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With the rapid development of sensor and communication technologies, a large amount of spatiotemporal traffic data has been
accumulated, presenting the characteristics of big data. ,e potential information and regularity of traffic state evolution can be
extracted from the huge traffic flow time series data and applied to intelligent transportation systems. ,is study proposes a
dynamic spatiotemporal causality modeling approach to analyze traffic causal relationships for the large-scale road network.
Transfer entropy algorithm is utilized to detect the spatiotemporal causality of network traffic states based on the extensive traffic
time series data, which could measure the amount and direction of information transmission. A combination of Gaussian kernel
density estimation and sliding window approach is proposed to calculate the transfer entropy and construct dynamic spatio-
temporal causality graphs based on the causality significance test. ,e indexes of affected coefficient, influence coefficient, input
degree, and output degree are defined to evaluate the causal interaction of traffic states among different road segments and identify
the critical roads and potential bottlenecks of the existing road network. Experimental results based on real-world traffic sensor
data indicate that the structures of traffic causality graphs are time-varying; the traffic cause-effect interaction among different
road segments during the peak time is more significant than that during the nonpeak time; and the critical road segments can be
identified, which are mainly located at the intersections of arterial roads, undertaking the convergence and dispersion of large
traffic flows.

1. Introduction

,e rapid development of sensing and communication
technologies in transportation promotes the accumulation
of huge multisource spatiotemporal traffic data, which is
collected by loop detectors, vehicle GPS, and mobile phones
[1], presenting the characteristics of traffic big data. ,e
valuable knowledge can be extracted from the huge ob-
servational spatiotemporal traffic data, which could be ap-
plied in the data-driven intelligent transportation systems
(ITS) [2].

,e diversity, uncertainty, and huge volume of traffic big
data bring greater challenges to ITS. Potential traffic evo-
lution characteristics can be extracted from extensive his-
torical data through data mining techniques, such as

correlation analysis and association rule mining. Some
studies have integrated the extractive traffic correlations or
association rules into the traffic flow prediction models to
improve the prediction accuracy [3–5]. However, the di-
rectional causal interaction could not be captured by these
data mining techniques. For the events A and B, association
relationship can be extracted based on the statistical rule “A’s
existing means B’s existing”, but it is still not clear whether
the occurrence of A leads to the occurrence of B, or other
factors make A and B appear simultaneously [6]. Similarly,
correlation analysis could determine whether A is related to
B but could not verify the cause-effect relationship between
them.

,e causal relationships among different objects, events,
or variables are widespread in the natural and social sciences
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[7]. Causality can be detected from the observational
nonstationary time series data, and the strengths also need to
be qualified [8, 9]. Many causal models have been proposed
based on the probability theory, graph theory, Bayesian
networks, etc. [10]. Spatiotemporal traffic causality can be
discovered from the complex network traffic state. For ex-
ample, if a traffic jam event happens in a certain road
segment ra at time t, the traffic state of the upstream adjacent
road segment rb may be congested at the next time t + 1 due
to the shock waves of traffic flow, and then ra can be
regarded as the cause segment of rb.

In addition to the dissemination of traffic waves in the
physical network, the dissemination of traffic information
can also lead to spatiotemporal causality. For example, if a
serious traffic accident happens on the road segment ra

′, the
traffic management department would release the traffic
accident information on the navigation platform and guide
the drivers to avoid the congested segment ra

′. ,en, more
drivers prefer to choose another route, which leads to serious
traffic congestion on the segment rb

′. Although rb
′ is far away

from ra
′ in space, real-time traffic information sharing

strengthens spatiotemporal causality between them.
However, few studies have focused on the spatiotem-

poral traffic causality modeling so far. Previous studies on
traffic causality either define the causal relationship based on
the prior knowledge such as the chronological order of traffic
jam events, which could not quantify potential causal
strength [11, 12], or use the data-driven Bayesian network
method, which is not suitable for large-scale road networks
because of sophisticated parameter estimations [13–15]. ,e
traffic causal dependencies are usually combined with the
network traffic evaluation, traffic outliers detection, or traffic
state prediction [11, 16].

Motivated by the lack of research on traffic causality and
the challenge of traffic big data analysis, this study develops a
dynamics spatiotemporal traffic causality research frame-
work to capture the underlying causal knowledge of network
traffic state for the decision making in ITS. ,e main sci-
entific contributions include the following: (i) transfer en-
tropy algorithm is first utilized to extract the traffic cause-
effect interactions from the extensive traffic time series data;
(ii) spatiotemporal traffic causality could be calculated dy-
namically and efficiently through the sliding window
technique; (iii) dynamic spatiotemporal causality graphs
could reveal the traffic causal structures and identify the
critical road segments and potential bottlenecks of the
existing road network; (iv) the proposed approach can be
applied in the real-time traffic management system and
combined with practical applications, such as the network
traffic station evaluation and prediction.

,e remainder of the paper is organized as follows.
Section 2 provides a summary of the literature regarding
traffic causality analysis. Section 3 depicts the study
framework and transfer entropy method. Section 4 describes
spatiotemporal causality modeling for network traffic flow.
Section 5 presents the computational experiments based on
real-world traffic sensor data. ,e conclusions are sum-
marized in Section 6.

2. Literature Review

Spatiotemporal data mining approaches have been widely
applied to traffic congestion propagation and prediction.
Inoue et al. [17] proposed a frequent pattern mining method
to extract traffic congestion patterns from traffic sensor data
and demonstrated the process of traffic congestion gener-
ation, diffusion, and dissipation from a data-driven per-
spective. Chawla et al. [18] proposed an optimized mining
algorithm framework for inferring the root cause of
anomalies from large taxis GPS data. Xiong et al. [19] de-
veloped a propagation graph approach to predict traffic
congestion patterns in the near future based on the large
real-world vehicle trajectory data.

Previous studies on spatiotemporal traffic causality
mainly adopt simple prior knowledge methods and define
the causal relationship according to the chronological order
of traffic jams or abnormal conditions. Liu et al. [11]
extracted the spatiotemporal causal interactions among the
traffic outliers through constructing the outlier causality
trees according to temporal order and spatial contiguity of
detected outliers. Kapoor et al. [12] studied the causality of
the traffic congestion at road intersections and how the
congestion propagates from one point in the road network
to all directions, and predicted possible propagation
patterns.

In addition, dynamic Bayesian network method is uti-
lized for spatiotemporal traffic causality modeling. Chu et al.
[13] proposed a time-varying dynamic Bayesian network for
traffic causality modeling, studied the region macro struc-
ture based on vehicle trajectory data, and extracted the road
junction dependency structure from sensor data. Queen and
Albers [14] proposed a multivariate dynamic Bayesian
network model to capture the conditional independence and
causality of traffic flow time series. ,e causality between
variables in the Bayesian network and the lagging causality
between time series in the dynamic Bayesian network could
be identified by setting external interventions. Nguyen et al.
[15] identified traffic congestion propagation patterns from
spatiotemporal traffic data and estimated congestion
propagation probabilities by dynamic Bayesian network.
Potential causal relationship structure can be extracted based
on the dynamic Bayesian network modeling, but a great
number of computing resources would be consumed to
estimate the parameters, especially for the large-scale road
network.

,e above spatiotemporal traffic causality modeling
methods are either too simple to fully capture the potential
spatiotemporal causality and nonlinearity characteristic or
too computationally complex, which is not suitable for large-
scale road network traffic state analysis.

Recently, the information-theoretic casual approaches
have attracted much attention, which can measure and
quantify the causality [7]. Granger causality test is an ef-
fective method to identify potential causality for time series
data [20–22]. ,e principle of Granger causality is described
as follows: if variable Y can be better predicted by using the
historical values of both X and Y, rather than only the
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historical values of Y, X can be regarded as the Granger
cause variable for Y. Li et al. [16] developed a Granger
causality-based causal dependence mining approach for
traffic predictions and revealed the relationship between the
road network structure and the correlation among traffic
flow time series through causal dependence graph. A linear
or nonlinear relationship between variables needs to be
assumed for Granger causality analysis.

Transfer entropy is a relatively emerging method in
information theory, which can evaluate the causality cor-
relation because of its asymmetry. Compared to the Granger
causality method, transfer entropy does not need to assume
the form of the causal relationship between variables, which
is suitable for the long time series analysis of nonlinear
systems, and has been widely applied in neuroscience [23],
chemistry [24], finance [25], industrial processes [26], and so
on. Transfer entropy can measure both the direction and
quantity of information transmission, which is suitable for
the nonlinear spatiotemporal causality modeling of network
traffic flow.

3. Methods

3.1. Study Framework. ,is study proposes a dynamic
spatiotemporal causality modeling framework, as shown in
Figure 1. Firstly, transfer entropy is adopted to detect the
spatiotemporal traffic causality from the huge traffic time
series data for the large-scale road network. ,e combined
Gaussian kernel density estimation and sliding window
approach is proposed to calculate the transfer entropy
matrix, which can denote the dynamic nonlinear causal
relationship of the traffic states among different road seg-
ments. Secondly, the causal correlation coefficient matrix is
calculated based on the transfer entropy matrix. ,e affected
coefficient and influence coefficient are defined to identify
potential bottlenecks and critical road segments in the road
network for different time periods. Finally, the dynamic
spatiotemporal causality graphs are established based on the
causality significance test. ,e input and output degrees are
proposed to evaluate the spatiotemporal causality of network
traffic states.

,e advantages of this research framework are as follows:
(i) the nonlinear cause-effect interaction relationship could
be extracted from huge traffic flow time series data, con-
tributing to the deeper insights into complex network traffic
state; (ii) the causal orientations and strength can be de-
termined based on the asymmetry of transfer entropy; (iii)
the sliding window approach can guarantee the computa-
tional efficiency of transfer entropy for the large-scale road
network; (iv) the dynamic spatiotemporal traffic causality
graphs can reveal the time-varying traffic causal structures.

3.2. Basic Concepts for Information Entropy. ,e basic
concepts for information entropy proposed by Shannon [27]
are briefly explained. xi(i � 1, 2, . . . , n) is set as the states of
discrete variable X. ,e information I(xi) for variable xi is
defined as (1), and I(xi)≥ 0. ,e larger the probability of xi,
the smaller the information I(xi), and the smaller the

uncertainty of xi. Conversely, the smaller the probability of
xi, the larger the information I(xi), and the larger uncer-
tainty of xi. When the probability of xi is 1, the information
I(xi) is 0.

I xi( 􏼁 � −logp xi( 􏼁. (1)

Information entropy H(x) is defined as the mathe-
matical expectation of information I(xi) for X, which is
calculated as (2). Information entropy H(x) can reflect the
average uncertainty and information amount of X. ,e
larger the information entropy H(x), the larger the amount
of information for the variable X; the smaller the infor-
mation entropy H(x), the smaller the amount of infor-
mation for the variable X.

H(x) � E I xi( 􏼁􏼂 􏼃 � − 􏽘

n

i�1
p xi( 􏼁logp xi( 􏼁. (2)

Mutual informationM(X, Y) is proposed to quantify the
common information between two correlative variables, as
shown in (3). ,e larger the mutual information M(X, Y),
the stronger the correlation between the variables X and Y.
However, mutual information is symmetrical and cannot
represent the directionality of information transfer.

M(X, Y) � 􏽘
n

i�1
􏽐
n

j�1
p xi, yi( 􏼁log2

p xi, yj􏼐 􏼑

p xi( 􏼁p yi( 􏼁
. (3)

3.3. Transfer Entropy. In 2000, Schreiber [28] proposed
transfer entropy to measure the amount of information
transfer and asymmetric interaction between systems based
on information theory. Transfer entropy TEY⟶X for two
discrete systems X, Y is calculated as (4), where xi and yi

represent the state value of X and Y at the time i, respec-
tively. x

(k)
i � [xi, xi−1, . . . , xi−k+1] denotes the values of X

during the time period [i, i − k + 1], representing the state of
the past k moments. y

(l)
i � [yi, yi−1, . . . , yi−l+1] denotes the

values of Y during the time period [i, i − l + 1], representing
the state of the past l moments. p( xi+1, x

(k)
i , y

(l)
i ) is the joint

probability. p( xi+1|x
(k)
i , y

(l)
i ) and p( xi+1|x

(k)
i ) are the

conditional probabilities. Transfer entropy has been regar-
ded as an indicator of causality due to its asymmetric nature.

TEY⟶X � 􏽘

xi+1 ,xk
i
,xl

i

p( xi+1, x
(k)
i , y

(l)
i )log

p( xi+1|x
(k)
i , y

(l)
i )

p( xi+1|x
(k)
i )

.

(4)

Transfer entropy represents the difference of the infor-
mation entropy for xi+1 between the situations with both
x

(k)
i and y

(l)
i known and with only x

(k)
i known. If the state of

X at a certain time is completely determined by its historical
state, not connected with Y, the transfer entropy is 0. ,e
parameters k, l are the sampling period of X, Y for the
calculation of transfer entropy. With the increasing of k, l,
more computational resources and data are required to
estimate the joint probability density. Considering the time
delay impacts of information propagation, Bauer et al. [29]
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modified the calculation of transfer entropy by embedding
the prediction horizon h, as shown in

TEY⟶X � 􏽘

xi+1 ,xk
i
,xl

i

p( xi+h, x
(k)
i , y

(l)
i )log

p( xi+h |x
(k)
i , y

(l)
i )

p( xi+h |x
(k)
i )

.

(5)

Schreiber’s definition for transfer entropy is based on the
assumption that the system should be approximated by the
stationary Markov process, and the current system state only
depends on the past states within the limited time periods. If
the assumption of Markov process is not satisfied, transfer
entropy may not be suitable to measure the causal rela-
tionship for this system [24].,e evolution of traffic flow has
been regarded as being eligible for the nature of “Markov
process” [30]. ,erefore, transfer entropy is suitable for
spatiotemporal causality modeling of the network traffic
flow.

As the prediction horizon varies, the reference x
(k)
i

would change. ,is study adopts the modified transfer
entropy proposed by Shu and Zhao [24] as (6). x

(k)
i is

replaced by x
(k)
i+h−1, which is more suitable for estimating the

transfer entropy considering the time delay.

TEY⟶X � 􏽘

xi+1,xk
i+h−1 ,xl

i

p( xi+h, x
(k)
i+h−1, y

(l)
i )log

p( xi+h|x
(k)
i+h−1, y

(l)
i )

p( xi+h|x
(k)
i+h−1 )

.

(6)

3.4. Calculation Method for Transfer Entropy. ,e joint
probability density in (5) is estimated by the kernel density
estimation function. ,e probability density is estimated in
(7). K(x − xi) is the value of kernel function at xi. ,e
probability density 􏽢p(x) is the average of the kernel function
value over a certain range. Kernel density estimation method
does not depend on the prior distribution of the data and is
also applicable for the non-Gaussian distribution data.
Gaussian kernel function is used to estimate the probability
density of traffic state for each road segment as (8). ,e
parameter θ denotes the width of the window for the cal-
culation of the kernel function values.

􏽢p(x) �
1
N

􏽘

N

i�1
K x − xi( 􏼁, (7)

K x − xi( 􏼁 �
1
���
2π

√
θ
e

− x− xi( )
2/2θ2).(

(8)

,e joint probability density 􏽢p(x, y) for x, y is shown in
(9), and the corresponding joint Gaussian kernel function is
calculated in (10).

􏽢p(x, y) �
1
N

􏽘

N

i�1
K x − xi, y − yi( 􏼁, (9)

K x − xi, y − yi( 􏼁 � K x − xi( 􏼁K y − yi( 􏼁

�
1

2πθ2
e

− x− xi( )
2
+ y− yi( )

2/2θ2).( (10)

,e interactions among different variables vary with
time. Sliding window technique is utilized to dynamically
calculate the transfer entropy between variables along the
timeline, which can reduce the sampling data size and
improve the efficiency of causal relationship analysis. ,e
sliding window is described by the window width w and the
moving step length l. ,e original state space is divided into
n continuous subspaces Si. Each window consists of w time
intervals. ,e moving step length l is smaller than w. ,e
window width w should not be too small; otherwise, the
small sampling data within the window would affect the
accuracy of kernel density estimation. ,e moving step
length l should not be too large; otherwise, it could not
reflect the variation of the information transmission process
timely. As shown in Figure 2, for the time series data with a
length of L time intervals, the sliding window starts to move
with a fixed step length l. For each window, the probability
density is calculated, and then the transfer entropy vector
can be obtained with the dimensions of p � L − w + 1 in

Network traffic
flow state matrix

Sliding window Gaussian kernel
density estimation

Transfer entropy
matrix 

Dynamic spatiotemporal
causality graphs 

Causality
significance test

Input degree Output degree

Causal correlation
coefficient matrix 

Affected
coefficient 

Influence
coefficient 

Spatiotemporal causality visualization and evaluation 

Network traffic flow
data 

Critical road segmentsPotential bottlenecks

Figure 1: Research framework.
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time, which can reflect the time-varying transferred
information.

,e road network consisting of m road segments is
utilized to illustrate the calculation of the transfer entropy
matrix. ,e traffic state of each road segment can be treated
as a variable, and thus the total number of variables for this
traffic system is m. Transfer entropy between any two
variables is calculated, and then two-dimensional transfer
entropy matrix Tm×m is obtained for each sliding window, as
shown in (11). Considering the directionality of transferring
entropy, Tm×m is not a symmetric matrix, and for each pair
of road segments, tij ≠ tji. ,e elements on the diagonal are
0.

Tm×m �

0 t12 · · · t1m

t21 0 · · · t2m

⋮ ⋮ ⋱ ⋮

tm1 tm2 · · · 0

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (11)

After eliminating diagonal zero elements, the transfer
entropy matrix Tm×m for each sliding window is transformed
into a row vector tei � [ti

12, ti
13, . . . , ti

1m, ti
21, ti

23, . . . , ti
m(m−1)].

After the window slides from the beginning to the end of the
time series, p transfer entropy vectors can be obtained.,en,
all the transfer entropy vectors are integrated together to
form a transfer entropy matrix with the dimensions of p ×

(m2 − m) for road network traffic state, which can represent
the transferred information among different road segments.
,e sliding window can improve the computational effi-
ciency of transfer entropy by using limited data within each
window, which makes it suitable for the real-time traffic
management system.

te �

t
1
12, t

1
13, . . . , t

1
1m, t

1
21, t

1
23, . . . , t

1
m(m−1)

t
2
12, t

2
13, . . . , t

2
1m, t

2
21, t

2
23, . . . , t

2
m(m−1)

⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮

t
p
12, t

p
13, . . . , t

p
1m, t

p
21, t

p
23, . . . , t

p

m(m−1)

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (12)

4. Spatiotemporal Causality Modeling for
Network Traffic Flow

4.1. Causality Significance Test Method. For the causal in-
ference, the causal relationship is assumed to exist between
any two different traffic state variables X and Y, and then the
causality needs to be verified based on the observed data.,e
cause variables and effect variables can be discriminated
through the causality analysis. Transfer entropy is asym-
metry, because the amount of information transferred in
opposite directions is different. To characterize the direction
and strength of the causality, the causal correlation coeffi-
cient ρX,Y is defined to model the causal strength [29]. ,e
causal orientation and strength are measured by the dif-
ference between TEY⟶X and TEX⟶Y, as shown in

ρX,Y � TEY⟶X − TEX⟶Y

����
����. (13)

When the transfer entropy TEY⟶X in the direction of
Y⟶ X is larger than TEX⟶Y in the direction of X⟶ Y,
Y is the cause variable of X, and the direction of information
transfer is Y⟶ X. Conversely, when TEY⟶X is smaller
than TEX⟶Y, X is the cause variable of Y, and the direction
of information transfer is X⟶ Y. When TEY⟶X is equal
to TEX⟶Y, ρX,Y � 0, and there is no causality between X and
Y. Due to data noise or interference, the causal correlation
coefficient ρX,Y is generally not equal to 0. If ρX,Y is too small,
the causal correlation is not significant. ,en, it is necessary
to set a causal correlation coefficient threshold to define the
significant causality, namely, the causality significance test. If
ρX,Y exceeds the threshold, the causality between X and Y is
significant.

Causality significance test can be regarded as a hy-
pothesis testing problem to determine the causal relation-
ships. ,e null hypothesis is that if ρX,Y is small, there is no
causality between X and Y. If ρX,Y is large enough, the null
hypothesis is rejected, and there exists causal relationship
between X and Y. Bauer et al. [29] used the Monte Carlo
method to reconstruct a new alternative time series for
causality significance test, which should satisfy the following
assumptions: the causality between X and Y is completely
destroyed, and the statistical distribution of X and Y remain
unchanged. ,is study utilizes the method proposed by
Duan et al. [31] to disrupt the original time series for X and Y
with the L time intervals. ,e new time series X′ and Y′ are
constructed, as shown in (14). ,e statistical distribution of
the reconstructed time series X′ and Y′ is consistent with the
original time series X and Y.

X′ � xi, xi+1, . . . , xi+M−1􏼂 􏼃,

Y′ � yj, yj+1, . . . , yj+M−1􏽨 􏽩,

⎧⎨

⎩ (14)

whereM is the length of X′ and Y′; i, j are randomly selected
from 1, 2, . . . , L − M + 1{ }; and ‖i − j‖≥ e, where e is much
larger than the prediction horizon h to make sure that there

l

lw

w

w

L

Sliding window

…

l

l

l

l

l

…

Figure 2: Schematic diagram of sliding window.
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is almost no causality correlation between X′ and Y′. ,en,
the causal correlation coefficient ρ � [ρ1, ρ2, ρ3, . . . , ρN] are
calculated for X′ and Y′. ,e causality significance test is
carried out according to (15), where the μρ and σρ are the
mean and standard deviation of ρ1, ρ2, ρ3, . . . , ρN. ,e sig-
nificance threshold ε is set as μρ + 3σρ. When the causality
coefficient ρX,Y is smaller than ε, there is no causal rela-
tionship between X and Y; when the causality coefficient is
larger than ε, there is significant causality between X and Y.

ρX,Y − μρ ≥ 3σρ. (15)

4.2. Network Traffic State Evaluation. To evaluate the net-
work traffic state, the influence coefficient and affected
coefficient are defined for each road segment. For road
segment i, the influence coefficient Rout(I) denotes the sum
of the transfer entropy from road segment i to the other road
segments in the network as (16), which can describe the
impacts of road segment i on the other road segments. In the
same way, the affected coefficient Rin(I) denotes the sum of
the transfer entropy from the other road segments to road
segment i as (17), which can describe the impacts of other
road segments on the target road segment i.

A data-driven method for identifying the potential
bottlenecks and critical road segments is proposed from the
perspective of spatiotemporal causality analysis. ,e road
segments with large Rin(I) can be regarded as the potential
bottleneck segments, which are most likely to be affected by
the traffic state of other road segments in the network. ,e
road segments with large Rout(I) can be regarded as the
critical road segments, which are most likely to affect the
traffic state of other road segments.

Rout(I) � 􏽘
j

TEi⟶j, (16)

Rin(I) � 􏽘
j

TEj⟶i. (17)

4.3. Dynamic Spatiotemporal Traffic Causality Graphs.
,e time-varying network traffic state leads to dynamic
spatiotemporal causality graphs. Due to the asymmetry of
transfer entropy, the spatiotemporal traffic causality graphs
are directed graphs, representing the dynamic causal
structure for traffic state variables, as shown in Figure 3. ,e
road network consists of n road segments that are denoted
by the nodes r1, r2, . . . , rn. ,e directed edges demonstrate
the significant causal relationship between the traffic states of
two road segments. ,e structures of spatiotemporal cau-
sality graphs at different time slices are quite different. For
example, ri is the cause segment of rj at time t − 1, while
there is no link between them at t and t + 1. ,e causal
strength between any two road segments is defined as the
weight of directed edges. ,e causality coefficient ρri,rj

for
road segment ri and rj during [t − 1, t] is calculated based on
the transfer entropy TErj⟶ ri

and TEri⟶ rj
according to

(13). ,e causality matrix Wt for transfer entropy at time t is

calculated as (18). ,e weight of the directed edges with
strong causality correlation is set to 1, and the weight is set to
0 with no obvious causality correlation. ,en, the redundant
connections can be removed for the construction of causality
graphs. ,e calculation process for the causality matrix is
shown in Figure 4.

W
t

�
w

t
i,j � 1, TEt

i⟶j >TE
t
j⟶i, ρ

t
i,j ≥ ε,

w
t
i,j � 0, others.

⎧⎪⎨

⎪⎩
(18)

Based on the dynamic spatiotemporal causality graphs,
four indicators are proposed to evaluate the impacts of any
road segment in the road network from the perspective of
causal dependence. ,e input degree Dt

in(i) is defined as
(19), denoting the impacts of the traffic states of the other
n − 1 road segments on that of ri at time t. ,e output degree
Dt

out(i) is defined as (20), denoting the influence of traffic
state for road segment ri on the other n − 1 road segments.
,e sum of input degrees SumDin(i) and the sum of output
degrees SumDout(i) are defined to quantify the cause-effect
relationship between the road segment ri and the other road
segments during the time period T, as shown in (21) and
(22).

D
t
in(i) � 􏽘

n−1

j

w
t
ji, (19)

D
t
out(i) � 􏽘

n−1

j

w
t
ij, (20)

SumDin(i) � 􏽘
T

t

􏽘

n−1

j

w
t
ji, (21)

SumDout(i) � 􏽘
T

t

􏽘

n−1

j

w
t
ij. (22)

5. Experiments and Discussion

5.1.DataDescription. ,e expressway network of Shanghai in
China is utilized to test the proposed causality analysis method.
Traffic flowdata is collected by the loop detectors distributed on
the network, as shown in Figure 5. ,e detailed data pre-
processing process has been illustrated in our previous study,
including data aggregation, missing data estimation, and data
noise reduction [32]. Traffic speed data onMay 6, 2014, for 432
road segments in the expressway network is used to verify the
proposed spatiotemporal traffic causality approach. ,e time
interval of traffic flow data is 10min.

5.2. Sensitivity Analysis for Transfer Entropy. In this study,
considering the limited computational resource, the pa-
rameters k and l are set as 1. ,e maximum time delay is set
as 40 minutes, and the parameter h of the prediction horizon
is set as [1, 4]. ,e transfer entropy between any two seg-
ments can be calculated for different directions. For
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example, r220 is the upstream road segment of r223, and the
variation of TEr220⟶ r223

and TEr223⟶ r220
is shown in

Figure 6.
Transfer entropy in different directions for r220 and r223

is shown in Table 1. For example, TEr223⟶ r220
is larger than

TEr220⟶ r223
at the evening peak time 18:30, while

TEr223⟶ r220
is larger than TEr220⟶ r223

at the nonpeak time
13:30. ,erefore, the downstream segment r223 has a more
obvious impact on the upstream segment r220 in the evening
peak congestion periods, while the upstream segment r220
has a more obvious impact on the downstream segment r223
in the nonpeak period.

In addition to the parameters k, l, h, the causality co-
efficient threshold ε also needs to be set. When constructing
the spatiotemporal causal graph, as the causality threshold ε
increases, the number of remaining directed edges with
significant causality is reduced. ,e transfer entropy and
causality coefficients between any two segments are calcu-
lated based on the traffic speed data set for the entire road
network on May 6, 2014. ,e mean value μρ and standard
deviation σρ of transfer entropy for the disturbed sequence
X′ and Y′ are 0.0151 and 0.0116, respectively, and then the
threshold ε is set according to ε � μρ + 3σρ � 0.05. Different
settings for ε would affect the structures of the

rj

ri

rn

ri–1

rj

ri

rn

ri–1

rj

ri

rn

ri–1

r2 r1

r3

t – 1

t

t + 1

Road segments
Directed causal edges

Time

Figure 3: Dynamic spatiotemporal traffic causality graphs.
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Figure 4: Calculation process for causality matrix.
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spatiotemporal causal graph. ,e number of directed edges
for traffic causal graphs with different ε is shown in Table 2.

Considering computational complexity, the three key
parameters are set as k � 1, l � 1, h � 1. ,e time-varying
transfer entropy in different directions, TEr220⟶ r223

and
TEr223⟶ r220

, is shown in Figure 7. ,e variation of the traffic
causality coefficient ρr220 ,r223

is shown in Figure 8.,e transfer
entropy between the adjacent road segments changes greatly
over time. ,e direction and amount of information
transmission in different time periods are quite diverse. For
example, the direction of information transmission between
10:00 and 18:00 is mainly r223⟶ r220, while the direction
of information transmission between 18:00 and 21:00 is
mainly r220⟶ r223. ,e distribution of causality coeffi-
cients for network traffic flow is concentrated, as shown in
Figure 9.

5.3. Spatiotemporal Traffic Causality Analysis. Transfer en-
tropy values among different road segments fluctuate greatly
with time and space, reflecting the variation of information
transfer. Each road segment may be a potential cause or
effect segment. ,e influence coefficient Rout(I) and affected
coefficient Rin(I) for all the road segments in the morning
peak time, evening peak time, and nonpeak time are shown
in Figure 10. Each road segment in the network is repre-
sented by one bubble. ,e bubble size denotes the average
speed of the road segments.,e distribution of the bubbles is
determined by both Rout(I) and Rin(I), which can quanti-
tatively describe the casual interaction of network traffic flow
state. ,e bubbles for the morning peak time are the most
scattered. Table 3 lists the potential bottleneck segments with
the largest Rin(I) and the critical road segments with the
largest Rout(I). ,e spatial locations of potential bottleneck
segments and critical road segments in the road network are
shown in Figure 11. ,e critical road segments are mainly
distributed in the central and western regions of Shanghai
City.

Not all traffic causality correlations are significant. In
this section, the threshold ε is set as 0.05 for the causality
significance test. ,e sum of input degrees SumDin(i) and
output degrees SumDout(i) are calculated for the morning
peak period (7:00–10:00), nonpeak period (13:00–16:00),
and evening peak period (17:00–20:00). ,e distributions
of SumDin(i) and SumDout(i) are shown in Figures 12 and
13, respectively. ,e output degree distribution is more
concentrated than the input degree distribution. On the
whole, SumDin(i) for the morning peak hours is larger
than that of the evening peak hours. ,e distribution of
SumDin(i) for the nonpeak hours is scattered with smaller

values, and thus the road segments are more likely to be
affected by the traffic state of other road segments for
traffic congestion. Similarly, SumDout(i) for the morning
peak hours is larger than that for the evening peak and
nonpeak hours. ,e road segments are more likely to
affect the traffic state of other road segments. Generally,
the causal interaction among different road segments
during the peak time periods is more significant than that
of nonpeak time periods.

5.4. Spatiotemporal Traffic Causality Visualization and
Evaluation. ,e spatiotemporal traffic causality graphs for
the Shanghai expressway network at 8:30 in the morning
peak time, 13:30 in the nonpeak time, and 18:30 in the
evening peak time are visualized in Figure 14, which can
represent the spatial distribution characteristics of the input
degree and output degree. Moreover, the circles represent
the output degrees of the expressway segments. ,e larger
the circle, the larger the output degree, demonstrating more
significant impacts on the traffic states of other road seg-
ments in the network. ,e directed causal edges describe the
causal-effect relationship between two segments. ,e head
arrow for each directed edge connects to the affected road
segment, while the end of each directed edge connects to the
cause road segment. ,e density of arrows around each
circle can present the impacts of other road segments on the
target segment.

,e distributions of circles and directed causal edges
are diverse for different periods. ,e output degrees of
road segments in the peak time are generally larger than
those of nonpeak time. In the morning peak time, the
road segments with larger output degrees are mainly
located at the north-south expressway, east-west ex-
pressway, inner ring road, and southern middle ring road.
In the evening peak hours, the road segments with a
larger output degree are mainly located at the eastern
inner ring expressway. Generally, these critical road
segments are mainly located at the intersections of ar-
terial roads, which undertake the convergence and dis-
persion of large traffic flows, and have more significant
impacts on the traffic state of other roads.

,e circles distributed in the eastern outer ring area are
smaller than other areas, and the directed causal edges are
also sparser than other areas, especially during the nonpeak
period, indicating that the road segments in this area have no
significant cause-effect interaction with other road segments.
,e main reason for this phenomenon is that the eastern
region develops relatively late with weaker network acces-
sibility, which is less likely to be affected by the traffic states

Table 1: Transfer entropy values in different time periods.

Morning peak time 8:30 Nonpeak time 13:30 Evening peak time 18:30
TEr220⟶r223

TEr223⟶r220
TEr220⟶r223

TEr223⟶r220
TEr220⟶r223

TEr223⟶r220

h� 1 0.0169 0.0120 0.0205 0.00722 0.0173 0.0250
h� 2 0.0133 0.0485 0.0205 0.00749 0.0172 0.0247
h� 3 0.0152 0.0459 0.0112 0.00749 0.0173 0.0234
h� 4 0.0137 0.0567 0.0205 0.00751 0.0172 0.0228
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in other regions. In addition, the traffic condition in the
eastern region is normally smooth, having less impact on the
traffic flow in other regions.

,e spatial locations of critical road segments
r302, r391, r286, r181 with large output degree at 8:30 am are
visualized in Figure 15. ,e specific spatial structures of
r302, r391, r286, r181 are shown in Figure 16. ,e yellow
segments are the critical road segments, and the green
segments are the entrance and exit ramps or the

interchange ramps. ,e road segments r302, r391, r286 are
located at the intersections and near the import and ex-
port of expressways with intricate traffic flow. r181 is lo-
cated in the middle segment of the east-west expressway,
which is the main corridor in Shanghai and bears the
largest traffic volume in the east-west direction. ,ese
critical road segments are normally congested, which may
affect the traffic states of other segments in the road
network.

Table 2: Total number of directed edges for traffic causality graph with different ε.

ε Total number of directed edges
0.01 5081635
0.05 184323
0.06 39318
0.09 33
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Figure 10: Distribution of influence coefficients and affected coefficients for road network: (a) morning peak time; (b) nonpeak time;
(c) evening peak time.
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Table 3: Potential bottleneck segments and critical road segments.

Potential bottleneck segments Critical road segments
Morning peak time r35, r328, r70 r123, r36, r30
Nonpeak time r341, r323, r251 r22, r348, r61
Evening peak time r429, r318, r95 r16, r226, r224
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Figure 12: Continued.
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Figure 12: Distributions of SumDin(i) for different time periods: (a) morning peak time; (b) nonpeak time; (c) evening peak time.

SumDout (I)
0 600400200 800 1000 1200 1400

Fr
eq

ue
nc

y

0

5

10

20

15

25

(a)

Figure 13: Continued.

Journal of Advanced Transportation 13



SumDout (I)
0 600400200 800 1000 1200

Fr
eq

ue
nc

y

0

10

5

15

25

20

30

(b)

SumDout (I)
0 800400200 1200 160014001000600 1800

Fr
eq

ue
nc

y

0

10

5

15

25

30

20

35

(c)

Figure 13: Distributions of SumDout(i) for different time periods: (a) morning peak time; (b) nonpeak time; (c) evening peak time.
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Figure 14: Visualization of spatiotemporal traffic causality graphs: (a) morning peak time; (b) nonpeak time; (c) evening peak time.
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Generally, the identified critical road segments are
consistent with the spatial structure and traffic condition of
the road network, which can prove that the transfer entropy
is suitable to evaluate the causal interaction of network traffic
flow. Real-time traffic control measures can be taken for the
time-varying critical road segments or potential bottlenecks
to prevent traffic jams and improve traffic operation effi-
ciency. Furthermore, the potential flaws of road network
structure can be optimized in the future.

6. Conclusions

,is study proposes a novel dynamic spatiotemporal cau-
sality modeling framework, which can represent informa-
tion transmission of network traffic flow and identify the
potential bottlenecks and critical road segments of the
existing road network. Gaussian kernel density estimation
method is used to calculate the transfer entropy among
different road segments. To reveal the dynamic variation of
traffic causality, the sliding window technique is utilized for
the calculation of the transfer entropy. Causality significance
test is performed to construct spatiotemporal causality
graphs. ,is study can effectively extract the potential
nonlinear causal relationships from massive traffic data and
provide a data-driven research framework to identify the

critical road segments and potential bottlenecks in the road
network. ,e detected dynamic spatiotemporal traffic cau-
sality can be combined with the traffic prediction in the real-
time traffic management system.

,e experimental results based on the traffic sensor data
for the Shanghai expressway network indicate that transfer
entropy for network traffic flow is asymmetrical, which
fluctuates significantly with space and time. ,e output and
input degrees in the peak time are generally larger than those
in nonpeak hours with more information transfer and
stronger causal interaction for the network traffic flow. ,e
critical road segments with larger output degrees are mainly
located in the intersections, bearing the convergence and
dispersion of large traffic flows and having significant im-
pacts on the traffic state of other segments in the road
network. ,e causal correlation of the road segments with
smooth traffic condition at the nonpeak time is weaker than
that of peak time.

,is study does not consider the connectivity of road
network. In the future, we would integrate the network
topology structure into spatiotemporal traffic causality
analysis and then develop a traffic congestion propagation
pattern identification model. In addition, the traffic causality
analysis can be further combined with traffic congestion
prediction.
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r391

Figure 15: Spatial locations of critical road segments.
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Figure 16: Spatial structures of critical road segments: (a)r302; (b)r391; (c)r286; (d)r181.
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