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1. INTRODUCTION 

Let IIj (i = l,..., k) denote statistical populations (treatments, manu- 
facturing processes, etc.) specifkd respectively by univariate density func- 
tions f( x; 6’,.) with respect to some measure Y, where f( . ; .) is known and 
the Oj are unknown parameters belonging to some set 8. Assume that 
l”,l4.w; @Id ( 1 v x < 00 for all 8 E 9. How should we sample x1, x2,. . . 
sequentially from the k populations in order to achieve the greatest possible 
expected value of the sum S, = x1 + . . . +x, as n + co? Starting with [3] 
there has been a considerable literature on this subject, which is often called 
the multi-armed bandit problem. The name derives from an imagined slot 
machine with k 2 2 arm. (Ordinary slot machines with one arm are 
one-armed bandits, since in the long run they are as effective as human 
bandits in separating the victim from his money.) When an arm is pulled, 
the player wins a random reward. For each arm j there is an unknown 
probability distribution llj of the reward. The player wants to choose at 
each stage one of the k arms, the choice depending in some way on the 
record of previous trials, so as to maximize the long-run total expected 
reward. A more worthy setting for this problem is in the context of 
sequential clinical trials, where there are k treatments of unknown efficacy 
to be used in treating a long sequence of patients. 

An adaptive allocation rule cp is a sequence of random variables cp,, ‘pz, . . . 
taking values in the set {l,..., k } and such that the event { (pn = j } 
(“sample from TIj at stage n “) belongs to the u-field 9,-r generated by 
the previous values ‘pr, x1,. . . , (P~-~, x,-~. Let ~(0) = l?,xf(x; 0) dv(x). 

*Research supported by the National Science Foundation and the National Institutes of 
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July 6-9,1983, in memory of Jack Kiefer and Jacob Wolfowitz. 
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Then 

where 

(1.1) 

(1.2) 

is the number of times that cp samples from IYIi up to stage n. The problem 
of maximizing ES, is therefore equivalent to that of minimizing the 
“ regret” 

R,(8, ,..., 0,) = np* - ES, = j:p(~<pe(~* - ~(B/))ETrtjh. 0.3) 
I 

where by definition 

P * = ={r(fl,),...4@,)} =f@*) forsome@* E {0,,...,0,}. 

(I -4) 
Let 1(8, A) denote the Kullback-Leibler number 

zte, A) = Irn [b3(ftx; W..k WI fb; e> Mx). 
-03 (1.5) 

ThenO<1(8,A)s cc,andweshallalwaysassurnethatf(.;*)issuchthat 

o<z(e,h)< oo whenever p(h) > p(e), (1.6) 

and 

Vc > 0 and W, h such that p(h) > p(e), 3s = +, 8, A) > 0 

for which Iz(e, A) - z(e, h’)l < c whenever~(h) s p(X) < r(h) + 6. 

(l-7) 
In Sections 3 and 4 we construct adaptive allocation rules cp such that for 
my fkd V~U~S el,..., 8, for which the p($) are not all equal, 

zwh...m - asn+co. 

04 



6 L.AI AND ROBBINS 

(Here and in the sequel we use the notations p* and 8* defined in (1.4).) 
Note that by (1.7), I($, e*) = I($, h) whenever ~(0~) < r(e*) = p(X). 

The asymptotic behavior (1.8) of the regret will be shown in Sect. 2 to be 
optimal in the sense of 

THEOREM 1. Assume that Z(e, X) satisfies (1.6) and (1.7), and that 6 is 
such that 

VX E 0 and Vi3 > 0,3x’ E 0 such that PO) < PO’) < PO) + 6. 

0.9) 

Let q~ be a rule whose regret satisjies, for each Jixed 0 = (8,, . . . , e,), the 
condition that as n + 00 

R,(8) = o(n’) for every a > 0. 

l?xn for every 8 such that the p(e,) are not all equal, 

(1.10) 

liminfR,(B)/logn 2 C (P* - i4ej))/Z(ej9 e*>. (1.11) “-02 i:P(e,)<P* 

Condition (1.10) of Theorem 1 implies that for every 8 

lim n-‘ES,, = p*. (1.12) 
tz~co 

We shall call rules that satisfy (1.12) consistent. Under the assumptions of 
Theorem 1, we shall call rules that satisfy (1.8) whenever the Z.t(Bj) are not 
all equal asymptotically eflcient. In the case k = 2 Robbins [3] proposed a 
simple procedure for constructing consistent rules. Let a, = 1 < a2 < . . . 
and b, = 2 < b, c . . . be any two disjoint, increasing sequences of positive 
integers such that a,,/n + cc and b,,/n --) oo as n --) 00. At stage n, sample 
from II, if n E {a,,a,,...}, sample from III, if n E {b,, b,, . . . }, and if 
n 4 {a,, a,, . . . , b,, b2,. . . } sample from III, or II, according as the arith- 
metic mean of all previous observations from II, exceeds or does not exceed 
the arithmetic mean of all previous observations from I&. The consistency 
of this rule follows easily from the strong law of large numbers. 

The sequences a, and b,, above are assumed to be prescribed in advance, 
and a natural question is how to choose them so that n-lES,, approaches /-L* 
as rapidly as possible. However, the choice clearly involves the unknown 
parameters e,, . . . , 8,. It is therefore desirable to let the sequences a,, b, be 
generated adaptively from the data rather than prescribed in advance. Such 
an approach was recently followed by Reimnitz [2] who, in the case of two 
Bernoulli populations, constructed an allocation rule with regret R#,, 0,) 
= O(logn). His rule, however, does not attain the asymptotically optimal 
rate (1.8). 
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In this paper we develop a new approach for constructing rather simple 
rules that are asymptotically efficient. Our approach is based on a certain 
class of upper confidence bounds, and the idea is described in general in 
Section 3. Applications to the special cases of normal, Bemoulh, Poisson, 
and exponential populations are discussed in Section 4. 

2. A LOWER BOUND FOR THE EXPECTED SAMPLE SIZE FROM AN 
INFERIOR POPULATION 

Let 8 = (&..., 0,) and let Pa denote the probability measure under 
which $ is the parameter corresponding to population Iii, j = 1,. . . , k. 
Define for j = 1,. . . , k the parameter sets 

0, = (e:p(B,) < y+.r(di)} (“6’jisnotbest”), 

~)i* = 
( 
e:p(e,) ( Yj is the unique best”). (2’1) 

The main result of this section is given by 

THEOREM 2. Assume that I(@, X) satisfies (1.6) and (1.7) and that 0 
sutisfie (1.9). Fix j E (1,. . . , k}, and deJine 0j and 0,* by (2.1). Let cp be 
any rule such that for every 0 E 0,f”, us n --, 00 

Cl&T,(i) = o(rP) foreveryu > 0, (2.2) 
i#j 

where T,(i), dejined in (1.2), is the number of times that the rule cp samples 
from lli up to stage n. Then for every 8 E 0j and every c > 0, 

where 8* is deJined in (1.4), and hence 

lirn$fE,T,( j)/logn 2 1/1(Bj,8*). 

Proof. To tix the ideas let j = 1, 8 E 0,, and 8* = 0,. Then p(Q > 
p(S,) and p(8,) r p(ei) for 3 < i s k. Fix any 0 < 6 -K 1. In view of (1.6), 
(1.7), and (1.9), we can choose X E 0 such that 

I.r(V ’ d4) and v(e,, x) - w, e,)i < 6m,, 4). (2.4) 
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Define the new parameter vector y = (A, 8,, . . . ,0,). Then y E Sr, so by 
(2.2) 

qb - T,(l)) = hyT,(N) = 4na) 

with 0 -z a < S, and therefore 

b - www,{ T,(l) < (1 - wYPvm9 A)) 
5 E&n - T,(l)) = o(P). 

Letting Y,,Y,,... denote successive observations from II,, and defining 
L = Czilog( f( Y; 6,)/f( Y;,; A)), it follows that 

PJC”) = o(?P-‘), where 

C, = (T,(l) < (1 - @(logn)/I(B,, A) and LTwcl) s (1 - u)logn). (2.5) 

Note that 

P,{ T,(l) = n1 ,..., T,(k) = nk, L,, 5 (1 - a)logn} 

= J 
fi f(r;,; A) tip 

(T”(l)-n,,...,T,(k)-n~, L,,S(l-a)logn)i-1 f&i 4) e 

2 exp( -(l - a)logn) 

G’,{T,(l) = ui ,..., T,(k) = nk, L,, 5; (1 - a)logn). (2.6) 

Since C, is a disjoint union of events of the form {T,(l) = n,, . . . , T,(k) = 
nk, Lml s (1 - u)logn} with n, + . . . +n, = n and n, < (1 - S) 
(log n)/l( 8,, A), it follows from (2.5) and (2.6) that as n + 00 

P&C”) s n’-qc,) + 0. (2.7) 

By the strong law of large numbers, L,,,/m + 1(8,, A) > 0, and therefore 
mai,Ji/m + I(dJ,, A), a.s. [ PJ. Since 1 - a > 1 - 6, it then follows 
that 

Pa{ Li > (1 - u)log n for some i < (1 - ~)(logn)/~(~,, A)> - 0 
as n + 00. (2.8) 

From (2.7) and (2.8) we see that 

lim P@{ T”(1) < (1 - s)(logn)/1(8,, A)} = 0. 
n+m 

In view of (2.4), this implies that 

hJllP@{ T”(1) < (1 - 6)(logn)/[(l + wbL~*)1~ = 09 
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from which (2.3) for j = 1 follows. 

Proof of Theorem 1. In view of condition (1.10) on the rule cp, it follows 
from Theorem 2 that for any fixed 8 = (e,, . . .8,), if p( 6$.) < p* then 

lhllF{ E,T,(j)/logn} 2 l/qej,e*). (2.9) 

She R,(e) = Cj:p(Oj)<j4' P ( * - p($))E,T,(j), (1.11) follows from (2.9). 

3. CONSTRUCTION OF ASY~W~~TICALLY EFFICIENT 
ALLOCATION RULES 

We describe here a general method of constructing adaptive allocation 
rules that attain the asymptotic lower bound for the regret given by the 
right-hand side of (1.11). We tist outline briefly the motivation of our 
approach. In order to attain asymptotic efficiency we shall sample from the 
population with the largest estimated mean, provided that we have sampled 
enough from each population to be reasonably confident that this popula- 
tion is indeed superior. Our degree of confidence will depend on the number 
n of observations that we have taken so far, and as n increases we should be 
increasingly confident that we are not sampling from an inferior population. 
In view of Theorem 2, if cp is an asymptotically efficient rule, then the 
number of observations that cp takes from any inferior population IIj up to 
stage n is about (logn)/l(ej, 0*). Thus, at stage n, we need about 
(log n)/I(f$, P) observations from IIj to be reasonably confident that it is 
not a contender. These considerations suggest the following mod&xi “sam- 
plefrom-theleader” rule. First, define the “leader” at stage n as the 
population with the largest estimated mean among all populations that have 
been sampled at least 6n times, for some predetermined positive number 
S < l/k. While we would like to sample from this apparently superior 
population, we need to make sure that the other populations have been 
sampled enough for us to be reasonably confident that they are indeed 
inferior. One way of doing this is to compare certain upper confidence 
bounds for the mean of an apparently inferior population with the esti- 
mated mean of the leader. These confidence bounds are required to satisfy 
conditions (3.1), (3.2), and (3.3) below to ensure that the allocation rule 
obtained thereby is asymptotically efficient. 

To fix the ideas, let Y,, Y,, . . . be i.i.d. random variables with a common 
density function f(y; t9) with respect to some measure Y, where 8 E 0 
denotes an unknown parameter. We shall use “upper confidence bounds” 
for the mean p(e), defined by Bore1 functions gmi : R’ + R (n = 1,2,. . . ; 
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j = 1 , . . . , n) such that for every B E 0, 

Pe{r 5 gni(59***9 Y;.)foralli<n}=l-o(n-‘) for every r < p( 19), 

(3.1) 

limsuP i p@{ gnj(yl,.e*,Y,) r Cz(h) - r}/logn 
n-rm i-l 

s 1/m, A) wheneverp(X) > p(B), (3.2) 

g,,isnondecreasinginnriforeveryfixedi=1,2,.... (3.3) 

Examples of such confidence bounds in the special cases of normal, Bernoulli, 
exponential, and Poisson distributions are given in Section 4, along with a 
general method for their construction. 

In addition to these sequences of upper confidence bounds for p(e), we 
shall also use point estimates h,(Y,, . . . , Y;:) of r(e), where the hi : R’ + R 
(i = 1,2, . . . ) are Bore1 functions such that 

hi s gni for all n 2 i, (3.4) 

and for every 8 E 0, 

p”t 
max (h,(Y,,..., 

bnrs;i<n 
q) - p(8)/ > c) = o(n-‘) 

forallc > OandO < 6 < 1. (3.5) 

Notethat(3.5)holdsforthesamplemean hi(YI,...,Y;:) = (Y, + --- +Y;.)/i 
under the assumption that E,Yt < 00 (cf. the proof of Theorem 1 of [l]). 

We now make use of the functions gni and hi to construct an asymptoti- 
cally efficient rule for sampling xi, x2,. . . sequentially from populations 
II r, . . . , lIk with respective density functions f(x; e,), . . . , f(x; 8,). For 
J ‘-1 , . . . , k, let T,(j) denote the number of times that the rule samples 
from IIj up to stage n, and let qi,. . . , q,rmtjj denote the successive 
observations from IIj up to stage n. Define 

(3.6) 

and let 0 c S < l/k. To begin with, at stage j = 1,2,. . . , k, the rule takes 
one observation from lIj. Now suppose that the rule has taken n 2 k 
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observations. Since T,(l) + - - - + T,(k) = n, we can choosej, E (1,. . . , k} 
such that 

P,(iJ = ma{ P,(j) : T,(j) 2 &I 1. (3.7) 

At stage n + 1, writing n + 1 = km + j, where m is a positive integer and 
j E {l,..., k }, we take an observation from Iii only if 

ri,CLJ s V,(j), (3.8) 

and sample from IIim otherwise. This sampling rule will be denoted by ‘p*. 
The population IIjm defkd by (3.7) can be regarded as the “leader” at 

the end of stage n; it has the largest estimated mean among ah populations 
that have been sampled at least 6n times. The rule cp*, therefore, compares 
at stage n + 1 = km + j the population IIj with the leader IIj,. It samples 
from IIj if the upper contidence bound U,(j) for the mean of IIj does not 
faII below the estimated mean of II,“; otherwise it samples from III,. We 
now establish the asymptotic efficiency of this rule. 

THEOREM 3. Assume that I(e, A) sutisJies (1.6) and (1.7) and that the 
functions gni and hi satisfy (3.1)-(3.5). For j = 1, . . . , k, let T,(j) be the 
number of times that the rule ‘p* samples from IIj up to stage n, us dejned in 
(1.2). Define 8* us in (1.4). 

(i) For every8 = (/II,..., 0,) and euey j such that ~(0~) < p(B*), 

Wi(j) s ’ 
i I(B,J*) 

+ o(1) 
I 
logn. (3.9) 

(ii) Assume also that 8 satisfies (1.9). Then E,T,( j) - (log n)/l( 5, fI*) 
for every j such that p($) < p(e*), and the regret of ‘p* satisfies (1.8). 

ProofI To prove (3.9), let L = (1 I I I k: cc(&) = p(e*)}. Let 0 < E < 
p(e*) - maxjo Lp(6)j). Using the notation #A to denote the number of 
elements of a set A, we note that for any fixed j G L, 

T,(j)< #{llnlN- 1: j,, E L, I&( j,) - @*)I I f, and 

p* samples from IIj at stage n + 1) + 1 

+ #{l < n I N - 1: j, E L and I&( j,) - !@*)I > E} 

+#{l<nlN-l:j,4L}. (3.10) 

Let qi, qz.,, . . . denote successive i.i.d. observations from IIj. From the 
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definition of (p* it follows that 

#{2 5 m s N: j,-, E L, lji,-l(j,-,) - p(O*)l s E, and 

‘p* samples from IIj at stage m} 

I # { 1 I Y 5 N: ‘p* samples qV at some stage m with 

v I m IS N and j,,,-l E L, Ifi,-l(jm-,) - p(O*)l I E} 

~l+#{li;i~N-l:g,i(~l,...,~i)r11(8*)-f 

forsomei<n<N-I} 

Al+ #{l~i~N-l:g,,(~~,...,~~)~p(8*)-r}, 

by (3.3). (3.11) 

In view of (3.2), for every p > 0, we can choose c > 0 so small that 

E,(#{~I~~N-~:~N~(Y/~,...,~;.~)~P(B*)-c}) 

s 2 ‘@{ gNi(q1 ,...,T~) 2 p(e*) -L} 

i-l 

~ ’ + P + dl)logN 
I(e,,e*) a 

(3.12) 

Since T,(jJ 2 6n by (3.7), it follows that 

Pa{ jn E L and Ii&t(L) - d@*)l ’ e) 

W( max max Ihi(Y,,,*.*,Y,i) -p(e*)I > c 
ICL 8nsi<n > 

= o(?f-‘) by (3.9, 
and therefore 

E&(1 s n s N - 1: j, E L and Ifi, - @*)I > E}) = o(logN). 

(3.13) 
It will be shown in Lemma 1 below that 

E,(#{lsnsN- 1: j, 4 L}) = o(log N). (3.14) 

From (3.10)-(3.14), (3.9) follows. 
If 8 also satisfies (1.9), then by Theorem 2, E&J’,,(j) 2 (l/1($, @*) + 

o(l))logn. This and (3.9) imply that 

WJJ’) - b3~W(ej, e*) 

for every j such that p(Bj) < p(e*), and (1.8) fokvs. 
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LEMMA 1. With the same notation and arsumptions as in Theorem 3(i), let 
L = (1 5 15 k:p(B,) = ~(8*)}. Let 0 < e < {p(B*) - maxj,,~(Bj)}/2, 
and let c be a positive integer. For r = 0, 1, . . . , de$ne 

A,= n ( max Jh,(~;.,,...,~;.,)-~(ej)( se), 
l<j<k 6C’-‘SnSC’+’ 

4 = n {gni(G,***, &) 2 p( 8*) - E for ail 1 I i I Sn 
ICL 

andc’-’ s n 5 c’+l}, 
where 0 < 6 < l/k is the same as that used in the rule (p*. Then 

(i) P,(A,) = o(c-r), P,(Br) = o(c-y, 

where xdenotes the complement of an event A. Moreover, if c > (1 - k6)-’ 
and r r r,, (su&iently large), then 

(ii) on A, n B,, j, E Lfor all c’ 5 n I c’+l. 

Consequently, 
(iii) E,(#{l I n 5 N: j, 4 L}) = CFs,P,{ j, 4 L} = o(logN). 

Proof: (i) From (3.5), it follows that P(A,) = o(c-r). Let [x] denote the 
largest integer s x, and let p be the smallest positive integer such that 
[c’-~/@‘] 2 c’+l. For t = 0 ,..., p, let n, = [Y-‘/V], and define 

4 = n (gn,,i(yf19*--9 Y,,)rp(8*)-rforaIIiinn,). 
ICL 

Then by (3.1), 

P,(D,) = o(n;‘) = o(c-‘) fort = 0 ,..., p. (3.15) 

Given c’-l S n < c’+l and 1 s i s 6n, there exists t E {O,...,p - l} 
such that n ,+1 > n 2 n, 2 i, and therefore by (3.3) 

gni(%P***, Y,) 2 &,,i(Tl,***~ Y,i) 2 Pte*) - f 

for alI 1 E L on the event flBSrSpDr. It then follows that B, 3 ft,,,,,D,, 
and therefore by (3.15), P,(B,) = o(c-r). 

(ii) We now assume that (1 - c-‘)/k > S. We shah say that at stage n 
the rule cp* samples from L if it samples from II, for some 1 E L. Let 

44 = c TM 
ICL 

be the number of times that ‘p* samples from L up to stage n. We note that 

y$O 2 dn)/#L. (3.16) 
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Consider the stage n + 1 = km + I with 1 E L and cr-’ I n < c’+l. We 
now show that at this stage ‘p* must sample from L on the event A, n B,. 
First note that if j,, E L, then ‘p* samples from either II, or II, at stage 
n+l = km + 1. Now assume that j,, 4 L. Then since T,,( j,,) 2 an, 

P,(jJ 5 ygv($) + E < r(W - c on A,. (3.17) 

In the case T,(Z) 2 Sn, we have on A, 

de*) - E s b”(I) 51, * * * 3 yI,T,(/) ( 1 s &,T”(/) ( Y W&“(,,) (3.18) 

by (3.4), and therefore by (3.17) and (3.18), ‘p* samples from II, at stage 
n + 1. In the case T,(I) < Sn, we have on the event B, 

cl@*) - ( s &.T”(,)( L.. - 9 +“(a)9 (3.19) 

and therefore by (3.17) and (3.19), ‘p* also samples from II, at stage n + 1 
on A, n B,. 

On the event A, n B,, since ‘p* must sample from L at stage n + 1 = km 
+ 1 with 1 E L and c’-l 5 n s cr+‘, and since (1 - c-‘)/k > S, it follows 
that 

u=(n) 2 (#L/k)(n - c’-1 - 2k) > (#L)Sn (3.20) 

for ah c’ 5 n 5 c’+l and r 2 r, (suhiciently large). From (3.16) and (3.20), 
we obtain that on A, f~ B, 

maxT,(Z) z= 6n for alI c’ 5 n S cr+l, (3.21) 
ICL 

if r 2 r,. We note that for r 2 r, and c’ s n s c’+l, on the event A, n B,, 

max{ fi,( j) : T,(j) 2r 6n and j 4 L} 

5 yy(e,) + c < de*> -E 

s min{ fin(Z) : T,(1) 2 6n and I E L}, 

the last set being nonempty by (3.21). Hence j, E L for ah c’ I n s c’+l 
on A, n B, if r r ro. 

(iii) IA c > (1 - k&)-l. Then it follows from (i) and (ii) that for 
r 2 r, and c’ s n I; c’+i, 

PB{ j, 4 L} S P,(A,) + P,(B,) = o(c-~), 
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and therefore E er5nser+~Ps{j,, e L} = o(1). Hence EzNIPe{j, $5 L} = 
00% v. 

4. CONFIDENCE SEQUENCES AND ALLOCATION RULES FOR 
SPECIAL DISTRIBUTIONS 

In this section we make use of certain generalized likelihood ratios to 
construct confidence sequences that satisfy the conditions (3.1)-(3.3). These 
generalized likelihood ratios are described in the following lemma. 

LEMMA 2. Let Y,,Y*,... be i.i.d. random variables with a common 
d&zsity f ( y; 8) with respect to some measure v, where 8 is a real parameter. 

(i) Let 8” = QY 1, . . . , Y,) be an estimate of 0 at stage n. Then for 
every a 2 1, 

Pe 
( 

,filf(qidim,) 
I 

,IJf(q;8) 2 aforsomen 2 1 I a-‘. 
i 

(4.1) 

(ii) Let C be a compact set of real numbers such that for every X E C and 
some tl 

~nE~(sup{ f(Y,; r)/f(Y,; 8) : r E C, Ir - XI < 6)) = 1. (4.2) 

Then for every d > 0, 

Iimsup(loga)-‘logPg 
i 

sup fif(&;X) 
0’00 XsC i-1 I 

,filf(q;t3) 2 a 
‘w 

forsomen I dloga I -1. 

Moreover, for every d > 0 and 0 < p < 1, 

I -1 + dlogp < -1. (4.4 

Proof: (i) Under Pe, the sequence {FI,“,,f(r;,; 6i-,)/nin,If(q; a), n 2 
1) is a nonnegative martingale! with mean 1, and therefore (4.1) follows (cf. 
[4D* 
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(ii) To prove (4.3), in view of (4.2) we can choose for every c > 0 and 
X E C a positive constant S(e, A) such that 

EB( SUP f(Y,; d/W,; 8,) < 1 + Q, 
PsB(h) 

(4.5) 

where B(h) = {r E C: Ir - Al < QE, A)}. From (4.5) it follows that 

Since C is compact, we can choose a &rite covering B( At), . . . , B( A,) of C, 
and therefore 

P@ sup fif(T; r) 
I 

iif(q; 0) r Q 
ret i-l 1 

I ma-y1 + E)“. (4.6) 
i-l 

Since c can be arbitrarily small, (4.3) follows from (4.6). 
To prove (4.4), let F, = (l-k,fK; rM-LfK; 0) I P”}, G, = 

{supA,,IIin,,f(Y;:; A)/n~~‘,,f(r;.; 6) 2 a}. We note that 

s P”P&) s m-l{ ~(1 + c)} ‘7 by (4.6). (4.7) 

Choosing Q so small that ~(1 + E) < 1, we have 

c {PO + 4)“’ O({P(l + 4)d1qo), 
nzdlogo 

and therefore (4.4) follows from (4.7). 
We now apply the preceding results to construct confidence sequences 

and asymptotically efficient allocation rules for normal, Bernoulli, Poisson, 
and double exponential populations. 

EXAMPLES. Let qi, j-1,2 ,..., k, i=1,2 ,..., beindependentnor- 
mal random variables with known common variance u* > 0 and unknown 
means Eqi = Oj. Thus, p(8) = 8, 8 = ( - 00, QO), v = Lebesgue measure, 

f(U) = eJ*)- “*exp{ -(v - 8)*/20*}, (4.8) 
and 

I(t?,X)= (e - X)*/(2a*). 

Conditions (1.6), (1.7), and (1.9) are clearly satisfied. 

(4.9) 
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Let ani (n=1,2 ,..., i=l,..., n) be positive constants such that for 
every fixed i 

ani is nondecreasing in n 2 i, (4.10) 

and there exist E, + 0 for which 

Iani -(logn)/il I en(logn)“2/i1/2 for all i I n. (4.11) 

For j = 1,. . . , k, define 

q(j) = (ql + -.a +qi)/i, hi(~19**e, qi) = E(j), (4.12) 

gni(~l,***, qi) = yi( j) + c~(2a,,)~‘~ for n 2 i. (4.13) 

Obviously, for every 0 < 6 < 1 and E > 0, 

P( 8~a$E(i) - ejl > c> = o(n-‘)9 (4.14) 

so condition (3.5) is satisfied. From (4.11) and the tail probability of the 
normal distribution it follows easily that for r < 3 

i P( r > q(j) + 0(2a,,)l’~) = o(n-‘), 
i-l 

and therefore condition (3.1) is satisfied. 
Conditions (3.3) and (3.4) are obviously satisfied. We now show that (3.2) 

also holds. Let X > ej and define 

L, = sup{1 5 i i n: x(j) + a(2c.1,~)~‘~ z A) (sup 0 = o), 

T, = sup{i L 1: lx(j) - $1 2 e}. 

Then ET, < 00 for all E > 0 (cf. [l]). Moreover, it follows from (4.11) that 
for 0 < c < X - ej 

E(LnI(~a>cJ 5 2a2(X - ej - t)-‘(1 + o(l))logn asn-, cc. 

Ob~ously, E&If L, s T,j ) r; ET,. By the strong law of large numbers and 
Fatou’s lemma, 

EL, 2 2a2(h - $)-‘(1 + o(l))logn. 

Hence, letting E S.0, we obtain that 

EL,, - 2a2(X - $.)-210gn = (logn)/I(e,,A). (4.15) 

Since #{1 s; i S n: Y;,(j) + a(2a,,) ‘I2 2 A} S L,, it follows from (4.15) 
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that for h > dj 

ijlp[ F(j) + a(2ani)1’2 2 A) I (1 + O(l))(lOgn)/l(ej, x)* 

With hi and gni given by (4.12) and (4.13), we define the allocation rule 
‘p* as in Section 3. Theorem 3 is therefore applicable to this special case and 
shows that ‘p* provides an asymptotically efficient allocation rule for k 
normal populations with common known variance u *. We note that q(j) is 
the maximum likelihood estimate of Bj based on qr,. . . , qi, and that the 
upper confidence bound g,&, . . . , 5,) can be expressed in terms of 
generalized likelihood ratios as follows: 

The upper confidence bounds in the next two examples are also of this 
general form. 

EXAMPLE 2. Let qi be independent Bernoulli random variables such 
that qi has density 

f(y; ej) = y(i - ej)l-Y, Y = 091, (4.17) 

with respect to the counting measure v. Here p(e) = 8, 0 = (0, l), and 

I(e, x) = eiog(e/x) +(I - e)iog{(i - e)/(i - A)}. (4.18) 

Conditions (1.6), (1.7), and (1.9) are clearly satisfied. 
For j = l,..., k, define K(j) and hi as in (4.12), and note that (4.14) 

still holds. Let a,, (n = 1,2,. . . , i = 1,. . . , n) be positive constants satisfy- 
ing (4.10) and such that 

lh( lirn~fmin{a,i: i I alogn}) = cc, (4.19a) 

and 

lim ( limsupmax{a,i: dlogn S i I n}) = 0, 
d-rm *+a, 

(4.19b) 

lim max{liu,,/logn - 11 : 6logn 5 i 5 dlogn} = 0 VO < S -c d. 
n-rm 

(4.19c) 

(Note that (4.19) is a weaker assumption than (4.11).) Define g,i as in 
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(4.16), where the parameter A can only take values in (0,l) and where we 
now set inf 0 = 1. Since 1($(j), A) is a convex function in A with 
minimm at X = F(j), we have the equivalence 

1 > r 2 gni(qr,*.*,qi) * 1 > r 2 x(j) and I(x(j),r) 2 ani. 

(4.20) 
Let l>X>$ and define L=sup{i:~(j)2A}, L,=sup{l~i_< 

n: Q%(j), A) < a,,}. Then EL < 00 (cf. [l]), and an argument similar to 
the proof of (4.15) shows that EL, - (logn)/1(8j, A). From (4.20) it 
follows that # { 1 I i I n : g,,( E;r, . . . , qi) > A ) I L + L,, and therefore 

Ii ‘{ gni(qlv . . .) qi) > A} I (1 + o(l))(logn)/l( t!$, A). 
i=l 

Hence condition (3.2) is satisfied. 
We now show that condition (3.1) is also satisfied. Let ej > r > 0. Then 

by (4.19a), we can choose 6 > 0 and no such that 

s;pl(e, r) = max{]logr), ]log(l - r)]) < ani 

for i s6logn and n 2 no. (4.21) 

Let p = (e,/r)‘{(l - $)/(l - r)}‘-‘. We note that logp = -I(r,Bj) < 0 
and that 

r 2 x(j) a j.f( J$ ej) 

/- 
tfilf( qt; r) s Pi- (4.22) 

Hence P{ r r q(j)} I pi, so we can choose d > 6 such that 

P{ r 2 x(j) for some i 2 d logn} = ~(Tz-‘). 

Moreover, from (4.20), (4.21), and (4.22), it follows that 

p{ r 2 gnityl , ,...,qi)forsomei<dlogn} 

= P( r 2 E(j) and I(F(j),r) 2 ani for some Glogn I i s d logn} 

for some Slogn I i 5 dlogn 

= o(n-l), by (4.19~) and Lemma 2 (ii). 
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With hi defined in (4.12) and gai defined in (4.16), the argument above 
shows that Theorem 3 is applicable, so the rule ‘p* provides an asymptoti- 
cally efficient allocation rule for k Bernoulli populations. In view of (4.20), 
we do not need the explicit value of g&, . . . , qi) to implement the rule 
‘p*. In fact, the allocation criterion (3.8) can now be rewritten as follows: 
Letting p,(j) = yr”(Jj), sample from IIj at stage n + 1 = km + j only if 

P”(j) 2 P,(i”) Or ‘(Pn(i)PPn(jn)) s un,T,(j)* (4.23) 

EXAMPLE 3. Let qi be independent Poisson random variables such that 
qi has density 

f(Yiej)=e-‘e~/y!, ,... y=O,l 

with respect to the counting measure Y. Here ~(0) = 8, 6 = (0, oc), and 

I(e,x) = 81og(8/A) -@ - A). 

Conditions (1.6), (1.7), and (1.9) are clearly satisfied. Letting ani be positive 
constants satisfying (4.10) and (4.19), and detining hi as in (4.12) and gni as 
in (4.16), we can use the argument of Example 2 to show that Theorem 3 is 
again applicable, noting that sup,, ~ B S ?I( 8, r) = r. Moreover, the allocation 
criterion (3.8) of the rule (p* of Theorem 3 can be written in the more 
convenient form (4.23). 

In each of the preceding examples the sample means of the k populations 
are sufkient statistics and are used in the allocation rule ‘p*. We now give 
an example in which no simple sufficient statistics are available and in 
which sample medians are used instead of sample means. Moreover, in this 
example we show how the generalized likelihood ratios of Lemma 2(i) can 
be applied to construct confidence sequences satisfying (3.1). 

EXAMPLE 4. Let qi be independent double exponential random vari- 
ables such that qi has density 

f(Y; $1 = ted- IY - ejl)9 -cc<y<cc. (4.24) 

Here p(0) = 8, 8 = (- 00, OO), Y is Lebesgue measure, and I(& A) = Ifi - 
Al. Conditions (1.6), (1.7), and (1.9) are clearly satisfied. 

Let b,, be a nondecreasing sequence of positive numbers such that 

b,, -+ co and logb, = o(logn) asn+cc. (4.25) 
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For j = l,...,k define 

&(j) = med{q,,...,Ti}, hi(~l,*e*9 qj) = Mi( j), 

21 

(4.26) 

(4.27) 

Since u( 0) = Eisl 1 ?I - 01 is a piecewise linear and convex function of 0 
with its minimum at 8 = M,(j), we have the equivalence 

8 29,i(1;19.**9I;i) 

- 8 2 Mi(j) and i ,q., - 01 2 log&, + i 15, - iW,&)l. 
t-1 t-1 

(4.28) 

Since for every Q > 0, 

~{pf,(j) - ejl > c} = o(+) for some0 < p = p(c) < 1, 

(4.29) 

it follows that condition (3.5) is satisfied. Moreover, conditions (3.3) and 
(3.4) are also satisfied. Furthermore, for r < Bj, 

p{r 2 gni(I;l,***, Yj,)forsomeiSn} 

SP{$rg,i(~l,...,~i)forsomei5n} 

s P( fif(l;,; M,-,(j))/fif(l;,; 3) 2 nb,, for some i 2 11, 
t-1 t-l 

by (4.24) and (4.28), 

s (n&)-t by Lemma 2(i), 

= o(n-1). 

Hence condition (3.1) is satisfied. 
Using the results of [l], it can be shown that condition (3.2) is also 

satisfied. Hence, with hi and gni given by (4.26) and (4.27), Theorem 3 can 
be applied to show that (p* is an asymptotically efficient allocation rule for 
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double exponential populations. In view of (4.28), the allocation criterion 
(3.8) can be rewritten as follows: Sample from Iii at stage n + 1 = km + j 
only if 

%“(j)W 2 W”(j”)(.L) (4.30) 

or 
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