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The gut microbiome is of utmost importance to human health. While a healthy

microbiome can be represented by a variety of structures, its functional capacity appears

to be more important. Gene content of the community can be assessed by “shotgun”

metagenomics, but this approach is still too expensive. High-throughput amplicon-based

surveys are a method of choice for large-scale surveys of links between microbiome,

diseases, and diet, but the algorithms for predicting functional composition need to be

improved to achieve good precision. Here we show how feature engineering based on

microbial phenotypes, an advanced method for functional prediction from 16S rRNA

sequencing data, improves identification of alterations of the gut microbiome linked

to the disease. We processed a large collection of published gut microbial datasets

of inflammatory bowel disease (IBD) patients to derive their community phenotype

indices (CPI)—high-precision semiquantitative profiles aggregating metabolic potential

of the community members based on genome-wide metabolic reconstructions. The

list of selected metabolic functions included metabolism of short-chain fatty acids,

vitamins, and carbohydrates. The machine-learning approach based on microbial

phenotypes allows us to distinguish the microbiome profiles of healthy controls from

patients with Crohn’s disease and from ones with ulcerative colitis. The classifiers were

comparable in quality to conventional taxonomy-based classifiers but provided new

findings giving insights into possible mechanisms of pathogenesis. Feature-wise partial

dependence plot (PDP) analysis of contribution to the classification result revealed

a diversity of patterns. These observations suggest a constructive basis for defining

functional homeostasis of the healthy human gut microbiome. The developed features

are promising interpretable candidate biomarkers for assessing microbiome contribution

to disease risk for the purposes of personalized medicine and clinical trials.
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INTRODUCTION

Recent advances in cultivation-based approaches for studying
microbial diversity like culturomics (Bilen et al., 2018) allowed
to isolate and characterize phenotypes and genomes of many
human gut microbial species (Forster et al., 2019). High-
throughput DNA sequencing of microbiome samples is still a
method of choice for total profiling of the human microbiome.
It provides semiquantitative taxonomic composition as well as
functional potential, including biosynthesis of small molecules
(Sugimoto et al., 2019). In the gut, the functional profile
is generally less variable than the taxonomic one (Eng and
Borenstein, 2018). Multiple species tend to be involved in
complex ecological networks, many of which arise from
cross-feeding, suggesting that the metabolic potential of a
single species is less important than a community-wide
gene-centric metabolism—provided the completeness of the
pathways, however.

Deciphering the total microbiome network of metabolic
interactions became possible with the advent of whole-genome
shotgun (WGS) metagenomics. Even simple mapping of the
reads to global reference gene catalogs already shows a strong
variability between subjects both globally and by specific gene
groups including carbohydrate catabolism, antibiotic resistance,
and virulence factors (Yarygin et al., 2017), suggesting a
more detailed investigation of distinct metabolic pathways.
The extent of realization of the metabolic potential encoded
in the microbiome can be evaluated quantitatively and
qualitatively using metabolomics, particularly to elucidate its
alterations linked to specific disorders. For example, targeted and
untargeted metabolomic analysis of fecal samples from patients
with inflammatory bowel diseases (IBD) revealed dysregulated
metabolism of SCFAs, bile acids, tryptophan, and othermolecules
(Franzosa et al., 2019), suggesting that microbiota-derived
metabolites play key roles in the pathogenesis (Lavelle and Sokol,
2020). To date, metabolomic experiments are more expensive
and less standardized compared to high-throughput sequencing.
The concept of predicting metabolite levels from metagenomic
composition based on bacterial genome-scale metabolic models
has shown promising results in the context of personalizing
therapeutic dietary interventions for Crohn’s disease (CD)
patients (Bauer and Thiele, 2018).

The amplicon 16S rRNA sequencing is still the method of
choice in terms of cost and information content for large-
scale microbiome surveys of links between human microbiome
and diet, diseases, verification of microbiome-related health
claims of food products, and individual microbiome profiling.
The sequenced variable 16S regions are often organized into
operational taxonomic units (OTUs), i.e., clusters of similar
sequences, or merged into the exact biological sequences present
in the sample, so-called amplicon sequence variants (ASVs)
that are further counted to get their relative abundances and
taxonomically assigned using reference 16S databases (Prodan
et al., 2020). Although this approach does not allow direct
measurement of microbial gene content other than 16S rRNA
itself, there are algorithmic methods for inferring the functional
composition of the community from such data based on

an a priori accumulated knowledge about microbial genomes
(Aßhauer et al., 2015; Louca et al., 2016; Douglas et al., 2020;
Narayan et al., 2020). Metagenomic prediction tools revealed
functional alterations in the human gut microbiome linked to
many diseases including IBD (Imhann et al., 2018), Parkinson’s
disease (Cirstea et al., 2020), and nonalcoholic fatty liver disease
(Boursier et al., 2016), as well as to dietary interventions
(Klimenko et al., 2018; Volokh et al., 2019) and other factors.
However, the tools provide low accuracy for certain groups of
functions. Firstly, some functional groups of genes are subject
to frequent horizontal gene transfer across distant taxa (like
antibiotic resistance determinants). Secondly, many metabolic
pathways are established based on general databases and are
neither curated to the point of sufficient accuracy nor take into
account the specifics of a particular niche (like human gut).
Meanwhile, precise metabolic reconstruction provides increased
precision to elucidate ecological mechanisms of the communities
(Sung et al., 2017; Garza et al., 2018).

Besides total analysis of all metabolic functions carried out
by the gut microbes, some of them are often examined in a
targeted manner as being highly relevant to the host–microbe
interactions, ecological equilibrium, and diet, and of significant
interest to be explored in novel datasets using interactive online
systems (Efimova et al., 2018). The majority of these groups
are short-chain fatty acid (SCFA) production, carbohydrate
catabolism, and synthesis of vitamins and amino acids. Themajor
SCFAs, namely, acetate, butyrate, and propionate, are synthesized
by the gut microbes and are essential for host physiology by
regulating inflammation, immunity, tumorigenesis, satiety, and
involvement in signal functions (Koh et al., 2016). The propensity
to synthesize them and the specific metabolic pathways vary
across the bacterial kingdom, as showcased by butyrate (Vital
et al., 2014). In the gut of IBD patients, there is a depletion of
butyrate synthesis potential (Laserna-Mendieta et al., 2018). The
main substrates for SCFA production are carbohydrates (glycans)
of various structural complexities (oligo- and polysaccharides)
coming as dietary fibers and general food components, making
them the keystones in the prebiotic action of these molecules
(Gibson et al., 2017). Different bacterial taxa have different
capacities toward degrading a specific fiber type, and cross-
feeding based on symbiotic catabolism of a complex glycan is
not uncommon (Cockburn and Koropatkin, 2016; Cerqueira
et al., 2020). Examination of an individual gut microbiome’s
total capacity for glycan catabolism suggests a way of designing
personalized microbiome-tailored dietary plans (Klimenko et al.,
2018).

Another prominent group of host health-relevant metabolites
are vitamins. In the gut, the microbes can synthesize vitamin
K and B vitamins along with their precursors (Rodionov et al.,
2019). There are reports that at least some of the vitamins
are accessible to the host (LeBlanc et al., 2013) and their fecal
concentrations can be associated with clinical factors (McCann
et al., 2019). Recent studies indicate that the importance of gut as
a source of vitamins is limited and even a greater role of these
vitamins might be in maintaining a robust ecological network
between the species in the gut (Rodionov et al., 2019; Sharma
et al., 2019). Interestingly, investigation of vitamin synthesis from
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stool metatranscriptomes of IBD patients showed an increased
expression level of biotin (vitamin B7) biosynthetic enzymes
compared to healthy controls (Das et al., 2019). Finally, amino
acids released from undigested luminal proteins and peptides
are accessible for gut microbiota that is involved in amino
acid fermentation to form SCFAs and/or transformation to
numerous metabolic end products such as phenols and indoles
from aromatic amino acids (Davila et al., 2013). During intestinal
inflammation, the microbiome potential for synthesis of amino
acids, can decrease in favor of catabolism (Morgan et al., 2012).
The therapeutic potential of amino acids for IBD has been
proposed due to the reduction of inflammation, oxidative stress,
and cell death in the gut they can evoke (Liu et al., 2017).

Development of high-precision and accuracy approaches for
profiling of these selected functions will provide a valuable
tool for efficient mining of biomedically relevant information
from amplicon sequencing data and improving the downstream
interpretations of gut microbiome data. Previously, we developed
a new genomics-based methodology of predictive phenotype
profiling that computes CPI (Community Phenotype Index)
values as community-wide fractional representation of a limited
set of basic metabolic phenotypes (such as amino acid
auxotrophy and sugar utilization capabilities) deduced from in
silico reconstruction over a large reference collection of HGM
genomes and projected over 16S rRNA abundance profiles of
the analyzed samples (Rodionov et al., 2019). This predictive
metabolic phenotype profiling methodology was further applied
to characterize the 16S rRNA amplicon-based taxonomic profiles
of the fecal microbiomes in in vivo and in vitro studies and
identify metabolic phenotypes that are linked to variable diets
or growth conditions (Peterson et al., 2019; Sharma et al., 2019;
Elmén et al., 2020; Jones et al., 2020). Here we used this in
silico metabolic phenotype profiling approach to identify the
links between the functional homeostasis of gut microbiome and
disease. To assess the performance of our approach in discovering
novel robust biomarkers, we applied it to the case of the IBD that
are associated with the altered microbiome composition, along
with the genetic, lifestyle and environmental factors (Beaugerie
et al., 2018).

MATERIALS AND METHODS

Study Design and Raw Sequence Data
Analysis
For our analysis, we selected the following three previously
published IBD datasets with publicly available 16S rRNA gene
sequencing data of stool samples. The Spanish dataset (ESP)
included 34 Crohn’s disease (CD) patients, 33 ulcerative colitis
(UC) patients, and 101 healthy controls (HC) (Pascal et al.,
2017). The Chinese dataset (CHN) included 72CD, 51 UC, and
71 healthy individuals (Zhou et al., 2018); an additional 16CD
patients on infliximab treatment were excluded from the analysis.
Both ESP and CHN datasets were further filtered to retain only
one sample per individual in cases of multiple replicates. The
study of 313 IBD patients from the Netherlands (NLD) included
188 patients with CD, 107 patients with UC, and 18 additional

TABLE 1 | Number of samples per dataset and per clinical status analyzed in this

work.

IBD status/dataset Spain (ESP) Netherlands (NLD) China (CHN)

Healthy controls (HC) 91 496 67

Crohn’s disease (CD) 34 163 50

Ulcerative colitis (UC) 39 99 37

IBD patients with either intermediate or undetermined disease
status (Imhann et al., 2018); the latter were excluded from
the study. The healthy NLD group originally included 1,010
individuals from the LifeLines DEEP cross-sectional general
population study (Tigchelaar et al., 2015) that was further
reduced to 495 healthy controls selected as previously described
in (Imhann et al., 2018).

The raw sequence data from the CHN and ESP datasets
were downloaded from the European Nucleotide Archive
(www.ebi.ac.uk/ena)—project IDs PRJNA422193 and
PRJEB22028, respectively. The NLD datasets were obtained from
the European Phenome-Genome Archive (https://ega-archive.
org/), project IDs EGAS00001002702 and EGAS00001001704.
The 16S rRNA gene sequences (hypervariable region V4)
were analyzed using the DADA2 plugin from the QIIME2
package (Callahan et al., 2016; Bokulich et al., 2018). Briefly,
raw demultiplexed reads were quality filtered, denoised, and
dereplicated into ASVs and the read counts (relative abundance
values) were calculated for each ASV in each sample. Average
abundance loss after DADA2 filtering was 23% for ESP, 27% for
CHN, and 12% for NLD datasets. The obtained ASV abundance
tables were additionally filtered to retain only the amplicons
satisfying at least one of the following criteria: (i) ASV is present
in >0.5% of samples; (ii) dataset-average ASV abundance
>0.25%; and (iii) maximum ASV abundance >0.5% across
the dataset. As a result, each of the three datasets were filtered
with 1–2% average abundance loss per sample. Finally, we
filtered each dataset by a minimal coverage (number of reads per
sample). For ESP and NLD, the coverage threshold was >15,000
reads, whereas for the CHN, it was set to >4,000 reads due to
overall low read counts for this dataset. The distributions of read
numbers are shown in Supplementary Figure 1. The numbers
of samples retained for further analysis in the three datasets are
provided in Table 1.

Taxonomic Assignment
Taxonomic classification of ASV representative sequences was
performed using the multi-taxonomic assignments (MTA)
approach as described below. Each representative sequence was
aligned using NCBI BLAST ToolKit against a joined reference
16S rRNA database including sequences from RDP database
version 11.5 (Cole et al., 2014) and NCBI 16S database version of
December 2019. Alignment results were sorted according to their
identity F (as a fraction of 1), with the maximum F-value for the
best hit denoted asM. Alignment hits with value of F in the range
between M and M–(1–M)/S and greater than a threshold value
D were selected for MTA. Here, S acts as a scaling parameter,
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which controls the list of taxonomic descriptions accepted for
MTA based on the F value of the alignment and was taken equal
to 4. The drop threshold parameterDwas taken equal to 0.85. The
resulting MTA for each ASV represented a list of unique regular
taxonomic descriptions with equal weights assigned to each
item. String representations forMTA consisted of slash-separated
names of taxa on each taxonomic level. The main advantage
of the MTA over the consensus-based methods consists in its
ability to assign taxonomic descriptions up to the genus (and
even species) level for sequences with low identity and, hence,
poor genus-level resolution. In this case, the organisms with
partially resolved genus-level taxonomies could also participate
in machine learning, providing multi-taxonomic descriptions as
features. However, the broader the list of accepted taxonomies
for MTA is, the less useful the corresponding feature becomes for
cross-study analysis. For example, multi-taxonomic descriptions
A/B/C for an ASV in one study and A/B/D for a closely related
ASV in another study are considered as different features. To
increase the overlap in the sets of taxonomic features between
different studies, one should aim for shorter MTA strings. This
motivates the strict choice of S and D parameters, which leads to
compact MTA descriptions.

Prediction of Metabolic Phenotypes in
Reference Genomes
Functional gene assignments and metabolic reconstructions
were performed using the SEED database/tools that allow a
subsystem-based analysis of∼6,000 bacterial genomes, including
a subset of 2,662 reference human gut microbial (HGM) genomes
representing 690 individual species (Overbeek et al., 2014).
The subsystem-based approach for metabolic reconstruction
combines protein similarity search, analysis of chromosomal
gene clusters, and phylogenetic profiling (Overbeek et al.,
2005). The collection of curated subsystems includes metabolic
pathways for (i) biosynthesis of essential nutrients (vitamins,
amino acids); (ii) uptake and fermentation of carbohydrates
including mono-, oligo-saccharides, sugar acids, and alcohols;
(iii) degradation of amino acids; and (iv) production of
SCFAs. The metabolic subsystems were developed based on
the previously published genomic studies of phylogenetic
distribution of bacterial pathways for metabolism of vitamins
and amino acids, utilization of carbohydrates, and production of
butyrate and propionate in HGM bacteria (Rodionov et al., 2011,
2013, 2019; Ravcheev et al., 2013; Khoroshkin et al., 2016; Leyn
et al., 2017; Arzamasov et al., 2018; Bouvier et al., 2019; Feng
et al., 2020). Using the collection of pathway-specific logical rules
(Rodionov et al., 2019), we obtained Binary Phenotype Matrix
(BPM) describing 94 inferred phenotypic features (nutrient
requirements, utilization capabilities, metabolite production)
of each reference genome as binary (“1” or “0”) phenotypes
and reflecting the presence/absence of a complete catabolic
or biosynthetic pathway. In addition to catabolic enzymes,
the sugar utilization subsystems also included sugar-specific
uptake transporters; thus, the assigned sugar utilization capability
required the presence of both catabolic pathway and uptake
transporter. We also obtained the distribution of 229 families

of glycosyl hydrolases (GHs) in the analyzed reference genomes
using dbCAN2 tool (Zhang et al., 2018). The obtained GH family
distribution was converted to GH-BPM, where each column
represents an individual GH family, and each binary phenotype
represents the presence or absence of at least one enzyme from
this family. The obtained metabolic BPM and GH-BPM for 2,662
reference genomes provided as a part the Phenotype Profiler tool
(see below) were used to calculate the Community Phenotype
Index (CPI) for eachmetabolic phenotype or GH family and each
16S rRNA sample as previously described (Rodionov et al., 2019)
and explained in more details below.

Calculation of the Metabolic Phenotype
Profile
To obtain phenotype profiles for analyzed 16S rRNA samples,
we utilized the Phenotype Profiler tool provided by PhenoBiome
Inc. (San Francisco, CA). First, we mapped each ASV obtained
from the samples to a reference collection of 2,662 microbial
genomes based on their 16S rRNA gene sequence match.
The reference HGM genome collection was analyzed with
Barrnap (https://github.com/tseemann/barrnap) to predict the
location of ribosomal RNA genes and select all 16S rRNA gene
sequences for each genome. Partial 16S rRNA gene sequences
were replaced with corresponding complete sequences from
the NCBI 16S rRNA database. In order to establish such
mapping, each ASV sequence was first aligned against the
reference 16S rRNA collection using theNCBI BLAST standalone
toolkit. To further assign reference organisms to ASV, we used
the same top hit selection criteria as in the MTA procedure
with the same values for S and D as described above. The
reference organisms corresponding to the selected alignment
hits, therefore, constituted a mapping for each ASV with weights
distributed equally.

To calculate CPI values for each sample and for eachmetabolic
phenotype, we first obtained a probabilistic estimate pi for a
given ASV (that corresponds to one or more reference genomes)
to possess a certain binary metabolic phenotype as a mapping-
weighted average across BPM. CPI values were calculated as:

CPI =
∑

i

piAi

where the sum is taken over all ASVs and Ai represents a
particular ASV’s relative abundance. CPI provides a fractional
representation of cells in the community possessing a specific
metabolic pathway or GH family.

Phenotype alpha diversity (PAD) metric was calculated for
each metabolic phenotype for each sample as an alpha diversity
of microbial ASVs possessing a particular phenotype. In order
to do this, we first aligned ASVs’ representative sequences using
MUSCLE (Edgar, 2004). Next, an unrooted tree was built from
the alignment using FastTree 2 (Price et al., 2010). Finally, the
tree was rooted according to the midpoint strategy and used
to compute Faith’s phylogenetic alpha diversity metric with the
Python scikit-bio (http://scikit-bio.org) package. For each sample
and each phenotype, only those ASVs that had map-averaged
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expected phenotype values >0.6 were considered as the ones
having the potential to express certain phenotypes.

Machine Learning for Clinical Status
Prediction
Classification Setups
To construct the microbiome-based classifiers of clinical status
(HC, CD, or UC), we used the taxonomic and metabolic
phenotype profiles obtained for 3 datasets (CHN, ESP, NLD)
as input features for Random Forest classifiers (implemented
in Python’s scikit-learn RandomForestClassifier). The classifiers
were different by three strategies, two sets of predictors, and
two IBD clinical states (CD or UC). We used the following
strategies: (i) classification of each dataset separately using two-
thirds of samples as a training set and one-third as a testing set
(Single strategy); (ii) classification of a mixed dataset constructed
from an equal number of healthy and randomly selected affected
subjects from every dataset using two-thirds as a training set and
one-third as a testing set (Mixed strategy); and (iii) classification
of joined datasets constructed by combining each dataset pair
as a training set and the remaining third dataset as a testing
set (leave-one-out strategy, L1O). By applying these strategies
to the three analyzed datasets (CHN, ESP, NLD), we obtained
seven variants of classifiers (including three variants for the L1O
strategy, three variants for the Single strategy, and one variant
for the Mixed strategy). We also considered two different sets of
predictors including (i) taxonomic names at the genus level and
their corresponding abundances and (ii) metabolic phenotypes
and their corresponding CPI values, and two IBD clinical states
CD and UC) compared with healthy controls (HC). As a result,
we designed 28 types of RF classifiers.

The following parameters were used to build each
RF classifier:

1) tree depth= 3;
2) number of trees= 200;
3) percent of features in each split= 50%;
4) balanced class weights.

The use of balanced class weights for cost function calculation
ensured that classes (clinical status) were weighted inversely
proportional to their frequency in the training set.

For the Single and Mixed strategies, we performed random
subsampling and 10 cross-validation iterations to evaluate mean
performance characteristics. In the L1O strategy, two combined
datasets served as a training set with the remaining one being a
testing set; thus, we performed three cross-validation iterations
without random subsampling.

Feature Filtration and Extraction
For each cross-validation iteration, we also performed feature
filtration and feature extraction (Figure 1). These procedures
were based only on the information contained in the training
part of the data. Feature filtration was done according to the
following sets of rules, for taxonomic as well as for the phenotypic
features. For taxonomic features, the taxa satisfying at least one
of the following criteria were filtered out: (i) nonzero abundance
in <5 samples and (ii) maximum abundance across the training

set <1%. For phenotypic features, phenotypes satisfying at least
one of the following criteria were filtered out: (i) mean CPI value
out of the range of [0.1, 0.9]; (ii) CPI value >0.05 in <5 samples;
and (iii) mean PAD value <3.5. For the strategies including
more than one dataset (MC, L1O), all above filtering conditions
were required to be satisfied in each dataset separately. Feature
filtration was followed by the feature extraction including 10 sub-
iterations of classification with the same classifier parameters as
before. After each sub-iteration, we evaluated feature importance
(decrease of Gini impurity) based on the training set data. The
top 20 features with the highest mean importance values were
used in the final classification.

Subsampling
The groups of samples were subsampled for each of the
aforementioned classification strategies except for the Single
strategy in order to equalize the contribution of each dataset
to the training set. For the Mixed strategy, this resulted in the
following numbers of samples per IBD clinical status in each
dataset: 67 for HC, 34 for CD, and 37 for UC. For the L1O
strategy, these numbers were dependent on a particular strategy
variant (Table 2). The disproportion in the number of samples
between the CD/UC/HC classification groups was accounted for
by using balanced class weights.

Performance Evaluation
To assess classification quality, we conducted the ROC curve
analysis on each cross-validation iteration and calculated the
following metrics: Area Under the Curve (AUC), sensitivity,
and specificity. Then, for each of 28 classifier types, we
estimated mean values and corresponding standard deviations of
these metrics.

Analysis of Stable Predictors
We identified a collection of stable predictors (phenotypes
or genera) for each disease status using feature importance
analysis. For each classifier type, mean feature importances
(mean decrease of Gini impurity) were calculated across 10
cross-validation iterations. If some feature was not extracted
(during filtration and extraction procedure) in one ormore cross-
validation iterations, then its importance value was set to zero.
A predictor was defined as stable for a given disease status if
it satisfied the following criteria: (i) nonzero importance values
in at least six out of seven classifier types corresponding to
possible combinations of classification strategy and dataset and
(ii) the same-sign difference between mean predictor values (CPI
or abundance) for HC and CD/UC groups in each dataset. The
importance for each stable predictor was taken to be its average
value across possible combinations of classification strategy
and dataset.

To investigate the relationship between stable predictors and
clinical status, we constructed additional classifiers based only
on stable predictors for the Mixed classification strategy for each
combination of predictor set and disease status. For each such
classifier, 20 cross-validation iterations were performed. We also
constructed single-feature partial dependence plots (PDP) in
each iteration for each of the stable predictors with resolution of
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FIGURE 1 | Flowchart of machine learning approach for clinical status prediction based on microbiome data.

TABLE 2 | Number of samples per dataset and per classification group used for the L1O classification strategy.

Strategy L1O:ESP L1O:NLD L1O:CHN

Description CHN+NLD (training) CHN+ESP (training) NLD+ESP (training)

ESP (testing) NLD (testing) CHN (testing)

Dataset CHN NLD ESP CHN ESP NLD NLD ESP CHN

HC 67 67 91 67 67 496 91 91 67

CD 50 50 34 34 34 163 34 34 50

UC 37 37 39 37 37 99 39 39 37

20 grid steps and probability of CD or UC outcome as a response.
The mean dependency was calculated across the iterations. Based
on the form of the dependency, the predictors were classified
into five categories—sharply decreasing, sharply increasing,
smoothly decreasing, smoothly increasing, and unclassified. The
classification into categories was performed by analyzing the
differences of probability values (1i) between the (i+5)-th and
i-th step (for each i from 1 to 15) in the following way. First,
the direction of dependence (increasing or decreasing) was
determined by the sign of 1i with the highest absolute value:
positive sign corresponds to the increasing PDP and negative—
for decreasing. If one predictor had at the same time positive and
negative 1i, and the highest ratio between their absolute values
was < 2, then the predictor was defined as unclassified. Second,
the form of dependence (sharp or smooth) was determined by
the following rule: if at least one of the absolute 1i values was

>= 3 times higher than the maximum probability differences
calculated for outer lower [1, i) and upper (i+5,20] intervals, then
the sharp formwas chosen. Otherwise a smooth formwas chosen.

RESULTS

Predicted Metabolic Phenotype and
Taxonomy Profiles of IBD Samples
We selected three previously published fecal microbiome datasets
representing geographically distinct cohorts of IBD patients
from China (CHN) (Zhou et al., 2018), Spain (ESP) (Pascal
et al., 2017), and the Netherlands (NLD) (Imhann et al., 2018).
Each analyzed dataset included two groups of IBD subjects
with either Crohn’s disease (CD) or ulcerative colitis (UC)
diagnosis and also a group of healthy control (HC) subjects
from the same geographical population. Having filtered the
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three datasets to remove duplicate samples representing the
same subject and samples from subjects that were treated with
immunosuppressants, we have analyzed raw 16S rRNA amplicon
sequence data for each dataset individually.We applied QIIME2’s
DADA2 plugin to obtain the ASV abundance profiles and then
filtered out the samples with low read counts as described
in section Materials and Methods. The number of remaining
samples per dataset and per clinical status group is provided in
Table 1.

ASVs’ taxonomies were obtained using the multi-taxonomic
assignment (MTA) approach. The analysis of abundance
distribution for the top 20 taxonomic genera demonstrated
a much larger variability between the analyzed three datasets
and moderate variations between groups of samples with a
different clinical status within each dataset. Further, we analyzed
the obtained ASV profiles using the metabolic phenotype
profiling approach (Rodionov et al., 2019) to calculate the
sample-wise Community Phenotype Indices (CPIs) for 94
metabolic phenotypes from BPM constructed from the reference
collection of 2,662 HGM genomes. Using the same approach,
we calculated CPI values for 229 GH families from GH-BPM
constructed from the genomic distribution of GH enzymes
in reference genomes (see section Materials and Methods).
Additionally, for each phenotype (and GH family), we estimated
the corresponding Phenotype Alpha Diversity (PAD) values,
which was defined as the phylogenetic alpha diversity of a
subcommunity of corresponding phenotype carrier (as described
in section Materials and Methods). The obtained CPI and
PAD values for the analyzed metabolic phenotypes and GH
families across all samples in the three analyzed datasets
are shown in Supplementary Tables 1, 2, while the genus-level
taxonomic profiles are presented in Supplementary Table 3.
We performed principal component analysis (PCA) of the
phenotypic features and principal coordinate analysis (PCoA)
of the taxonomic features calculated for samples from the
three IBD datasets and revealed visible differences between
microbiome composition of samples from each of these datasets
(Figures 2A,B). Distributions of top 10 variable features among
taxonomic genera and phenotypic CPIs across the three IBD
datasets are provided in Figures 2C,D. Among the most variable
taxonomic genera are Bacteroides (in CHN and ESP datasets),
Blautia (in NLD and ESP), and Bifidobacterium (in NLD),
while the list of most variable metabolic phenotypes is largest
in the CHN dataset and includes biosynthesis of vitamins
(biotin/B7, queuosine/Q, lipoate) and propionate, utilization
of N-acetylglucosamine (GlcNAc), degradation of threonine
(Thr_D), and the presence of specific GH families (GH94,
GH43_12, GH43_10, GH13).

Classification of IBD Status Based on
Taxonomy and Microbial Phenotypes
The obtained metabolic phenotype profiles (CPI and PAD
values) and genus-level taxonomic profiles were used to examine
the potential of microbiome features to predict IBD clinical
status using the Random Forest (RF) classification approach.
As an input for the RF classifier, we used two types of

features, either relative taxonomic abundances at the genus
level or CPI values for predicted metabolic phenotypes. Both
types of features were filtered during the cross-validation
procedure according to a set of rules (see sections Materials and
Methods, Figure 1). Particularly, the corresponding PAD values
served as one of the filtering criteria to eliminate phenotypes
with contribution to CPI coming from a phylogenetically
narrow group of organisms. The IBD clinical status (CD,
or UC and HC) was used as the RF classifier output. For
each of the three analyzed datasets (NLD, ESP, CHN), we
applied three division strategies (Single, Mixed, and L1O,
see section Materials and Methods) to obtain seven different
variants of division of the analyzed datasets on training
and testing sets. In total, we obtained 28 classifiers for two
pairs of IBD clinical states (CD vs. HC, and UC vs. HC),
two sets of predictors (taxonomies or phenotypes) and three
division strategies.

Crohn’s Disease Classifiers (CD-vs.-HC)
As a result, we obtained 14 CD-vs.-HC classifiers, with
corresponding performance characteristics listed in Table 3. In
general, the taxonomy-based classifiers demonstrated higher
AUC and sensitivity values than the phenotypes-based classifiers
(Figures 3A,B). On the contrary, the latter showed higher
specificity values. By comparing features that were selected
after feature filtration and feature extraction steps in different
strategies (see Figure 1 and section Materials and Methods for
more details), we extracted 15 phenotypic and 12 taxonomic
features that work as stable predictors (Figures 3C,D). The
selected taxonomic groups and phenotypes demonstrated
variable average importance values across different classification
strategies and datasets. For the majority of stable taxonomic
predictors (10 out of 12 taxa), mean abundance values were
higher in healthy controls than in CD patients. However, for
the majority of phenotypic predictors (12 out of 15 phenotypes),
mean CPI values were lower in healthy controls than in
CD patients.

To investigate the influence of each stable predictor on
the classification result, the partial dependence plot (PDP)
analysis was performed. Using theMixed strategy, we constructed
taxonomy-based and phenotype-based classifiers, with only
stable predictors as input features. For each stable predictor,
a PDP was obtained, and the predictors were classified based
on their PDP form into five categories: sharply decreasing,
sharply increasing, smoothly decreasing, smoothly increasing,
and unclassified (see section Materials and Methods). In these
descriptions, the term “increasing” means that the probability
of CD outcome is greater for greater predictor values, and vice
versa for the term “decreasing.” The examples of PDP forms
are shown in Figure 4. The grouping of predictors into PDP
form categories is listed in Table 4, and all PDPs are shown in
Supplementary Figures 2, 3.

The majority of stable taxonomic predictors (10 out of 12
taxa) for CD-vs-HC classifiers demonstrated sharply decreasing
PDP forms (Supplementary Figure 2, Table 4). Moreover, for
each of them, the abundance threshold for the sharp decrease
of CD output probability was close to zero (e.g., for Oscillospira,
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FIGURE 2 | Differences in microbiome composition and metabolic functions of samples from three investigated IBD datasets. (A) PCoA analysis of samples using

taxonomic features (genera abundance) and Bray–Curtis dissimilarity metric for distance calculation. (B) PCA analysis of samples using metabolic phenotype features

(CPI) for distance calculation. Arrows show top 10 features in terms of the explained variance in the given axes. Arrow length is proportional to the percent of variance

explained by the feature. Distribution of taxonomic abundances (C) and Community Phenotype Index (CPI) values (D) for the corresponding top 10 features across

three IBD datasets.

see Supplementary Figure 2). It suggests that the probability of
CD as an outcome was high in the complete absence of the
corresponding taxon in the community and dropped sharply
even with the small increase of its abundance; the further

increase of the abundance did not considerably affect the output.
Noteworthily, the majority of phenotypic predictors (12 out of
15) had an increasing PDP form, smooth or sharp (Table 4,
Supplementary Figure 3).
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TABLE 3 | Mean performance characteristics of the taxonomy- and phenotype-based CD classifiers over 10 classification iterations.

Strategy/dataset Taxonomy-based classifier Phenotypes-based classifier

Mean sensitivity Mean specificity Mean AUC Mean sensitivity Mean specificity Mean AUC

Single:CHN 0.7867 0.7857 0.8463 0.7333 0.7571 0.8463

Single:ESP 0.7900 0.9179 0.9511 0.7700 0.9036 0.915

Single:NLD 0.7755 0.9161 0.9344 0.6918 0.9020 0.8920

L1O:CHN 0.9440 0.4358 0.7985 0.850 0.6164 0.7725

L1O:ESP 0.9353 0.8165 0.9484 0.8176 0.8516 0.8895

L1O:NLD 0.4252 0.9871 0.8567 0.3534 0.9899 0.7632

Mixed: all datasets 0.7548 0.8083 0.8736 0.7065 0.8350 0.8339

Mean across all variants 0.7731 0.8096 0.8870 0.7032 0.8365 0.8446

In the L1O strategy description, the name of the dataset corresponds to the testing dataset (for example, the “L1O:CHN” description means that the classifier was trained on the ESP

and NLD datasets and tested on the CHN dataset). Cell color reflects the characteristics’ values (greater values correspond to darker colors).

Ulcerative Colitis Classifiers (UC-vs.-CD)
Similar procedures were performed to obtain 14 UC-
vs.-HC classifiers. Their performance characteristics are
listed in Table 5. In general, taxonomy-based classifiers
demonstrated higher AUC, sensitivity, and specificity values
than phenotype-based classifiers (Figures 5A,B). For the
L1O:NLD classification variant, AUC values for the phenotype-
based classifier (0.43) was close to that of a random guess (0.5).
Overall, all constructed UC-vs.-HC classifiers demonstrated
lower performance characteristics when compared to the
corresponding CD-vs.-HC classifiers.

Despite the fact that in some strategies the corresponding
AUC values were close to 0.5, we still observed stable predictors
(defined the same way as for CD-vs.-HC classifier analysis, see
section Materials and Methods). However, the number of stable
predictors for UC-vs.-HC classifiers (seven taxonomic and four
phenotypic) was much lower than for the respective CD-vs.-HC
cases (Figures 5C,D).

The PDP analysis for the predictors of UC-vs.-HC classifiers
revealed the relationships between the predictors’ values and
disease probability that were structurally similar to the CD-vs.-
HC case (Table 4, Supplementary Figures 4, 5). For taxonomic
features, PDP forms for three predictors were sharply decreasing,
and, similarly to the CD-vs.-HC analysis, the sharp drop
threshold was close to zero predictor value. The Gemmiger and
Ruminococcus genera showed a similar behavior in the CD-
vs.-HC classifier. For four taxonomic genera, their PDPs were
smoothly increasing (Table 4, Supplementary Figure 4). For the
phenotype-based UC-vs.-HC classifier, half of the predictors’
PDPs were smoothly increasing, while the other half were
smoothly decreasing (Table 4, Supplementary Figure 5).

DISCUSSION

High-throughput sequencing surveys of the human gut
microbiome provide amplicon or WGS sequence datasets that
are promising for noninvasive disease risk prediction; however,
the task of extracting meaningful biomarkers from such data is
still challenging. Machine learning (ML) methods including deep
neural networks are powerful for understanding connections

of the human gut microbiome to human health (Zhou and
Gallins, 2019). During meta-analysis of composition profiles,
the corresponding sets of features (e.g., OTUs or ASVs) may be
incomparable across different studies due to different laboratory
methods/protocols, such as 16S rRNA sequencing region, and
quality control (QC) parameters. Traditionally, this problem is
solved by aggregating raw ASV (or OTU) features into more
biologically meaningful taxonomic features (clade names at the
family, genus, or species level). Nevertheless, this aggregation is
not universal because it depends on the taxonomic resolution
provided by the sequenced gene region. For instance, depending
on the ASV length, one might assign unambiguous taxonomic
descriptions either up to the species level (Escherichia coli) or
up to the genus level (Escherichia), or even up to the family
level (Enterobacteriaceae) when the taxonomic resolution is
insufficient to distinguish one microorganism from another (e.g.,
Escherichia coli and Salmonella enterica). Such gross aggregation
leads to the loss of details in phylogenetic description. This
is partially remedied through the use of the multi-taxonomic
assignment (MTA) approach (see section Materials and
Methods), which consists in resolving taxonomic ambiguities
not by aggregation on a higher taxonomic level but via listing
of all organisms phylogenetically related to the considered ASV
(e.g., Bacteroides ovatus/vulgatus).

In this study, we introduced yet another approach for feature
aggregation, which utilizes the metagenomically predicted
metabolic features that are computed for each 16S sample using
our previously developed metabolic phenotype profiling tool.
The computed CPI values represent the expected fraction of
bacterial cells in the community possessing a certain metabolic
capability (a phenotype). A collection of CPI values for a
selected group of phenotypes, termed Community Phenotype
Profile (CPP), therefore constitutes an alternative set of features
that can be used for ML. This approach has the following
obvious advantages. Firstly, the set of phenotypic features is
universal to all organisms and thus can serve as a basis for
a cross-study analysis. Secondly, the separation of groups (HC
vs. CD/UC in this study) is performed based on the bacterial
metabolism and, hence, leads to a straightforward biological
interpretation. Thirdly, it allows to refine the classification results
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FIGURE 3 | Performance characteristics and stable predictors for the CD-vs.-HC classifier. (A,B) ROC curves for the Mixed strategy for CD-vs.-HC classifiers with

taxonomic (A) and phenotypic (B) predictors. (C,D) Stable predictor importance values in different classification variants for taxonomic (C) and phenotypic (D)

predictors. Color saturation corresponds to the mean importance of the predictor (see color key). Color hue corresponds to the direction of the difference between HC

and CD means (blue—increased in HC, red—increased in CD).
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FIGURE 4 | Examples of different PDP forms. (A) Sharply decreasing PDP. (B) Sharply increasing PDP. (C) Smoothly decreasing PDP. (D) Smoothly increasing PDP.

(E) Unclassified PDP. The x-axis of the plots denotes the taxonomic or phenotypic feature abundance, and the y-axis shows the probability of the CD classification

outcome.

TABLE 4 | The forms of stable predictors PDPs (term “increasing” means

increasing probability of the disease).

PDP form type CD (taxonomy; phenotypes) UC (taxonomy;

phenotypes)

Sharply decreasing

PDP

Ruminiclostridium.1,

Oscillospira,

Oscillibacter/Oscillospira,

Gemmiger, Romboutsia,

Ruminococcus,

Ruminiclostridium,

Coprococcus,

Fusicatenibacter/Kineothrix/

Lachnoclostridium,

Faecalibacterium, GH94, His

Gemmiger,

Ruminococcus,

Akkermansia; –

Smoothly decreasing

PDP

Butyrate –; His, Arg

Sharply increasing

PDP

NANa, Rib, GH18 –; –

Smoothly increasing

PDP

Flavonifractor; Man, GH125,

GH38, GlcNAc, GH29,

Propionate, Glc, His_D, B7

Streptococcus,

Oscillibacter,

Flavonifractor,

Flintibacter; Man, GH125

Unclassified Parabacteroides –; –

in the future when new phenotypic features are added to the
CPP. Finally, being based on curated metabolic pathways refined
for the species of a specific niche (here, the human gut), our
method largely resolves the low-accuracy limitation of many
existing metagenomic prediction methods mentioned in the
Introduction. However, the limitation related to poor prediction
of horizontally transferred genes is not targeted by our approach.

Another problem one deals with in metagenomics (and
in ML in general) is high dimensionality of data with low
sample count. In ML applications like computer vision, this is
solved by the extensive use of data augmentation techniques
which allow to drastically enlarge sample count. Unfortunately,
they are not applicable to the microbiome studies due to
the uniqueness of each sample. Therefore, the only remaining
option is the reduction of feature space. Mixing of features
by PCA-like methods is not suitable if one wants to preserve
biological interpretability; therefore, aggregation of features

into taxonomies or CPIs is a preferable choice for dimension
reduction. However, in the latter case this aggregation may
not be metabolism—but rather phylogeny—driven due to
low phylogenetic diversity of organisms possessing a certain
phenotype. This implies that the CPI value for such phenotypes
would reflect, in the first place, the relative abundance of the
phylogenetically narrow group of the phenotype carrier and
would obstruct metabolism-driven interpretability. In order to
eliminate phenotypic features with low phylogenetic diversity
of their contributors from further analysis, we developed
and applied a concept of Phenotype Alpha Diversity. Using
the calculated PAD values, we filtered out the phenotypes
with corresponding contributions to their CPI values coming
from phylogenetically narrow groups of organisms, thus
retaining phenotypic features which are robust for metabolism-
driven inference.

We assessed the applicability of our methodology for
differentiating microbiome samples from healthy subjects and
patients, using the example of two most prominent IBD
conditions, CD and UC, the diseases linked to profound shifts
in the microbial community structure. First of all, the selected
groups of phenotypes almost completely reflect information
about the differences between the microbial communities’
taxonomy of healthy people and patients with IBD. The
difference in phenotype-based and taxonomy-based classifier
performance characteristics (sensitivity, specificity, and AUC)
was lower than 0.08 for each of the explored conditions (UC and
CD) (Figures 3A, 5A). Thus, we can conclude that despite the
limited set of phenotypes selected for the analysis, in the case
of IBD they contain most of the information about microbial
signature of the investigated diseases.

The second question we wanted to answer was if the
phenotypes could introduce new information useful for
interpretation of disease relation to microbiome compared
to taxonomy. For this purpose, the stable predictors obtained
for taxonomic and phenotypic classifiers were compared. The
introduction of new information using phenotypes is well
demonstrated by the difference in forms and direction of stable
predictors PDPs.

The majority of CD taxonomic stable predictors showed
negative associations with CD output (Figure 3C). This is
consistent with previous observations that IBD condition can
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TABLE 5 | Mean performance characteristics of the taxonomy- and phenotype-based UC classifiers over 10 classification iterations.

Strategy: dataset Taxonomy-based classifier Phenotype-based classifier

Mean sensitivity Mean specificity Mean AUC Mean sensitivity Mean specificity Mean AUC

Single:CHN 0.7909 0.9048 0.9277 0.8091 0.8857 0.9281

Single:ESP 0.3000 0.8667 0.6583 0.3250 0.7741 0.5815

Single:NLD 0.6300 0.9376 0.9240 0.5500 0.8678 0.8232

L1O:CHN 0.6324 0.5955 0.6791 0.4189 0.8791 0.6832

L1O:ESP 0.3051 0.8626 0.6607 0.3308 0.7714 0.5751

L1O:NLD 0.7354 0.4972 0.6944 0.8364 0.1022 0.4341

Mixed: all datasets 0.5970 0.8590 0.8153 0.5667 0.7836 0.7240

Mean across all variants 0.5701 0.7891 0.7656 0.5481 0.7234 0.6785

In the L1O strategy description, the name of the dataset corresponds to the test set (for example, the “L1O:CHN” description means that the classifier was trained on the ESP and NLD

datasets and tested on the CHN dataset). Cell color reflects the characteristics’ values (greater values correspond to darker colors).

FIGURE 5 | Performance characteristics and stable predictors for the UC-vs.-HC classifier. (A,B) ROC curves for the Mixed strategy for UC-vs.-HC classifier

construction with taxonomic (A) and phenotypic (B) predictors. (C,D) Stable predictor importance values in different classification variants for taxonomic (C) and

phenotypic (D) predictors. Color saturation corresponds to the mean importance of the predictor (see color key). Color hue corresponds to the direction of the

difference between HC and UC means (blue—increased in HC, red—increased in UC).

be characterized by the depletion of beneficial taxa rather
than by the prevalence of pro-inflammatory ones (Duvallet
et al., 2017; Wirbel et al., 2020). Such observations were
made not only for IBD. More generally, the “Anna Karenina

principle” was proposed in application to animal microbiomes:
“healthy microbiomes are all alike; each unhealthy microbiome
is unhealthy in its own way” (Zaneveld et al., 2017). This
principle was proposed for the taxonomic composition of
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microbiomes. However, it is unknown whether it can be
implemented if we consider the functional potential of the
community. The majority of CD taxonomic predictors showed
a sharply decreasing PDP form with a sharp descent near zero
abundance (Supplementary Figure 2). This suggests that the
CD condition is associated with the complete absence of these
taxa. Among such predictors, there is one of the main primary
polysaccharide degraders of the human gut microbiome—
Ruminococcus (Koropatkin et al., 2012). The primary degradation
of fibers is essential for butyrate production. The group also
includes other well-known [Coprococcus (Pryde et al., 2002;
Louis et al., 2014), Faecalibacterium] and potential [Oscillospira
(Gophna et al., 2017)] butyrate producers. Faecalibacterium is
known for its anti-inflammatory properties, being depleted in
the gut of CD patients (Quévrain et al., 2016). Interestingly,
the production of butyrate is not thought to be the key anti-
inflammatory feature of the bacterium (Sokol et al., 2008;
Miquel et al., 2013; Quévrain et al., 2016). It was suggested
that F. prausnitzii can influence immune response through the
production of other metabolites (Sokol et al., 2008; Breyner et al.,
2017). Only one taxon, Flavonifractor, showed an increasing PDP
form. The taxon is known to have proinflammatory properties
and was previously shown to be increased in some CD patients
(Tyakht et al., 2018).

Unlike the taxonomic predictors for the CD classifier,
the majority of phenotypic predictors show increasing PDP
forms (Supplementary Figure 3). It can be suggested that each
increasing phenotypic predictor is a functional representation of
few increasing taxonomic predictors. However, the filter applied
to the diversity of phenotypes excludes the use of phenotypes
represented in a small number of taxa. Thus, we can speculate
that despite the fact that the taxonomic signature is composed
mainly of commensal taxa, functionally the microbiome of
patients is characterized to a greater extent by pro-inflammatory
predictors. In this case, we see that the “Anna Karenina principle”
for taxonomic composition of the microbiome (Zaneveld et al.,
2017) is not fulfilled for its functional potential. It was
previously shown that a healthy gut microbial community is
characterized by functional homeostasis. This means that despite
the differences in the taxonomic composition of different people
communities, the metabolic potential of these communities is
quite similar (Eng and Borenstein, 2018). Our observations in
the case of Crohn’s disease support this concept. Taxonomically,
the imbalance included the increase of various taxa in different
individuals, but functionally, we see the increase of the same
functions. Thus, the application of microbial phenotypes allowed
us to identify universal markers qualitatively different from
taxonomic ones and to provide a new layer of information for
further interpretations.

The phenotypic stable predictors positively associated with
CD were generally linked to degradation of host-derived
carbohydrates (Figure 3D). Firstly, it was evident at the level
of specific families of glycoside hydrolases; thus, we observed
an increase of microbial community representation of the
GH38, GH18, and GH125 families involved in catabolism of
N-linked glycans that are constituents of the host mucus (El
Kaoutari et al., 2013; Engevik et al., 2019). Another family of

glycosyl hydrolases with increased representation in CD samples,
GH29, includes exo-acting α-fucosidases that are involved in the
degradation of O-linked glycans, in particular mucin (Tailford
et al., 2015). In particular, GH29 is present in the mucin-
dwelling bacteria from the genera Ruminococcus (Crost et al.,
2013) and Akkermansia (El Kaoutari et al., 2013). These changes
were reflected by the increased propensity toward utilization
of five monosaccharides including neuraminic acid (NANa), N-
acetylglucosamine (GlcNAc), mannose (Man), and glucose (Glc)
that constitute O- and N-linked glycans, as well as ribose (Rib).
The latter monosaccharide is utilized by many gut bacteria
such as Bacteroides spp., while ribose and ribose-containing
molecules such as nucleic acids may serve as nutrients for
these gut symbionts (Glowacki et al., 2020). The increased
potential of mannose metabolism was reported in patients with
ileal CD (Morgan et al., 2012). The list of the phenotypes
increased in CD samples also included histidine (His) amino
acid degradation—apparently, reflecting the high availability of
host-derived amino acids from the inflamed tissue. Further, the
increased vitamin B7 (biotin) synthesis potential was in line
with the reported upregulation of the respective biosynthetic
enzymes in stool metatranscriptomes of IBD patients (Das
et al., 2019). Overall, these observations suggest that the CD-
associated microbiome is prominent by its ability to degrade
the mucus, apparently due to highly inflammatory milieu and
excessive shedding of intestinal epithelial cells (Png et al., 2010;
Blander, 2016). Another phenotypic feature increased in CD
was propionate production potential. Although considered to
be anti-inflammatory as butyrate (Tedelind et al., 2007), some
of its effects on the immune cells are opposite to the ones of
butyrate (Cavaglieri et al., 2003). Recently, propionate was shown
to promote the virulent properties of CD-associated Escherichia
coli (Ormsby et al., 2020; Pobeguts et al., 2020), the key taxon
linked to the disease in previous studies.

On the other hand, there were only a few phenotypic stable
features negatively associated with CD, including the butyrate
production, histidine biosynthesis, and the GH94 family of
glycoside hydrolases (Figure 3D). The butyrate is one of the
most studied beneficial microbiome-derived metabolites with
anti-inflammatory potential. First of all, it serves as an energy
source for the colonic epithelium, therefore preventing mucosal
atrophy (Hamer et al., 2008). In addition, butyrate possesses
some direct immuno-modulatory effects like suppression of
nuclear factor kappa B (NF-κB) activation (Hamer et al.,
2008), signaling through G-protein-coupled receptors (Hamer
et al., 2008) and GPR109A (Singh et al., 2014). Interestingly,
among the stable predictors of CD, most taxa known as
butyrate producers manifested sharp PDP form, while the
butyrate production phenotype CPI was smooth—apparently
reflecting the averaging of their contributions. Depletion of the
histidine synthesis potential in CD samples is in line with the
abovementioned increase of the histidine degradation phenotype.
Strikingly, unlike GH families positively associated with CD that
were mainly involved in mucus degradation, the GH94 family
phosphorylases that cleave β-glycosidic bonds in cellobiose and
cellodextrin are involved in plant cell wall degradation (Cantarel
et al., 2012).
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Ulcerative colitis, the second major IBD condition we
investigated, is characterized by a less pronounced microbiome
disruption compared with the Crohn’s disease—resulting in a
generally lower classification performance. It is in line with the
previous reports (Halfvarson et al., 2017; Imhann et al., 2018;
Franzosa et al., 2019; Clooney et al., 2020). The reason for this can
be the different epidemiological and clinicopathological pictures
of the diseases. In terms of epidemiology, it was hypothesized
that in Crohn’s disease etiology, the early-life abnormal cross-
talk between microbiome and immune system plays the essential
role, while in ulcerative colitis it is dysbiosis that occurred at any
time of life (Beaugerie et al., 2018). In terms of clinical picture
differences, in ulcerative colitis inflammation foci are located in
rectum and colon, while Crohn’s disease can also involve the
upper parts of the gastrointestinal tract. IBD location was shown
to affect dysbiosis pictures of the diseases (Imhann et al., 2018).

The UC classifiers demonstrated generally lower performance
compared to the CD and produced fewer stable predictors, most
of which are shared with CD predictors. In hand with the lower
performance of the UC-vs.-HC classifier, the identified stable
predictors were also less reliable compared to the CD stable
predictors. Three taxonomic genera, Gemmiger, Flavonifractor,
and Ruminococcus, are shared between the CD and UC
predictors. Among microbial genera that are specific for the UC-
vs.-HC classifier, there were the mucin-degrading Akkermansia
with sharply decreasing PDP form, and three taxa with smoothly
increasing PDP form which are Streptococcus, Oscillibacter,
and Flintibacter. Mucolytic taxa were previously shown to be
enriched in the intestinal epithelium of IBD patients compared
to healthy controls (Png et al., 2010), with the only exception
for Akkermansia, which had significantly higher abundance in
control samples, in line with our findings. Several other studies
showed the protective role of Akkermansia in IBD (Bian et al.,
2019; Earley et al., 2019). Interestingly, neither the butyrate-
producing taxa nor the phenotype of butyrate synthesis itself
were detected among the stable predictors for UC. It resonates
with the previous studies showing that microbiome butyrate-
synthetic capacity was reduced only in patients with active UC,
but not in ones with inactive stage of disease, while for Crohn’s
disease, the association was observed for both stages (Laserna-
Mendieta et al., 2018). The list of phenotypic stable predictors
positively associated with UC is shorter than the respective list
for the CD and overlaps with the latter by including the mannose
utilization (Man) and the glycoside hydrolase family GH125 of
exo-mannosidases involved in N-glycan degradation. However,
while for the CD we observed a sharply increasing PDP form for
Man (with the threshold around 0.2–0.3 phenotype abundance),
for the UC the form was smoothly increasing. The decrease of
histidine (His) and arginine (Arg) amino acid synthesis potentials
in UC samples is likely linked to a higher abundance of free
amino acids originating from the inflamed host tissue in the gut.

We discovered that the classification performance varies
across different studies. A classifier trained on one geographic
population might be not that precise for a cohort from another
country. Besides possible technological differences, this effect
could be contributed to by the geography-specific features not
only of the healthy microbiome composition but also in the

patients with diseases. Similar effects were reported before, e.g.,
for type 2 diabetes (Karlsson et al., 2013). Further extended
regional multicenter studies with large cohorts of healthy and
affected subjects are required to elucidate the universal character
of microbial phenotypes’ robustness and concordance with the
taxonomic features.

CONCLUSIONS

We developed a novel computational approach that uses a
concept of metabolic phenotypes toward the microbiome-based
classification of clinical status and assessed its performance
using 16S amplicon sequencing data from multiple IBD studies.
Although the set of assessed metabolic functions and pathways
was limited to metabolism of sugars (including GH enzymes
involved in polysaccharide degradation and SCFA production
pathways), amino acids, and vitamins, our results suggest that the
performance of the microbial phenotype-based classification was
comparable to the state-of-art taxonomic approach.

Feature design in machine learning algorithms, which is
based on cumulative metabolic potential of microbiome species
(estimated via CPIs), can provide additional functional insights
on the deviations of microbiome from homeostasis in disease.
To provide truly metabolism-driven inference, these metabolic
features are likely to account for the collective action of a
phylogenetically diverse community of a particular phenotype
carrier, which is reflected in the Phenotype Alpha Diversity
(PAD) metric. In CD, while the community structure was
characterized by the depletion of many commensal taxa rather
than the presence of specific opportunists, the functional
imbalance was revealed as an enrichment of inflammation-
related phenotypes not reflected at the taxonomic level.

The major indicators of functional imbalance of microbiome
in IBD reflect the adaptation to the inflammatory environment by
including increased potential for degradation of mucin-derived
carbohydrates and amino acids and propionate synthesis, while
the healthy gut is characterized by enriched degradation of
dietary complex carbohydrates and synthesis of butyrate and
amino acids. Analysis of the abundance-dependent contribution
of each feature to the classification outcome using PDP suggests
that the presence of most taxa negatively associated with IBD is
more important than their abundance. Further, the PDP patterns
reflect how a plethora of taxa (each showing sharply decreasing
PDP form in IBD) can functionally “convolve” into a single
phenotype (with smoothly decreasing PDP), as exemplified by
the case of butyrate producers.

Our results show that the analysis based on microbial
phenotypes can provide interpretable insights into the host–
microbiome mechanisms of disease. Extension of the phenotype
list to include metabolism of specific polysaccharides, lipids,
and bile acids will provide further insights into the possible
mechanisms of gut microbiome metabolic contribution to
the risks and onset and development of the disease. Further
expansion of the reference microbial genomes database with
predicted metabolic phenotypes will allow one to apply the
phenotype profiling approach to microbial communities of other
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human body sites, and more generally to various environmental
and industrial microbiomes.
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