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IntroductionOur text consists of three chapters:Chapter I: An Axiomatic Approach to Nonstandard Analysis.Chapter II: Nonstandard and Standard Compacti�cations.Chapter III: Separation Properties and Monads.A short description of the contents of these chapters follows:In Chapter I we present an axiomatic approach to A. Robinson's Non-standard Analysis which is one of the most popular among the researchersapplying the nonstandard methods as a technique.Ironically, there are very few expositions based exclusively on these threeaxioms. We hope that our text will �ll this gap. Although our exposition isto a large extent self-contained, it is not designed for a �rst introduction tothe nonstandard theory. Rather, it is written for a reader in mind who hasalready been through other more accessible texts on nonstandard analysis butstill lacks the trust and con�dence needed to apply the nonstandard methodsin research. We hope that our text might be helpful in this respect. For �rstreading we recommend the excellent paper by Tom Lindstr�m [13], where thenonstandard analysis is presented in terms of sequences, equivalence relationand equivalence classes and where, in addition, the reader will �nd a largerlist of references on the subject. We should emphasize, however, that whilethe sequential approach, presented in Tom Lindstr�m [13], is, perhaps, thebest way to start, the axiomatic approach, presented here, is, in our view, thebest way to apply the nonstandard methods in other �elds of mathematicsand science.The followers of E. Nelson's Internal Set Theory [16], who have (�nally)decided to switch to A. Robinson's framework, are especially warmly wel-come. For this special group of readers we would like to mention that ourattention will be equally directed to both internal and external sets; they areboth equally important although in somewhat di�erent ways: the internalsets are crucial when applying the Transfer and Saturation Principles, whilethe external sets appear in the Extension Principle and in the applications ofthe nonstandard analysis - typically as factor spaces of nonstandard objects.In Chapter II and Chapter III we present some applications of the non-standard methods to point-set topology. However, these topological applica-2



tions can be also treated as exercises which illustrate and support the theoryin Chapter I. We assume a basic familiarity with the concepts of point-settopology. We shall use as well the terminology of (J.L. Kelley [12]) and (L.Gillman and M. Jerison [3]). For the connection between the standard andnonstandard methods in topology we refer to (L. Haddad [5]). We denote byN and R the sets of the natural and real numbers, respectively, and we alsouse the notation N0 = f0g [ N. By C(X;R) and Cb(X;R) we shall denotethe class of all \continuous" and \continuous and bounded" functions of thetype f : (X;T ) ! (R; � ), respectively, where (X;T ) is a topological spaceand � is the usual topology on R.Here are more details for these two chapters:In Chapter II we describe all Hausdor� compacti�cations of a given topo-logical space (X;T ) in the framework of nonstandard analysis. This result isa generalization of an earlier work by K.D. Stroyan [21] about the compacti�-cations of completely regular spaces. We also give a nonstandard constructionof the Hewitt realcompacti�cation of a given topological space (X;T ) whichseems to be new in the literature on nonstandard analysis.There is numerous works on Hausdor� compacti�cations of topologicalspaces in nonstandard setting: A. Robinson [17]-[18], W.A.J. Luxemburg[14], M. Machover and J. Hirschfeld [15], K.D. Stroyan [21], K.D. Stroyan andW.A.J. Luxemburg [22], H. Gonshor [4] and L. Haddad [5] and others. Webelieve that our description of the Hausdor� compacti�cations, in particular,the Stone-�Cech compacti�cation is noticeably simpler than those both in thestandard and nonstandard literature (mentioned above) mostly due to thefact that we manage to avoid the involvement of the weak topology both onthe initial space and its compacti�cation. Our technique is based on theconcept of the nonstandard compacti�cation ( �X; sT ) of (X;T ), where �Xis the nonstandard extension of X supplied with the standard topology sT ,with basic open sets of the form �G, where G 2 T . The space ( �X; sT ) iscompact (non Hausdor�), it contains (X;T ) densely and every continuousfunction f on (X;T ) has a unique continuous extension �f on ( �X; sT ).We supply the nonstandard hull bX� = eX�= �� with the quotient topologybT , and show that the space ( bX�; bT ) is Hausdor�. Here, the set of the � -�nite points eX� � �X and the equivalence relation \ �� " are speci�ed bya family of continuous functions �. In particular, if � consists of boundedfunctions only, we have eX� = �X and bX� = q[ �X], where q : �X ! bX�is the quotient mapping. Thus, the compactness of bX� follows simply withthe argument that the continuous image of a compact space is compact. Inparticular, when � = Cb(X;R) we obtain the Stone-�Cech compacti�cationof (X;T ) and by changing � � Cb(X;R), we describe in a uniform way all3



Hausdor� compacti�cations of (X;T ). When we choose � = C(X;R), weobtain the Hewitt real compacti�cation of (X;T ).We should mention that a similar technique based on the space ( �X; sT )has been already exploited for studying the compacti�cations of ordered topo-logical spaces by the authors of this text (S. Salbany, T. Todorov [19]-[20]).We should mention as well that the standard topology sT is coarser thanthe discrete S-topology on �X, (known also as LS-topology, where L standsfor Luxemburg) with basic open sets: �P(X) = f �S : S 2 P(X)g, introducedby W.A.J. Luxemburg ([14], p.47 and p.55) for a similar purpose. This veryproperty of sT allows us to avoid the involvement of the weak topology inour construction, thus, to simplify the whole method.In Chapter III we study the separation properties of topological spacessuch as T0; T1, regularity, normality, complete regularity, compactness andsoberness which are characterized in terms of monads. Some of the charac-terizations have already counterparts in the literature on nonstandard anal-ysis (but ours are, as a rule, simpler), while others are treated in nonstan-dard terms for the �rst time. In particular, it seems that the nonstandardcharacterization of the sober spaces has no counterparts in the nonstandardliterature. We also present two new characterizations of the compactness interms of monads similar to but di�erent from A. Robinson's famous theorem.CHAPTER I. AN AXIOMATIC APPROACH TO NONSTAN-DARD ANALYSISWe present Nonstandard Analysis by three axioms: the Extension, Trans-fer and Saturation Principles in the framework of the superstructure of agiven in�nite set. We use the ultrapower construction only to show theconsistency of these axioms. We derive some of the basic properties of thenonstandard models needed for the applications presented in the next twochapters. Although our exposition is, to large extend self-contained, it mightbe somewhat di�cult for a �rst introduction to the subject. For �rst readingwe recommend Tom Lindstr�m [13].1. Preparation of the Standard TheoryIn any standard theory the mathematical objects can be classi�ed intotwo groups: abstract points to which we shall refer as \standard individuals"(or just \individuals") and sets (sets of individuals, sets of sets of individuals,sets of sets of sets of individuals, etc.). In what follows S denotes the setof the individuals of the standard theory under consideration. For example,4



in Real Analysis we choose S = R, in general topology S = X [ R, where(X;T ) is a topological space, in functional analysis S = V [K, where V is avector space over the scalars K, etc.1.1 De�nition (Superstructure): Let S be an in�nite set. The superstruc-ture V (S) on S is the union:(1:2) V (S) = [k2N0 Vk(S);where N0 = f0g [ N, Vk(S) are de�ned inductively by V0(S) = S andVk+1(S) = Vk(S) [ P(Vk(S));where P(X) denotes the power set of X. If A 2 V (S), then we de�ne thetype t(A) of A by t(A) = minfk 2 N0 : A 2 Vk(S)g. We shall refer to theelements of V (S) as entities - they are either individuals if belong to S, orsets if belong to V (S) n S.Notice that S = V0(S) � V1(S) � V2(S) � :::;S = V0(S) 2 V1(S) 2 V2(S) 2 ::::Hence, it follows that Vk(S) � V (S) and Vk(S) 2 V (S) for all k.The most distinguished property of the superstructure is the transitivity:(1.3) Lemma (Transitivity): Each Vk(S) is transitive in V (S) in the sensethat A 2 Vk(S) implies either A 2 S or A � Vk(S). Furthermore, the wholesuperstructure V (S) is transitive (in itself) in the sense that A 2 V (S)implies either A 2 S, or A � V (S).Proof: X = V0(S) is obviously transitive. Assume (by induction) that Vk(S)is transitive. Now, A 2 Vk+1(S) implies either A 2 Vk(S) or A � Vk(S), bythe de�nition of Vk+1(S). On the other hand, A 2 Vk(S) implies eitherA 2 Sor A � Vk(S), by the inductive assumption. Hence Vk+1(S) is also transitive.The transitivity of the whole V (S) follows immediately: A 2 V (S) impliesA 2 Vk(S) for some k, thus, we have either A 2 S or A � Vk(S), by thetransitivity of Vk(S). The latter implies A � V (S), since Vk(S) � V (S). NWe observe that the elements of S are the only elements of V (S) whichare not subsets of V (S). The latter justi�es the terminology individuals forthe elements of S. 5



The superstructure V (S) consists of all mathematical objects of the the-ory: the individuals are in V0(S); the ordered pairs hx; yi in S � S belongsto V2(S) since they can be perceived as sets of the type ffxg; fx; ygg; thefunctions f : S ! S, and more generally, the relations in S are subsets ofV2(S) and hence, belong to V3(S); if T is a topology on S, then T � P(S)and hence T belongs to V2(S), where S = X [R; the algebraic operations inS are perceived as subsets of S � S � S and hence also belong to V (S), etc.For the study of V (S) we shall use a formal language L(V (S)) based onbounded quanti�er formulas :(1.4) De�nition (The Language L(V (X))):(i) The set of the bounded quanti�er formulae (b.q.f.) L consists of theformulae of the type �(x1; :::; xn) that can be made by:a) the symbols: =;2;:;^;_;8;9;);,; (); [];and/orb) countable many variables: x; y; xi; Ai; Aj; :::; etc.;and/orc) bounded quanti�ers of the type (8x 2 xi) or (9y 2 xj), i; j = 1; 2; :::; n.The variables x and y are called bounded and those which are not boundedare called free.The variables x1; :::; xn in �(x1; :::; xn) are exactly the free variables in�(x1; :::; xn).(ii) Let S be an in�nite set and V (S) be superstructure on S. Thelanguage L(V (S)) consists of all statements of the form �(A1; :::; An) forsome b. q. f. �(x1; :::; xn) 2 L and some A1; :::; An 2 V (S). The \points"A1; :::; An in �(A1; :::; An) are called constants of �(A1; :::; An).The statements in L(V (S)) can be true or false.Warning: Formulae including unbounded quanti�ers, such as in (8x)(9y)(x < y), are out of L!(1.5) Example (Real Analysis): Let f : R! R be a real function in RealAnalysis and let x0 2 R and " 2 R+. For the set of individuals we chooseS = R. Then: � ("; x0; f(x0); R+; R; f; <; j : j; �) == (9� 2 R+)(8x 2 R)(j x� x0 j< � )j f(x)� f(x0) j< ")6



is a bounded quanti�er formula in L(V (R), with constants: "; x0; f(x0); R+;R; f <; j j; \ � ", perceived as elements of V (R) (where <; j j and \ � " arethe order relation, absolute value and subtraction in R, respectively). Theabove statement might be true or false depending on the choice of "; x0 andf . For a more detailed exposition of the formal language L(V (S)) associatedwith V (S) we refer to (M. Davis [1], Chapter 1) and (T. Lindstr�m [13],Chapter IV), but we believe that the reader can successfully proceed furtherwithout a special background in mathematical logic.After these preparations of the standard theory we can now involve non-standard methods.2. Axioms of Nonstandard AnalsyisWe present Nonstandard Analysis by means of three axioms (along withthe Axiom of Choice) known as the Extension, Transfer and Saturation Prin-ciples. The consistences of these axioms will be left for the next section.(2.1) De�niton (Nonstandard Model): Let S be an in�nite set (of standardindividuals for the standard theory under consideration) and V (S) be itssuperstructure. The superstructure V ( �S) of of a given set �S together witha mapping A! �A from V (S) into V ( �S) is called a nonstandard model ofS if they satisfy the following three axioms:Axiom 1 (Extension Principle): �s = s for all s 2 S or, equivalently,S � �S.Axiom 2 (Transfer Principle): A bounded quanti�er formula (b.q.f.)�(A1; :::; An) is true inL(V (S)) i� its nonstandard counterpart �( �A1; :::; �An)is true in L(V ( �S)), where �( �A1::: �An) is obtained from �(A1; :::; An) byreplacing all constants A1; :::; An by their �-images �A1; :::; �An, respectively.Axiom 3 will be presented a little later.(2.2) Remark: Notice that �S is the image of S under the mapping �.Once �S is found, the superstructure V ( �S) is determined by the formula(1.2), where S is replaced by �S. The formal language L(V ( �S)) di�ers fromL(V (S)) only by its constants: they belong to V ( �S) instead of V (S). Hencethe formula �( �A1; :::; �Aq) is interpreted as a statement about �A1; :::; �Aq.(2.3) Example: Let S = R and � is the formula in V (R) given in (1.5),then its nonstandard counterpart in L(V ( �R)) is given by:7



�("; x0; f(x0); �R+; �R; ; <; j j;�) == (9� 2 �R+)(8x 2 �R)(j x� x0 j< �)j �f(x)� f(x0) j< ");where the �-images �R and �R+ (of R and R+, respectively) are (by de�-nition) the sets of the nonstandard real numbers and positive nonstandardreal numbers, respectively, the �-image �f of f is called (by de�nition) the\nonstandard extension" of f, the asterisks in front of the standard reals areskipped since " = �"; x0 = �x0 and f(x0) = �f(x0), by the Extension Princi-ple and, in addition, the asterisks in front of � <; � j j; ��, are also skipped,by convention, although these symbols now mean the order relation, absolutevalue and subtraction in �R, respectively.(2.4) De�nition (Classi�cation):(i) The entities (individuals or sets) in the range of the �-mapping arecalled standard (although they are actually images of standard objects). Inother words, A 2 V ( �S) is standard if A = �A for some 2 V (S). If A 2V (S), then �A is called nonstandard extension of A. Also if A � V (S), thenthe set �A = f �a : a 2 Agis called the standard copy of A. In particular,�V (S) = f �A : A 2 V (S)gis the set of all standard entities in V ( �S).(ii) An entity (individual or set) in V ( �S) is called internal if it is anelement of a standard set of V ( �S). The set of all internal entities is denotedby Vint( �S), i.e.Vint( �S) = fA 2 V ( �S) : A 2 �A for some A 2 V (S)g:The entities in V ( �S)� Vint( �S) are called external.Notice that the nonstandard individuals in �S are internal entities. More-over, if s 2 �S, then s is standard (in the sense of the above de�nition) i�s 2 S, which justi�es the terminology standard introduced above.Let � be an in�nite cardinal number. The next (and last) axiom dependson the choice of �.Axiom 3 (Saturation Principle: �-Saturation): V ( �S) is �-saturated in thesense that \
2� A
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for any family of internal sets fA
g
2� in V ( �S) with the �nite intersectionproperty (f.i.p.) and index set � with card � � �.(2.8) De�nition (Polysaturation): V ( �S) is polysaturated if it is �-saturatedfor � � card (V (S)).(2.9) Remark (The Choice of �): We should mention that a given standardtheory V (S) has actually many nonstandard models V ( �S) although theycan be shown to be isomorphic under some extra set-theoretical assumptionsat least in the case when they have the same degree of saturation �. Thechoice of �, however, is in our hands and depends on the standard theoryand our speci�c goals. In particular, if (X;T ) is a topological space, weapply a �-saturated nonstandard model with the set of standard individualsS = X [ R (a choice S � X [R is also possible) and a degree of saturation� � card B (or � � card T ), where B is a base for T .As usual, we can not survive (even in the framework of a superstructure)without the axiom of choice:Axiom 4 (Axiom of Choice): Let I 2 V (S) n S and fAigi2I be a family ofnon-empty sets in V (S) n S, i.e. Ai 2 V (S) n S for all i 2 I. Then thereexists a function (of choice) C :! Si2I Ai such that C(i) 2 Ai for all i 2 I.(2.10) Remark: Although we consider the text presented in this section asan \up to date" version of A. Robinson's Nonstandard Analysis, we shouldmention that the original A. Robinson's theory [17] is based on the \Enlarge-ment Principle" and the concept for a \Countably Comprehensive Model",rather than on the \Saturation Principle and �-saturation", as presentedhere. There exist also other axiomatic formulations of nonstandard analysis,e.g. H. J. Keisler [11] axiomatization of �R, the \Internal Set Theory", dueto E. Nelson[16] and, more recently, C.W. Henson [7] axiomatic approach.For a discussion and a general overlook we refer again to Tom Lindstr�m[13].3. Existence of Nonstandard ModelsThe content of this section can be viewed either as a proof of the con-sistency of Axiom 1-3 of Nonstandard Analysis, presented in Section 2, or,alternatively, as an independent constructive approach to nonstandard anal-ysis.(3.1) Theorem (Consistency): For any in�nite set S and any in�nite cardi-nal � there exists a �-saturated (polysaturated) nonstandard model V ( �S)9



of S.A sketch of the proof is presented in A) and B) below. For more detailedexposition we refer to T. Lindstr�m [13]A) Existence of @0-Saturated Nonstandard Extensions:Although Nonstandard Analysis arose historically in close connectionwith model theory and mathematical logic, it is completely possible to con-struct it in the framework of Standard Analysis, i.e. assuming the axioms ofStandard Analysis only (along with the Axiom of Choice). The method isknown as \ultrapower construction" or \constructive nonstandard analysis".This part of our exposition can be viewed either as a proof of the consistencetheorem above in the particular case � = @0, where @0 = card N, or as anindependent \sequential approach" to Nonstandard Analysis:(i) Let p : P(N)! f0; 1g be a �nitely additive measure such thatp(A) = 0 for all �nite A � N and p(N) = 1. To see that there exist measureswith these properties, take a free ultra�lter U � P(N) on N (here the Axiomof Choice is involved) and de�ne p(A) = 0 for A =2 U and p(A) = 1 for A 2 U .We shall keep p �xed in what follows.(ii) Let SN be the set of all sequences in S. De�ne an equivalence relation� in SN by: fang � fbng if an = bn a. e., where \a. e." stands for \almosteverywhere", i.e. if p(fn : an = bng) = 1. Then the factor space �S =SN= � de�nes a set of nonstandard individuals. (Notice that �S dependson the choice of the measure p.) We shall denote by hani the equivalenceclass determined by the sequence fang. The inclusion S � �S is de�ned bys ! hs; s; :::; i. We can determine now the superstructure V ( �S) by (1.1),where S is replaced by �S, and the latter is treated as a set of individuals(although it is, actually, a set of sets of sequences).(iii)Let V (S)N be the set of all sequences in V (S) (i.e. sequences of pointsin S, sequences of subsets of S, sequences of functions, sequences of \mixtureof points and functions", ..., sequences of \everything"). A sequence fAng inV (S)N is called \tame" if there exists m in N0 such that An 2 Vm(S) for alln 2 N (or, equivalently, for almost all n in N). If fAng is a tame sequencein V (S)N, then its type t(fAng) is de�ned as the (unique) k 2 N0 such thatt(An) = k a.e., where t(An) is the type of An in V (S) de�ned in 1�. To anytame sequence fAng in V (S)N we associate an element hAni in V ( �S) byinduction on the type of fAng: If t(fAng) = 0, then hAni is the element in�S, de�ned in (ii). If hBni is already de�ned for all tame sequences fBng in10



V (S)N with t(fBng) < k and t(fAng) = k, thenhAni = �hBni : fBng 2 V (S)N; t(fBng) < k; Bn 2 An a.e. 	 :The element A 2 V ( �S) is called \internal" if it is of the type A = hAnifor some tame sequence fAng in V (S)N. The elements of V ( �S) of the type�A = hA;A; :::i for some A 2 V (S), are called \standard". Now we de�nethe �- mapping A! �A from V (S) into V ( �S) and the construction of thenonstandard model is complete. We shall leave to the reader to check thatthis model satis�es Axiom 1, Axiom 2 and Axiom 3 for � = @0 treated nowas theorems (Tom Lindstr�m [13]).B) Existence of �-Saturated Nonstandard ExtensionsIn the case of a general cardinal �, a similar construction and proofs tothe presented in A) can be carried out replacing N with an index set I ofcardinality �, and a f0; 1g - valued measure on P(I) which is � - good in thesense explained in T . Lindstr�m [13], where � is the successor of �. Noticethat every measure on P(N) given by a nonprinciple ultra�lter on N is @1-good, so this condition \ to be � - good" is not needed explicitly in the case� = @0.4. Some Basic Properties of the Nonstandard ModelsLet (as before) S be an in�nte set and V ( �S) be a nonstandard modelof S in the sense of Section 2. We shall study some very basic properties ofV ( �S) with focus on the standard and internal entities (De�nition 2.4).(4.1) Lemma (Internal Entities and Transitivity):(i) Vint( �S) is a countable union of �Vk(S):Vint( �S) = [k2N0 �Vk(S) :(ii) Each �Vk(S) is transitive in V ( �S) in the sense that A 2 �Vk(S)implies either A 2 S or A � �Vk(S). Furthermore, the whole set Vint( �S) istransitive in V ( �S) in the sense that A 2 Vint( �S) implies either A 2 �S, orA � Vint( �S).Proof: (i) Assume that A 2 Vint( �S), i.e. A 2 �A for some A 2 V (S). Thatis A 2 Vk(S) for some k 2 N0, which implies A � Vk(S), by the transitivity11



of Vk(S). It follows �A � Vk(S), by Transfer Principle, hence A 2 �Vk(S).Conversely, A 2 �Vk(S) for some k implies A 2 Vint( �S), by the de�nitionof Vint( �S), since Vk(S) 2 V (S).(ii) To show the transitivity, observe that(8A 2 Vk(S))[A 2 S _ (A � Vk(S)]is true in L(V (S)), by the transitivity of Vk(S) (Lemma 1.3). Hence(8A 2 �Vk(S))[A 2 �S _ (A � �Vk(S)]is true in L(V ( �S)), as required, by Transfer Principle. N(4.2) Theorem (Boolean Properties): The extension mapping A! �Afrom V (S) into V ( �S) is injective and its restriction� : V (S) n S ! V ( �S) n �Spreserves the Boolean operations, i.e. if A;B 2 V (S) n S, then�(A [B) = �A [ �B�(A \B) = �A \ �B�(A nB) = �A n �B:Proof: To show the extension mapping is injective, assume that �A = �B forsome A;B 2 V (S). That means that the formula �( �A; �B) = [ �A = �B]is true in L(V ( �S)), by Transfer Principle. Hence, �(A;B) = [A = B] istrue in L(V (S)), by Transfer Principle, i.e. A = B, as required. For thepreservation of the Boolean operations, suppose, say, that A [ B = C forsome A;B;C 2 V (S) n S. We have to show that �A [ �B = �C. Wehave A;B;C 2 Vk(S) for some k 2 N (by the de�nition of V (S)). On theother hand, we have A;B;C � Vk(S), by the transitivity of Vk(S). Now, theequality A [B = C can be formalized by the formula:�(A;B;C) = [ (8x 2 Vk(S))((x 2 A) _ (x 2 B))) (x 2 C) ]^ [ (8z 2 Vk(S))((z 2 C)) ((z 2 A) _ (z 2 B)) ]which is true in L(V (S)). It follows that its nonstandard version:( �A; �B; �C) = [ (8x 2 �Vk(S))((x 2 �A) _ (x 2 �B)) ) (x 2 �C) ]^ [ (8z 2 �Vk(S))((z 2 �C) ) ((z 2 �A) _ (z 2 �B)) ]12



is true in L(V ( �S)), by the Transfer principle. Hence, �A [ �B = �C, asrequired. The preservation of the rest of the Boolean properties is checkedsimilarly. N(4.3) De�nition (Canonical Imbedding): If A 2 V (S)nS, then the injectiveimbedding A � �A;de�ned by a! �a, is called canonical.Notice that a 2 A i� �a 2 �A, by Transfer Principle, hence this mappingis well de�ned. In addition, it is injective, by the above theorem, whichjusti�es the above de�nition. This imbedding justi�es also the terminologynonstandard extension for �A. Notice that the range of this mapping isexactly �A (by the de�nition of �A). Later in this section we shall show that�A is a proper extension of �A, hence it is a proper extension of A (in thesense of the above imbedding), whenever A is an in�nite set.(4.4) Lemma (De�nable Sets): Let �(x; x1; x2; :::; xn) 2 L be a b.q.f. andB;A1; :::; An 2 V (S). Then:�fx 2 B : �(x;A1; :::; An) is true in L(V (S))g == fx 2 �B : �(x; �A1; :::; �An) is true in L(V ( �S))g:Proof: DenoteA = fx 2 B : �(x;A1; :::; An) is true in L(V (S))gand let �A be the nonstandard extension of A. We have to show thatfx 2 �B : �(x; �A1; :::; �An) is true in L(V ( �S))g = �A:Suppose (for contradiction) that(9x 2 �A) (�(x; �A1; :::; �An) is false in L(V ( �S)) _(9x 2 �B n �A)(�(x; �A1; :::; �An) is true in L(Vint( �S)):We have �B n �A = �(B n A), by the Boolean properties. As a result, theabove formula becomes(9x 2 �A) (�(x; �A1; :::; �An) is false in L(Vint( �S)) _(9x 2 �(B nA))(�(x; �A1; :::; �An) is true in L(Vint( �S)):13



This statement is equivalent to(9x 2 A) (�(x;A1; :::; An) is false in L(V (S)) _(9x 2 B nA)(�(x;A1; :::; An) is true in L(V (S));by the Transfer Principle. The latter contradicting the choice of A: N(4.5) Examples (Standard Intervals in �R): Let a; b 2 R, a < b. Let S = Rand V ( �R) be a nonstandard model of R. We have�(a; b) = fx 2 �R : a < x < bg;�[a; b] = fx 2 �R : a � x � bg;�[a; b) = fx 2 �R : a � x < bg;by the above lemma (applied for �(x; a; b) = fa < x < bg for the �rst caseand similar for the others). Notice that the above subsets of �R are intervals- open, closed and semi-open, respectively - in the order relation in �R.(4.6) Theorem (Finite Sets):(i) If A 2 V (S) n S is a �nite set, then �A = �A. In particular,�fag = f �agfor any a 2 V (S).(ii) If A � S is a �nite set, then �A = A.Proof: (i) We start with the case of a singlet. There exists k 2 N such thata 2 Vk(S) which is equivalent to �a 2 �Vk(S) (for the same k), by TransferPrinciple. We observe now that fag can be described as a de�nable set:fag = fx 2 Vk(S) : x = a in L(V (S))g ;which implies �fag = fx 2 �Vk(S) : x = �a in L(V ( �S))g ;by the above lemma, applied for �(x; a) = [x = a]. The right hand sideof the above formula is (obviously) f �ag, thus, f �ag = �fag, as required.In the case of an arbitrary �nite set A, the result follows from the Booleanproperties of the extension mapping:�A = �� [a2A fag� = [a2A �fag = [a2A f �ag = �A;14



as required.(ii) follows from (i) since �A = A, by Extension Principle. N(4.7) Theorem (Nonstandard Extensions): Let A 2 V (S) n S be a set inthe superstructure, �A be its standard image and �A be its nonstandardextension. Then:(i) �A \ �V (S) = �A.(ii) �A � �A.(iii) �A = �A i� A is a �nite set.Proof: (i) (�) Suppose � 2 �A \ �V (S). On one hand, � 2 �V (S) means� = �a, for some a 2 V (S). On the other hand, �a 2 �A is equivalent toa 2 A, by Transfer Principle.(�) Suppose now that � 2 �A, i.e. � = �a for some a 2 A. On one hand,� 2 �A implies � 2 �V (S), since �A � �V (S). On the other hand, a 2 Ais equivalent to �a 2 �A, by Transfer Principle, thus, � 2 �A \ �V (S), asrequired.(ii) follows directly from (i).(iii) (() was shown in Theorem 4.6. ()) Assume that A is an in�niteset. We have �A \ �V (S) = �A and �A � �A, by (i) and (ii) (just proved).Consider �rst the case A = N which implies �N \ V (S) = �N and �N � �N.We want to show that �N n �N 6= ;. Observe that if n 2 N, then the set�N n f �ng is internal (actually, standard), since�N n f �ng = �N n �fng = �(N n fng) 2 �V (S) � Vint( �S):The family of internal sets f �Nnf �nggn2N has (obviously) the �nite intersec-tion property, since �N is an in�nite set. It follows, by Saturation Principle,that its intersection is not empty, i.e. �N n �N 6= ; (as promised). We returnto the general case of an in�nte set A. Without loss of generality we mightassume that N � A, N 6= A. The latter implies both �N � �A, �N 6= �Aand �N � �A, �N 6= �A. Suppose (for contradiction) that �A = �A. Byintersecting both sides by �N, we get �N = �A \ �N. For the right handside we have �A \ �N � �V (S) � �N = �N, by (i), hence, �N = �N, acontradiction. N(4.8) Corollary (Standard vs. Nonstandard Individuals): Let A � S. Then:15



(i) �A \ S = A.(ii) A � �A.(iii) A = �A i� A is a �nite set. In particular, S and V (S) are propersubsets of �S and V ( �S), respectively.Proof: We have A = �A since a = �a for all a 2 A, by the ExtensionPrinciple. Hence the result follows directly from the previous theorem. Inparticular for A = S, we have S � �S, S 6= �S, since S is an in�nite set.The latter implies V (S) � V ( �S), V (S) 6= V ( �S). N(4.9) Examples (Real Numbers): Let us consider the important particularcase S = R. The nonstandard individuals are the nonstandard real numbersR. It follows that �R is a proper extension of R, R � �R, R 6= �R, by theabove corollary, since R is an in�nite set. Similarly, �N, �Z, �Q, etc., areproper extensions of N, Z, Q, respectively.(4.10) Theorem (Cartesian Products):(i) The extension mapping � preserves the Cartesian product, i.e. ifA;B 2 V (S) n S, then �(A�B) = �A� �B:Consequently, the set of standard sets �V (S)nS is closed under the Cartesianproduct of �nite many sets.(ii) The extension mapping preserves the ordered pairing of entities (in-dividuals or sets), i.e. if a; b 2 V (S), then�ha; bi = h �a; �bi :Consequently, the set of standard sets �V (S) is closed under the building ofordered n-tuples for n 2 N.Proof: (i) Assume that A�B = C which can be formalized in L(V (S)) as[(8a 2 A)(8b 2 B)(ha; bi 2 C)] ^ [(8c 2 C)(9a 2 A)(9b 2 B)(ha; bi = c)]:Thus,[(8a 2 �A)(8b 2 �B)(ha; bi 2 �C)]^[(8c 2 �C)(9a 2 �A)(9b 2 �B)(ha; bi = c)]holds in L(V ( �S)), by Transfer Principle, which means nothing but �A ��B = �C. The generalization for n many sets follows by induction.16



(ii) �ha; bi = �ffag; fa; bgg = f�fag;� fa; bgg = ff �ag; f �a;� bgg = h �a;� bi,as required, by Theorem 4.6. N(4.11) Notation: Based on the above result, we have �(An) = ( �A)n. So,we shall simply write �An instead of �(An) or ( �A)n. In particular for S =A = R, and d 2 N, we write �Rd instead of �(Rd) or ( �R)d.The next result is an addition to the Extension Principle.(4.12) Lemma (Complex Numbers): Let S = R and V ( �R) be a nonstan-dard model of R. Then �z = z for all z 2 C .Proof: We have C 2 V (R) since C = R2. Thus, both �C and �z are wellde�ned in V ( �R). Also, we have z = hx; yi for some x; y 2 R. Thus, withthe help of the above theorem, we have:�z = �hx; yi = h�x;� yi = hx; yi = z;as required, since �x = x and �y = y, by the Extension Principle. NOur next topic is some properties of the standard functions, i.e. thenonstandard extension of functions in V (S).(4.13) Theorem: Let f : A! B be a function in V (S), i.e. A;B 2 V (S).Let �f be the nonstandard extension of f . Then:(i) �f is a function of the type �f : �A! �B.(ii) �f is an extension of f in the sense that �f j �A = f; i.e.�f( �a) = �(f(a));for all a 2 A.(iii) Let dom(f) and ran(f) be the domain and the range of f , respec-tively, and let dom( �f) and ran( �f) be the domain and the range of �f ,respectively. Then�(dom(f)) = dom( �f) and �(ran(f)) = ran( �f):Proof: (i) The fact that f is a function in V (S) and that dom(f) and ran(f)are its domain and range, respectively, can be formalized by the formula:(8z 2 f)(9x 2 A)(9y 2 B)[z = hx; yi] ^(8x 2 A)(9y 2 B)[hx; yi 2 f ] ^(8x 2 A)(8y 2 B)[(hx; yi 2 f), (y = f(x))]17



which is true in L(V (S)). The �rst line of the above formula simply saysthat \f is a relation between A and B", the second line says that \A is thedomain of f", the third line expresses the \uniqueness of the value y = f(x)for any x in A ". By Transfer Principle,(8z 2 �f)(9x 2 �A)(9y 2 �B)[z = hx; yi] ^(8x 2 �A)(9y 2 �B)[hx; yi 2 �f ] ^(8x 2 �A)(8y 2 �B)[(hx; yi 2 �f), (y = �f(x))]is true in L(V ( �S)). The above formula means nothing but that �f is afunction of the type �f : �A! �B.(ii) Suppose a 2 A and b 2 B. With the help of the Transfer Principle,we have [f(a) = b], [(a 2 A) ^ (ha; bi 2 f)],, [( �a 2 �A) ^ (h �a;� bi 2 �f)], [ �f( �a) =� b];Hence, �(f(a)) = �b = �f( �a), as required.(iii) �(dom(f)) = dom( �f) follows immediately from (i) since dom(f) =A. Observe that ran(f) is described byran(f) = fy 2 B : (9x 2 dom(f))[hx; yi 2 f ]g:Hence, it follows�(ran(f)) = fy 2 �B : (9x 2 �dom(f))[hx; yi 2 �f ]g;by Lemma 4.4. Replacing �(dom(f)) = dom( �f), we get:�(ran(f)) = fy 2 �B : (9x 2 dom( �f))[hx; yi 2 �f ]gThe latter formula means nothing but that �(ran(f)) = ran( �f), as required.N (4.16) Corollary (Functions in S): Let f : A! B be a function in theset of the individuals S, i.e. A;B � S. Then �f is an extension of f in theusual sense, i.e. �f j A = f , or �f(a) = f(a);for all a 2 A. 18



Proof: The result follows from Theorem 4.12 since �a = a and �(f(a)) =f(a) for all a 2 A, by the Extension Principle. N5. Nonstandard Real NumbersLet S = R, V (R) be its superstructure and L(V (R)) be its language. Weshall refer to V (R) as Standard Analsyis. Let V ( �R) be a nonstandard exten-sion of V (R) in the sense of De�nition (4.1) and L(V ( �R)) be its language.We shall refer to V ( �R) as Non-Standard Analsyis. Also the elements of�R as nonstandard real numbers or hyperreal numbers. Similarly, �N;�Z;�Qdenote the nonstandard extensions of N;Z;Q respectively. We call their el-ements nonstandard natural, nonstandard integer and nonstandard rationalnumbers, respectively.Let A : R�R! R, A(x; y) = x+ y, and M : R�R! R;M(x; y) = xy,be the addition and the multiplication in R, respectively. Let R+ be theset of the positive real numbers. Let �A; �M and �R+ be the nonstandardextensions of A;M and �R+, respectively. Observe that �A and �M arefunctions of the type �A : �R � �R ! �R and �M : �R � �R ! �R,respectively, by Theorem 8.4 and Theorem 9.1.(5.1) De�nition (Field Operations and Order Relation in �R): We de�nethe addition and multiplication in �R, by x+y = �A(x; y) and x�y =M(x; y),respectively. The order relation in �R is de�ned by x > 0 if x 2 �R+.(5.2) Theorem (Properties of �R): The set of nonstandard real numbers�R is a totally ordered non-Archimedean �eld which is a proper extension ofR, in symbols, R� �R; R 6= �R.Proof: Let 0 and 1 are the zero and the unit in R, respectively. The fact thatR is a totally ordered �eld can be formalized in L(V (R)) by the followingstatements:(8x 2 R)([(x+ 0 = x) ^ (x 0 = 0)](8x 2 R)(9y 2 R)[A(x; y) = 0)](8x 2 R)[M(x; 1) = x](8x 2 R)[(x 6= 0)) (9y 2 R)[M(x; y) = 1]](8x 2 R)(8y 2 R)[A(x; y) = A(y; x)](8x 2 R)(8y 2 R)[A(A(x; y); z) = A(x;A(y; z))]19



(8x 2 R)(8y 2 R)[M(x; y) =M(y; x)](8x 2 R)(8y 2 R)[M(M(x; y); z) =M(x;M(y; z))](8x 2 R)(8y 2 R)(8z 2 R)[M(A(x; y); z) = A(M(x; z);M(y; z))]0 2 R+(8x 2 R+)(8y 2 R+)[A(x; y) 2 R+) ^M(x; y) 2 R+)](8y 2 R)[(y = 0) _ (y 2 R+) _ (�y 2 R+)];where �y is the (unique) solution of the equation A(x; y) = 0 in R. ByTransfer Principle, it follows:(8x 2 �R)[(x+ 0 = x) ^ (x 0 = 0)](8x 2 �R)(9y 2 �R)[ �A(x; y) = 0](8x 2 �R)[ �M(x; 1) = x](8x 2 �R)[(x 6= 0)) (9y 2 �R)[ �M(x; y) = 1]](8x 2 �R)(8y 2 �R)[ �A(x; y) = �A(y; x)](8x 2 �R)(8y 2 �R)[ �A( �A(x; y); z) = �A(x; �A(y; z))](8x 2 �R)(8y 2 �R)[M(x; y) =M(y; z)](8x 2 �R)(8y 2 �R)[ �M( �M(x; y); z) = �M(x; �M(y; z))](8x 2 �R)(8y 2 �R)(8z 2 �R)[ �M( �A(x; y); z) == �A( �M(x; z); �M(y; z))]0 =2 �R+(8x 2 �R+)(8y 2 �R+)[( �A(x; y) 2 �R+) ^ ( �M(x; y) 2 �R+)](8y 2 �R)[(y 6= 0) _ (y 2 �R+) _ (�y 2 �R+);where �y is the (unique) solution of the equation �A(x; y) = 0 in �R.The interpretation of the above formulae mean nothing but that �R is atotally ordered �eld. On the other hand, R � �R, R 6= �R follows fromCorollary 4.8 (applied for A = S = R), since R is an in�nite set. Thus, �Rturns out to be a proper totally ordered �eld extension of R. It follows that20



�R is a non-Archimedean �eld (any proper totally ordered �eld extension ofR is non-Archimedean). NLet I( �R); F( �R) and L( �R) denote, as usual, the sets of the in�nites-imals, �nite and in�nitely large numbers in �R, respectively. Recall that� 2 I( �R) if j � j< 1=n for all n 2 N, � 2 F( �R) if j � j< n for some n 2 N,and � 2 L( �R) if j � j> n for all n 2 N. The in�nitesimal relation in �R isde�ned by: If �; � 2 �R, then � � � if � � � 2 I( �R). Notice that (as inany totally ordered �eld) we have�R= F( �R) [ L( �R); F( �R) \ L( �R) = ;;I( �R) � F( �R); R� F( �R);R\ I( �R) = f0g;L( �R) = f1=x : x 2 I( �R); x 6= 0g:The fact that �R is a non-Archimedean �eld means that �R has non-zeroin�nitesimals and in�nitely large elements, in symbols, I( �R) n f0g 6= ;and L( �R) 6= ;. Recall also that (as in any totally ordered �eld), F( �R)is a convex Archimedean integral domain (totally ordered Archimedean ringwithout zero divisors) and I( �R) is a convexmaximal ideal in F( �R). Hence,the factor space F( �R)=I( �R) is a totally ordered Archimedean �eld. Recallfurther that (as in any totally ordered �eld) we havefr + h : r 2 R; h 2 I( �R)g � F( �R);and �a+ hb+ g : a; b 2 R; h; g 2 I( �R)� � �R:Observe that � 2 F( �R) in � = r + h determines uniquely r 2 R andh 2 I( �R), due to (5.5). In addition, the order completeness of R impliesthat the inclusions in (5.7) and (5.8) are, actually, equalities:(5.9) Theorem: We have the following characterizations of F( �R) and �R:(i) F( �R) = fa+ h : a 2 R; h 2 I( �R)g.(ii) �R= �a+ hb+ g : a; b 2 R; h; g 2 I( �R)�.Proof: (i) Suppose � 2 F( �R). We have to show that � = a+ h for somea 2 R, h 2 I( �R). Let a = supfx 2 R : x < �g and h = � � a. Noticethe order completeness of R guaranties the existence of a. It su�ces to showthat h 2 I( �R). Suppose (for contradiction) that h =2 I( �R), i.e. there21



exists " 2 R+ such that " < j� � aj. If � � a > 0, then we have a+ " < �contradicting the fact that a is an upper bound of the set fx 2 R : x < �g.If � � a < 0, then we have � < a� ", contradicting the maximality of a.(ii) follows immediately from (i) and �R = F( �R) [ L( �R). Indeed,suppose that � 2 �R. If � is a �nite number, then � = a + h, by (i), thus,� = a+ hb+ g for b = 1 and g = 0. If � is an in�nitely large number, then� = a+ hb+ g for a = 1; h = 0; b = 0 and g = 1=�.(5.10) De�nition (Standard Part): We de�ne the standard part mappingst : �R ! R [ f�1g by st(a + h) = a if a 2 R and h 2 I( �R) and byst(�) = �1 if � 2 L( �R); � > 0 or � < 0, respectively.(5.11) Lemma:(i) � 2 F( �R) i� st(�) 2 R and in this case we have the (unique)presentation: � = st(�) + hfor some h 2 I( �R). Or, equivalently, every �nite number � 2 F( �R) isin�nitely close to a unique real number st(�), in symbols, � � st(�).(ii) The totally ordered �eld F( �R)=I( �R) is isomorphic to R under themapping q(�)! st(�), where q : F( �R)! F( �R)=I( �R) is the correspond-ing quotient mapping.Proof: Both (i) and (ii) are simple reformulatings of the previous resulttaking into account that R� �R. N(5.13) Theorem (Properties of st): Let �; � 2 F( �R). Then we have:(i) � � � i� st(�) = st(�). In particular, � 2 I( �R) i� � � 0 in �R i�st(�) = 0 in R.(ii) st(� � �) = st(�) � st(�).(iii) st(��) = st(�)st(�);(iv) st(�=�) = st(�)=st(�) whenever st(�) 6= 0.(v) st(�n) = (st(�))n for all n 2 N.(vi) st( np�) = npst(�); n 2 N, whenever np� exists in �R. In moredetails, if n is odd, then the above equality holds for all � 2 �R, while thecondition st(�) > 0 is required in the case of even n.22



(vii) If � 6� �, then � < � i� st(�) < st(�). As a result, � � � in �Rimplies st(�) � st(�) in R.Proof: The properties (i)-(iii) follows immediately from the de�nition ofst. To show (iv), apply st to both sides of � = �(�=�). It follows st(�) =st(�)st(�=�), by (iii), which implies (iv). The property (v) follows from (iii)by induction. To show (vi), notice that � = np� is equivalent to �n = �.Thus, applying (v), we have (st(�))n = st(�), which is equivalent to st(�) =npst(�), as required. Finally, (vii) follows directly from the convexity ofI( �R). N(5.14) Example (Functions): Let f : R+ ! R be de�ned by f(x) = ln(x).For the nonstandard extension we have �f : �R+ ! �R is de�ned by �f(x) =� ln(x) (Theorem 4.12). In other words, � ln(x) is well de�ned on �R+ andfor any y 2 �R the equation y = � ln(x) has a (unique) solution x in �R+.In particular � ln(x) is well de�ned for all positive in�nitesimals in �R (andthe value of � ln(x) is a negative in�nitely large number). Finally, � ln is anextension of ln, i.e. � ln(x) = ln(x) for all x 2 R+ (Corollary 4.15).CHAPTER II. NONSTANDARD AND STANDARD COMPACT-IFICATIONS OF TOPOLOGICAL SPACESWe use the nonstandard methods to construct all Hausdor� compacti�ca-tions of a given topological space (X;T ). This result is a generalization of anearlier work by K.D. Stroyan [21] about the compacti�cations of completelyregular spaces. We also describe the Hewitt realcompacti�cation which seemsto be treated here for the �rst time in the nonstandard literature.There are a vast nonstandard works done on the Hausdor� compacti�-cations: A. Robinson [17]-[18], W.A.J. Luxemburg [14], M. Machover and J.Hirschfeld [15], K.D. Stroyan [21], K.D. Stroyan and W.A.J. Luxemburg [22],H. Gonshor [4] and L. Haddad [5] and others. We believe that our descriptionof the Hausdor� compacti�cations, in particular, the Stone-�Cech compacti-�cations of (X;T ) is noticeably simpler than those both in the standard andnonstandard literature mostly due to the fact that we manage to avoid in-volving the weak topology both on the initial space and its compacti�cation.Our technique can be shortly described as follows: To any topologicalspace (X;T ) we attach its nonstandard compacti�cation ( �X;s T ), where�X is the nonstandard extension of X supplied with the standard topol-ogy sT , generated by all sets of the form �G, where G 2 T . The stan-23



dard topology sT is courser than the discrete S-topology on �X, (knownalso as LS-topology, where L stands for Luxemburg) with basic open sets:�P(X) = f �S : S 2 P(X)g, introduced byW.A.J. Luxemburg ([14], p.47 andp.55) for a similar purpose. Our space ( �X;s T ) is compact (non Hausdor�)and every continuous function f on (X;T ) has a unique continuous exten-sion on ( �X;s T ). In contrast to the case of the discrete S-topology, however,( �X;s T ) contains (X;T ) densely. These properties of ( �X;s T ) simplify es-sentially our next steps: We supply the nonstandard hull bX� = eX�= ��with the quotient topology bT , and show that the space ( bX�; bT ) is Hausdor�.Here, the set of the � - �nite points eX� � �X and the equivalence relation\��" are speci�ed by a family of continuous functions � and, thus, changing� � Cb(X;R), we describe in a uniform way all Hausdor� compacti�cationsof (X;T ) as well as the Hewitt realcompacti�cation of (X;T ). If � consists ofbounded functions only, we have eX� = �X and bX� = q[ �X], thus, the com-pactness of bX� follows simply with the argument that the continuous imageof a compact space is compact. In particular, when � = Cb(X;R) we obtainthe Stone-�Cech compacti�cation �(X;T ) of (X;T ) and when � = C(X;R)we obtain the Hewitt real compacti�cation �(X;T ) of (X;T ).We should mention that a technique based on the nonstandard com-pacti�cation ( �X;s T ) of (X;T ) has already been successfully exploited forstudying the compacti�cations of ordered topological spaces by the authorsof this paper (S. Salbany, T. Todorov [19]-[20]).We shall use as well the terminology of (J.L. Kelley [12]) and (L. Gillmanand M. Jerison [3]). For the connection between the standard and nonstan-dard methods in topology we refer to (L. Haddad [5]).1. Preliminaries: Monads and Their Basic Properties.We shall brie
y recall the de�nition of monads and some of their prop-erties. For the original sources we refer to (A. Robinson [17]) and (K.D.Stroyan and W.A.J. Luxemburg [22], Chapter 8). For the general theory ofmonads, we refer to W.A.J. Luxemburg [14] and K.D. Stroyan [21].Let (X;T ) be a topological space. In order to apply nonstandard methodswe need the superstructure V (S) over some set S such that S = X [R (thechoice S � X [R also will do), and a �-saturated nonstandard model V ( �S)of S with � > cardT (Chapter I, Section 2). Sometimes we shall considertwo topological spaces (X;T ) and (X 0; T 0). In this case we shall assume that24



S = X [X 0 [R (or S � X [X 0 [ R) and� > max(card T; cardT 0):Any polysaturated model will cover all those cases (Chapter I, De�nition2.8). We shall often refer to the Extension, Transfer and Saturation Princi-ples (Chapter I, Section 2 as Axiom 1-3, respectively), and also the BooleanProperties of the extension mapping (Theorem I.4.2).(1.1) De�nition (Monads) : Let (X;T ) be a topological space and �X bethe nonstandard extension of X. Then:(i) For any � 2 �X de�ne the monad �(�) of � by(1:2) �(�) =\f �G j � 2 �G; G 2 Tg:(ii) For any A � �X de�ne(1:3) �(A) =\f �G j A 2 �G; G 2 Tg:The monad of a set A is obviously a generalization of the monad at apoint � when A = f�g for some � 2 �X. We use the same notation forboth. Also for any A � X we have(1:4) �(A) = �( �A):The following properties of monads follow almost directly from the de�nition.(1.5) Lemma: If A;B � �X, then:(i) A � �(A).(ii) A � B implies �(A) � �(B).(iii) �(�(A)) = �(A).The above lemma shows that the monad of a set is a generalized closureoperator in �X (see e.g. P.C. Hammer [6] and K.D. Stroyan [21], Section 2).(1.6) Corollary: For any A � �X and any �; � 2 �X:(i) � 2 A implies �(�) � �(A).(ii) � 2 �(�) i� �(�) � �(�).(iii) � 2 �(�) and � 2 �(�) i� �(�) = �(�).25



Proof: (i) follows from (1.5)-(ii) by A = f�g; (ii) follows from (1.5)-(ii)and (1.5)-(iii). Indeed, � 2 �(�) implies f�g � �(�) which implies �(�) ��(�(�)) = �(�). The converse is clear; (iii) follows directly from (ii). N(1.7) Theorem (Balloon and Nuclei Principles): Let (X;T ) be a topologicalspace, x 2 X, and �(x) be the monad of x at (X;T ).(i) Balloon Principle : If �(x) � B for some internal set B � �X, thenthere exists G 2 T such that �(x) � �G � B (ballooning of �(x) into �G).(ii) Nuclei Principle : There exists an internal set A � �X such thatx 2 A � �(x). The set A is called a nuclei of �(x).Proof: (i) Suppose not, i.e. �G � B 6= ; for all G 2 T; x 2 G. Observe thatthe family of sets f �G�BgG2T;x2G ; has the �nite intersection property since( �G1 � B) \ ( �G2 �B) = �(G1 \ G2)� B. It follows�(x)�B = \x2G2T( �G �B) 6= ;;by Saturation Principle, sincecardfG : x 2 G 2 Tg � cardT � �;by the choice of the nonstandard model. But �(x) � B 6= ; contradicts ourassumption.(ii) De�ne the family fSGgx2G2T , where SG = fH 2 T : x 2 H 2 Gg,and observe that it has the �nite intersection property since G 2 SG, thus,SG 6= ;, and, on the other hand, SG1 \ SG2 = SG1\G2. It follows that thereexists A in the intersection \x2G2T �SG;by the Saturation Principle. On the other hand, observe that�SG = fH 2 �T : x 2 H � �Gg:Thus, A is internal (as an element of �T ) and A � �(x), as required. NThe next result is due to A. Robinson ([17], Theorem 4.14., p.90):(1.8) Theorem (A. Robinson):(i) Let (X;T ) be a topological space and let x 2 H � X and x 2 X.Then x is an interior point of H in (X;T ) i� �(x) � �H. Consequently, His open in (X;T ) i� �(x) � �H for all x 2 H.26



(ii) A set F � X is closed in (X;T ) i� �F \ �(x) 6= ; implies x 2 F forany x 2 X.(iii) Let A � X and clX(A) be the closure of A in (X;T ). Then(1:9) clX(A) = fx 2 X : �A \ �(x) 6= ;g:Proof: (i) ()) If x is an interior point of H, then �(x) � �H, by thede�nition of �(x).(() Suppose (for contradiction) that x is not an interior point of H, i.e.G � H 6= ; for all G such that x 2 G 2 T . Observe that the family ofsets fG �Hgx2G2T has the �nite intersection property. It follows that thefamily of internal (actually, standard) sets f �G � �Hgx2G2T has the �niteintersection property, since �(G�H) = �G� �H, by the Boolean Properties.(Theorem I.4.2) It follows that its intersection �(x) � �H is non-empty, bythe Saturtion Principle, a contradiction.(ii) Suppose (for contradiction) that x 2 X�F . We have �(x) � �X� �F ,by the above theorem, since X �F is open, by assumption, and �X � �F =�(X � F ), by Theorem I.4.2. It follows �(x) \ �F = ;, a contradiction.(iii) (�) Let x 2 clX(A), i.e. x 2 F for all F such that A � F � X,X � F 2 T . Suppose (for contradiction) that �A \ �(x) = ;. Then, by theBalloon Principle (applied for B = �X � �A), there exists G 2 T , x 2 G,such that �A \ �G = ;. Thus, we have �A � �(X�G), implyingA � X�G,by the Boolean Properties. Hence, it follows x 2 X �G, by our assumption(since X �G is a closed set), a contradiction.(�) Let x 2 X and �A \ �(x) 6= ;. We have to show that x 2 F for allF such that A � F � X and X � F 2 T . Suppose (for contradiction) thatx =2 F for some F such that A � F � X and X � F 2 T . It follows thatx 2 X � F . On the other hand, A � F implies �A � �F , by the BooleanProperties. Hence, �A \ ( �X � �F ) = ;, which implies �A \ �(x) 6= ;(because �A \ �(x) � �A \ ( �X � �F )), a contradiction. N(1.10) De�nition (Nearstandard Points and Standard Part): Let (X;T ) bea topological space and �(x), x 2 X, be its monads.(i) If A � X, then the points in the union eA = [x2A �(x) are callednearstandard points of �A. In particular, the points in eX = [x2X �(x) arecalled nearstandard points of �X.(ii) Assume, in addition, that (X;T ) is a regular Hausdor� space. Thenthe mapping stX : eX ! X, de�ned by stX(�) = x; � 2 �(x), is called27



standard part mapping.Notice that the assumption that (X;T ) is a regular Hausdor� space guar-antees the correctness of stX (the uniqueness of x). We shall often skip thesubindex and write simply st if no confusion could arise.(1.11) Examples:1. Let (R; � ) be the space of the real numbers supplied with the usualtopology � . Then the nearstandard points are, actually, the �nite points, insymbols, eR= F( �R) and st(�) = x, for � 2 F( �R), x 2 R, � � x.2. Let (I; � ), where I = (a; b) = fx 2 R : a < x < bg. Then thenearstandard points areeI = fx 2 �R : a < x < b; x 6� a; x 6� bgand, as before, st(�) = x, for � 2 eI; x 2 R; � � x.3. This example illustrates the Nuclei Principle: Let x 2 I and �(x) =f� 2 �R : � � xg be the monad of x in (I; � ). Let � 2 �R, � > 0, � � 0, be apositive in�nitesimal, and observe that the setA = f� 2 �R :j � � x j< �g:is internal, by Theorem I.4.10. It follows that A is a nuclei of �(x) since(obviously) x 2 A � �(x).(1.12) Corollary: Let A � R and let clR(A) be the closure of A in (R; � ),where � is the usual topology of R. Then(i) clR(A) = fx 2 R : st(�) = x for some � 2 �Ag == fx 2 R : x � � for some � 2 �Ag.(ii) If A is bounded in R, then clR(A) = st[ �A].Proof: (i) clR(A) = fx 2 R : �A \ �(x) 6= ;g == fx 2 R : st(�) = x for some � 2 �Ag:(ii) There exists b 2 R for wich the formula�(A; b) = (8x 2 A)( jxj � b)is true in L(V (R)). It follows that the formula�( �A; b) = (8x 2 �A)( jxj � b)28



is true in L(V ( �R)), by Transfer Principle, since �b = b, by Extension Prin-ciple. The latter implies that �A � F( �R), thus, st[ �A] is well de�ned. Onthe other hand,st[ �A] = fst(�) : for some � 2 �Ag == fx 2 R : x = st(�) for some � 2 �Ag = clR(A);by (i). N(1.13) Lemma:(i) Let A;B � �X. Then �(A) \ �(B) = ; i� there exist open disjointsets G and H such that A � �G and B � �H.(ii) Let �; � 2 �X. Then �(�) \ �(�) = ; i� there exist open disjointsets G and H such that � 2 �G and � 2 �H .Proof: (i) Let �(A) \ �(B) = ; and suppose that G \ H 6= ; for all openG and H such that A � �G and B � �H. By the Saturation Principle(Chapter I, Section 2, Axiom 3), we have�(A) \ �(B) = \f�(G \H) : G;H 2 T; A � �G and B � �Hg 6= ;which is a contradiction. The converse follows immediately;(ii) follows directly from (i) by lettingA = f�g and B = f�g. NWe shall have occasion to use other monads: Following (K.D. Stroyanand W.A.J. Luxemburg [12], p. 195) , we state:(1.14) De�nition (General Monads): Let X be a set and E be a ring ofsubsets of X. Then for any � 2 �X and any A � �X we de�ne the E-monadsof � and A, respectively, by:�E(�) = \f �G : G 2 E ; � 2 �Gg; ;�E(A) = \f �G : G � E ; A � �Gg; :In the particular case of E = T , where T is a topology of X, we obtain�T = �.As in the previous lemma we have:(1.15) Lemma: Let X be a set and E be a ring of subsets of X and A;B ��X. Then �E(A) \ �E(B) = ; i� there exist disjoint G;H 2 E such thatA � �G and B � �H. 29



2. Nonstandard Compacti�cationBy �X and �R we denote the nonstandard extensions of X and R, re-spectively. If G � X and A � R, then �G � �X and �A � �R will be thenonstandard extensions of G and A, respectively (De�nition I.2.4). For themore general concept of internal set we refer again to (De�nition I.2.4). Let(X;T ) and (X 0; T 0) be two topological spaces and f : X ! X 0 be a function.Then �f : �X ! �X 0 will be the nonstandard extension of f (TheoremI.4.12).(2.1) Notations: Let (X;T ) be a topological space. Then, a simple obser-vation shows that the collection of sets:(2:2) �T = f �G : G 2 Tgforms a base for a topology in �X. We shall denote this topology by sT andthe corresponding topological space by ( �X; sT ). Notice that the collectionof sets:(2:3) F = f �F : X � F 2 Tgforms a base of the closed sets of �X in ( �X; sT ).(2.4) De�nition(Nonstandard Compacti�cation): Let (X;T ) be a topolog-ical space and ( �X; sT ) be the corresponding topological space de�ned asabove. Then:(i) sT will be called the standard topology on �X.(ii) The topological space ( �X; sT ) will be called the nonstandard com-pacti�cation of (X;T ).The designation standard topology for sT arises from the fact that, in theliterature on nonstandard analysis, all sets of the type �G, where G � X,are called \standard sets" (even though �G is, in fact, a subset of �X; seeDe�nition I.2.4).The terminology nonstandard compacti�cation is justi�ed by the followingresult:(2.5) Theorem: Let (X;T ) be a topological space and ( �X; sT ) its non-standard compacti�cation (in the sense of the above de�nition). Then:(i) Every internal subset A of �X is compact in ( �X; sT ).(ii) ( �X; sT ) is a compact topological space and (X;T ) is a dense sub-space of ( �X; sT ). 30



Proof: There are two ways to prove this: 1) W.A.J. Luxemburg has shownthat �X and all internal subsets of �X are compact with respect to the\discrete S-topology" on �X (known also as LS-topology, where L standsfor Luxemburg) with basic open sets�P(X) = f �S : S 2 P(X)g(W.A.J. Luxemburg [14], Theorem 2.5.4, p.47 and Theorem 2.7.10, p.55).Now, the above statement follows from these results and the fact that thediscrete S-topology is �ner than the standard topology sT .2) An alternative simple proof follows:(i) Let f �Fi 2 F : i 2 Ig be a family of basic closed sets in �X such thatthe family f �Fi \ A : i 2 Ig has the �nite intersection property. Then, bySaturation Principle (Chapter I, Section 2, Axiom 3),\i2I �Fi \ A 6= ;;which proves that A is compact.(ii) The compactness of ( �X; sT ) follows from (i) as a particular casefor A = �X. The original space (X;T ) is a subspace of ( �X; sT ) since�G \X = G for any G � X, by Corollary I.4.8, hence T = f �G\X : G 2 Tg.To show the denseness of (X;T ), notice that �G \X = G 6= ; for any basicopen set �G 6= ;; G 2 T . The proof is complete. NIt will be shown in the next chapter that ( �X; sT ) is a T0 - space i� Xis �nite. On the other hand, if X is �nite, then we have (X;T ) = ( �X; sT )(Theorem I.4.6).(2.6) Lemma: For any H � X we have:(i) �(clXH) = cl �X( �H) where \clX" and \cl �X" are the closure operatorsin (X;T ) and ( �X; sT ), respectively.(ii) �(intXH) = int �X( �H) where \intX" and \int �X" are the interioroperators in (X;T ) and ( �X; sT ), respectively.Proof: We shall prove (i) only: We have�(clXH) �\f �F : �(clXH) � �F; X � F 2 Tg ==\f �F : (clXH) � F; X � F 2 Tg = \f �F : H � F; X � F 2 Tg ==\f �F : �H � �F; X � F 2 Tg = cl �X( �H):31



On the other hand,H � clXH implies �H � �(clXH) which implies cl �X( �H)� �(clXH) since �(clXH) is closed in ( �X; sT ). The proof is complete. N(2.7) Theorem (Continuity): Let (X;T ) and (X 0; T 0) be two topologicalspaces and let ( �X; sT ) and ( �X 0; sT 0) be their nonstandard compacti�ca-tions. If the function(2:8) f : (X;T )! (X 0; T 0)is continuous, then its nonstandard extension:(2:9) �f : ( �X; sT )! ( �X 0; sT 0)is also continuous.Proof: For any G0 2 T 0 we have �G0 2 �T 0 and �f�1[ �G0] = �(f�1[G0]) 2�T , by (Theorem I.4.12). Now, the result follows since �T and �T 0 are basesfor sT and sT 0, respectively. NNote: It is clear that �(f � g) = �f � �g and �(1X) = 1 �X , so that thecorrespondence described above is functorial.(2.10) Theorem (Standard Part): Let � be the usual topology of R and( �R; s� ) be the corresponding nonstandard compacti�cation of (R; � ). Thenthe standard mapping:(2:11) st : (F( �R); s� )! (R; � )is continuous, where F( �R) denotes, as usual, the set of the �nite numbersin �R (De�nition 1.10).Proof: Let � 2 F( �R) and st(�) = x 2 R. Let Gx 2 � be an openneighbourhood of x in (R; � ) and letG 2 � be an open bounded neighourhoodof x in (R; � ) such that cl(G) � Gx where cl(G) is the closure of G in (R; � ).Then �G will be an open neighbourhood of � in ( �R; s� ) since � 2 �(x) ��G. Moreover, we have st[ �G] = cl(G) � Gx by Corollary (1.12). That is,\st" is continuous at � and therefore on the whole F( �R). NThe next result is a generalization of Theorem (2.10).(2.12) Theorem: Let (X;T ) be a regular Hausdor� space and ( �X; sT ) beits nonstandard compacti�cation. Then the standard part mapping:(2:13) st : ([x2X �(x); sT )! (X;T )32



is continuous (De�nition 1.10).(2.14) Notation: By C(X;R) and Cb(X;R) we shall denote the class ofall \continuous" and \continuous and bounded" functions of the type f :(X;T ) ! (R; � ), respectively, where (X;T ) is a topological space and � isthe usual topology on R.(2.15) Theorem: Let (X;T ) be a topological space and ( �X; sT ) its non-standard compacti�cation. Then, for any f 2 C(X;R) both mappings:(2:16) �f : ( �X; sT )! ( �R; s� )and(2:17) �f = st � �f : ( eXf ; sT )! (R; � )are continuous, where(2:18) eXf = f� 2 �X : �f(�) is a �nite number in �Rg:Also, �f is the unique real-valued continuous extension of f to eXf .Proof: The continuity of �f follows directly from Theorem (2.7) for X 0 = Rand T 0 = � and continuity of st � �f follows from Theorem (2.10). Thefunction �f is unique, since X is dense in eXf , by Theorem (2.5). NNote: The above result remains also true if the target space (R; � ) is replacedby a regular Hausdor� space (X 0; T 0).According to the notations introduced in (2.14), C( �X;R) will be theclass of all real valued continuous functions de�ned on �X. If f 2 C( �X;R),we shall denote by r(f) the restriction of f on X.As a consequence of Proposition (2.5), the next result shows that C( �X;R)and Cb(X;R) are isomorphic as rings under the restriction map r.(2.19) Theorem: Let (X;T ) be a topological space and ( �X; sT ) its non-standard compacti�cation. Then(i) For any f 2 C( �X;R), we have f = st � �(r(f)).(ii) r : C( �X;R)! Cb(X;R) is a ring isomorphism.Proof: (i) Given a continuous f : ( �X; sT )! (R; � ), it follows that r(f) iscontinuous and bounded, since f is necessarily bounded as �X is compact.Then f and st � �(r(f)) are two continuous functions to a Hausdor� spacewhich coincide on the dense subset X; hence the functions are equal on �X.33



(ii) It is clear that r is a ring homomorphism and so is s = st � � :Cb(X;R) ! C( �X;R). Also, (i) shows that s � r = 1 and it is clear thatr � s = 1. NUsing the \standard" theorem of M. H. Stone that C(X;R) determinescompletely the compact Hausdor� space X, we obtain the nonstandard ver-sion which could also have been proved directly (with no improvements orsimpli�cations).(2.20) Theorem: Let X and Y be compact Hausdor� spaces for whichC( �X;R) and C(�Y;R) are isomorphic. Then X and Y are homeomorphic.3. Nonstandard HullsAs we show in the �rst section, every topological space (X;T ) can beembedded as a dense subspace of its nonstandard compacti�cation ( �X; sT ),having the property that any real valued continuous function f : (X;T ) !(R; � ) has a unique continuous extension:(3:1) �f : ( eXf ; sT )! (R; � ):given by �f = st � �f , where eXf is de�ned in (2.18). The space ( �X; sT ) isHausdor� only when X is �nite and Hausdor�.Following the \nonstandard hull construction" (W.A.J. Luxemburg [14]),we shall consider the factor space :(3:2) X̂� = eX� = ��indentifying points of a given subset eX� of �X under an equivalence relation\��". We shall specify eX� and �� in terms of a given family of real valuedcontinuous functions � � C(X;R).(3.3) De�nition: Let � � C(X;R). Then :(i) eX� consists of all points � in �X such that �f(�) is a �nite numberin �R for all f 2 �. The points in eX� will be called \�-�nite".(ii)Two points � and � in eX�, are called �-equivalent, written as � �� �,if �f(�) � �f(�) for all f 2 � , where � is the in�nitesimal relation in�R.(iii) The factor space eX� will be given the quotient topology bT . Thecorresponding topological space ( bX�; bT ) will be called \the nonstandard�-hull of (X;T )". 34



(iv) For every f 2 �, there is a well de�ned mappingbf : bX� ! R;given by bf � q = �f , where q is the quotient mapping from eX� onto bX�.The following result establishes a connection between the monads of thespace (X;T ) and the equivalence relation ��.(3.4) Lemma: �(x) � q(x) for any x 2 X. When the family � distinguishespoints and closed sets in X, then �(x) = q(x) for all x in X.Proof: �(x) � q(x) follows immediately from the fact that all f in � arecontinuous and therefore, �f(�) � �f(x) = f(x) for all � 2 �(x). Let �distinguish points and closed sets, i.e. for each closed F � X and x 2 X�F ,g(x) =2 cl g[F ] for some g 2 �. Let � 2 q(x), i.e. � �� x, which means�f(�) � f(x) for all f 2 �. We have to show that � 2 �(x). Suppose (forcontradiction) that � 62 �G for some open neighbourhood G of x in (X;T )and choose F = X�G. There exists g 2 � which distinguishes x fromX�Gin the sense that g(x) =2 clR(g[X �G]). On the other hand, we haveclR (g[X �G]) = fy 2 R : y � �g(�) for some � 2 �X � �Gg;by Corollary 1.12, since �(g[X �G]) = �g[ �X � �G], by Theorem I.4.12. Itfollows �g(�) 6� g(x), contradicting � �� x. NIt should be noted that not all topological spaces (X;T ) admit families ofcontinuous real valued functions � which distinguish points and closed sets.The spaces which admit � with this property are the completely regular ones(J.L. Kelley [12]).(3.5) Theorem: The quotient mapping q : eX� ! ( bX�; bT ) maps X onto adense subset of ( bX�; bT ).Proof: X is dense in ( �X; sT ), by Theorem (2.5), hence, dense in eX�.Therefore, q[X] is dense in q[ eX�] = bX�, by continuity. N(3.6) Theorem: For every f 2 �, the mapping(3:7) bf : ( bX�; bT )! (R; � )is continuous and bf is the unique real-valued continuous extension of f tobX�, in the sense that(3:8) f(x) = bf(q(x)); x 2 X:35



Proof: As remarked above bf is well de�ned on bX�. Since ( bX�; bT ) has thequotient topology induced by q; bf is continuous i� bf � q is continuous. Now,bf � q = �f is continuous by Theorem (2.15). Finally, f(q(x)) = �f(x) =(st � �f)(x) = st( �f(x)) = f(x). The function bf is unique, since q[X] is adense subset of bX�, by Theorem (3.5). The proof is complete. N(3.9) Theorem: Let X;T ) be a topological space and � � C(X;R). Thenthe corresponding �-hull ( bX�; bT ) is a Hausdor� space.Proof: Let a; b 2 bX� be two distinct points. Then there are points �; � in eX�such that q(�) = a, q(�) = b and a function f 2 � for which �f(�) � �f(�).Then bf(a) 6= bf(b) in R, so there are disjoint open sets in R, U and V , withbf(a) 2 U , bf(b) 2 V . Now bf is continuous, so a 2 bf�1[U ], b 2 bf�1[V ], asrequired. NWe consider now some particular cases for the family � and the initialtopological space (X;T ). First, we obtain the Hausdor� compacti�cations of(X;T ).(3.10) Theorem: If � � Cb(X;R), then:(i) eX� = �X.(ii) ( bX�; bT ) is a compact space containing a continuous image of (X;T ).Proof: (i) � � Cb(X;R) implies eX� = �X since for bounded functions f allvalues of �f are �nite numbers in �R.(ii) follows immediately from Theorem (3.5) and the fact that the contin-uous image q[ �X] of a compact space �X is compact. N(3.11) Corollary: Let (X;T ) be a completely regular Hausdor� space andlet the family � distinguish the points and the closed sets in (X;T ). Then(X;T ) is homeomorphic to its image in ( bX�; bT ), in symbols, X � bX�, andfor any f in � we have(3:12) bf (x) = f(x); x 2 X:Proof: Since � distinguishes the points and the closed sets in (X;T ), wehave q(x) = �(x) for any x 2 X, by Lemma (3.4). Also q(x) = q(y) if andonly if x = y for any x; y 2 X, since (X;T ) is Hausdor�. That means thatthe quotient mapping q is one to one. Let s from X � bX� to X � eX� be theinverse of q. Now, (X;T ) is a completely regular space so s is continuous if36



and only if f � s is continuous for all f 2 �. But f � s = f j X. The formula(3.12) follows immediately from (3.8). The proof is complete. NIt is instructive to illustrate the above proceedure for special families �.(3.13) Examples:1. If � is empty, then eX� = �X, all points are equivalent and bX� reducesto a single point.2. Consider � = fidg, where id : (R; � ) ! (R; � ) is the identity map.Then eX� is F( �R) and � �� � i� �; � 2 �(x) for some x 2 R. We have( bX�; bT ) = (R; � ).3. Again, consider (R; � ) and � = fsinx; cosxg. Then eX� = �R, � � �i� j���j � 2k� for some k 2Zand q[R] is, topologically, the circle f(x; y) :x2 + y2 = 1g with the Euclidean topology. Thus, bX� = q[R].4. If � consists of all real valued bounded functions on X, then ( bX�; bT )is the Stone-�Cech compacti�cation of (X;T ).5. If � consists of all real valued continuous functions on X, then ( bX�; bT )is the Hewitt realcompacti�cation of (X;T ).Both no. 4. and no. 5. will be established in the next sections.(3.14) Theorem: If � is Cb(X;R) or C(X;R), then � and C( bX�;R) areisomorphic as rings (for the notation see (2.14)).Proof: For each f in � we have shown that bf is continuous and f = bf � qon X. This de�nes a map ' : � ! C( bX�;R). This map is injective, sincebf1 = bf2 gives bf1 � q = bf2 � q, i.e. f1 = f2. It is surjective, for supposeg : ( bX�; bT ) ! (R; � ). Let f be the restriction of g � q to X. We showthat g = bf . This will follow from g � q = bf � q on X. For x 2 X we have(g � q)(x) = f(x), by the de�nition of f ; also ( bf � q)(x) = f(x) by de�nitionof bf . Hence g = bf . Finally, ' is a ring isomorphism. We verify only oneproperty: '(f1+ f2) = '(f1) +'(f2) i� '(f1+ f2) � q = '(f1) � q+'(f2) � qon X i� (f1+ f2)^ � q = bf1 � q + bf2 � q on X i� f1+ f2 = f1 + f2 on X. Theproof is complete. N4. Stone - �Cech Compacti�cation: The Case � = Cb(X;R)Let (X;T ) be a topological space and let �, which appears in De�nition(3.3), be the class of continuous bounded real valued functions de�ned on X,37



i.e. � = Cb(X;R). In this particular case we have eX� = �X, by Proposition(3.10). Throughout this section we shall write simply � and eX (suppressingthe index �) instead of the more precise \�� and bX� for � = Cb(X;R)",respectively. In this notation, for the nonstandard hull we have: bX = �X= �,where � � � in �X i� �f(�) � �f(�) for all f in Cb(X;R). Let ( bX; bT ) bethe corresponding topological space (De�nition (3.3)).(4.1) Theorem: ( bX; bT ) coincides with the Stone-�Cech compacti�cation �Xof (X;T ).Proof: The space bX is Hausdor� and compact, by Theorem (3.9) and Theo-rem (3.10), respectively. Also, q[X] is a dense subset of bX by Theorem (3.5),which immediately implies the uniqueness of all continuous extensions bf off (Theorem (3.6)). These properties characterize �X. N(4.2) Corollary: (Completely Regular Hausdor� Space): Let (X;T ) be acompletely regular Hausdor� space. Then (X;T ) is homeomorphic to itsimage in ( bX; bT ), in symbols, X � bX, and for any f in Cb(X;R) we havebf(x) = f(x) for all x 2 X.Proof: Since (X;T ) is completely regular, the family Cb(X;R) distinguishesthe points and closed sets in X. Now, the result follows directly from Corol-lary (3.11). NCompared with other nonstandard expositions of the Stone-�Cech compacti-�cation ([4], [10], [14], [15], [17], [18], [21], [22]) we wish to emphasize that wedo not use the weak topology neither on X, nor on bX. Continuous functionsfrom Cb(X;T ) are only used to de�ne the equivalence relation in �X.5. All Compacti�cationsLet (X;T ) be a topological space. A compact Hausdor� space (K;L) isa \compacti�cation of (X;T )" if there is a continuous function  : (X;T )!(K;L) such that  [X] is dense in (K;L).This de�nition includes the more familiar and restrictive de�nition of aHausdor� compacti�cation of a completely regular space (X;T ) as one thatcontains (X;T ) as a dense subspace.The purpose of this section is to show that all Hausdor� compacti�cationsof (X;T ) can be obtained as nonstandard hulls in the manner described inSection 3. 38



The question of obtaining all compacti�cation of a given completely reg-ular Hausdor� space, in the more restricted sense mentioned above, has beenconsidered by K.D. Stroyan [21] in terms of an in�nitesimal relation inducedin the category of totally bounded uniform spaces. In our approach the re-lation is purely topological and the given compacti�cation is �X= �� forsuitable �.Consider a Hausdor� compacti�cation (K;L) of (X;T ) with a continuousmap  : X ! K with dense range, we shall keepX;K and  �xed throughoutthe following discussion.There is the continuous extension � : ( �X; sT )! ( �K; sL) (Proposition(1.7)) and the continuous standard map function stK : ( �K; sL) ! (K;L)(De�nition (1.10)), so that 	 : ( �X; sT ) ! (K;L);	 = stK � � , gives acontinuous extension of  (on X) to �X. Moreover, if f : (K;L) ! (R; � )is continuous function, then �f : ( �K; sL) ! ( �R; s� ) is continuous andf � stK = stR � �f , since �f [�(x)] � m(f(x)), where � and m are themonads of the spaces (X;T ) and (R; � ) respectively. This situation is bestsummarized in the commutative diagram that follows:(5:1) � �f�X @@@@R���! �K ���! �R�x???? 	 ????ystK ????ystRX ���! K ���! R f(5.2) De�nition (The Family �): Let � consist of all f �  ; f 2 C(K;R)(for the notation see (2.14)).Thus, � consists of all real valued continuous g on (X;T ) which have an\extension" f to (K;L) in the sense f is continuous and g = f �  .Observe that � � Cb(X;R), so that � determines an equivalence relation\��" and eX� = �X such that ( bX; bT; ) is a Hausdor� compacti�cation of(X;T ) where (X;T )! ( bX; bT ) is given by the restriction of q : ( �X; sT )!( bX; bT ) on X (Theorem (3.9) and Theorem (3.10)). We show that ( bX; bT ) ishomeomorphic to (K;L).(5.3) Lemma: For f : (K;L) ! (R; � ) and 	 : ( �X; sT ) ! (K;L), as39



above, we have :(5:4) f �	 = stR�(f �  ):Proof : f �	 = f � stK � � = stR� �f � � = stR�(f �  ). N(5.5) Lemma: � �� � if and only if 	(�) = 	(�).bf Proof: Suppose 	(�) 6= 	(�). Since (K;L) is compact Hausdor�, there isf : (K;L)! ([0; 1]; � )such that f(	(�)) = 0; f(	(�)) = 1. But then stR�(f �  )(�) 6= stR�(f � )(�), which contradicts � �� �. The converse is clear. NThe proposition above shows that there is a well de�ned map � : bX ! Kgiven by � � q = 	. Since bT is the quotient topology induced by q, we have:(5.6) Proposition: There is a continuous map � : ( bX; bT ) ! (K;L) suchthat � � q = 	.Note: The mapping � obtained above satis�es � � q =  on X so it must bethe Stone extension  � of  : X ! K (see L. Gillman and M. Jerison [3]),by uniqueness of that extension.(5.7) Theorem: ( bX; bT ) and (K;L) are homeomorphic.Proof: Clearly, �(q[X]) =  [X] is dense in (K;L), so that � is surjective.Since ( bX; bT ) and (K;L) are compact Hausdor�, it only remains to show that� is injective. But this follows from the fact that � �� � i� 	(�) = 	(�).N The mapping 	 : �X ! K allows a simple description for zero sets Z(f)which we shall give in what follows. In particular, when X is completelyregular and Hausdor� and K is the Stone-�Cech compacti�cation, we obtain adescription of cl�X Z(f) and Z(f�) for 2 Cb(X;R). As above, we assume that(K;L) is a Hausdor� compacti�cation of (X;T ) with  : (X;T ) ! (K;L),and  [X] is dense in K.(5.8) Propositon: Let g : (X;T )! (R; � ) be such that there is an extensionf : (K;L)! (R; � ) with g = f �  . Then(5:9) 	�1[Z(f)] = f� 2 �X : �f(�) � 0g:40



Proof: �g(�) � 0, ( �f� � )(�) � 0, stR( �f� � )(�) = 0, (f�	)(�) =0, 	(�) 2 Z(f). NWhen (X;T ) is completely regular and Hausdor� and K is �X, we regard as the identity on X and so, 	 is q : �X ! X and the statement above is:(5:10) Z(g�) = q[f� 2 �X : �g(�) � 0g]:It is of interest to observe that it is pointed out in L. Gillman and M. Jerison'sbook [3] that Z(g�) need not be of the form cl�Z(h), h 2 Cb(X;T ), and thatZ(g�) is always a countable intersection of sets of the form cl�X Z(f) ([6],6E and, also, 8D). The formula above gives the precise description of Z(g�).When g : N! R is g(n) = 1=n, then Z(g�) is the image of all in�nitely largenatural numbers under q.(5.11) Proposition: Let g : (X;T )! (R; � ) be a bounded function. Then(5:12) clK( [Z(g)]) = 	[ �Z(g)]:Proof: It is clear that  [Z(g)] � 	[Z(g)] � 	[ �Z(g)]. The last set iscompact, hence closed in K, so that clK ( [Z(g)]) � 	[ �Z(g)]. Conversely,�Z(g) = cl �X( �Z(g)), by Lemma (2.6), so that 	[ �Z(g)] = 	[cl �X( �Z(g))] �clK [	(Z(g))] = clK ( [Z(g)]). NAs before, when (X;T ) is completely regular and Hausdor� and K is �X,we have:(5:13) cl�X (Z(g)) = q[ �Z(g)] = q[f� 2 �X : �g(�) = 0g]:This formula, combined with a classical standard characterization of �X(L. Gillman and M. Jerison [3], (6.5), IV) gives a nonstandard characteriza-tion of �X which we formulate for completely regular spaces.(5.14) Proposion: Let (X;T ) be a completely regular Hausdor� space and(K;L) a compact Hausdor� space containing (X;T ) as a dense subspace.Then (K;L) is the Stone-�Cech compacti�cation of (X;T ) if and only if forany zero sets Z1, Z2 in X we have:(5:15) 	[ �Z1 \ �Z2] = 	[ �Z1] \	[ �Z2]:Proof: If (K;L) is �X, then for zero sets Z1, Z2 we havecl�X (Z1 \ Z2) = cl�X Z1 \ cl�X Z241



(L. Gillman and M. Jerison [3], (6.5), Compacti�cation Theorem). Hence	[�(Z1 \ Z2)] = 	[ �Z1] \	[ �Z2]:Now �(Z1\Z2) = �Z1\ �Z2 and the result follows. The proof of the converseis similar. N6. Hewitt Realcompacti�cation : The Case � = C(X;R)Let (X;T ) be a topological space. We mentioned in Example (3.13) - no.5.,that if we put � = C(X;R) in De�nition (3.3), the corresponding �-hull willcoincide with the Hewitt realcompacti�cation of (X;T ) (L. Gillman and M.Jerison [3]). We now discuss this important case in detail.We shall write simply eX, �, and bX (suppressing the index �) instead of themore precise \ eX�; ��, and bX�, for � = C(X;R)", respectively, throughoutthe following discussion. (Warning: eX should not be confused with the setof the nearstandard points of �X). Since we have to extend all (not onlythe bounded) continuous functions to the new space, we have to select forthe set of the �-�nite points some proper subset of �X : eX is the set of allpoints � in �X for which �f(�) is a �nite number in �R for all f in C(X;R).For the nonstandard hull we have bX = eX=� ; where � � � in eX if andonly if �f(�) � �f(�) for all f in C(X;R). Let ( bX; bT ) be the correspondingtopological space (De�nition (3.3)).Recall that a topological space (X;T ) is called \realcompact" if for everynontrivial ring homomorphism � : C(X;R) ! R there is x 2 X such that\�(f) = 0 i� f(x) = 0" for all f 2 C(X;R) or, equivalently, if \every realmaximal ideal of C(X;R) is �xed" (L. Gillman and M. Jerison [3]).(6.1) Lemma: Let � : C(X;R) ! R be a nontrivial ring homomorphism.Then, there exists � in eX such that �(f) = �f(�) for all f 2 C(X;R).Proof: The family of internal subsets of �X : Af = �f�1[f0g], f 2 ker�,has the �nite intersection property. Indeed, f�1[f0g] � �f�1[f0g] and, onthe other hand, f�1[f0g] = ; implies that f is invertible in C(X;R) whichcontradicts f 2 ker�. So that, �f�1[f0g] 6= ; and moreover, we have:�f�1[f0g] \ �g�1[f0g] = �(f�1[f0g] \ g�1[f0g]) � �(f2 + g2)�1[f0g] 6= ;:By the Saturation Principle (Chapter I, Section 2, Axiom 3), there exists� 2 �X such that �f(�) = 0 for all f 2 ker�. Taking into account also that42



ker� is a maximal ideal of C(X;R), we getker� = ff 2 C(X;R) j �f(�) = 0g:Now, for f 2 C(X;R), we have �(f) = c 2 R. Then, we have f�c 2 ker� so,�f(�) = c = �(f). Since c is a real number, � 2 eX . The proof is complete.NNote: The result of the above lemma is related to results in (J.C. Dyre [2],Theorem (3.3)). The di�erence with Dyre's work consists in our restrictionto real maximal ideals of C(X;R) only and, hence, the localization of � ineX which is essential for our discussion.(6.2) Theorem: ( bX; bT ) is realcompact.Proof: Let � : C( bX;R) ! R be a nontrivial ring homomorphism. Then,de�ne ' : C(X;R) ! C( bX;R) by '(f) = bf (De�nition (3.3)) and observethat the map: � � ' : C(X;R)! R is also a nontrivial ring homomorphism.Then, by Lemma (6.1), there is � 2 eX such that (� � ')(f) = �f(�) forall f 2 C(X;R) which means �( bf) = �f(�) = bf(q(�)) for all f 2 C(X;R).Taking into acount Theorem (3.14), we get that �(bf) = 0 i� bf(�) = 0 for allbf 2 C( bX;R) where a = q(�). The proof is complete. N(6.3) Lemma: Let f 2 C(X;R) and � and � in �X be such that �f(�) ��f(�). If � 2 eX, then there is a continuous function g : X 2 [0; 1] such that�g(�) = 0 and �g(�) = 1.Proof: Since � 2 eX , the value �f(�) is a �nite number in R so, whether�f(�) is in�nitely large or not, there are open sets U , V in R whose closuresare disjoint and �f(�) 2 �U and �f(�) 2 �V . Let ' : R ! [0; 1] becontinuous and such that ' is 0 on U and 1 on V . The function g = ' � fhas the required properties, since:�'�1[f0g] = �('�1[f0g]) � �U 3 �f(�);i.e. �g(�) = �'( �f(�)) = 0 and, similarly, �g(�) = �'( �f(�)) = 1. NSomewhat surprisingly, it is possible to prove that ( bX; bT ) is completelyregular. The argument uses the compactness of ( �X; sT ) (Theorem (2.5)).(6.4) Proposition: ( bX; bT ) is a completely regular space.Proof: Let a 2 bX and let F � bX be a closed set not containing a. Thenq�1[F ] is a closed subset of eX , so there is a closed set K in �X such that43



K \ eX = q�1[F ]. Since �X is compact, K is also compact in �X. Then, let� 2 eX be such that q(�) = a. Clearly � =2 K. Moreover, for each � 2 Kthere exists f� 2 C(X;R) such that �f�(�) 6� �f�(�). For suppose not,then we obtain � 2 eX and � � �, i.e. a = q(�) 2 F , a contradiction. ByLemma (6.3), we may assume that 0 � f� � 1 and �f�(�) = 0, �f�(�) = 1.Then the sets ( �f�)�1[�(3=4; 1]] cover K, so there are �nitely many suchsets ( �fr)�1[�(3=4; 1]], r = 1; 2; : : : ; n, which cover K. Also, �fr(�) = 0,r = 1; 2; : : : ; n. Let g = supffr : 1 � r � ng. Then, K � ( �g)�1[�(3=4; 1]]and �g(�) is a positive in�nitesimal. Hence, 0 � bg(a) = st( �g(�)) � 1=4 and3=4 � bg(q(
)) = st( �g(
)) � 1 for all 
 2 q�1[F ]. Thus, bg(a) =2 cl g[F ], asrequired. N(6.5) Theorem: ( bX; bT ) coincides with the Hewitt realcompacti�cation �Xof (X;T ) (L. Gillman and M. Jerison [3]).Proof: The space ( bX; bT ) is realcompact and completely regular, by Theorem(6.2) and Theorem (6.4), respectively. Then, q[X] is a dense subset of bX andevery f 2 C(X;R) has a unique continuous extension bf to bX , by Theorem(3.5) and Theorem (3.6), respectively (both applied for � = C(X;R)). Theseproperties characterize �X. NE. Hewitt has shown that the real maximal ideals Mp of C(X;R) areuniquely determined by points p in �X by \f 2 Mp i� bf(p) = 0", where bfdenotes the unique extension of f to �X.For completeness we derive this result using the nonstandard methodsdeveloped so far:(6.6) Theorem: Let M be a real maximal ideal of C(X;R). Then, there isa unique point p in �X such that \f 2M i� bf(p) = 0".Proof: By Lemma (6.1), there is � 2 eX such that \�(f) = �f(�) for all f 2C(X;R)" where � : C(X;R)! C(X;R)=M = R is the ring homomorphismonto R determined by M . Now, bf (q(�)) = �f(�), i.e. \f 2 M i� bf (p) = 0"for p = q(�). The point p is unique since bX is completely regular, by Theorem(6.4) and Hausdor�, by Theorem (3.9). The proof is complete. NCHAPTER III. MONADS AND SEPARATIONS PROPERTIESWe study the separation properties of topological spaces such as T0; T1,44



regularity, normality, complete regularity, compactness and soberness whichare characterized in terms of monads. Some of the characterizations havealready counterparts in the literature on nonstandard analysis (but ours are,as a rule, simpler), while others are treated in nonstandard terms for the�rst time. In particular, it seems that the nonstandard characterization ofthe sober spaces has no counterparts in the nonstandard literature. We alsopresent two new characterizations of the compactness in terms of monadssimilar to but di�erent from A. Robinson's famous theorem.We shall use as well the terminology of (J.L. Kelley [12]) and (L. Gillmanand M. Jerison [3]).1. Monads and CompactnessA. Robinson proved that a set A � X is compact in (X;T ) i� �A consistsof nearstandard points only ([17], Theorem 4.1.13, p. 93). The purpose ofthis section is to give two similar characterizations of compactness in termsof monads which seem to be new in the literature on nonstandard analysis.For the de�nition and the basic properties of the monads the reader shouldrefer to (Chapter II, Section 1). As a convenient technique we use the non-standard compacti�cation ( �X; sT ) of (X;T ), described in Chapter II, Sec-tion 2. Recall that for any H � X we have�(clX H) = cl �X �H = cl �X Hwhere clX and cl �X are the closure operators in (X;T ) and ( �X; sT ), re-spectively (Chapter II, Lemma 2.6). Notice that cl �X coincides with theF -monad, in symbols, �F = cl �X , where F is the family of all closed sets of(X;T ) (De�nition II.1.14).>From Corollary II.1.6, it follows immediately that(1:1) [�2A �(�) � �(A)for any A � �X. The next example shows that this inclusion may be proper.Example: Let N be the set of the natural numbers with the discrete topol-ogy. For any n 2 N we have �(n) = fng, so that the union of all monads ofpoints in N is the whole set N. On the other hand, we have �(N) = �N.The next result shows that the equality in (1.1) holds for subsets A of�X which are compact in ( �X; sT ). 45



(1.2) Theorem: Let (X;T ) be a topological space and ( �X; sT ) be itsnonstandard compacti�cation (De�nition II.2.4). If A � �X is compact in( �X; sT ), then(1:3) [�2A �(�) = �(A)Proof: Let � 2 �(A) and suppose that � =2 �(�) for all � 2 A. Hence, forany � 2 A there is G� 2 T such that � 2 �G� and � =2 �G�. On the otherhand, we have, obviously, the cover:A �[f �G� : � 2 Ag:Now, by the compactness of A, there exist G�1; : : : ; G�n such thatA � f �G�i : i = 1; : : : ; ng = � �[fG�i : i = 1; : : : ; ng� :By the de�nition of �(A), we obtain �(A) � �(SfG�i : i = 1; : : : ; ng), i.e.� 2 �G�i, for some i, which is a contradiction. The proof is complete. N(1.4) Corollary: Let (X;T ) be a topological space and �X be the nonstan-dard extension of X. Then (1.3) holds for any internal subset A of �X.Proof: The internal subsets of �X are compact in ( �X; sT ) (Theorem II.2.5) and the result follows immediately from Theorem (1.2). NThe next example shows that the equality (1.3) may be true for subsets of�X which are not compact in ( �X; sT ).Example: Let X = R with the usual topology � . ThenA = fn+ h : n 2 N; h 2 �R; h � 0gis not compact in ( �R; s� ) but (1.3) is still satis�ed.In contrast with the above, when A � X, the equality (1.3) provides acharacterization of compactness of A in (X;T ).(1.5) Theorem (Characterization): Let A � X. Then the following condi-tions are equivalent: 46



(i) A is compact in (X;T ).(ii) �A � Sx2A �(x).(iii) Sx2A �(x) = S�2 �A �(�).(iv) Sx2A �(x) = �(A).Proof: (i) , (ii) is A. Robinson's theorem mentioned in the beginning ofthis section.(ii) ) (iii): Let �A � Sx2A �(x). So, 2 �A implies � 2 �(x) forsome x 2 A, which implies �(�) � �(x), by Corollary II.1.6. Hence, �(�) �Sx2A �(x) for all � 2 �A which implies[�2 �A �(�) � [x2A �(x):The inverse inclusion is obvious.(iii)) (iv): �A is an internal subset of �X and hence,[�2 �A �(�) = �( �A) ;by Corollary (1.4) (applied for A = �A). For the LHS we have[�2 �A �(�) = [x2A �(x);by our assumption, and, on the other hand, �(A) = �( �A) (II.1.4), thus, itfollows Sx2A �(A) = �(A), as required.(iv) ) (ii): we have �A � �(A), by the de�nition of �(A) (De�nitionII.1.1), since A � �G for some G � T implies A � G, by Corollary I.4.8,which implies �A � �G, by Theorem I.4.2. On the other hand, �(A) =Sx2A �(x), by assumption, hence, it follows�A � [x2A �(x);as required. N 47



2. Separation Properties and MonadsThe purpose of the present section is to give characterizations of sepa-ration properties like: T0, T1, regularity, normality, complete regularity andsoberness in terms of monads. Some of the characterizations have counter-parts in the literature on nonstandard analysis, while others (as the soberness,for example) are treated in nonstandard terms for the �rst time.Two sets A and B will be called \comparable" if \A � B or A � B".(2.1) Theorem: Let (X;T ) be a topological space. Then:(i) (X;T ) is a T0 - space i� x = y , �(x) = �(y) for any x; y 2 X.(ii) (X;T ) is a T1 - space i� x = y , �(x) and �(y) are comparable forany x; y 2 X.Proof: (i) Let (X;T ) be a T0 - space (J.L. Kelley [12]) and x 6= y. Assumethat x 2 G but y =2 G for some G 2 T . That is, x 2 �G and y =2 �G whichimplies y =2 �(x), i.e. �(x) =2 �(y). The implication (�(x) =2 �(y))) x 6= y istrivial. Assume now, that the condition in (i) is valid and let x 6= y. Withoutloss of generality, assume that � 2 �(y)� �(x). In other words, there existsG 2 T such that x 2 G but � =2 �G. Notice now, that y =2 G (otherwise,� 2 �(y) � �G which is a contradiction). Thus, (X;T ) is T0 .(ii) Suppose (X;T ) is a T1 - space (J.L. Kelley [12]) and �(x) and �(y) arecomparable, say, �(x) � �(y). If x 6= y, we have an open set G = X � fxgwith x =2 G and y 2 G. Hence, x =2 �(y) contradicting the assumptionthat �(x) � �(y). Conversely, suppose the comparability property holds. If(X;T ) is not T1, then there exists some x and y, y =2 x, such that y 2 clfxg.Hence x 2 �(y), we have �(x) � �(y) which implies x = y, a contradiction.Thus, (X;T ) is a T1 - space. NAs a consequence of Theorem (2.1), we shall obtain the characterizationof T0-spaces given by (A. Robinson [17], Theorem 4.1.9, p.92) and the char-acterization of T1-spaces given in (A.E. Hurd and P.A. Loeb [10], p.114):(2.2) Theorem: The topological space (X;T ) is:(i) T0 i� x 6= y) either x =2 �(y) or y =2 �(x) for all x; y 2 X.(ii) T1 i� x 6= y ) x =2 �(y) and y =2 �(x) for all x; y 2 X.Proof: (i) Let (X;T ) be T0 and suppose x 6= y. Then �(x) 6= �(y), hence, byCorollary (II.1.6), x =2 �(y) or y =2 �(x). Conversely, suppose x 6= y. Then,x =2 �(y) or y =2 �(x), hence �(x) 6= �(y).48



(ii) Let (X;T ) be T1 and suppose x 6= y. Then �(x) and �(y) are notcomparable. If x 2 �(y) or y 2 �(x), then �(x) � �(y) or �(y) � �(x) whichis a contradiction. Conversely, suppose x 6= y. Then we have both x =2 �(y)and y =2 �(x) which implies, by Corollary (II.1.6), \not �(x) � �(y)" and\not �(y) � �(x)". NConcerning T2-spaces, we recall that a topological space (X;T ) is Haus-dor� (or a T2 - space) if and only if �(x) \ �(y) = ; for all x; y 2 X x 6= y(A. Robinson [17], Theorem 4.1.8, p. 92). A related notion is that of weakly-Hausdor�: (X;T ) is called \weakly Hausdor�" if for any x 2 X and any openneighbourhood G of x the point x is separated from all points y 2 X � G.The corresponding nonstandard characterization is: (X;T ) is weakly Haus-dor� if and only if for any x; y 2 X either �(x) = �(y), or �(x) \ �(y) = ;(K.D. Stroyan and W.A.J. Luxemburg [22], p.199).We now characterize regularity and normality.(2.3) Theorem: Let (X;T ) be a topological space. Then:(i) (X;T ) is normal i� F1 \ F2 = ; ) �(F1) \ �(F2) = ; for any twoclosed sets F1; F2 � X.(ii) (X;T ) is regular i� � =2 �(x)) �(�)\�(x) = ; for any � 2 �X andx 2 X.Proof: (i) is a version (in terms of closed sets) of A. Robinson's characteri-zation of the normality given in ([17], Theorem 4.1.12, p.93) without proof.For completeness we present a simple proof: The condition is, obviously,necessary. Suppose that (X;T ) is not normal. Then, there exist two closeddisjoint sets F1 and F2 such that U1 \ U2 6= ; for all U1; U2 2 T such thatF1 � U1 and F2 � U2. By the saturation principle, we obtain�(F1) \ �(F2) =\f �U1 \ �U2 : F1 � U1; F2 � U2; U1; U2 2 Tg 6= ;:(ii) Let (X;T ) be a regular space and � 2 �X and x 2 X be such that� =2 �(x). Then, there is G 2 T such that x 2 G and � =2 �G. By regularity,there is U 2 T such that x 2 U and clX U � G. We have �(x) � �U andalso �(�) � �(X � clX U) since � 2 �X � �G = �(X �G) � �(X � clX U).That is �(�) \ �(x) = ;. Conversely, suppose that (X;T ) is not regular.We show now that there exist � 2 �X and x 2 X such that � =2 �(x) and�(�) \ �(x) 6= ;. Indeed, since X is not regular, there are x 2 X and G 2 Tsuch that x 2 G and clX H \ (X �G) 6= ;49



for all H 2 T containing x. By the Saturation Principle (Chapter I, Section2, Axiom 3), there exists � such that� 2\f �(clX H) : H 2 T; x 2 Hg � �G:Since � 2 �(clX H) = cl �X �H then �O \ �H 6= ; for all O;H 2 T suchthat � 2 �O and x 2 H. Also we have � =2 �(x), since � =2 �G. Using thesaturation principle again, we obtain�(�) \ �(x) =\f �O \ �H : O; H 2 T; � 2 �O; x 2 Hg 6= ;:The proof is complete. NAs a consequence of Theorem (2.3), we shall obtain the description ofregularity given in (A. Robinson [17], Theorem 4.1.11, p.93):(2.4) Theorem: The topological space (X;T ) is regular i� x =2 F ) �(x)\�(F ) = ; for any x 2 X and any closed F 2 X.Proof: Let the condition hold and let � 2 �X and x 2 X and � =2 �(x).Then there exists G open such that x 2 G and � =2 �G. With F = X � G,we have x =2 F , so �( �F ) \ �(x) = ;. Since �F is an internal set it follows�(�) \ �(x) = ; for all � 2 �F , by Corollary (1.4). Since � 2 �F , we have�(�)\�(x) = ;. Conversely, let (X;T ) be a regular space and x 2 X, F � Xbe closed and x =2 F . Since F is closed, we have �F \�(x) = ;, i.e. � =2 �(x),for all � 2 �F (Theorem, II.1.8). By Theorem (2.3), �(�) \ �(x) = ; for all� 2 �F which implies ([x2F �(x)) \ �(x) = ;:Using (1.4) and (II.1.4), we obtain �(F ) \ �(x) = ;, as required. NLet (X;T ) be a topological space. Recall that a closed subset A � Xis called \irreducible" if for any closed subsets F1; F2 � X the equalityA = F1 [ F2 implies either A = F1, or A = F2. The space (X;T ) is called\sober" if every irreducible closed subset A � X is of the type A = clXfxgfor some x 2 X (see R.E. Ho�mann [9] for general reference).(2.5) Theorem: Let A � X be a closed set and x 2 A. The following areequivalent: 50



(i) A = clXfxg.(ii) �(x) = T�2 �A �(�).(iii) �(x) = Tx2A �(x).Proof: (i)) (ii): Suppose A = clXfxg. Since x 2 A, we get immediately,\�2 �A �(�) � �(x) :To show the reverse inclusion, let � 2 �A and G 2 T be such that � 2 �G.Then A \ �G 6= ; since �A = cl �X A. Hence �G \ cl �Xfxg 6= ;, so thatx 2 G. Hence �(x) � �G, so that �(x) � �(�). This implies�(x) � \�2 �A �(�):(ii) ) (iii): �(x) = T�2 �A �(�) � Tx2A �(x) � �(x) since x 2 A.(iii) ) (i): We have x 2 �(�) for all a 2 A, so that a 2 clXfxg, henceA � clXfxg. On the other hand, clXfxg � A, since A is closed and x 2 A.The proof is complete. NExample: The following example shows that the condition x 2 A forthe point x is necessary in the above proposition: X = f0; 1; 2g, T =f;; f0g; f0; 1g; f0; 2g;Xg, A = f1; 2g; x = 0. Then we have �X = X,�T = T; �A = A, �(0) = f0g, �(1) = f0; 1g, �(2) = f0; 2g. So we getTa2A �(a) = f0g = �(0) in spite of x =2 A.(2.6) De�nition (Partial Order in �X): Let �; � 2 �X. Then:(i) � � � if �(�) � �(�).(ii) A set S � �X is downward directed if for any �, � 2 S there is
 2 S such that 
 � � and 
 � �.Note: If x; y 2 X, then x � y if and only if y 2 clXfxg, so the order de�nedabove on �X is the inverse of the specialization order on (X;T ) (see e.g. R.E. Ho�mann [9]).(2.7) Theorem: Let (X;T ) be a topological space and A � X be closed.Then A is irreducible i� �A is a downward directed set.51



Proof: Suppose �A is downward directed. If A is not irreducible, thenthere are closed sets F1; F2 � A such that A = F1 [ F2 and A � F1 6= ;,A � F2 6= ;. Let ai 2 A � Fi. By assumption, there is 
 2 �A suchthat �(
) � �(a1) \ �(a2). Now 
 2 �(a1), so 
 2 �X � �F1; similarly,
 2 �X � �F2. Hence 
 2 ( �X � �F1) \ ( �X � �F2) = �X � �A, whichis a contradiction. Conversely, suppose A is an irreducible closed set. Let�; � 2 �A. We show that �A\�(�)\�(�) 6= ;, from which the result follows.For any Gi, open, such that � 2 �G1, � 2 �G2, we have A \ G1 \ G2 6= ;:otherwise, A = (A � G1) [ (A � G2) so that A � A � G1 or A � A � G2.If A � A �G1, then G1 \ A = ;, so that �G1 \ �A = ;, which contradictsour assumption concerning �. Similarly, A � A � G2 is impossible. HenceA \ G1 \ G2 6= ; for all open Gi such that � 2 �G1, � 2 �G2. By thesaturation principle, �A \ �(�) \ �(�) 6= ;which �nishes the proof. N(2.8) Theorem: The topological space (X;T ) is sober i� for any closed setA � X such that �A is downward directed, �A has a smallest element in A.Proof: Suppose (X;T ) is sober. Let A be a closed set such that �A isdownward directed. Then A is irreducible hence, A = clXfxg for somex 2 A. By Theorem (2.5),(2:9) �(x) � [�2 �A �(�);i.e. x � � for all � in �A. Conversely, let A be an irreducible closed setin X. Then �A is downward directed, hence there is x 2 A such that (2.9)holds which implies �(x) = T f�(�) : � 2 �Ag. By Theorem (2.5), we getA = clXfxg. The proof is complete. NRecall that the space (X;T ) is called functionally separated if for anyx; y 2 X, x 6= y, there exists a continuous function f : (X;T ) ! (R; � ),where � is the usual topology on R, such that f(x) = 0 and f(y) = 1. Wenow characterize these spaces in terms of special monads.Let Z = ff�1[f0g] : f 2 C(X;R)g be the family of the zero sets of contin-uous real- valued functions on X and let �Z be the corresponding Z-monads(De�nition (II.1.14)). Then we can give the following characterization:52



(2.10) Theorem: If (X;T ) is a topological space, then:(i) (X;T ) is functionally separated i� x 6= y ) �Z(x) \ �Z(y) = ; forany x; y 2 X.(ii) The topological space (X;T ) is completely regular i� x =2 F )�Z(x) \ �Z(F ) = ; for any x 2 X and any closed F � X.(iii) (X;T ) is normal i� F1 \ F2 = ; ) �Z(F1) \ �Z(F2) = ; for anyclosed subsets F1; F2 of X.Proof: We shall present the proof of (ii) only; the others are proved similarly.Suppose (X;T ) is completely regular (not necessarily Hausdor�) and letx =2 F . Then there is a continuous function f : (X;T ) ! (I; � ) such thatf(x) = 0 and F � f�1[f1g] where I = [0; 1] and � is the usual topology of I.Let us set Z0 = [0; 1=4] and Z1 = [3=4; 1]. Now we have �Z(x) � �f�1[ �Z0],�Z(F ) � �g�1[f0g] � �f�1[ �Z1] for g = f�1 and hence, �Z(x) \ �Z(F ) = ;.Conversely, suppose that the condition holds and let x =2 F . By assumption,�Z(x) \ �Z(F ) = ;. Hence, by Lemma (II.1.15), there are zero sets Z0 andZ1 in X such that x 2 Z0, F � Z1 and Z0 \ Z1 = ;. Now there existsf : (X;T )! (I; � ) such that Z0 � f�1[f0g], Z1 � f�1[f1g]. Then f(x) = 0and F � f�1[f1g], hence (X;T ) is completely regular. The proof is complete.N3. Topological ApplicationsAs an application of the previous characterizations, we present simpleproofs of well known separation properties for topological spaces.Let (X;T ) be a topological space and de�ne an equivalence relation onX by: x � y if clXfxg = clXfyg. Let q be the quotient mapping from Xonto X=� = eX, and topologize eX by: V � eX is a eT - neighbourhood of q(x)i� q�1[V ] is a neighbourhood of x 2 X. We also have the special propertyq�1[q[G]] = G for all G 2 T , so that q is an open mapping. The space ( eX; eT )is called the T0 - re
ection of (X;T ) (see, for example, H. Herrlich [8]).(3.1) Theorem: Let (X;T ) be a topological space. Then, (X;T ) is weaklyHausdor� i� ( eX; eT ) is Hausdor�.Proof: Suppose eX is Hausdor�. To show thatX is weakly Hausdor�, assumethat �(x) 6= �(y) which, by Corollary (II.1.6), implies either x =2 �(y) ory =2 �(x). Hence y =2 clXfxg or x =2 clXfyg which implies q(x) 6= q(y). SinceeX is Hausdor�, there are open disjoint sets U , V in eX such that q(x) 2 U ,53



q(y) 2 V . So that, x 2 q�1[U ], y 2 q�1[V ] and q�1[U ] \ q�1[V ] = ;. Hence,�(x) \ �(y) = ;. Conversely, assume X is weakly Hausdor�. To show thateX is Hausdor�, consider x; y such that q(x) 6= q(y), i.e. clXfxg 6= clXfyg.Then �(x) 6= �(y). So, �(x) \ �(y) = ; by assumption. Hence, there areopen disjoint sets G;H in X such that x 2 G, y 2 H. But then q(x) 2 q(G),q(y) 2 q(H) and q(G) \ q(H) = ;. Hence, X is Hausdor� since q(G) andq(H) are open. NExample: Let G be a topological group. Then the closure of the identityclfeg is a normal subgroup of G . Then the corresponding factor - groupG=clfeg is a Hausdor� topological group, so G is weakly Hausdor�.(3.2) Theorem: If (X;T ) is T0 and weakly Hausdor�, then it is Hausdor�.Proof: Suppose x 6= y. Then �(x) 6= �(y) since (X;T ) is T0 which implies�(x) \ �(y) = ;, since (X;T ) is weakly Hausdor�. So, (X;T ) is Hausdor�.N(3.3) Theorem: If (X;T ) is T0 and regular, then (X;T ) is Hausdor�.Proof: Let x; y 2 X and x 6= y. Then �(x) 6= �(y), since (X;T ) is T0, i.e.we have either x =2 �(y), or y =2 �(x). On the other hand, by regularity,we have �(�) \ �(y) = ; for all � 2 �X such that � =2 �(y), in particular,�(x) \ �(y) = ;. The proof is complete. N(3.4) Theorem: If (X;T ) is compact and Hausdor�, then (X;T ) is regular.Proof: Let � 2 �X and x 2 X be such that � =2 �(x). Now, � 2 �(y) forsome y 2 X, since X is compact. We have x 6= y, by the choice of x and y,so, �(x) \ �(y) = ;, since X is Hausdor�. On the other hand, �(�) � �(y),by Corollary (II.1.6), hence, �(x) \ �(�) = ;. N(3.5) Theorem: If (X;T ) is compact and regular, then (X;T ) is normal.Proof: Let F1 and F2 be disjoint closed sets of X. Since F1 is closed andF2 � X�F1, we have �F1\�(x) = ; for any x 2 F2. Hence, � =2 �(x) for any� 2 �F1 and any x 2 F2. By regularity of (X;T ), we have �(�) \ �(x) = ;((3.3)) and hence, �(�) \ � [�2F2 �(�)� = ;for any � 2 �F1. By compactness of (X;T ) and, hence, of F2 , we obtain54



�(�) \ �(F2) = ; for any � 2 �F1 , by Theorem (1.5), which immediatelyimplies � [�2F1 �(�)� \ �(F2) = ;:Since F1 is also compact, we get �(F1) \ �(F2) = ;. The proof is complete.N(3.6) Theorem: If (X;T ) is Hausdor�, then it is sober.Proof: Let A be a closed set of X such that �A is downward directed.Then we have A = fxg for some x 2 A. For suppose not, i.e. there arex; y 2 A;x 6= y, we obtain �(x) \ �(y) = ;, so �A cannot be downwarddirected. Hence, x is the smallest element of �A in A. N4. Separation Properties of ( �X; �T )In this section we apply the results established so far to study the sep-aration properties of space ( �X; sT ) ( Chapter II, Section 2). Our interestin the space ( �X; sT ) arises from the importance of this space for compact-i�cations and completions of topological spaces, demonstrated in ChapterII of this text, as well as its importance for compacti�cations of orderedtopological spaces (S. Salbany and T. Todorov [19]-[20]).(4.1) Theorem: ( �X; sT ) is normal i� (X;T ) is normal.Proof: Assume that ( �X; sT ) is normal. Let F1, F2 be disjoint closed setsof (X;T ). Then �F1 and �F2 are disjoint closed sets of ( �X; sT ) so, byassumption, they can be included in disjoint open sets with disjoint closures.Restricting such open sets to X provides two disjoint open sets G1, G2 in(X;T ) whose closures in (X;T ) are disjoint and Fi � Gi . Conversely, let(X;T ) be normal and let A;B � �X be disjoint closed subsets of ( �X; sT ).Now A = �F (A) and B = �F (B), since �F = cl �X so, by Lemma (II.1.15),A � �F1 and B � �F2, �F1 \ �F2 = ;, for some disjoint closed sets F1and F2 in (X;T ). But then, by assumption, there are open sets G1 and G2of (X;T ) such that F1 � G1 � X � G2 � X � F2. Hence, �F1 � �G1 ��X � �G2 � �X � �F2, so that ( �X; sT ) is normal. The proof is complete.N(4.2) Theorem: ( �X; sT ) is regular i� every open set in (X;T ) is closed.Proof: Suppose (X;T ) has the stated property and � 2 �G for some openset G in (X;T ). Since G is open and closed, we have �G is open and closed in55



( �X; sT ), so ( �X; sT ) is regular. Conversely, suppose ( �X; sT ) is regular.Let G be an open subset of X. Suppose G is not closed, so there is x 2clX G�G. For each open neighbourhood H of x, we have G\H 6= ;, so thefamily f �G \ �H : H 2 T; x 2 Hg has the �nite intersection property. Bythe saturation principle, there is a point � such that� 2\f �G \ �H : H 2 T; x 2 Hg = �\f �H : H 2 T; x 2 Hg� \ �G:By regularity, there is U , open in (X;T ), such that � 2 �U � cl �X �U � �G.But then, x 2 ( �X � cl �X �U) \Xsince x =2 �G, hence x 2 W = X�clX U . Thus �U\ �W = ; (as U\W = ;),which contradicts � 2 �W whenever W 2 T and x 2 W . The proof iscomplete. NAs a consequence of the above we have:(4.3) Theorem: Let D be the discrete topology on N. Then ( �N; sD) isnot a T0 - space.Proof: If ( �N; sD) were T0, then it would be T2, since ( �N; sD) is regu-lar. Then, since every bounded continuous real valued function on (N;D)admits a continuous extension to ( �N; sD) and (N;D) is dense in ( �N; sD)(Theorem II.2.5), it follows that ( �N; sD) is the Stone - �Cech compacti�ca-tion �(N;D) = �N of (N;D). It is well known that this is impossible (see A.Robinson [18], p. 582) or (K.D. Stroyan and W.A.J. Luxemburg [22], (8.1.6),(8.1.7). (9.1)). N(4.4) Corollary: There is no topology T on N for which ( �N; sT ) is a T0- space. Proof: Suppose the contrary, i.e. that ( �N; sT ) is T0 for sometopology T on N. The identity map i : (N;D)! (N; T ) is continuous, henceso is its nonstandard extension:�i : ( �N; sD)! ( �N; sT )(Theorem II.2.7). Since �i is injective and ( �N; sT ) is T0, it follows that( �N; sD) is T0, which is a contradiction. The proof is complete. N(4.5) Theorem: ( �X; sT ) is a T0 - space i� X is �nite.Proof: If X is in�nite and ( �X; sT ) is a T0 - space, then X has a count-able subset N � X with relative topology, also denoted by sT , such that( �N; sT ) � ( �X; sT ). Thus ( �N; sT ) is a T0 - space, which is impossible.The converse is clear. N 56
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