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Abstract. A brief review of the existing auxiliary prosthetic control 

systems was carried out. The concept of an intelligent prosthesis is 

proposed, which will expand the possibilities of application and simplify 

the use of the prosthesis. The required actions of the vision system in 

automatic and manual capture modes are considered. The sequence of 

operation of the subsystems of the technical vision system is determined. 

The possibility of implementing a prosthesis vision system based on neural 

network technology is shown. The method of using a ready-made neural 

network for recognition of objects by a prosthesis is considered. The 

possibilities of using the considered neural network technologies in the 

mathematical education of engineers are presented. A version of the 

prosthesis design is proposed. The possibility of constructing the described 

prosthesis is shown. 

1 Introduction 

The problem of replacing missing limbs with prostheses has existed for hundreds of years, 

however, even with modern advances in science and technology, prosthetic technology has 

not reached the level of an ideal replacement for a living human hand. 

Today, bioelectric hand prostheses allow people who have lost upper limbs for some 

reason to partially restore lost functions. Modern devices have different degrees of freedom, 

a different number of drives, perform different numbers of captures and are designed for 

certain tasks [1, 2, 3, 4]. However, the complex design of the prosthesis in most cases 

causes difficulties in managing it, while the primitive design does not allow to realize the 

movements necessary for a person in daily activities. Moreover, a person does not feel such 

limbs, and he has to act with constant eye contact [5, 6, 7, 8, 9]. 

If the prosthesis could somehow tell the user how best to take the object, adjust its 

actions depending on the parameters of the captured object, or if necessary, complete the 

capture yourself, taking only the “take” command from the person, then control of such a 

device would be much it would be simpler and even allow in some situations to act 

“blindly" [10]. 

When performing an operation to capture a wide range of objects, an intelligent prosthesis 

must perform the following actions: 
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1. The definition of the command to capture [11, 12, 13]. The prosthesis should 

proceed to capture directly only when required by the user. In addition, according 

to the user’s actions, the decision-making system should receive primary 

information about the proposed capture method. 

2. Classification of the subject [14, 17]. Knowing which class of objects an object 

belongs to, one can choose a capture corresponding to this group, or a group of 

captures [15]. 

3. Recognition of object parameters [16]. In many cases, objects of the same class 

require a different approach to capturing them due to different dimensions, 

different orientations, etc. 

4. Accurate grip compression [18, 19, 20]. In this case, it is necessary not only not to 

deform the object, but also to prevent its possible loss. 

5. The work of the decision-making system at each of the listed stages [21]. For the 

correct operation of the capture operation, it is necessary to analyze the user's 

commands, and the classification results, and the recognized parameters of the 

object, and the forces arising from compression.  

Moreover, the design of the prosthesis should satisfy its functional capabilities and 

provide the ability to place components of the above systems [22, 23]. 

In carrying out such steps, the prosthesis should be easy to operate, and with its help it will 

be possible to interact with many objects encountered by people in everyday life, at work 

and during other periodic activities. Which, undoubtedly, will allow people with limited 

opportunities due to the lack of a hand to lead a full-fledged or as close as possible to a full-

fledged lifestyle. 

Thus, in order to increase the number of items available for capture and further use due 

to the intellectualization of the prosthesis, a number of technical solutions are required. In 

particular, neural network technologies for object recognition are relevant for solving such 

problems. Their use along the way can become an important link in the mathematical 

education of engineers due to the presence of relatively simple effective and inexpensive 

ways to implement such technologies. 

2 Overview of existing auxiliary denture management systems 

In addition to information coming directly from a person, modern prostheses have auxiliary 

systems that help the device better understand the grip that the user wants to apply. 

1. The simplest, but no less effective, approach is implemented in the bebionic3 

prosthesis of the English company RLS Steeper [1]. The base of the thumb has a 

fixed number of positions, each of which defines a group of available grips and is 

set manually by the user. The number of different captures is also fixed. 

2. Another English company proposed alternative approaches that differ in each 

configuration of the device: 

a) i-limb ultra. i-limb ultra is the base brush [2]. Its features include: 

 vari-grip mode, which allows you to redistribute the load between 

your fingers; 

 thumb moves manually; 

 2 ways to control: mobile application and combinations of muscle 

contractions; 

 setting the speed of the fingers; 

 restraint auto-locking, preventing objects from slipping. 

Switching between types of grip can be carried out both through a mobile 

application (only for devices on iOS) and muscle control. Muscular control 

uses 4 combinations: 
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 constant muscle contraction (for setting a period of time); 

 double reduction; 

 triple reduction; 

 simultaneous contraction of the flexor and extensor muscles. 

Each of them is assigned a specific action selected by the user. 

b) i-limb revolution [2]. It is the next prosthesis in the i-limb line. Having 

retained all the features of its predecessor, revolution, grip chips technology 

has been added. Chip grips technology is another form of denture control. 

Through Bluetooth, the prosthesis communicates with the so-called grip chip, 

which secures a certain type of grip through a mobile application. When the 

prosthesis approaches the chip, an automatic change of grip takes place. The 

chip is round, about 2.5 cm in diameter, equipped with light and sound 

indication. 

c) i-limb quantum [2]. i-limb quantum is the latest in the i-limb line. Compared 

to revolution, it has a fourth control system in the form of i-mo technology. 

This technology allows you to change the type of grip, performing certain 

movements with the prosthesis. For this, the prosthesis is equipped with 

motion sensors. In all other respects, the prosthesis is identical to the i-limb 

revolution. 

3 Prosthetic intellectualization concept 

Let us first consider the general principle of constructing an intellectual prosthesis [24]. The 

above prosthetic control systems have a common, namely, the choice of the appropriate 

group of contractions, and only after that the use of a specific grasp [3, 4]. Mostly this 

requires actions from the person to switch the prosthesis to the appropriate mode with his 

free hand. In addition, this type of control does not allow capturing accurately when 

interacting with many classes of objects [5, 10]. 

Let us consider in more detail the systems proposed for implementation, as well as 

changes in the requirements for the design of the prosthesis that will be caused by their 

implementation. 

3.1 Human-Machine Interface 

The human-machine interface for controlling the prosthesis is a system that reads control 

signals from a person using specialized sensors and sends a set of data corresponding to a 

given grip and finger position to the input of the decision-making system. Depending on the 

operating mode of the prosthesis (automatic capture or manual capture with partial help of 

automation), the system reads and recognizes either the command to perform the capture or 

the parameters of the desired capture. 

Modern bioelectric prostheses are usually controlled by one of three main control 

methods [11]: 

1. reading signals from the human brain; 

2. neuroelectric interface; 

3. electromyographic (myoelectric) interface [12]. 
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3.2 Technical Vision System 

Technical Vision System (TVS) are widely used in various technical devices. Moreover, in 

commercially available prostheses TVS is not currently used. The most similar TVSs are 

TVS manipulators and TVS mobile robots.  

The similarities between the designed TVS prosthesis and the TVS of mobile robots are 

in a variable working area, variable illumination and high performance requirements. The 

main difference is that when used in a prosthesis, the system receives strict restrictions on 

energy consumption and size, which also leads to a limitation of computing power [14].  

The TVS of manipulators and the prosthesis are similar in the spectrum of tasks to be 

solved - the classification of objects and the determination of some of their parameters. At 

the same time, significant differences are observed both in size and capacity, and in 

functioning in a variable working area with high speed [15]. 

We define the concept of a “class of objects” as an individualized family of objects that 

share certain common characteristics. For example, the class "computer mouse" or "pen". 

The accuracy, speed and correctness of the capture of an object by a prosthesis depend on 

the class of the object, its size and orientation relative to the grip. 

Different objects have a fundamentally different structure, respectively, require a 

different approach to the implementation of the capture. For example, the cup is taken by 

the handle, the arm h is placed on the mouse on top, and the fountain pen is simply fixed in 

one position. Accordingly, having information about the class of the object, you can select 

the desired grip - the position of the fingers and hand. This information is especially 

important when working in automatic mode, as in this case, a person cannot directly control 

the process. 

In this case, the capture process will depend on the parameters of a particular instance of 

the class. At least from their size. For example, a ping-pong ball and a medium-sized rubber 

ball will require different approaches. However, this is not enough to accurately and 

accurately complete the task. The fact is that in many cases capture of an object of a class 

from a certain specific position is required, which also requires data on the orientation of 

the hand relative to the axes of the object. For example, when capturing a computer mouse, 

you need to take it with the buttons in the direction of the fingers of the hand, and not 

perpendicular to the axis of the hand. 

So, TVS of the prosthesis should successively solve the problems of classification [16] 

of an object and recognition of its certain signs [17]. The system should include a 

computing device of sufficient power with small sizes and power consumption and a 

sufficient set of sensors to obtain information about the object in the working area when 

working in various conditions of humidity and light. Moreover, due to the specifics of the 

work, it is necessary to ensure the necessary system speed and the small dimensions of its 

elements. 

3.3 Force-Moment Management 

Force-Moment Management  for a prosthesis is a type of regulation based on processing 

information about the compression force of an object and the moments that occur in the 

engine [18]. 

Based on a volumetric study of various popular bionic hands of a group of scientists 

from Yale University [19], the following conclusions can be drawn:: 

1. in most prostheses, DC motors are used; 

2. approximately half of the prostheses have a worm gear to change the direction of the 

axis of rotation of the engine; 

3. most prostheses have a system for controlling the moment of the engine; 
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4. the vast majority of prostheses provide the so-called “power grip”, that is, the girth of 

the subject with five fingers for a tight hold; 

5. most prostheses have 2 phalanges in each finger. 

At the same time, the traditional positional drive control often does not allow you to 

accurately take items. A positioning error can result in either too much compression of the 

subject, or insufficient compression. Adding feedback to the engine torque system will 

more accurately determine the desired position of the grip [20]. It should be noted that 

force-moment control can be organized without complex intelligent systems based on 

conventional inexpensive electrical and electromechanical components. 

3.4 Decision Making System 

Decision making system - a system that selects, based on data from other systems, how best 

to capture. It also corrects the actions of the user, and when receiving a command for 

automatic capture, it independently controls the actions for its implementation. Similar 

systems are found in most modern technical devices, although devices with the connection 

of individual systems directly, without centralization, are also used [21]. 

The system under consideration receives data from the human-machine interface and 

from the vision system, and also exchanges data with the control system at a low level. To 

ensure the correct operation of the entire prosthesis, the decision-making system must have 

a margin of speed relative to other systems, as well as be able to correctly adjust the 

prosthesis's work if any module fails, or, if it is impossible, to implement a safe shutdown. 

3.5 Design Features of the Intellectual Prosthesis 

Currently, there are many prostheses: traction, bionic, electromechanical, etc. Undoubtedly, 

their designs differ from each other, but slightly, while maintaining common features [22]. 

The introduction of intelligent systems into the prosthesis will also lead to a number of 

changes due to the need to find a place to place the components that appeared and due to 

certain requirements for the location and relative position of the components themselves.  

For the system in question, the design shown in Figure 1 is proposed. 

 

Fig. 1. Proposed prosthesis design without intelligent system components. 
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The prosthesis arm can rotate 360° around the axis of the forearm, and also has a 

rotation axis in the wrist. The distal and middle phalanges of the fingers have a rigid mount 

at an angle of 20⁰, and the middle phalanges of the fingers 1-4 have a rigid mount that 

connects them with the palm and ensures their movement when the proximal phalanges 

move. The thumb has two degrees of freedom, allowing it to change position relative to the 

palm and set in motion the middle phalanx. 

This design is distinguished by: 

1. minimization of the number of drives; 

2. the possibility of arranging the control electronics and the required sensor system; 

3. the use of worm gears to protect motors from overloads [23]. 

4 Application of neural network technology for the prosthesis 
technical vision system 

Based on the required functions of the TVS of the intelligent robotic prosthesis of the hand 

(IRPH) described above, the requirements for the system and the possibilities for their 

implementation, we consider several potential modes of operation (Fig. 2): 

1. The main mode of operation. Recognition of an object from a camera image, its 

classification by means of TVS IRPH, with successful classification - 

determination of additional parameters unique to each class of objects.. 

2. Standby time. The absence of any active TVS actions in the absence of a 

recognition command. Waiting for this command. Energy saving due to system 

shutdown. 

3. The mode of checking the item. Verification of the correctness and quality of 

recognition of a specific object using TVS tools with the possibility of external 

control. It is required for the initial and current debugging of the system, as well as 

for independent verification by the user of an object in case of difficulties with its 

recognition. 

4. Class check mode. Verification of recognition of the class and parameters of the 

object with the subsequent transfer of data about the stages of verification to an 

external device. It is required for debugging the system, as well as for generating a 

user report on incorrect recognition. It serves as the basis for a possible in the 

future function of remote update of TVS IRPH software. 
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Fig. 2. Selecting an operating mode - a fragment of the main program. 

In general, the classification problem has 2 fundamentally different approaches. This is 

a classification using recognition algorithms and classification using artificial neural 

networks. 

Let us consider in more detail the classification using neural network technology. 

Today, neural networks are gaining more and more popularity. They found their application 

in tasks of various kinds. For example, pattern recognition, their classification, tasks of 

predicting any processes that are random in nature, approximation of functions, etc. 

At a qualitatively high level, the problem of image classification began to be solved in 

2013, breaking through the barrier of 15% of the classification errors of thousands of types 

of objects on the ImageNet data set. Since then, a lot of different models of neural networks 

have been designed and trained, and a 5% error barrier has been broken. The most 

successful of them are: VGG16, ResNet50, Inception, GoogLeNet, YOLO, MobileNet and 

many others. Most of them are based on convolutional neural networks. 

Most neural networks used to classify images have similar operating principles. These 

are convolutional neural networks. Their layers in the image consist of a set of different 

convolution filters. Each of the filters is responsible for finding a specific pattern, and when 

it finds a certain part of the image in which there is this pattern, the filter sends a signal to 

the next layer. In turn, the signals of the previous layer make up a new image for the next 

layer. Building cascades of convolutional layers and training the model, we obtain layers 

containing abstractions of images. The first layers may contain small parts - lines. Next are 
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combinations of details - figures. The following layers may already contain forms, and at 

the end whole objects. 

With regard to the development of the IRPH as a learning task, the use of neural 

networks has several advantages relative to classical methods of image processing: 

 the use of ready-made neural networks with a small adjustment for a specific 

task allows you to reduce time-consuming costs; 

 accuracy of object recognition using ready-made neural networks in many 

cases exceeds the accuracy that can be achieved using classical algorithms; 

 n the educational task, it is permissible to use the increased power of 

computing structures necessary for the operation of a neural network; 

 The concept of the TVS IRPH operation allows us to consider the speed of 

recognition of neural network objects to be sufficient. 

5 Experimental check  

To confirm the possibility of using neural network technologies for TVS IRPH, an 

experimental check was carried out. 

Using the MobileNet artificial neural network (ANN) on the Raspberry Pi 3B +, the 

following results were achieved (Fig. 3): 

1) t_set=80.1°C; CPU: 87 ± 2% 

2) FPS: 0.4…1.9 

3) Recognition accuracy: high 

 

Fig. 3. Experimental verification of the MobileNet neural network on the Raspberry Pi 3B +. 

When using the ANN YOLO v3 - tiny  on the Raspberry Pi 3B +, the following results 

were achieved (Fig. 4)): 

1) t_set=80.4°C; CPU: 86±1% 

2) FPS: 0.5…1.5 

3) Recognition accuracy: above average 
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Fig. 4. Experimental verification of the neural network YOLO v3 - tiny on the Raspberry Pi 3B +. 

6 Configuring Raspberry Pi to work with TVS IRPH 

One of the main tasks when using neural network technology in training is the correct 

installation of a ready-made neural network. 

The work of a single-board computer as a means of recognizing objects and 

highlighting their signs requires: 

1. connecting the camera; 

2. permission to exchange data with external devices via USB B; 

3. access to the GPIO input-output ports for controlling the indicator block; 

4. The installed openCV library for the operation of a neural network and for 

determining the characteristics of a class object. 

To connect the camera, just enter 2 commands in the terminal: (sudo apt-get update, 

sudo apt-get dist-upgrade - check for system updates), and then in the Raspberry OS 

settings (Preferences → Raspberry Pi Configuration) you need to enable the use of the 

camera - tab Interfaces, item Camera, click on Enabled.. 

USB and GPIO ports are enabled by default. To use the GPIO ports you need to 

register: 

import RPi.GPIO as GPIO 

# Setting the number of GPIO pins we will work with 

LED = 4  

# Reset port states (all configured for input - INPUT) 

GPIO.cleanup() 

Installing openCV on the Raspberry Pi (as well as on almost any linux-like system) is 

performed by a sequence of commands: 

Update the system: 

$ sudo apt-get update && sudo apt-get upgrade 

Install the developer tools, including CMake: 

$ sudo apt-get install build-essential cmake unzip pkg-config 
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Install a set of image and video libraries (they are important for the ability to work with 

image and video files): 

$ sudo apt-get install libjpeg-dev libpng-dev libtiff-dev 

$ sudo apt-get install libavcodec-dev libavformat-dev libswscale-dev libv4l-dev 

$ sudo apt-get install libxvidcore-dev libx264-dev 

Install GTK (GUI backend): 

$ sudo apt-get install libgtk-3-dev 

Install a package that will reduce GTK warnings: 

$ sudo apt-get install libcanberra-gtk* 

Install packages that contain numerical optimizations for OpenCV: 

$ sudo apt-get install libatlas-base-dev gfortran 

Set the Python 3 development headers: 

$ sudo apt-get install python3-dev 

Download the opencv and opencv_contrib code: 

$ cd ~ 

$ wget -O opencv.zip https://github.com/opencv/opencv/archive/4.0.0.zip 

$ wget -O opencv_contrib.zip 

https://github.com/opencv/opencv_contrib/archive/4.0.0.zip 

Unpack the archives and rename the directories:: 

$ unzip opencv.zip 

$ unzip opencv_contrib.zip 

$ mv opencv-4.0.0 opencv 

$ mv opencv_contrib-4.0.0 opencv_contrib 

Install pip, the Python package manager: 

$ wget https://bootstrap.pypa.io/get-pip.py 

$ sudo python3 get-pip.py 

Install virtualenv and virtualenvwrapper (they allow you to use virtual Python 

environments): 

$ sudo pip install virtualenv virtualenvwrapper 

$ sudo rm -rf ~/get-pip.py ~/.cache/pip 

To complete the installation of these tools, update the ~ / .profile file: 

$ echo -e "\n# virtualenv and virtualenvwrapper" >> ~/.profile 

$ echo "export WORKON_HOME=$HOME/.virtualenvs" >> ~/.profile 

$ echo "export VIRTUALENVWRAPPER_PYTHON=/usr/bin/python3" >> 

~/.profile 

$ echo "source /usr/local/bin/virtualenvwrapper.sh" >> ~/.profile 

$ source ~/.profile 

Let's create our virtual environment OpenCV 4 + Python 3 on the Raspberry Pi and 

move on to it: 

$ mkvirtualenv cv -p python3 

$ workon cv 

Install the Numpy package (OpenCV prerequisite): 

$ pip install numpy 

Let's go back to the OpenCV repository and create the directory: 

$ cd ~/opencv 

$ mkdir build 

$ cd build 

Run the CMake instructions to configure the OpenCV 4 build: 

$ cmake -D CMAKE_BUILD_TYPE=RELEASE \ 

    -D CMAKE_INSTALL_PREFIX=/usr/local \ 

    -D OPENCV_EXTRA_MODULES_PATH=~/opencv_contrib/modules \ 
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    -D ENABLE_NEON=ON \ 

    -D ENABLE_VFPV3=ON \ 

    -D BUILD_TESTS=OFF \ 

    -D OPENCV_ENABLE_NONFREE=ON \ 

    -D INSTALL_PYTHON_EXAMPLES=OFF \ 

    -D BUILD_EXAMPLES=OFF .. 

Increase the swap space: 

$ sudo nano /etc/dphys-swapfile 

# EDIT TO: CONF_SWAPSIZE=2048 

Restart the swap service: 

$ sudo /etc/init.d/dphys-swapfile stop 

$ sudo /etc/init.d/dphys-swapfile start 

Compile (try to compile) OpenCV 4: 

$ make –jx 

Install OpenCV 4 with two additional commands: 

$ sudo make install 

$ sudo ldconfig 

Create a symbolic link from the OpenCV installation at the system level (to the package 

directory in the virtual environment): 

$ cd ~/.virtualenvs/cv/lib/python3.5/site-packages/ 

$ ln -s /usr/local/python/cv2/python-3.5/cv2.cpython-35m-arm-linux-gnueabihf.so 

cv2.so 

At the same time, the main assembly of the library should take place during the 

execution of the “make –jx” command, where x is the number of processor cores used in 

the operation. However, in practice, in the case of the Raspberry Pi 3B +, the command is 

correctly executed only when using 1 core (which is confirmed by both practical experience 

and information from various Internet resources). On Raspberry Pi 3B +, testing openCV 

operability after successful installation of the library showed that the library got up 

correctly and works. 

When using the Raspberry Pi 4 during the installation process, no problems were 

identified, however, testing to complete the installation showed the configuration to be 

inoperative. The same is confirmed by numerous examples from online sources. Based on 

the results of several installation attempts, including in various ways, it was concluded that 

it was impossible to use openCV on the Raspberry Pi 4 as of November 2019. 

Thus, during the preparation of Raspberry Pi versions 3B + and 4, as applied to the task 

of using as part of TVS IRPH, a choice was made in favor of Raspberry Pi 3B + as it allows 

to realize the system’s performance at the current moment.. 

7 Conclusion 

The paper proposes the concept of constructing an intelligent prosthesis that allows the 

capture of objects with a significant increase in the usability of the device and a significant 

expansion of its capture capabilities. The possibility of constructing such a prosthesis is 

shown.. 

The concept of using neural network technology to solve the problem of object 

recognition by the vision system of an intelligent robotic hand prosthesis is proposed. The 

experimentally proven possibility of its implementation on a single-board Raspberry Pi 3B 

+ computer is shown. 

The use of neural networks in relation to the TVS IRPH can simplify the process of 

developing the system. Such a variant of their application also opens up wide opportunities 

for the use of neural network technologies in the training of engineers. 
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