content IS NOT NULL WHEN true THEN m.content ELSE m.imageFile END,
3 FROM MATCH (p:Person) <-[e:hasCreator]- (m:Message) -/:replyOf*/-> (po:Post

) -[:hasCreator]-> (op:Person)
4 WHERE p.id = ?
5 ORDER BY creationDate DESC LIMIT 10

Listing 4.54: Simplified version of Query 9 (IS2) as a PGQL query that selects only some
properties.

Evaluation Semantics
PGQL avoids paths of unlimited length and an unlimited number of paths in the
evaluation by allowing pattern quantifiers only when using reachability semantics or
inside SHORTEST patterns. Therefore, quantifiers like “*” or “+” but also quantifiers with
custom lower and upper bounds can only be used inside reachability demarcated paths,
where they are given inside the demarcation: “-/var:label<quantifier>/-”, or
using standard path syntax inside “(TOP K) SHORTEST”, where they are given outside
the demarcation: “-[var:label]-<quantifier>”. We have already mentioned that
PGQL also provides cheapest path finding but this also limits the found paths either to a
single one or to the top k. Apart from these built-in functions that use either a shortest
or cheapest path semantics, we can implement our own semantics and use it in PGQL
via a user-defined function.

4.3.4 Data Manipulation
With the introduction of version 1.3 in March 2020, PGQL introduced the graph modi-
fication clauses INSERT, UPDATE and DELETE. In earlier versions, the query language
was limited to DQL queries. Algorithm 4.55 depicts a simplified version of Query 10
where we omit most properties for brevity. Compared to the Cypher implementation
of the query in Algorithm 4.18 where we could pass a list of Ids and unroll them inside
the query using UNWIND, there is no such functionality in PGQL. Therefore, we cannot
pass a variable number of tag IDs for example. To achieve this functionality, we have to
write multiple queries or include a single EDGE clause for each edge that is to be inserted.
Either way, the query has to be adapted depending on the number of edges that are
inserted, which is not necessary in Cypher where we can use the same query to insert a
variable number of edges. Apart from that, the query uses the DATE and TIMESTAMP
types that are available next to TIME and further date/time related types for time zones.

1 INSERT VERTEX p LABELS (Person)
2 PROPERTIES (p.id=1234, p.birthday=DATE ’1990-01-01’, p.creationDate=

TIMESTAMP ’2020-01-01 16:15:00’),
3 EDGE e BETWEEN p AND c LABELS (isLocatedIn),
4 EDGE ew BETWEEN p AND co LABELS (workAt) PROPERTIES (ew.workFrom=1990),
5 EDGE et BETWEEN p AND t LABELS (hasInterest)
6 FROM MATCH (c:City), MATCH (co:Company), MATCH (t:Tag)
7 WHERE c.id=? AND co.id=? AND t.id=?

Listing 4.55: Simplified version of Query 10 (INS1) in PGQL that inserts only some
properties.
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Similar to Gremlin, the removal of a vertex also triggers the removal of all incident edges
of that vertex. Therefore, we can remove a comment, all incident edges and replying
comments via the query in Algorithm 4.56.

1 DELETE c, r
2 FROM MATCH (c:Comment) <-/:replyOf*/- (r:Comment)
3 WHERE c.id = ?

Listing 4.56: Query 11 (DEL7) as a PGQL query.

Properties can be updated similar to SQL using the UPDATE clause in combination with
SET. As the implementation of Query 12 combines functions of SQL and Cypher, we
omit it here and refer the interested reader either to our GitHub repository or the PGQL
specification.

4.3.5 Data Definition
PGQL uses a property graph data model with support for multiple graphs. Each graph
has a name and we can specify which graph we want to query in the ON clause. This
clause can be omitted if a default graph is set, which however cannot yet be done through
PGQL itself but only through APIs on the database system. Each MATCH clause can
be augmented with an optional ON that specifies the graph that the pattern is matched
on as we can see in Algorithm 4.57. In all our queries, we assume that we are working
on a single graph that is set as default graph. Each property graph consists of vertices
and edges that can have zero or more labels and zero or more properties. As mentioned
before, edges in that data model have to be directed.

1 SELECT p.name, q.name, a.number
2 FROM MATCH (p) -[:knows]-> (q) ON social_graph
3 MATCH (a:Forum) ON other_graph WHERE a.name=’test’

Listing 4.57: A PGQL query that queries for two persons from the social_graph and
a forum from the other_graph.

Similar to Cypher and Gremlin, PGQL does not support a schema. However, we can
create a graph out of data from existing tables via the “CREATE PROPERTY GRAPH”
statement. Using this statement, we specify the source tables for vertices and edges, the
labels for the entities and their properties as well as the way they will be connected via
edges. In other words, if we assume that there are tables representing vertices and tables
representing edges, we can use this statement to build a property graph from that data.
Therefore, we specify the graph schema that is created from the tabular data, but this
schema is only used once to create the graph, and not enforced later on when interacting
with it using DML queries. This setting, where data from (relational) tables is used to
create a property graph, makes sense if we look at the position of PGQL in Oracle’s
products. There, it is used to query property graphs where the underlying data is often23

23Using PGX, the system can switch to a native graph storage when the data is stored in-memory. In
this setting, it effectively becomes a native graph storage.
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stored in a relational database [BPG+19]. In other words, PGQL provides a graph-view
of data that is stored in relational tables. Algorithm 4.58 contains an example of such
a statement that creates a property graph named social_network with data from
5 tables. The graph will be structured as specified in Query 13, where a person is
livingat a street which in turn islocatedin a city.

1 CREATE PROPERTY GRAPH social_network
2 VERTEX TABLES (
3 persons
4 LABEL person PROPERTIES (person_id, firstname, lastname),
5 streets LABEL street PROPERTIES (street_id, name, length),
6 cities LABEL city PROPERTIES ARE ALL COLUMNS
7 )
8 EDGE TABLES (
9 livingat /* table name */

10 SOURCE KEY (person_id) REFERENCES persons
11 DESTINATION streets LABEL isLocatedIn PROPERTIES (housenumber),
12 islocatedin /* table name */
13 SOURCE KEY (streets_id) REFERENCES streets
14 DESTINATION cities NO PROPERTIES
15 )

Listing 4.58: Parts of Query 13 as a PGQL query. Note that this creates a new property
graph as there is no way to adapt an existing graph.

4.3.6 Further Features

• Composability:
As we have seen in some of our examples, PGQL supports a composition of queries
through subqueries similar to SQL. We have also mentioned that a query returns
a table containing values. Although these tables can contain graph specific types
like vertices, edges and paths, these values are always contained in the table. As a
PGQL query takes a graph as input and produces a table, it follows that the query
language is not composable [AAB+18].
In the setting of PGQL as a query language that is used almost solely in the
environment of Oracle’s databases, which are mostly relational ones, it is unlikely
that a future version of the language discards the tabular result format as this
would entail that PGQL queries cannot be nested inside SQL queries any more.
On the other hand, the paper that introduced PGQL mentions a graph data type
that “allows for graph construction and query composition” [vRHK+16]. Graph
construction denotes constructs that allow us to create a graph from one or multiple
existing ones. According to the paper, we can construct a graph in the SELECT
clause. This in turn would mean that such a query returns a graph, and indeed,
the paper mentions that a (sub)query can return a graph. Unfortunately, there is
no trace of such constructs or the graph type in the language specifications and
the parser did not accept such constructs.
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• Paths as first-class citizens:
By providing path pattern macros, where users can specify and name complex path
patterns, and allowing for data comparisons along paths PGQL is more expressive
than Cypher regarding the path querying capabilities. Although we can name paths,
compare them to some extent and output them, they are not raised to first-class
citizens as we cannot store paths on their own.

As we have mentioned in the introduction and seen in the examples, we can describe
PGQL as a query language that follows the SQL syntax on non-graph related parts and
Cypher syntax on most graph related parts of a query. With the addition of “Oracle
Spatial and Graph” (that includes PGQL as graph query language) in version 12 of the
Oracle Database, many SQL users can use these features in their Oracle databases. On the
other hand, the language lacks standardization and support by other vendors [TPAV19].
That can also be seen when searching for information about the query language online,
where we are mostly limited to Oracle’s own website and we have found no community
around this language on any forum or mailing list.

4.4 GSQL
GSQL is the query language used in the TigerGraph database. Similar to PGQL, it is
heavily inspired by SQL and extends the relational query language to graph databases
by allowing graph-specific primitives in the FROM clause [RH19]. Queries that do not
use such graph-specific primitives become standard SQL queries [DXWL19]. To achieve
this, the syntax of SQL is extended mainly in the FROM clause where users can specify
graph patterns and navigational path patterns [DWX18]. Furthermore, GSQL uses the
type system from standard SQL and extends it with vertex, edge and graph types.
These types are needed as we have to declare the schema using a labeled property graph
data model before we can either import data or start querying. Such a schema defines
the vertex and edge types, their properties and the types of the properties and how
entities are related to each other [Tig]. The schema is stored apart from the data graph
and is enforced, meaning that we cannot update or insert data that would violate the
schema. Therefore, the schema of a graph in GSQL has the same closed world property
as a schema in SQL.

GSQL relies on such a strict schema definition as it is especially designed to support large
graphs containing billions or trillions of nodes and edges. This comes from the design
principle of the TigerGraph database as a “native parallel graph database” [DXWL19]
for “tomorrow’s big data and analytics” [HLP+19], where performance on large graphs is
important. To support these potentially huge graphs, the database allows a graph to
be distributed over multiple machines. Queries on distributed graphs are processed in
parallel on the machines before the local values are aggregated. This approach resembles
the MapReduce programming model, and GSQL is indeed designed in a way to not only
ease the transition for SQL developers but also for NoSQL developers with a MapReduce
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mentality [DXWL19]. Coming back to the schema: having this specified beforehand
allows the database to use an optimal storage format which in turn results in less space
needed to store the data compared to other schema-less databases like Neo4j [RH19].
Furthermore, the schema allows for faster access and is used to plan and optimize query
executions in order to achieve high performance parallelism [HLP+19].
As mentioned, the database is especially designed for big data and analytics, and
therefore for OLAP workloads. To this end, the query language provides not only OLTP
functionality as does SQL, but also iterative and multi-pass algorithms for analytical
workloads like PageRank or recommender systems. These algorithms can be implemented
using imperative control flow primitives like IF/ELSE, FOREACH and WHILE loops,
and queries behave similar to functions as they can invoke other queries or recursively
themselves. Together with the support of user-defined functions, GSQL is a Turing-
complete language and therefore more expressive than languages like Cypher that are
not Turing-complete [WD18, DXWL19]. Despite the focus of TigerGraph on OLAP
workloads, we include GSQL in our comparison as it also provides OLTP functionality,
transactional graph updates and shows how a query language that uses a graph schema
differs from schema-less languages.
General syntax and handling of queries
The query in Algorithm 4.59 shows the select-from-where structure and the graph pattern
in the FROM clause. Furthermore, we can see that we have to create a query using CREATE
QUERY before we can execute it. Once a query is created, we can either INTERPRET it
which results in a line-by-line translation, or INSTALL it, where it will be optimized and
rolled out to the distributed machines. Furthermore, each installed query has its own
REST endpoint that can be used by applications to access the database. In our case,
we create a query with the name ex1 that takes two STRING parameters, is specified
for the graph with the name ldbc_snb and uses the V2 syntax. GSQL’s path pattern
matching functionality was extended with the introduction of TigerGraph v2.4: where
earlier versions under the V1 syntax, that is still the default today, allow for patterns
only over a single edge in one SELECT, version V2 adds support for multi-hop paths and
repetitions. Furthermore, the syntax used to depict a path or an edge differs between
the two versions and we will compare them later on.
Apart from the syntax difference, we can see that a GSQL query functions like a container
for statements. In this example, the query contains only a single select-from-where
(sub)query but as we will see in the next algorithm, a GSQL query can contain multiple
SQL SELECT statements. Therefore, a GSQL query resembles a stored procedure that
can contain multiple SELECT statements as well as control-flow primitives like branches
and loops [RH19]. When speaking about a SQL (sub)query that is contained in a GSQL
query, we will reference the query together with the lines of that query, as in: “the
(sub)query in lines 3-5”.
Coming back to our example and that subquery in lines 3-5, we note that the pattern
syntax in GSQL differs from the ones used by Cypher and PGQL in two major areas.
First, parentheses are not used to depict a node, as nodes are in most cases not delimited
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at all. Instead, parentheses are used as delimiters on edges. And second, the places of the
type and variable name on both, vertices and edges, are swapped. Whereas Cypher and
PGQL use a <variable>:<type> syntax, GSQL reverses it to <type>:<variable>
as in Person:p.

1 CREATE QUERY ex1(STRING fN, STRING lN) FOR GRAPH ldbc_snb syntax v2 {
2
3 friends = SELECT friend
4 FROM Person:p -(KNOWS:k)- Person:friend
5 WHERE p.firstName == fN AND p.lastName == lN;
6
7 PRINT friends [friends.firstName, friends.lastName];
8 }

Listing 4.59: A simple GSQL query that selects the friends of a Person with a given
name.

Accumulators
In order to achieve efficient parallel computation, GSQL introduces the concept of
accumulators and the corresponding ACCUM clause. Using this clause, we can specify
compute functions on nodes and edges that can be executed in parallel in order to
aggregate values into accumulator variables. These variables can either be global or
attached to a vertex (local). They are typed, hold data and can be written to in parallel.
In other words, an accumulator is a mutable mutex variable that is shared among all
threads that participate in the execution of a query. The data written to an accumulator
is then combined using the specified compute function. GSQL provides many such
functions out of the box and users can also provide their own function.

Algorithm 4.60 shows the usage and difference of local and global accumulators as well
as simple variables like localVariable. SumAccum<INT> is a global accumulator
(depicted by @@) and therefore visible to all threads. As the name suggests, values written
to this variable will be aggregated by summing them. Apart from SumAccum, GSQL
provides other accumulator types on numbers like MaxAccum, AvgAccum, logical accu-
mulators like OrAccum, AndAccum and ones to create collections like SetAccum and
MapAccum. The second accumulator in our example is a local one (a single @), meaning
that each vertex selected by the query will have its own localRelationsCount. As
we can see in line 7, we have to specify the vertex when writing to a local accumulator. In
contrast, global accumulators can be directly accessed as in line 8. After the evaluation
of lines 6-9, the global accumulator holds the global number of WORK_AT relationships
and each Company vertex holds the local number of incoming WORK_AT edges. Note
that, intuitively, we do not increase the counts directly by 1 in lines 7 and 8 but we add
the number “1” to the accumulator variables and these numbers are then aggregated by
summing them. Therefore, we write to all accumulator variables, regardless of them using
sum, set, map or a custom function, using the “+=” syntax. Coming back to our
query, each process has its own copy of localVariable that is not shared. Therefore,
each of them will increment the local copy by one and the query will print 1 in line 11.
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Apart from the accumulators, the query shows that we can save a reference to entities as
we do with the comps variable in line 6. As we select all companies c in this subquery,
comps contains a reference to all those vertices. We can use these references to directly
access these entities for example to check properties, print values, but also in other FROM
clauses as in line 15. Unlike in the query in lines 6-9 where we use a pattern with the
Company and Person vertex types and the WORK_AT edge type24 in the FROM clause,
we have no reference to such pre-defined types in the query in lines 14-16. The latter query
starts with all entities in the comps variable, orders them by their local accumulator value
and saves a reference to the top 10 such vertices again to comps. Therefore, the variable
comps contains the 10 companies with the most incoming WORK_AT relationships after
that second query and we print those in line 17.

1 CREATE QUERY ex2() FOR GRAPH ldbc_snb syntax v2 {
2 INT localVariable;
3 SumAccum<INT> @@globalRelationshipCount;
4 SumAccum<INT> @localRelationshipCount;
5
6 comps = SELECT c FROM Company:c -(<WORK_AT)- Person:t
7 ACCUM c.@localRelationshipCount += 1, //local, preceded by variable
8 @@globalRelationshipCount += 1, //global
9 localVariable = localVariable + 1; //local variable

10
11 PRINT localVariable; //outputs 1
12 PRINT @@globalRelationshipCount; //outputs the global count
13
14 comps = SELECT c
15 FROM comps:c //start at all vertices selected above
16 ORDER BY c.@localRelationshipCount DESC LIMIT 10;
17 PRINT comps[comps.@localRelationshipCount, comps.name];
18 }

Listing 4.60: A GSQL query that outputs the global number of WORK_AT relationships
as well as the local number for the top 10 companies in that regard.

We ran all queries in this chapter on a TigerGraph Developer Edition 3.0 to ensure their
correctness. The implementations of the SNB queries as well as the schema were taken
from the TigerGraph GitHub repository25. We adapted some of them such that they
work on our schema or use syntax V2, and again: a full implementation of all queries
given here can be found on our GitHub repository.

4.4.1 Structure Independent
To show the difference between the two syntax versions in GSQL, we provide an imple-
mentation of Query 1 in both versions in Algorithm 4.61. When using the default syntax
(V1), we cannot start directly with all vertices of a given type. To achieve this, we have
to explicitly assign those vertices to a variable (line 3, vPersons) and use this variable

24That are all pre-defined types in our data model.
25https://github.com/tigergraph/ecosys/tree/ldbc/ldbc_benchmark/tigergraph
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in the FROM clause. This variable can be omitted in a query using syntax V2 and we can
directly start at all Persons (line 8).

1 CREATE QUERY query1(STRING firstName, STRING lastName) FOR GRAPH ldbc_snb
[syntax v2] {

2 //using syntax v1:
3 vPersons = {Person.*}; //initialized with all vertices of type ’Person’
4 res = SELECT p FROM vPersons:p
5 WHERE p.firstName == firstName AND p.lastName == lastName;
6
7 //using syntax v2, we do not need vPersons:
8 res = SELECT p FROM Person:p //can directly use vertex type Person in V2
9 WHERE p.firstName == firstName AND p.lastName == lastName;

10
11 PRINT res; //regardless of syntax, print found vertex
12 }

Listing 4.61: Query 1 as a GSQL query. Note that we give this query once using syntax
V1 (lines 3-5) and once using syntax V2 (lines 8-9).

Algorithm 4.62 shows the use of control flow primitives and how they can be integrated into
a query. In this query, we do not know whether the given messageId represents the ID of
a Comment or a Post. To make this distinction, we use the to_vertex_set(ID(s),
type) function that fetches all vertices with the given ID(s) of the given type. The global
accumulator seed holds the single ID and we test in line 8 whether this ID represents
a Comment. In this case, we output the values of that vertex. Otherwise, we fetch the
Post with the given ID, use another select-from-accum query to set either the content
or the imageFile as messageContent and output this.

1 CREATE QUERY is4(STRING messageId) FOR GRAPH ldbc_snb {
2 SetAccum<STRING> @@seed;
3 SumAccum<STRING> @messageContent;
4
5 @@seed += messageId;
6 vComments = to_vertex_set(@@seed, "Comment"); //get set<vertex> from id(s)
7
8 IF vComments.size() > 0 THEN //ID belongs to a Comment
9 PRINT vComments[vComments.creationDate AS messageCreationDate,

10 vComments.content AS messageContent];
11 ELSE //ID belongs to a Post
12 vPost = to_vertex_set(@@seed, "Post");
13 vPost = SELECT v FROM vPost:v
14 ACCUM CASE WHEN v.content != "" THEN v.@messageContent += v.content
15 ELSE v.@messageContent += v.imageFile
16 END;
17 PRINT vPost[vPost.creationDate, vPost.@messageContent];
18 END;
19 }

Listing 4.62: Query 2 (IS4) as a GSQL query.
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Unlike in Cypher and PGQL, GSQL’s data model supports collections. We can therefore
store the languages spoken by a person in a collection and calculate the average size
of those collections via the query in Algorithm 4.63. Apart from the count function
used here, GSQL provides a variety of mathematical, boolean, bit, string, date(time) and
collection-related operators and functions.

1 AvgAccum @@avgLangs;
2 persons = SELECT p FROM Person:p
3 ACCUM @@avgLangs += count(p.speaks);

Listing 4.63: Parts of Query 3 as a GSQL query.

4.4.2 Pattern Matching
As briefly mentioned before, GSQL queries using syntax V1 can only traverse a single
edge (1-hop queries) whereas in syntax V2 we can define more sophisticated, multi-hop
paths and repetitions. Furthermore, we have to be careful which version we use as the
syntax used to depict edges differs between them. Algorithm 4.64 depicts some of the
differences. Edges can only be either undirected or right directed using “>” outside the
() brackets in V1. In V2 however, edge directions are given next to the types inside the
brackets and they can be either undirected, right (“>”) or left (“<”) directed 26. Having
the directions inside the brackets allows for patterns in multiple directions as in line 3.
Furthermore, syntax V2 allows us to match edges of any type as in line 5.

1 Person:p -(LIKES:e)-> Message:m //syntax V1
2 //syntax V2:
3 Person:p -(KNOWS:e)- Person:m //undirected edge
4 Person:p -((LIKES>|<HAS_CREATOR):e)- Message:m //alternative types
5 Person:p -(_>:e)- Message:m //any-type, right directed edge

Listing 4.64: Examples of path patterns in syntax V1 and V2.

We omit the implementations of Queries 4 and 5 as these contain no new functionality.
The implementation of Query 6 in Algorithm 4.65 however shows multiple accumulators
and a custom type and we will go over this in more detail. GSQL supports custom tuple
types, that are containers holding a fixed sequence of base types as in line 2. These
types are often used to aggregate related values. We use our custom reply type in a
HeapAccum where we order the entries on the last name of the reply author (replyLN).
The query is structured as follows: the values of the local knows accumulators are set
to True for all persons that know the original author in lines 7-9. In lines 11-17, we
first match all 1-hop comments and their authors and aggregate their information in
an ACCUM into local accumulators (lines 13-16). The CASE statement in line 16 tests
whether the reply author knows the original author and sets the knows value of the

26Note however that an edge type in GSQL is either declared directed or undirected and we can only
match with the corresponding pattern: if the edge type E1 is declared undirected, we have to match it
via -(E1:e)-, on directed edges we have to use a directed pattern -(E1>:e)- or -(<E1:e)- in V2.
The same applies to V1, where we are however limited to right directed patterns -(E1:e)->.
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Comment correspondingly. After these values are aggregated, we use POST-ACCUM in
line 18 where we combine the values in a reply and add this to the global replyTop
collection.

1 CREATE QUERY is7(STRING messageId) FOR GRAPH ldbc_snb syntax v2 {
2 TYPEDEF TUPLE<STRING content, STRING replyFN, STRING replyLN, BOOL

knowEachOther> reply; //custom type "reply"
3 OrAccum @knows;
4 SumAccum<STRING> @rAFN, @rALN;
5 HeapAccum<reply>(100, replyLN ASC) @@replyTop; //aggregate results,

ordered
6 //[...] convert messageId parameter to vertex vMessage
7 accFriend = SELECT s
8 FROM vMessage:s -(HAS_CREATOR>:e1)- Person:t1 -(KNOWS:e2)- Person:t2
9 ACCUM t2.@knows += True; //set knows=True on all Persons that know t1

10
11 accReply = SELECT s
12 FROM vMessage:s -(<REPLY_OF:e1)- Comment:c -(HAS_CREATOR>:e2)- Person:t2
13 ACCUM
14 c.@rAFN = t2.firstName,
15 c.@rALN = t2.lastName,
16 CASE WHEN t2.@knows THEN c.@knows += True END //set knows-value
17 POST-ACCUM @@replyTop+= reply(c.content, c.@rAFN, c.@rALN, c.@knows);
18
19 PRINT @@replyTop;
20 }

Listing 4.65: Parts of Query 6 (IS7) as a GSQL query.

On a side note, TigerGraph added beta support for conjunctive patterns in version 3.0 of
the database. These conjunctive patterns have to be correlated, meaning that at least
one variable has to be shared among any two such patterns. Nonetheless, this allows
complicated patterns to be decomposed into smaller ones and sophisticated patterns that
cannot be given in a single pattern.

Evaluation Semantics
When matching graph patterns, GSQL uses a homomorphism-based bag semantics as
default [DXWL19]. Therefore, multiple edges as well as vertices can be matched to the
same variables (aliases). However, we have to keep in mind that a query in GSQL works
different to queries in many other query languages as the SELECT clause can only take a
single alias/variable as argument. As briefly mentioned above, we can store references
to a vertex set in a variable, which is what we did in every query until now. In the
query in Algorithm 4.66 for example, we store a reference to all selected Persons from
the alias u in the variable per. However, we do not even need this variable later on as
information is aggregated in the accumulators. When evaluating the pattern in line 4,
GSQL will produce a match table where each row represents one distinct path, including
ones where e=f and p=u [Tig]. We cannot restrict these matches but we can specify a
list of aliases in the PER clause in order to group the entries in the match table on the
values of those aliases. In our example, we list all aliases in that clause, which results
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in one invocation of the ACCUM clause for every distinct (p,e,m,f,u) tuple, i.e. no
grouping. Nonetheless, we can use PER to reduce invocations of the ACCUM clause which
can change the perceived semantics as we often aggregate values in the latter clause.
However, we cannot switch for example to an isomorphism-based semantics other than
by specifying this requirement manually in the WHERE clause.

1 TYPEDEF TUPLE<UINT pid, DATETIME ecr, UINT mid, DATETIME fcr, UINT uid> info;
2 vPerson = {person}; //start person
3 per = SELECT u
4 FROM vPerson:p -(LIKES>:e)- (Post|Comment):m -(<LIKES:f)- Person:u
5 PER (p, e, m, f,u) //not needed here as this is the default
6 ACCUM @@sum += 1,
7 @@pathInfos+= info(p.id, e.creationDate, m.id, f.creationDate, u.id);
8 PRINT @@sum, @@pathInfos; //pathInfos is global HeapAccum<info>

Listing 4.66: Parts of a GSQL query in syntax V2 that aggregates path information.

4.4.3 Path
As mentioned before, the data model used by GSQL supports both, undirected and
directed edges. Furthermore, each directed edge in the data model can have an inverse
edge attached to them that is automatically synced with the original one, i.e. it will
be created, updated and deleted automatically. Since all those edge types can appear
in a single graph, the authors of GSQL extended 2RPQs and denote this extension
as Direction-Aware Regular Path Expression (DARPE) 27. Algorithm 4.67 contains
some examples of the syntax of these DARPEs. As we can see in the pattern in line 1,
repetitions of patterns are specified via “*” and we can provide lower and upper bounds
similar to other graph query languages. On the other hand, there is no “+” for repetitions
of at least one. However, this functionality can be achieved using a lower bound of 1
as in line 2. Line 3 contains a more sophisticated pattern and shows the dot operator
that concatenates two edge patterns. This syntax simply removes the nodes between the
edges and replaces them with a “.”. Note however that all of this is only supported in
syntax V2 as a query in syntax V1 can only ever traverse a single edge. [DXWL19]

1 Person:p -((LIKES>|<HAS_CREATOR)*3..5)- Message:m
2 Person:p -(LIKES*1..)- Message:m //path of length at least 1
3 (Post|Comment):p -(<LIKES.IS_LOCATED_IN>.(IS_PART_OF>)*)- _:c //dot operator

Listing 4.67: Examples of DARPEs in GSQL.

Algorithm 4.68 contains a small part of an implementation of Query 7. The full imple-
mentation is rather long as GSQL does not provide a function to get the shortest path
between two vertices. However, there is an example of such an implementation on the
TigerGraph website28 and our implementation uses a similar approach. Generally, our

27Note that RPQs are also denoted as Regular Path Expressions (RPEs). To this end, we can also
think of DARPEs as DARPQs.

28https://docs.tigergraph.com/v/2.6/dev/gsql-examples/
classic-graph-algorithms
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query uses two Breadth-First Searches (BFS) starting at the two vertices (only one shown
here), and stops as soon as a node that was already visited from the other BFS or the
target node is found The expansion step in line 4 accesses the data graph and the rest of
the code in this excerpt works solely on local and global accumulators. When we look
at the code below, it looks more like it was written in a general programming language
(WHILE loop, IF/ELSE statements, variable accesses) and not in a graph query language.
However, this is exactly where we can see the expressiveness of the Turing-complete
GSQL as we can essentially write any program in that language.

1 //[...] query setup
2 WHILE NOT @@found DO
3 @@next = 0;
4 S1 = SELECT t FROM S1:s -(KNOWS)- Person:t WHERE t.@dist1 < 0
5 ACCUM
6 IF t.@dist2 > -1 THEN
7 @@found += True, @@dist12 += s.@dist1 + t.@dist2 + 1
8 ELSE
9 @@next += 1, t.@dist1 = s.@dist1 + 1

10 END;
11 IF @@found OR @@next == 0 THEN BREAK; END;
12 //[...] another BFS starting from the other person

Listing 4.68: Parts of Query 7 (IC13) as a GSQL query.

We omit the code for Query 8 as this query is again quite extensive and does not contain
especially interesting concepts. Algorithm 4.69 contains an excerpt of our implementation
of Query 9. We will not go into much detail and include it mainly for the path pattern in
line 7. Apart from that, this query shows how we can linearly combine multiple queries.
The result of the upper query is stored in the vertex set vMessage and used as starting
point in the lower query (line 7).

1 //[...]
2 vPerson = { personId };
3 vMessage = SELECT t
4 FROM vPerson:s -(<HAS_CREATOR)- (Comment|Post):t
5 ORDER BY t.creationDate DESC, t.id DESC LIMIT 10;
6 accMessage = SELECT s
7 FROM vMessage:s -(REPLY_OF>*)- Post:t1 -(HAS_CREATOR>)- Person:t2
8 ACCUM //[...]
9 //[...]

Listing 4.69: Parts of Query 9 (IS2) as a GSQL query in syntax V2.

Evaluation Semantics
To avoid intractable performance when evaluating path queries, GSQL uses the all-shortest
path semantics. This makes checking for the “existence of a shortest path that satisfies a
DARPE, and even counting all such shortest paths [...] tractable” [DXWL19]. Regarding
the output of a query, we have already mentioned that GSQL behaves different than many
other query languages as we do not have to specify the output in the SELECT clause
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but more often use accumulators. Nonetheless, we can PRINT and even RETURN single
values, properties, but also entities and collections in accumulators. The functionality
that is lacking compared to the other query languages that we analyzed is the possibility
to output or to use paths in the query apart from the path patterns in the FROM clause.

4.4.4 Data Manipulation
GSQL is not only a DQL but also a DML, and both sub-languages are inspired by
SQL [DXWL19]. This allows us to insert, update and delete elements in a graph, be
it a vertex, an edge or a property. However, we can also see that the language is still
under development as some approaches like the pattern matching syntax are not yet fully
supported in DML queries. We refer the interested reader to the TigerGraph start guide
about data modification29 that lists these restrictions and how specific DML queries have
to be structured. Nonetheless, we will go over the insertion and deletion constructs to
show the general structure.

Algorithm 4.70 contains two INSERT INTO statements and we can see the resemblance
to the counterpart in SQL. The first statement creates a vertex of type Person and sets
all properties of that type. Note that types like Person are declared types and we have
to set values for all declared properties. Edges can be inserted in ACCUM or POST-ACCUM
clauses as in lines 2-4. In this example, we insert an edge of type STUDY_AT between
the newly created person and the vertex u. Note that we ran into a problem when
implementing the query as we did not manage to insert a variable number of edges and
their properties in a single query. If we take the STUDY_AT edges for example, we would
like to insert the classYear property (the empty attribute "_" in line 4) for each edge.
However, if we structure this insertion as given below and the property values are given
as BAG<INT> classYear, we do not know which of the entries in the bag belongs to
the edge that is currently inserted. Though one could think that we can pass them in
a bag of <ID, argument> tuples and iterate over these tuples, or even better in a
map, GSQL queries can only take base types and sets/bags of base types as arguments.
Base types in GSQL are integer as well as floating point numbers, booleans and strings,
DATETIME (we use now() to get the current datetime) and also VERTEX and EDGE.
We have more possibilities on local variables and output types as GSQL also supports
MAP, JSONOBJECT and JSONARRAY in these cases. Nonetheless, we did not manage to
implement the insertion of a variable number of edges where each edge has their own
property value.

1 INSERT INTO Person VALUES (personId, firstName, lastName, gender, birthday,
now(), locationIp, browserUsed, speaks, emails);

2 res = SELECT u FROM University:u WHERE u IN unis
3 ACCUM
4 INSERT INTO STUDY_AT VALUES(personId, u, _); //classYear empty: "_"

Listing 4.70: Parts of Query 10 (INS1) as a GSQL query.

29https://docs.tigergraph.com/v/3.0/start/gsql-102/adv/dml
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Similar to Gremlin and PGQL, the removal of a vertex triggers the removal of all incident
edges. Therefore, we can remove a comment, the incident edges and replying comments
via the construct in Algorithm 4.71.

1 R = SELECT c FROM vComment:c -(<REPLY_OF*)- Comment:r
2 ACCUM DELETE(r)
3 POST-ACCUM DELETE(c);

Listing 4.71: Parts of Query 11 (DEL7) as a GSQL query (syntax V2).

Existing property values can be updated by setting a new value as in SET
e.classYear="2012". As GSQL uses a fixed schema, we cannot however add new
or remove existing properties or change the labels of either vertices or edges in a DML
query.

4.4.5 Data Definition
As mentioned in the introduction of this language, we have to declare the schema of a
graph before we can interact with it. Using the CREATE statement of GSQL’s DDL, we
can create vertex and edge containers, the latter for directed as well as undirected edges.
These containers define the type as well as the attributes/properties and their types. A
graph is a named collection of these containers and containers can be shared by multiple
graphs. In other words, we can specify which container types are available and contained
in a graph. This allows for multiple views of the same data as we can for example create
graphs gA and gB that each contain only some type containers and therefore instances
of only those containers. Apart from multiple graphs that use the same containers and
therefore offer different views of the same data, we can also create multiple graphs on
completely unrelated containers and therefore on different data.

Access permissions for users on specific graphs together with the “FOR GRAPH xyz”
statement that can be given on each query as in Algorithm 4.65 allow us to restrict or
permit access to queries and therefore the underlying data to specific users [WD18]. In
contrast to all the other query languages that we looked at, the data model does not
include a dedicated label. Although the paper on the property graph type system in
TigerGraph [WD18] mentions a label type, we could not find any reference to this in the
current version of GSQL. However, we can use the names of the type containers similarly
to labels in other query languages, Comment:r in Algorithm 4.71 for example restricts
the match to instances of the Comment type container and resembles the functionality
of labels.

Algorithm 4.72 shows an implementation of Query 13. In this example, we change the
existing schema using a SCHEMA_CHANGE job that creates the vertex type Street and
extends the definition of the IS_LOCATED_IN edge type. As the original definition of
that edge type already includes FROM(Person) and TO(City), all we have to add is
the Street type as possible source and target. Note that running this job does not
change any existing data and we have to adapt the existing relationships to match the

93



4. Query Language Analysis

desired schema in a DML query. Apart from this version, we could also create a new
graph that contains all existing vertex and edge container types and therefore the existing
data. We can then create the Street type and a new edge type for the relationships to
those vertices in the new graph. Therefore, we can have two versions using mostly the
same data: the graph that already existed beforehand without streets and the new graph
that also contains the streets.

1 USE GRAPH ldbc_snb //specify the graph to work on
2 CREATE SCHEMA_CHANGE JOB add_street FOR GRAPH ldbc_snb {
3 CREATE VERTEX Street(PRIMARY_ID id UINT, name STRING, length INT);
4 ALTER EDGE IS_LOCATED_IN ADD FROM (Street) TO (Street)
5 }
6 RUN SCHEMA_CHANGE JOB add_street

Listing 4.72: Query 13 as a GSQL query.

On an interesting side note, the data model supports not only inverses of directed edges
but also multiple parallel edges of the same type between the same vertices. In order to
distinguish between these edges, we can specify a discriminator attribute, i.e. an attribute
of the edge type that makes up the primary key of the edge together with the keys of the
endpoints. [DXWL19]

4.4.6 Further Features

• Composability:
Composability in GSQL queries works different to many other query languages. On
the one hand, a GSQL query can contain multiple subqueries (select-from-where
structures) as we used it in many of our examples. We can compose these subqueries
linearly by saving the output of one selection (as a vertex set) and using this set in
another subquery as starting point, as we did for example in line 7 of Algorithm 4.69.
Apart from this, we can also use the imperative/procedural nature of GSQL where
a query can either call another query or recursively itself. In that sense, a query
is nothing else than a function and we can even return values using the RETURN
statement. While we can use the output of such a query as input on another one,
GSQL is not fully composable as this does not hold for all queries.

• Paths as first-class citizens:
Unlike all other query languages that we looked at, we cannot even output paths let
alone save them in a variable. Therefore, paths are not raised to first-class citizens.

Although GSQL tries to follow the syntax of SQL in many ways, it doesn’t go without
notice that the language focuses on achieving good performance on large graphs. To
achieve this, GSQL uses a strong type system and requires the declaration of a schema
that allows for better query optimization and potentially space savings. The language
incorporates procedural concepts, is Turing-complete and therefore allows for complex
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graph analytics workloads. As the TigerGraph database is developed as a parallel graph
database, GSQL queries are designed in a way that allows for a computation in massively
parallel processing (MPP) fashion [DXWL19]. All of this results in a syntax that is not
as concise as in graph query languages like Cypher and PGQL [RH19].

Compared to other graph query languages, GSQL provides some interesting functions
like outdegree() and neighbors() out of the box. Although these functions are
often needed in OLAP workloads, they can also be useful in OLTP scenarios. Apart
from the DQL, DML and DDL sub-languages, GSQL supports a Data Loading Language
(DLL) that allows for the creation and execution of loading jobs. Again, these jobs are
more likely of interest when using the database in an OLAP scenario to load for example
the current, online data into an offline graph for analysis. However, this can just as well
be used in OLTP scenarios to load data in the first place.

4.5 G-CORE
The lack of a standard query language and a uniform data model for interconnected data
has led to the creation of a task force by the LDBC. This task force analyzed existing
languages and identified three main challenges of graph querying. In 2016, members
of the LDBC decided to design a new graph query language based on those challenges,
namely: achieving full composability, treating paths as first-class citizens and capturing
the core of available languages where possible [AAB+18]. The latter should ease the
transition for users familiar with existing languages. Since Cypher was identified as
the language that influenced the syntax of many graph query languages during the last
decade, the new language G-CORE uses an ASCII-art syntax for patterns that is very
similar to Cypher’s. Another similarity to Cypher is that it is a high-level query language
with a close alignment to SQL. Nonetheless, G-CORE does not only include features from
SQL and Cypher but also from other languages like path patterns from PGQL. Unlike
most graph query languages, G-CORE is not implemented or used in any database but
is designed as a core for future languages that synthesizes desirable features. [Lin18]

To address to other two challenges, queries return a graph and the language uses an
extension of the property graph data model called path property graph (PPG) that allows
paths to be stored on their own. We introduced this model in Section 3.6 and revisit it
in Section 4.5.4.

When we look at the query in Algorithm 4.73, we can see the resemblance between
G-CORE and Cypher as both use mainly the same syntax on patterns, and SQL by the
use of similar clauses, operators and functions. However, queries are not conceptually
structured linearly as in Cypher but start similarly to SQL with the conceptually last
clause that generates the result. As for the inner workings of G-CORE, the MATCH clause
populates a binding table, where each binding is represented in a row that binds variables
of the query to entities from the graph [AAB+18]. Note that we can optionally specify
a graph name for each pattern in the MATCH clause, allowing for multiple patterns on
different graphs in a single query. The CONSTRUCT clause then takes these bindings
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and creates a graph from the values. In our example, the query returns a graph that
is structured as specified in line 1, where all labels and properties from p and f are
preserved and included in the resulting graph.

1 CONSTRUCT (p) -[:friend]-> (f) //return a graph
2 MATCH (p:Person) -[:KNOWS]- (f:Person) ON graph_name //optional source
3 WHERE p.firstName = ? AND p.lastName = ?

Listing 4.73: A simple G-CORE query that returns a graph containing the Person with
the given name and all persons they KNOW, and connects them via outgoing friend
edges.

As the language is not implemented in any database, we use a parser that is available on
GitHub30 to ensure that the queries given here and provided in our GitHub repository
are syntactically correct.

4.5.1 Structure Independent
1 CONSTRUCT (p)
2 MATCH (p:Person)
3 WHERE p.firstName = ? AND p.lastName = ?

Listing 4.74: Query 1 as a G-CORE query.

To achieve full composability, queries in G-CORE always return a graph [AAB+18]. The
simple query in Algorithm 4.74 for example returns a graph that contains only a single
vertex, but we can also return for example all Persons be removing line 3. The G-CORE
paper however states that a potential implementation or an extension of the language
can also use the SELECT clause that allows us to project from graphs or graph elements
to tables. As the parser that we use to check our queries supports the select clause and
we need it to implement many of our queries, we now assume that the language supports
this clause. Note however that the SELECT clause violates the composability principle
as such a query does not return a graph and the output can therefore not be used as
input on another query. To this end, the paper mentions the possibility to include a
FROM clause as an alternative to MATCH to also allow for tabular input data. However,
the clause is only mentioned as a possible extension and we could not find any other
reference. We do not need this clause in our examples but we have to keep in mind that
outputs of SELECT queries potentially violate the composability principle.

The query in Algorithm 4.75 uses the SELECT clause and therefore produces a tabular
output. As we can see in line 5, G-CORE supports the same compact notation as Cypher
for simple restrictions on properties.

1 SELECT m.creationDate AS messageCreationDate,
2 CASE WHEN message.content IS NOT NULL
3 THEN message.content ELSE message.imageFile

30https://github.com/ldbc/ldbc_gcore_parser
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4 END AS messageContent
5 MATCH (m:Message {id = ?}) //compact notation

Listing 4.75: Query 2 (IS4) as a G-CORE query.

Regarding the implementation of Query 3 we were constrained by the missing support
for multi-valued properties or functions on them in some languages. While Cypher and
Gremlin support such properties, we were only able to implement the query in a compact
way in Cypher and not in a Gremlin traversal. PGQL’s data model on the other hand
does not support multi-valued properties at all, and in GSQL we were again able to
implement this in a relatively compact way in using an AvgAccum. The data model of
G-CORE supports such properties as well but it is not clear to us how to directly count
the property values. To implement the query, we use a slightly different approach given
in Algorithm 4.76. Caused by the assignment of the property speaks to the variable s
in line 2, G-CORE automatically unrolls the values of the multi-value property speaks.
As an example, assume that the property contains the two values {“en”,“de”} on the
person with id=123. If the query did not contain the assignment, a single row in the
binding table contains the information about that person, and all this information is
contained in the single column c as this is the only variable apart from s in that query.
Using the assignment however, the table will have the two columns p and s and we will
have one row [p=<person {id=123}>, s=“de”] and another one [p=<person
{id=123}>, s=“en”]. We then GROUP the entries on the person IDs which allows us
to count the languages per person, and finally compute the average over those counts
using AVG.

1 SELECT AVG( COUNT(s) ) as avgLanguages
2 MATCH (p:Person {speaks = s}) //unroll speaks into variable s
3 GROUP BY p.id

Listing 4.76: Query 3 as a G-CORE query.

According to the parser, G-CORE provides some functions from SQL like SUM and
MIN/MAX on numbers, COUNT on elements as well as conditionals using CASE or inclusion
checks via IN. We do not find any specifically graph relevant or otherwise new functions,
most likely caused by the fact that it “is intentionally designed as a small language that
provides a kernel of graph matching and construction functionality” [AAB+18].

4.5.2 Pattern Matching
G-CORE supports basic graph patterns in a syntax that is very similar to Cypher’s as
well as complex ones using the UNION, INTERSECT and MINUS set operations. As each
query returns a graph, at least that’s how it is conceived in the paper, i.e. without the
SELECT operator, these set operations are applied to two graph queries that each return
a graph and therefore work on graphs. Algorithm 4.77 shows an example of an implicit
use of the UNION operator and of another property that follows from the closedness
of the language, namely that views are possible. In this example, we assume that the
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initial graph is named social_graph. The query creates a graph view that takes this
graph and unions it with the construct in line 3. As this construct contains a pattern
that already exists (the same pattern is matched in line 4), the query simply adds the
property nr_messages to some knows edges in the initial graph. The union operation
is implicit as all patterns and references given in the CONSTRUCT clause are merged
together to create a single graph that is then returned. A possible result of this query
can be seen in Figure 3.10 where the view adds the nr_messages properties whereas
the rest already existed in the initial graph.

The query furthermore shows the OPTIONAL clause that can be used directly after a
MATCH pattern or, as in this example, after the WHERE clause. We use this clause to
optionally match a pattern over messages and their replies between the two Person
nodes n and m. Having these patterns in our binding table allows us to count them and
we set this value on the nr_messages property of the corresponding KNOWS edge (line
3). We also observe that graph patterns can not only occur in the MATCH and OPTIONAL
but also in the WHERE clause. Whereas patterns in the other clauses are used to populate
the binding table, patterns in the WHERE clause constrain the matches and therefore the
entries in that table. Note that this is also possible in Cypher, where we did however not
use it in any of our queries.

1 GRAPH VIEW social_graph1 AS (
2 CONSTRUCT social_graph, //shorthand form for UNION operator
3 (n) -[e]-> (m) SET e.nr_messages := COUNT(*)
4 MATCH (n:Person) -[e:KNOWS]-> (m:Person)
5 WHERE (n) -[:IS_LOCATED_IN]-> () <-[:IS_LOCATED_IN]- (m)
6 OPTIONAL (n) <-[c1]- (msg1:Post|Comment),
7 (msg1) -[:REPLY_OF]- (msg2:Post|Comment) -[c2]-> (m)
8 WHERE (c1:HAS_CREATOR) AND (c2:HAS_CREATOR) )

Listing 4.77: A G-CORE query that creates a graph view. This is a slight variation of
the query given in: G-CORE A Core for Future Graph Query Languages, page 7, lines
40-48 [AAB+18].

We skip Queries 4 and 5 as these closely resemble their implementations in Cypher and
will briefly go over the query in Algorithm 4.78. This query uses a subquery to test
whether the two authors know each other (line 2) and converts the result of the subquery
to a boolean value using EXISTS. Although the definition of the PPG data model allows
graph entities to be labeled with a set of labels, including the empty set, we follow the
approach of LDBC’s query examples and assume that all entities are only labeled with a
single label. Nonetheless, G-CORE allows us to match on multiple labels as in line 4,
similar to how this is possible in GSQL.

1 SELECT c.id, c.content, c.creationDate AS commentCreationDate,
2 p.id AS replyAuthorId, p.firstName, p.lastName,
3 EXISTS ( CONSTRUCT (m) MATCH (m) -[:HAS_CREATOR]-> (op:Person) -[r:

KNOWS]- (p) ) AS replyAuthorKnowsOriginalMessageAuthor
4 MATCH (m:Post|Comment {id = ?}) <-[:REPLY_OF]- (c:Comment) -[:HAS_CREATOR]->

(p:Person)
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5 ORDER BY commentCreationDate DESC, replyAuthorId ASC

Listing 4.78: Simplified version of Query 6 (IS7) in G-CORE.

Evaluation Semantics
When evaluating a basic graph pattern, G-CORE uses the homomorphism-based seman-
tics. Regarding the evaluation of complex graph patterns, we did not find a statement to
whether a bag or set semantics is envisaged.

4.5.3 Path
Paths in G-CORE are demarcated with slashes -//- instead of -[]- and the language
supports RPQs and by the support of navigational graph patterns also CRPQs [AAB+18,
TKL19]. Furthermore, we can specify named path patterns that are very similar to path
pattern macros in PGQL and we give an example later on in Algorithm 4.82. Using these
path patterns, we can compare properties along a path which results in the support of a
subset of REMs similar to PGQL.

The query in Algorithm 4.79 uses paths of variable length as well as the SHORTEST
function that returns a single shortest path between the given nodes that satisfies the
regular expression. We switch to reachability semantics by surrounding the regular- or
named-path pattern with <path_pattern>. The existential subquery inside EXISTS
in line 2 tests whether the nodes are connected over knows edges. If such a path was
found, we derive the length of it via length(). Whereas the query in lines 1-6 returns
a single number for the path length, the second version in lines 9-11 returns a graph that
contains exactly that path.

1 SELECT
2 CASE WHEN EXISTS (CONSTRUCT () MATCH (p1)-/SHORTEST path <:knows*>/->(p2))
3 THEN (SELECT length(path) MATCH (p1)-/SHORTEST path <:knows*>/->(p2))
4 ELSE -1
5 END AS length
6 MATCH (p1:Person {id = ?}), (p2:Person {id = ?})
7
8 //another version that outputs a graph:
9 CONSTRUCT (p1) -/path/-> (p2)

10 MATCH (p1:Person) -/SHORTEST path <:knows*>/-> (p2:Person)
11 WHERE p1.id = ? AND p2.id = ?

Listing 4.79: Two versions of Query 7 (IC13) in G-CORE.

Compared to the implementations of Query 8 in Gremlin, PGQL and GSQL, where we
included only a part of the queries because they were rather long, and even to Cypher’s
where we had to chain multiple query parts together, the implementation in G-CORE
looks compact. As we can see in line 4 of Algorithm 4.80, reachability semantics and the
default semantics can be mixed in a single pattern and we can give lower (x) and upper
(y) bounds for the length of paths via *{x..y}. To construct the result, we start by
selecting properties in the first line. In order to aggregate the study- and work-related
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information, we use two subqueries in lines 2 and 3. Each of those queries contains a
small pattern and multiple paths can be matched to those patterns when evaluating the
query. We first collect the desired information from a single path in a string before these
strings are aggregated using GROUP_CONCAT.

1 SELECT friend.id, friend.lastName, length(p) AS distance, friend.birthday,
friend.creationDate, friend.gender, friend.browserUsed, friend.locationIP
, friend.email, friend.speaks, friendCity.name,

2 ( SELECT GROUP_CONCAT(uni.name + ’ ’ + studyAt.year + ’ ’ + uc.name)
MATCH (friend) -[studyAt:studyAt]-> (uni:University) -[:isLocatedIn]-> (
uc:City) ) AS unis,

3 ( SELECT GROUP_CONCAT(company.name + ’ ’ + e.workFrom + ’ ’ + cc.name)
MATCH (friend) -[e:worksAt]-> (company:Company) -[:isLocatedIn]-> (cc:
Country) ) AS work

4 MATCH (person:Person) -/p <:knows*{1..3}> /-> (friend:Person) -[:isLocatedIn
]-> (friendCity:City)

5 WHERE person.id = ? AND friend.firstName = ? AND person <> friend
6 ORDER BY distance, friend.lastName, friend.id

Listing 4.80: Query 8 (IC1) as a G-CORE query.

We omit the implementation of Query 9 as it contains only a single navigational pattern.

Evaluation Semantics
When evaluating path queries, G-CORE uses a shortest-path semantics. Apart from
querying for a single shortest path using SHORTEST, G-CORE supports “K SHORTEST”
and even ALL to get all paths between two nodes. To avoid an infinite number of paths
under ALL, this is limited to queries that return a subgraph and not the paths themselves.
Regarding the output of a query, G-CORE provides more functionality than any other
query language that we looked at as we can output everything from fixed arity outputs
using SELECT to paths and even graphs using CONSTRUCT.

4.5.4 Data Manipulation & Data Definition
G-CORE does not support any statements to manipulate data. That includes not only
the update operator but also the insertion and removal. Therefore, we cannot create a
graph in the first place or manipulate an existing one using G-CORE as presented in
[AAB+18]. However, it makes sense that the language includes only DQL functionality
as it is meant as a proof of concept for future query languages and not for the direct use
in a database. Therefore, the results of all our examples that use the CONSTRUCT clause
are simply returned and not saved in a database. Furthermore, the SET operation that
we us for example in Algorithm 4.77 does not change the existing data but the property
in the result of that query alone.

As for the definition of a schema, G-CORE does not support it for the same reason.
Regarding the data model, we have already mentioned that the language uses the PPG
model. This is formally defined in [AAB+18] and allows for multiple named graphs.
Edges in a graph have to be directed but we can query them in any direction. The major
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addition in this data model is that paths are raised to first-class citizens. To that end,
each graph has “a (possibly empty) collection of paths; where a path is a concatenation
of existing, adjacent, edges” [AAB+18]. Moreover, each such path has its own identifier,
can be labeled and even augmented with properties as we will see in Algorithm 4.82.

4.5.5 Further Features

• Composability:
Developing a language that supports full composability was one of the main goals
when designing G-CORE and is achieved with the CONSTRUCT clause that returns
a graph. In order to also allow the output of paths while retaining closedness and
therefore composability, paths have to be included in the data model which in turn
leads to the PPG model. As mentioned before, the SELECT clause violates that
principle as such a query no longer returns a graph but tabular data that cannot
be used as input on another query. Assuming that we do not use the SELECT
clause, we can naturally compose queries as the output of one query can be queried
by another one. We can even use SELECT as long as a graph is specified in each
ON(). Note that we omitted the ON clause in many examples as we assume a
default graph in these cases. In Algorithm 4.81, we create a graph that consists
only of vertices inside the ON clause (lines 3-7). This query uses another subquery
to calculate the number of likes on a post and saves this value in the likedBy
property. The outermost query then uses the graph constructed in lines 3-7 as input
for the MATCH clause, matches these nodes, selects the top 10 on their likedBy
value and returns that value together with the title. This example shows that
it is possible to compose queries and we can include the SELECT clause in some
scenarios. Nonetheless, we have to keep in mind that this query ultimately does
not return a graph and therefore cannot be used as input on another one.

1 SELECT p.title AS title, p.likedBy as numLikes
2 MATCH (p) ON (
3 CONSTRUCT (p)
4 SET p.likedBy := (
5 SELECT COUNT(per) MATCH (per:Person) -[:likes]-> (p)
6 )
7 MATCH (p:Post) ON social_graph
8 )
9 ORDER BY numLikes DESC

10 LIMIT 10

Listing 4.81: A G-CORE query that demonstrates composability.

• Paths as first-class citizens:
As mentioned earlier, paths are raised to first-class citizens in the PPG data
model. To show this functionality, we provide an implementation of the query from
Algorithm 4.50 in G-CORE and extend it such that the paths are stored and not only
returned. This implementation is given in Algorithm 4.82. The query starts with
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the definition of the path pattern eq_voltage_hop. In contrast to PGQL, slashes
demarcate a path in G-CORE. This can be seen in line 3 where we match the 3
shortest paths between two nodes that satisfy the path pattern eq_voltage_hop
and have a length of at least 1. As an extension to the implementation of the query
in PGQL, we bind the COST to variable c such that we can use it later on in the
CONSTRUCT clause. The default cost of a path is given by the hop-count which is
why we can use this to get the length of a path. Apart from the default cost, users
can also define their own cost function for paths. By specifying such a custom cost
function, we can also query for the (top k) cheapest paths.

The CONSTRUCT clause in this query now contains one of the most important
functions of G-CORE as we construct a graph with paths. We prefix the path
variable p with @ to denote that the path p is a stored path, i.e. it is not only
returned in the graph consisting of vertices and edges but also on its own. To get a
feeling on how such a result could look like, Figure 3.10 contains a graph as well as
two stored paths31. We can see that the paths are stored apart from the vertices
and edges. In our example, we label them by eqVoltage and add the distance
property. Assuming that we already have a graph that contains such stored paths,
we can query and analyze them, for example by accessing the nodes on the path
via nodes(path).

1 PATH eq_voltage_hop = (n:Device) -> (m:Device) WHERE n.voltage = m.
voltage

2 CONSTRUCT (x) -/@p:eqVoltage {distance := c}/-> (y)
3 MATCH (x) -/3 SHORTEST p<~eq_voltage_hop*{1..}> COST c/-> (y)
4 WHERE x.name = ’generator_x29’

Listing 4.82: A similar query to the one in Algorithm 4.50. The query returns a graph
with paths, i.e. a graph that contains not only vertices and edges but also paths.

It can be seen in many aspects that G-CORE was influenced by contemporary query
languages and builds upon them. This results in the general approach using clauses
similar to SQL, a pattern syntax that closely resembles Cypher’s and named path patterns
as in PGQL. Apart from the integration of existing concepts, the language shows that
it is possible to achieve full composability and how paths, “the most popular feature of
graphs” [AAB+18], can be raised to the same level as vertices and edges. All of this
is achieved while remaining computationally feasible, meaning that each query can be
evaluated in polynomial time with respect to the size of the data. Although we did not
highlight and analyze the evaluation complexity in this thesis, it is interesting that the
simple path semantics in Cypher can be NP-complete [FGG+18b] while the shortest path
semantics in G-CORE allows the language to remain tractable, both with respect to the
size of the data.

31Note that the graph in this figure has nothing to do with this query or even the domain of this query
and the reference should solely help with the illustration of such a result.
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4.6 Further Languages
We did analyze 5 contemporary graph query languages: Cypher, Gremlin, PGQL and
GSQL as languages used in industry and implemented in database systems, and G-
CORE as a core for future languages designed by industry and academia. Apart from
these languages, there exists a wide range of further ones, both from academia and
industry. An interesting example is BiQL [DNR09], a composable query language that
does not distinguish between edges and nodes. The output of paths and a slight variation
of the data model allows outputs to be stored and queried again, therefore achieving
composability. What all of those languages lack however is standardization like SQL
for relational databases or SPARQL for the RDF model. There are currently two
major projects in standardization bodies that strive to achieve standardization for graph
querying functionality and we will now introduce both of them.

SQL/PGQ As briefly mentioned in Section 4.3, there is ongoing work inside the ISO/IEC
working group responsible for SQL (SC32 WG3) to add graph querying functionality
to SQL. This extension will be added in the next version of SQL, possibly SQL:2020
or SQL:2021 [TvR19]. As it is an extension to the relational query language, a
tabular property graph data model where vertices and edges are both stored in SQL
tables is envisioned. Tables can be mapped to named property graphs where table
names become labels, columns properties and primary-foreign-key relationships
edges (although all of that can be customized) using an extended DDL. If we look
back on the DDL functionality in Section 4.3.5, this closely resembles PGQL’s
“CREATE PROPERTY GRAPH” statement. Indeed, examples of SQL/PGQ DDL
statements in [TvR19] show a very similar syntax for the creation of property
graphs. In contrast to PGQL however, the graph schema will be enforced as data
is always stored in a relational database and the property graph provides solely a
graph-view of that tabular data. We are therefore restricted by the data-types and
structure of the underlying relational database.
Graphs are queried in a MATCH clause using an ASCII-art syntax similar to Cypher’s
that allows for fixed and variable length patterns as well as shortest path queries.
This approach, where data is stored in relational tables and can be queried using
either standard SQL or in a graph view, entails that data manipulation through
standard SQL DML statements are automatically visible on graphs over that data.
Although there is no final specification of this extension available yet, adding
property graph functionality to SQL brings the world of graphs, patterns and
paths to the large group of SQL developers. Furthermore, as this functionality
will be standardized with SQL, the graph related parts can be influential for the
development of other graph query languages.

GQL The same working group that is responsible for SQL and working on SQL/PGQ
is also developing a new, independent property graph query language. As briefly
mentioned in Section 2.4, this language is called GQL and is set to become the
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standardized graph query language. Similar to SQL/PGQ, there is no specification
for this available as of now, but a paper on the scope and features [GFL+18]
proposes an initial design of the language and its features. Generally, GQL “is
a composable declarative database language for querying and managing property
graphs that is intended to be usable both as an independent language as well as in
conjunction with SQL or other languages” [GFL+18]. During query evaluation, a
driving table similar to the binding table in Cypher and G-CORE holds data. A
GQL query either returns a graph created from these values, similar to CONSTRUCT
in G-CORE, or returns data directly in tabular form as SQL’s SELECT. In contrast
to G-CORE, GQL is closed under graphs and tables, meaning that a query can
take a graph or a table as input and output either of them32. This allows GQL to
be used in conjunction with SQL and potentially other languages, and entails that
it is composable.

Another interesting feature regards the supported evaluation semantics. As for
patterns, the language strives to allow users to switch between homomorphism-
based, no-repeated node and no-repeated edge semantics. Regarding the evaluation
of paths, reachability, shortest, cheapest and their top K variants, all paths and even
simple (no-repeated-nodes), trail (no-repeated edge) and acyclic path semantics
should be supported. If the language indeed supports all of these semantics, it will
essentially include all versions that we identified in Chapter 3.

Coming back to Figure 4.1, we can see that the language supports complex path
patterns similar to the ones in PGQL (and therefore G-CORE) as well as an optional
schema that is influenced by GSQL. The figure contains not only GQL and existing
graph query languages but also SQL/PGQ. This is especially interesting as GQL
and SQL/PGQ are developed by the same working group and indeed, common core
features will be specified in one standard and referenced by the other [HLP+19]. The
dependencies between the two projects can be seen in Figure 4.2 where Read GQL
for example specifies graph related functions like pattern matching that are needed
in both projects and GQL Proper includes functions that are only supported by
GQL.

Although currently available documents on GQL promise a feature-rich graph
query language with compatibility to SQL, it remains to be seen how much of this
functionality is included in the final specification. And, as briefly mentioned before,
the specification alone is not enough for it to be accepted and implemented in graph
databases and only time will tell if, and how fast, this happens. Nonetheless, we
are today closer to a world where a standardized language is broadly supported in
many graph databases than we were some 5 years ago, before the first initiatives
towards standardization.

32More specifically, possible in- and outputs include not only graphs and tables but also singular values
or nothing.
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Figure 4.1: GQL Lineage. Source: GQL Standards - Existing Languages, Petra Selmer
[GQL].

Figure 4.2: Dependencies between SQL and GQL Projects. Source: SQL and GQL, slide
17 [HLP+19].
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4.7 Lessons Learned
Now that we analyzed five graph query languages, we wrap this chapter up by comparing
them on their support for certain features, their evaluation semantics and other general
characteristics. We also include guidelines on which languages fit which application
scenario and for whom it makes sense to choose a certain language. Table 4.1 provides
an overview of the support for certain graph related features in the analyzed languages.
The upper half of the tables compares functionality related to the data model, like the
support for multiple graphs, undirected edges or multi-value properties. The lower half
then focuses on querying related features like the support of branches (e.g. via the CASE
statement), a linear or nested composition of queries and whether users can provide and
execute their own function. An overview of the supported evaluation semantics for the
evaluation of patterns and paths can be seen in Table 4.2.

We now go over the analyzed languages one more time, highlight their characteristics,
advantages and disadvantages and give examples for when to use them. Each section
furthermore includes an explanation about what is missing towards a full implementation
of the queries from Chapter 3 that are only partially or not at all implemented. Table 4.3
contains an overview about the query implementation status.

Cypher
Cypher is a high-level declarative language that focuses heavily on patterns, provides many
graph related functions out of the box and allows for extensions via user-defined functions.
Being “the original declarative query language for the property graph data model” [Pla18],
the ASCII-art syntax for patterns pioneered by Cypher influenced other contemporary
graph query languages like PGQL and G-CORE. Cypher was first introduced in Neo4j 1.4
in 2011 [Lin18] and is therefore one of the older contemporary graph query languages, also
compared to the other languages that we analyzed. The development and governance of
the language by the openCypher Project allows other companies and bodies to implement
the language in their systems. Together with the fact that Neo4j is one of the most
popular property graph databases and Cypher therefore relatively well known in the
community, this led to the inclusion of Cypher in products like SAP HANA Graph,
Redis Graph and Memgraph [FGG+18b]. Furthermore, Cypher uses a concise syntax and
aligns relatively closely with SQL, which eases the transition for users familiar with the
relational query language. All of this leads to a large community around the language,
which in turn results in a multitude of forums, tutorials and guides as well as user-defined
functions that are available on the internet.

Regarding the queries introduced in Chapter 3 we were able to implement all except
the last one that is DDL related as Cypher does not support a schema. The support of
a multitude of graph-specific functions like shortest path finding or matching optional
patterns allows for (subjectively) understandable queries that are relatively easy to write,
even for non-experts in the language. Caused by the focus on patterns and the rich
set of features (not only DQL- but also DML-related), Cypher allows for expressive
graph queries and can be used in many graph related scenarios. In other words, Cypher
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homo-
morphism

isomorphism based
n-r-edge n-r-node n-r-anything shortest reachability

Cypher ♦ ✜

Gremlin ♦ ✜ (✜)
PGQL ♦ (♦) (♦) (♦) (✜) (✜)
GSQL ♦ ✜

G-CORE ♦ ✜ ✜

Table 4.2: Evaluation Semantics used by the analyzed query languages. n-r-x stands
for no-repeated-x. A ♦ denotes that this semantics is used by default to match patterns
whereas ✜ denotes the default semantics when matching paths. For paths in PGQL:
variable length path patterns can only appear in reachability semantics (using -//-) or
inside SHORTEST for the shortest path semantics. In G-CORE, shortest path semantics
is used by default but path expressions demarcated with -/<>/- are evaluated using
reachability semantics. (♦) and (✜) denotes that we can change to this semantics, in
many cases by adding a dedicated statement like simplePath() in Gremlin to the
query.

fully implemented partially implemented not doable
Cypher 1 - 12 13: DDL
Gremlin 1 - 6, 8 - 12 7: persons not connected ★ 13: DDL
PGQL 1, 2, 4 - 9, 11, 12 3: multi-value-property / list

10: variable number of edges
13: enforced schema

GSQL 1 - 9, 11 - 13 10: variable number of edges
G-CORE 1 - 9 10 - 13: DML & DDL

Table 4.3: Implementation status of the queries from Chapter 3. The text after some
query numbers states what is missing for a (full) implementation. ★ Our implementation
works only if the two person vertices are connected over knows edges. In other words:
Gremlin lacks a functionality to test whether two vertices are connected.

is a solid choice for any application scenario as long as a schema or more expressive
path patterns are not needed. Furthermore, it is a good idea to use Cypher for its
close alignment to SQL and the large community when first starting with a graph query
language. Nonetheless, one has to keep in mind that Cypher for example does not support
full RPQs let alone more expressive path patterns, currently lacks support for a schema
or other constraints and for more sophisticated features like composability.

Gremlin
In contrast to Cypher, Gremlin is more imperative in nature. It uses a completely different
approach to all the other languages that we analyzed as it merges with a programming
language that implements the querying functionality. This allows queries to not only
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use graph traversal functionality but also constructs of the implementing programming
language like general loops. Furthermore, users can achieve a shorter syntax tailored
to their domain using a Domain Specific Language (DSL) and Gremlin can be easily
extended inside the implementing programming language. For all of that, Gremlin is
Turing-complete [WD18] and allows for a superset of RPQs as we can repeat whole
traversals [AAB+18]. Nonetheless, being a low-level query language with a focus on
the imperative traversal-style [Rod15] together with the compact syntax leads to worse
readability compared to higher-level languages [HP13]. We would therefore not advise
developers that are familiar with declarative programming- or query languages like SQL
to switch directly to Gremlin. Changing to, or choosing Gremlin for a project makes
more sense for someone familiar with functional languages as a general traversal step
is nothing but a function and the language heavily relies on function composition and
nesting.
Apart from the query language, the TinkerPop framework and GTM provide a distributed
mode where queries can be executed on distributed machines. Together with a dedicated
OLAP API, this results in a viable alternative for big data scenarios. Therefore, Gremlin
is a reasonable choice for someone who is not only interested in OLTP workloads but
also in the analysis of larger amounts of interconnected data.
We managed to implement most of the analyzed queries except for two: we lack a
functionality to test whether a pair of vertices is connected for a full implementation of
Query 7 and the general support of a schema for Query 13. Other than that, Gremlin
provides many interesting graph related functions out of the box and uses a rich data
model that allows not only for multiple graphs but also for meta-properties.
PGQL
PGQL is again a high-level declarative query language that was influenced by Cypher and
SQL [Pla18]. This results in a syntax similar to Cypher’s and a close alignment to SQL
for the use of the same functions and mostly the same data types. Up until the release of
the current version of PGQL in March 2020, the language lacked important functionality
like a DML sub-language [Ora20]. With this version however, PGQL provides a solid
core of graph related functions. Compared to Cypher and Gremlin, the inclusion of path
pattern macros allows not only for full support of RPQs but even for the comparison of
properties on a path and therefore a subset of REMs [vR17]. Apart from path patterns,
Cypher and Gremlin still provide more graph related functions out of the box. Unlike
Cypher that is implemented in multiple (commercial) products, PGQL is only available
in some Oracle products where data is often stored in relational databases. This comes
with an advantage as well as a disadvantage. On the one hand, including PGQL in the
Oracle Database allows the large group of existing users to utilize graph querying on
their already available data in a relational database. On the other hand, the language is
still comparatively new and as PGQL is not utilized by any other vendor, there is only a
rather small community and we could not find much information apart from the official
specification.
It is a rational choice to look into PGQL for someone who is already using an Oracle
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product. Nonetheless, one has to be careful when choosing a product for their use case,
as PGQL in the Oracle Database will result in a graph view of relational data whereas
PGQL in “Oracle Big Data Spatial and Graph” can utilize PGX where data can be
stored in a native graph database. We did not go into detail regarding the performance
and thus did not test this but it might become problematic when data is stored in tables,
especially when matching path patterns that likely result in a multitude of relational joins.
If we restrict ourselves to the query language alone, many arguments for Cypher, like the
alignment to SQL and the ASCII-art syntax that results in concise and (subjectively)
understandable queries, apply to PGQL as well.

As for the analyzed queries, we were able to fully implement 10 out of the 13. Lacking
support for multi-value properties or lists hindered us towards a full implementation of
Query 3. Note that we are not able to store a collection of values (the spoken languages)
in a single property in PGQL’s data model whereas this is possible in the other data
models that we analyzed. We lack the ability to pass tuples or iterate over collections
inside a query for a concise implementation of Query 10. Note however that the desired
functionality can be achieved by splitting the query into multiple ones. Regarding
Query 13, we can use the “CREATE PROPERTY GRAPH” statement to create a graph
with the desired structure out of tabular data, but this schema is only used to create the
graph and not enforced later on.

GSQL
Similar to PGQL, GSQL is a high-level query language inspired by SQL. It is used in the
TigerGraph database and developed by the homonymous company. The most interesting
aspect of GSQL is the use of a strong type system and schema. This type system extends
the one from SQL by graph specific types like vertex, edge and graph [DXWL19].
Graphs include certain vertex and edge types that specify exactly what entities are
included/allowed in the graph and how they can be related. The schema allows for better
query optimization and storage savings, which is especially needed in TigerGraph as it is
designed for “tomorrow’s big data and analytics” [HLP+19] and therefore for huge graphs.
This explains the distributed approach with native support for parallel query execution
and Accumulators. Since this resembles the MapReduce model, GSQL is a reasonable
choice for someone with a background on this or a similar NoSQL paradigm [DXWL19].
Having a schema is not the only argument for GSQL as the language provides not only
declarative constructs but also imperative ones. A single GSQL query can be composed
of multiple select-from-where structures together with imperative constructs like loops or
branches. This results in GSQL being Turing-complete. As for path querying capabilities,
the language supports not only RPQs but the more expressive class of DARPEs that
allows for directed as well as undirected edges in a single graph.

Although the language provides OLTP functionality, it is targeted at OLAP workloads.
Nonetheless, GSQL is an expressive query language that can be used for OLTP workloads
and is especially interesting when dealing with large amounts of interconnected data.
On the other hand, the schema, the inclusion of imperative constructs and the parallel
approach using accumulators results in a syntax that is not as concise as Cypher’s [RH19].
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The language furthermore lacks some built-in functionality provided by other languages,
like a function to get the shortest path between two vertices. Taken together, this
results in queries that are often more complex, not only to develop but also to read and
understand as they generally contain more code. This augmented code is either needed
to make up for nonexistent built-in functions or for the distributed nature. Although the
language is only implemented in the TigerGraph database, there are many resources and
tutorials on their website and an active community in some forums.

Regarding the analyzed queries, we managed to fully implement all of them except for
Query 10. In contrast to PGQL, we are able to insert a variable number of edges by
passing a collection of edge endpoints. However, we did not manage to correctly set a
different property for each edge when adding a variable number of edges. Note again
that we can achieve this functionality by splitting the query into multiple ones.

G-CORE
One goal when designing the research language was to capture the core of available
languages. Since G-CORE is a high-level declarative language, it is not surprising that it
uses an ASCII-art syntax very similar to Cypher’s and incorporates the more expressive
path patterns from PGQL. The language is designed as a core for future developments and
shows how a sophisticated graph query language that integrates industrial experiences
with theoretical research can look like [AAB+18]. As for the inclusion of new functionality,
the language is fully composable and raises paths to first-class citizens by extending
the property graph data model to also include paths. This results in a powerful query
language while retaining a syntax that closely resembles Cypher’s. Although this makes
the language relatively easy to use and understand while extending its expressiveness,
it does not make sense to recommend using G-CORE as it is not implemented in any
database system.

We were able to implement all analyzed DQL queries in G-CORE but no DML or DDL
query as the language is solely a query language without support for data manipulation
or a schema.

For convenience, we note again the versions of the languages that we analyzed. Regarding
Cypher, we analyzed Version 9 of the language from the openCypher project as well as
some differences to the version of Cypher as implemented in the Neo4j 4.1.0 database.
With version 10 of the language being currently under development and said to add
interesting functionality like composability, we also mentioned potential functionality
and concepts of this upcoming version. Regarding Gremlin, we analyzed a slightly
older version of the TinkerPop framework and therefore Gremlin (3.0.1-incubating) but
mentioned notable differences to more recent ones. For PGQL, we analyzed the newest
version 1.3 and for GSQL we used the version that comes with TigerGraph 3.0, which is
currently the latest stable version of that database.
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CHAPTER 5
Conclusion

Graph databases are increasingly adopted in industry to handle, store and analyze
graph-like data. Users can choose between a multitude of graph databases, but there is
no standardized query language to access them and most systems use their own data
model. Although work on the standardized graph query language GQL started in 2019, it
is set to take multiple years until it is finished and standardized. As current graph query
languages differ in their characteristics, expressiveness and ease of use, it is important to
choose a language that fits your needs. We therefore analyzed five common graph query
languages regarding these factors.

In this thesis, we analyzed common graph query languages and produced the following
results:

• We identified and analyzed common features that form the conceptual core of most
graph query languages by inspecting queries from the Social Network Benchmark.
Matching graph patterns is a, if not the, major operation on graphs. These patterns
can be extended with path expressions to form navigational queries. We added
three more features: structure independent, data manipulation and data definition.
The features are described and analyzed regarding their theoretical foundations
and the expressiveness they enable.

• In addition, we analyzed four of the most prominent graph query languages from
industry (Cypher, Gremlin, PGQL, GSQL) and one promising candidate for future
languages from a research project (G-CORE) regarding these features. Cypher
offers a multitude of graph-related functions and is relatively easy to use. Although
Gremlin is more expressive (Turing-complete), its concise syntax and imperative
nature leads to worse readability compared to higher-level languages. PGQL offers
expressive path patterns but does not provide as many graph-related functions as
Cypher. GSQL is the only language in our comparison with a type system and a
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schema, provides not only declarative querying functionality but also imperative
constructs and is Turing-complete. We conclude with G-CORE, an expressive
language that combines features mostly from Cypher and PGQL, achieves full
composability and elevates paths to first-class citizens in the graph.

We limited our comparison mostly to the expressiveness and ease of use of the analyzed
languages. It would therefore be naturally of interest to also analyze the complexity of
the languages and compare their performance on certain workloads. Although there are
some papers that focus on these matters, like [HP16] for the performance of Cypher and
Gremlin or [AAB+17] for an analysis of the same languages regarding their complexity,
there is little on PGQL and GSQL. As an example, it would be interesting to compare
Gremlin with GSQL as both offer a native parallel mode and imperative constructs.
Similarly, it would be interesting to compare PGQL with Cypher (and G-CORE) as they
provide a similar syntax but differ in the evaluation semantics and the data representation
if we pick Neo4j and the Oracle database for example.
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