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Analyzing Dynamic Hypergraphs with
Parallel Aggregated Ordered Hypergraph

Visualization
Paola Valdivia, Paolo Buono, Catherine Plaisant, Nicole Dufournaud, and

Jean-Daniel Fekete, Senior Member, IEEE

Abstract—Parallel Aggregated Ordered Hypergraph (PAOH) is a novel technique to visualize dynamic hypergraphs. Hypergraphs are a
generalization of graphs where edges can connect several vertices. Hypergraphs can be used to model networks of business partners or
co-authorship networks with multiple authors per article. A dynamic hypergraph evolves over discrete time slots. PAOH represents vertices
as parallel horizontal bars and hyperedges as vertical lines, using dots to depict the connections to one or more vertices. We describe a
prototype implementation of Parallel Aggregated Ordered Hypergraph, report on a usability study with 9 participants analyzing publication
data, and summarize the improvements made. Two case studies and several examples are provided. We believe that PAOH is the first
technique to provide a highly readable representation of dynamic hypergraphs. It is easy to learn and well suited for medium size dynamic
hypergraphs (50-500 vertices) such as those commonly generated by digital humanities projects—our driving application domain.

Index Terms—dynamic graph, interaction, case study, dynamic hypergraph, digital humanities, usability
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1 INTRODUCTION

D YNAMIC networks are used to model the evolution of relations
between entities over time. The entities are represented as

graph vertices and the relations as graph edges, connecting two
vertices. Examples include computer networks where the dynamic
relations are defined by packets exchanged over time between
computers, co-authorship networks where relations are articles
written by two authors, brain activity where relations are high
correlations between regions of interest of the brain.

While these kinds of networks are typically modeled as regular
graphs, they can more accurately be modeled as hypergraphs where
each relation may involve several vertices. For example in historical
documents multiple persons can be mentioned together; in co-
authorship networks, publications can associate multiple authors to
one article; and in brain data, multiple brain regions can be highly
active at the same given measurement time.

The design of PAOH was initially driven by Digital Humanities
applications. Our team has worked extensively with social science
researchers studying social networks and their evolution. Many such
projects involve a long data generation process, searching archives,
analyzing documents, and generating medium-sized networks (50–
500 vertices), followed by careful and detailed analysis of all the
relationships.

• P. Valdivia is with Inria, France.
E-mail: paola.valdivia@inria.fr.

• P. Buono is with the University of Bari, Italy.
E-mail: paolo.buono@di.uniba.it.

• C. Plaisant is with the University of Maryland, USA, and INRIA Chair,
associated with the INRIA Foundation.
E-mail: plaisant@cs.umd.edu.
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Let’s use the example of a historian studying a collection
of historical documents describing business agreements between
different people over the years [1]. Each contract involves two
or more persons, and the historian needs to understand how each
person’s business relationships change over time. Using classical
node-link diagrams to visualize a graph, a contract between three
entities is represented as three edges, making it unclear whether they
corresponded to a single contract or two or three different contracts.
It may be possible to use color or dash pattern on the edges to
represent the contract, but if more than half-dozen contracts need
to be encoded, the color encoding becomes unusable. Contracts
can also be encoded as additional node types using a bipartite
network, but this dramatically increases the size and complexity of
the graph. So typically, the document identity is lost using classical
network visualization techniques that focus on the relations among
people (who is in relation with whom). The historian also needs
to understand how the network changes over time. None of the
existing techniques for visualizing dynamic networks [2] support
hypergraphs, making PAOH unique.

The proposed PAOH visualization is a novel technique (Fig-
ure 1) where the time is split into intervals and visualized as
consecutive time slots. The vertices are encoded as parallel
horizontal tracks, and edges are encoded as parallel vertical lines
connecting the vertices. A dot is used to depict and emphasize
the connection or vertices with edges. A novel glyph technique
(called drips) helps compact the display, while interaction speeds
exploration or reveals similar edges. Variations in visual encoding
and orderings address specific users needs.

The specific contributions of this article are1:
• A detailed description of the PAOH technique implemented

in a prototype, with multiple examples and variants.

1. A very early version of the PAOH interface was described in a poster [2],
and an initial case study was described in a workshop paper [3].
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Fig. 1: The Parallel Aggregated Ordered Hypergraph visualization of a dataset extracted by historians from 59 legal documents: Time
runs from left to right with discrete time slots representing the network at that time. Vertices (here people) are represented by parallel
horizontal bars, with all names aligned on the left. Each parallel vertical line is a hyperedge, connecting two or more vertices. A dot
marks each connection. In this view, the vertices of degree one (i.e., the people involved in a single document) have been hidden from
the list of vertices, and their existence is only hinted with drips, i.e., smaller gray dots at the lower end of hyperedges.

• The report of a usability study which 1) demonstrates that
participants could discover how to interpret a PAOH display
on their own without training, 2) illustrates how PAOH was
used to explore a dataset of publications, and 3) summarizes
the changes made to improve the usability of the tool.

• Two case studies describing the use of PAOH in digital
humanities research projects.

2 RELATED WORK

PAOH has been inspired by the BioFabric technique proposed by
Longabaugh [4] that visualizes large networks, such as those in
biological research, by depicting vertices as equally spaced parallel
horizontal lines, and edges as vertical lines drawn over the vertices
and joining the starting vertex vertical position to the ending vertex
position. In addition to BioFabric, PAOH represents hyperedges,
visualizes relations over time using time slots, allows vertex
reordering, hyperedge packing, and offers multiple interaction
techniques to support complex explorations. In the rest of this
section, we provide definitions, review the work on the visualization
of hypergraphs, dynamic networks, and taxonomies of tasks.

2.1 Definitions
A graph is defined as G = (V,E), where V is a set of vertices
(or nodes) {v1, · · · ,vm} and E a set of relations (or edges)
{e1, · · · ,ep}|ei = (va,vb) ∈V 2,1≤ i≤ p.

The focus of this work is on hypergraphs, denoted as G =
(V,H)|H is a set of h hyperedges, i.e., edges that can connect any
number of vertices. Formally, h ∈P(V ) where P(V ) is the set of
all sets of V (a.k.a power-set of V ).

Several definitions of dynamic graphs exist in the literature.
We use the definition from the survey on dynamic graphs [5],
where a dynamic graph is a sequence of graphs {G1, · · · ,Gn}|Gi =

(V,Ei),1 ≤ i ≤ n sharing the same vertices but with a topology
varying over time. Each set of edges Ei refers to a given time
interval (or time slot). Other authors, such as van den Elzen et
al. [6], consider dynamic graphs as Gτ = (V,Eτ) where edges Eτ

have a time-stamp: eτ = (va,vb,τ) ∈V 2×T . These structures are
closer to stream graphs [7] and are not addressed here.

2.2 Visualization of Hypergraphs
Hypergraphs such as co-authorship networks have mostly been
visualized as standard networks [8], [9] or bipartite networks [10].
Visualizing a hypergraph as a bipartite graph adds vertices to
represent hyperedges, and additional edges to connect them to the
actual vertices, making the graph more complex to render and
interpret, instead of simplifying it as intended by PAOH.

Hyperedges are equivalent to sets since a simple hyperedge is
a set of vertices. Various techniques designed for visualizing sets
have been surveyed in [11]. For example, sets/hyperedges have
been represented as Kelp Diagrams [12], or variations of node-link
diagrams [13] where the style of an enclosing closed curve or a
color encodes the vertices belonging to the same set/hyperedge.
Those techniques quickly run out of visual attributes, so they
are limited to one or two dozens of hyperedges. Matrix-based
approaches [14], [15], [16] were also used to represent sets. Within
these, the technique proposed by Kim et al. [15] displays elements
as columns and set/hyperedges as rows, on a matrix layout. Like
PAOH, it also displays information about the set membership and
degree of aggregation, for each element, on top of the columns.
Although it looks similar to PAOH, it does not deal with time and
is meant to support very different tasks.

Matrix-based approaches scale better in the number of vertices
and sets than PAOH, but they only support well set operators such
as union or intersection between two or more sets. PAOH supports
some set operators but is designed for dynamic hypergraphs.
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UpSet [16] is a technique where sets are depicted as columns
partitioned as segments of a Venn diagram, and each segment is
represented by a configuration of lines (or disks). It is very similar
to PAOH graphically, but completely different in meaning. While in
PAOH a line depicts a vertex of a hyperedge, UpSet uses a line to
depict Venn segments. Links also have a similar visual appearance.
In PAOH, a link depicts a hyperedge, while in UpSet, it depicts
Venn diagram segments. Furthermore, UpSet does not consider
time at all.

If a group is an encoded relationship between objects [17],
hyperedges can also be represented as overlapping groups of
edges. Vehlow et al. [17] proposed a state of the art in visualizing
group structures in graphs using a taxonomy, composed of two
orthogonal concepts: Overlap (disjoint/overlapping) and Structure
(flat/hierarchical). The survey mentions colors, pie charts or icons
to encode the group or groups a vertex belongs to, and various
strategies to show groups of edges (juxtaposed, superimposed,
embedded). However, none of the proposed techniques explicitly
addresses hyperedges, and most of the solutions consider a small
number of groups. In contrast, the domains where PAOH has been
used are characterized by the presence of hundreds of hyperedges.

We are interested to visualize non-overlapping group structures
(partitions) of vertices over time. Visualizing the evolution of
groups over time is challenging. Some researchers visualize the
evolution of vertices groups but not the graph topology [18], [19],
while others visualize graph topology but not the evolution of
groups [20], [21]. The only attempt to visualize both the evolution
of groups and topology that we found proposes a visualization of
groups as blocks of vertices connected by curves to show relations
between communities [22]. They also propose a few patterns that
reveal group evolution, such as split, merge, stable, extinct/merge.
Hyperedges are not addressed.

In some cases, custom applications were designed to present
specific hypergraphs, for example, PaperLens [23] shows a mul-
tidimensional and synchronized visualization for the analysis of
scientific papers, and helps in exploring the dataset. No graph
visualization is used and relationships—such as co-authorship—are
reduced to one-to-one relationships. Arafat and Bressan visually
identify hyperedges by enclosing vertices in closed curves [24]. To
process them, they transform hypergraphs into graphs using several
algorithms. This approach produces many crossings that quickly
clutter the display, and does not consider dynamic hypergraphs.

Similarly to our proposal, Kerren et al. [25] address hyperedges
as sets of vertices and propose a radial technique where vertices
are points disposed regularly around a circle, and hyperedges are
circular arcs connecting the vertices. A point depicts the vertex
intersecting the hyperedge and its vertex, at the intersection of
the radius passing by the vertex and the arc. Their technique is a
radial version of PAOH, but is limited in the number of vertices,
the number of hyperedges, and cannot encode multiple time-steps.

Storyline [26], [27] is a technique to visualize the interactions
between characters in movies and is related to hypergraphs. In a
storyline visualization, each character is a curved line displayed in
the context of a movie timeline, with only one degree of freedom:
it can only move up or down since its horizontal position is
constrained by the movie timeline. Lines join when their associated
characters are present in the same area during an event of the movie,
and get farther apart when the characters are farther away. Particular
events can be highlighted with colored patches underlying multiple
character lines during an action. These events can be considered
as hyperedges. However, the structure of movies constrains the

structure of the underlying hypergraph: one character can only
appear in one event at a time whereas dynamic hypergraphs can
connect the same vertex multiple times at the same time slot, and
movie events are usually paced to follow storytelling rules whereas
dynamic hyperedges can occur at any pace in a dynamic hypergraph.
Therefore, Storyline cannot be used directly to visualize general
dynamic hypergraphs.

As we were developing PAOH, we were pleased to find a
precursor design published in an archaeology book [28], where
Arnold graphically describes a small dataset with 8 territories (see
Figure 1 in supplementary materials). Each vertical line is a battle
connecting territories. Attacking territories are shown as black dots,
and defending ones are white dots. Coalitions are visible when
more than two tribes are involved in a battle. Each battle is placed
on a continuous timeline, using a stream metaphor instead of a
series of discrete time slots as our technique does. The stream
metaphor has some benefits but often leads to overlaps, which are
avoided in our Parallel Aggregated Ordered Hypergraph design by
aggregating hyperedges in specified time slots. No implementation
of the design seems to exist.

Because PAOH is also able to display regular dynamic graphs,
we continue by reviewing related work on such dynamic graphs.

2.3 Visualization of Dynamic Graphs

The state of the art report on dynamic graph visualization published
in 2014 by Beck et al. [5], as well as recent articles, e.g., [29], [30],
show that node-link diagrams remain the work-horse of network
visualization for practitioners [31], [32]. The evolution of the
network has been shown using animation, or by using side by side
snapshots. PAOH uses the latter technique.

Dang et al. [33] propose a network visualization called
TimeArcs where vertices (called entities) represent terms of articles,
stacked vertically. Edges are correlated terms in the same article,
represented as vertical arcs. The time axis is a horizontal timeline.
Each vertex has a weight depending on the number of occurrences
in the article; line thickness encodes this weight. This technique
reduces line crossing but it shows many overlapping arcs in case
there are many correlated terms. Following the timeline, users see
how term frequencies and relationships evolve.

Van den Elzen et al. [6] added the notion of time to the
BioFabric technique in Extended Massive Sequence Views (EMSV);
edges flow horizontally over time. EMSV uses color to provide
different visual clues, such as edge direction, length, and size.
Several ordering methods compact the edge representation and
improve readability. Several properties are proposed to identify
patterns, such as trends, communities, stars (source or sink vertices).
They also propose a circular visualization to highlight two-way
communication and correlations between edge occurrences. EMSV
highlights the potential value of a grid-like design to represent
dynamic graphs, but its continuous time model differs from ours,
based on discrete time slots. Labeling and overlaps remain an issue
and it does not address hypergraphs at all.

The Parallel Edge Splatting technique from Burch et al. [34]
visualizes time on the horizontal axis: each time-slot (i.e., network
snapshot) is given a width and is visualized as two vertical
boundaries. Vertices are distributed vertically using a single default
order. Edges are diagonal lines connecting vertices at each time-slot.
To address overplotting Parallel Edge Splatting uses a density map
that highlights the dense parts of the display but still hides all the
detail information. While this technique scales to some very large
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graphs, line crossings hinder its readability even on some small
graphs, including those of our case study partners.

In summary, the review of the literature uncovers a rich and
diverse set of related techniques but—to our knowledge—none
of the techniques adequately answer to the needs for detailed
exploration of medium size hypergraphs that our digital humanities
partners have.

2.4 Taxonomies of Tasks

PAOH is related to dynamic networks and sets. Three recent
taxonomies of tasks for dynamic networks are reported in [35],
[36], [37], also summarized in a survey [5]. For set visualization,
Alsallakh et al. presented a taxonomy of tasks in [11].

Bach et al. [35] extended the method introduced by Lee
et al. [38]: starting from a taxonomy of low-level tasks by
Amar et al. [39], they combine them using a cross-product with
graph entities (vertices, edges, paths, graphs, groups, connected
components, clusters), leading to a systematic task space. Bach
et al. further extend the cross-product approach by adding the
When, Where, What framework of Peuquet [40]. Yet, the approach
is only applicable to low-level tasks since higher-level tasks do not
always combine; e.g., ensemble perception tasks work in restricted
conditions and cannot be combined, or to a limited extent.

Ahn et al. [36] add more levels to the taxonomy, extending the
graph entities to graph structure, taking into account specific
temporal features (shape, rate of changes), extending graph
properties from structural to domain-dependent. While the cross-
product method could still be applied with these new entities, it
generates too many conditions to be explored and understood fully,
so they expose their taxonomy through particular examples from
53 temporal network visualization systems from the literature.

Kerracher et al. [37] extend the full task framework of
Andrienko&Andrienko [41] to adapt it to dynamic networks. The
original framework consists of a data model (ADM) and a task
framework (ATF). ADM divides a data structure into referential
components (time, space, and objects) and characteristics (what
data is being measured, e.g., publications count, author affiliation).
According to ATF, at the lowest level, tasks are divided into
Lookup, Comparison, and Relation seeking. Lookup tasks consist
in finding a characteristic given a reference or vice versa. The
comparison focuses on retrieving relations among references and/or
characteristics. Relation seeking is focused on finding components
associated with a given relation. At a higher level, tasks are divided
into elementary and synoptic tasks.

Kerracher et al. extend the Andrienko&Andrienko framework,
which mostly describes attribute-based tasks, by adding graph
structural tasks related to the graph topology and entities. Using
a parallel structure with the attribute-based tasks, they split the
structural tasks into elementary and synoptic tasks related to the
structure(s). Between the attribute-based and structural tasks lie
connection tasks, that involve relational behaviors between multiple
parts (attributes or structural entities).

The tasks supported by PAOH were mainly driven by our
interviews with practitioners who were interested, for example,
in tracking the temporal connectivity patterns, relate connections
between vertices with group attributes, analyze in detail connections
and when those connections were happening. In other words, PAOH
is meant to facilitate the connection tasks involving both attribute
values, such as groups, and graph structure over the same time-
ranges. Existing taxonomies are not clear about how many entities

can be involved in the connection tasks. The existing taxonomies
should be extended and specialized to characterize our dynamic
hypergraph data structure. Particularly, having hyperedges instead
of edges as the reference for performing tasks adds a level of
complexity that needs to be further studied, and PAOH is a good
starting point for this study.

Alsallakh et al. [11] introduced a taxonomy of tasks for set
visualization based on the task focus: elements, sets, relations,
and element attributes. Since there is an equivalence between sets
and hyperedges, PAOH supports or partially supports, several of
these tasks. However, some tasks, like some set operations and set
creation do not directly relate to hyperedges, since hyperedges
usually represent relations such as contracts or papers. Also,
the time aspect is missing on this taxonomy and would be too
complex to extend using the cross product mechanism used in [35].
Therefore, PAOH is currently difficult to relate to existing task
taxonomies; it would be weak on typical set tasks, but supports
a large number of additional tasks not expressible by traditional
set visualizations, e.g., related to time and graph topology that are
essential for our partners.

3 PARALLEL AGGREGATED ORDERED HYPER-
GRAPH

We now describe the Parallel Aggregated Ordered Hypergraph
technique in details. In a PAOH visualization, time flows from
left to right as a series of time slots separated by small white
gaps (Figure 2). Each time slot corresponds to an interval of time.
Vertices are mapped to parallel horizontal bars. Their labels are
placed on the left side of the display, fully visible and left aligned
to make the list easy to scan. Hyperedges are parallel vertical lines
connecting the vertices. The connections are emphasized usually
with a dot, or alternatively using a symbol representing the role of
the vertex in the hyperedge.

To further describe the technique we use a fictitious small
dynamic hypergraph of business contracts in the 19th century
(Figure 2). It includes thirteen vertices (people); four time slots
(four years from 1801–1804), and twenty-seven hyperedges corre-
sponding to business contracts signed by those people during the
specified time period. Specific symbols at the intersection of the
vertex and hyperedge can be used to depict the role of the person in
the contact. For example, in Figure 2 a star marks the first person
mentioned in each contract.

The names in Figure 2 have been sorted vertically by appear-
ance over time and, when appearing at the same time-slot, by
their overall degree, providing a strong cue regarding the evolution
of the network. Elise’s business network starts small with only
two contracts, each with a single partner. In the second time slot,
Elise’s network expands with four contracts, but still, all contracts
are one-to-one business relationships. The third time slot sees a
significant expansion. More business partners for Elise and several
contracts are now between multiple persons. Some are former
partners appearing in the upper part of the list of names, and
some are new people appearing lower down. John is a major
partner appearing in three contracts. We can see that, early on, he
had his own separate contracts, and that when he joins Elise in
1803, they signed larger multi-person contracts. In the final year
more people are included overall but we see a rupture: Elise has
ended all business with John and works only with new people, but
she remains very active with multiple business partners—such as
Claude, who remains in contact with John. John keeps working
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Fig. 2: PAOH visualization of a small fictitious dynamic hypergraph
of 18th century business relationships evolving over 4 years among
thirteen people.

Fig. 3: Comparison of the representation of the same time slot
using regular edges (on the left) versus hyperedges (on the right)

with his previous partners but also some of Elise’s earlier partners.
One might wonder if John had a conflict with Elise, leading them
not to work together anymore. PAOH facilitates this type of detailed
and precise analysis of a dynamic hypergraph, which is crucial to
many historical studies. The labels are readable and can be scanned
easily, and there is no overlap, a perennial problem with graph
visualization.

To illustrate another benefit of modeling and visualizing
hyperedges, Figure 3 compares the representation of the 3rd time
slot modeled as a regular graph with edges (left) to the same data
represented with hyperedges (right). The orange arrows point to
six edges (clique) replaced by a single hyperedge. Again, using a
regular graph visualization, it is impossible to know that multiple
people are linked by a single contract.

Like other visualizations, the technique benefits from special-
ized interactions (section 3.6) but the readability of the display
makes it usable even without interaction; it can even be printed for
a systematic detailed analysis or for publication—which is critical
for our driving application in the digital humanities.

3.1 Drips for Hypergraph Simplification
A common approach for simplifying graphs is to filter out vertices
with low degrees [42], e.g., hiding all the vertices that appear only
in one single edge. In our prototype, a control allows users to set
the minimum degree, and the existence and number of missing
vertices are easily shown with a novel glyph that we call drips:
tightly spaced smaller dots appended below the hyperedge line,

Fig. 4: A subset of Marie Boucher’s network. The vertices of
people who signed only one contract have been filtered out. The
fact that some people are missing is hinted at the lower end of the
hyperedges by a drip line of smaller gray dots. On the right, we
see how the tooltip reveals all the names—using smaller font size
for the names of people that have been filtered out.

their number matching the number of missing vertices. Hovering
over the hyperedge reveals all vertex labels in a consistent and
readable manner (Figure 4). Drips dramatically reduce the overall
size of the PAOH display but remain easy to understand and allows
quickly revealing the hidden labels. Users are, most of the time,
less interested in those one-time (or few times) vertices, but drips
still remind them of the existence of the relationship instead of
filtering them out totally.

3.2 Time slots
Each time slot Ti corresponds to a time interval [ti−1, ti[. The set of
edges Ei, composed by all connections having a time stamp τ ∈ Ti,
is associated with the time slot Ti. All the connections occurring
in a particular time slot are visible inside the horizontal bounds
allocated to that time slot; this means that the width of the time slot
adapts to fit all its hyperedges so the width of a slot is proportional
to the number of hyperedges in this slot. Given the width w of a
vertical edge, the width Wi of a time slot Ti, composed of m edges,
is given by Wi = m× (w+ eTi)+ eTi , where eTi is the edge padding
selected for the time slot Ti. This parameter can be modified by the
user to change the width of time slots.

When multiple occurrences of the same hyperedge occur within
a time slot (e.g., multiple contracts between the exact same persons),
they all appear individually by default. An option allows users to
collapse them into a single hyperedge that appears slightly thicker
until it reaches a maximum edge width (Figure 7). This decreases
the width of the time slot by (w+ eTi)× (n− 1), where n is the
number of repeated occurrences.

3.3 Ordering
We developed several vertex and edge ordering strategies which
modify the layout and address different needs.

Vertex ordering. Vertex position remains constant in all the
time slots and determines the length of the hyperedges, but different
orderings help perform different tasks, e.g., bringing together highly
connected vertices may reveal similarities. It may also reveal
communities and outliers [43]. In our prototype users have the
following ordering options:
• Original: vertices are ordered by ID. This order is useful in

application domains that have a canonical vertex order that
practitioners are trained to use.

• Chronological: vertices are sorted by chronological appear-
ance (default, see Figure 2). It moves the names involved in
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Fig. 5: Two visualizations of the same dataset with two time slots,
sorted and colored by the group attribute. Values of the group are
associated with colors that fill the background (left) or the dots
(right). Both reveal 7 groups, and 5 vertices not belonging to any
group.

the early contracts to the top, and the names appearing later
are down below. If two vertices have their first edge in the
same time-slot, the one with the higher degree appears on top.

• Alphabetical: useful to find vertices by name in long lists,
which is critical for static or printed displays without search
capability.

• Degree: vertices with a higher degree (higher number of
connections through all the time slots) appear on top.

• Group: the vertices are first ordered according to the “group”
attribute. This attribute may have been computed by a
clustering algorithm or can be intrinsic to the dataset (e.g.,
person affiliation). Within each group, vertices are sorted
chronologically. Sorting by group helps differentiate within-
group versus between-group connections [44] (Figure 5).

• Reverse Cuthill McKee: this ordering tends to reduce the
length of the edges [45].

• Spectral: tries to move vertices belonging to the same cluster
close-by [43].

• Barycenter: similar to Spectral but uses a fast heuristics [46].
Van den Elzen et al. [6] also introduced an ordering method

to move similar vertices far-away from each other and favor long
edges. In PAOH, long edges are detrimental to hyperedge packing
and to readability so we chose not to include that ordering method.

Edge ordering. Time slots are always displayed by their natural
chronological order, but within each time slot, the ordering of the
edges can be changed. By default, the edges are sorted according to
the order provided by the first vertex of the hyperedge. The edges
can also be ordered by line length (recommended when packing is
needed—see section 3.6 and Figure 5).

3.4 Visual Attributes
To address specific needs, visual attributes can be configured using
control panels.

Visual attributes of vertices. The basic layout was designed to
remain monochrome to allow the use of color for specific needs. For
example, it can be used to color the vertex background (Figure 5-
left) or the dots (Figure 5-right) according to the vertex group

attribute. Figure 5 shows two examples using a sample dataset with
two time slots (from the synthetic dataset used by [35]). The left
example uses background color; it clearly highlights groups but
also how some vertices are absent in the first or the second time
slot. It also shows cases where vertices group change over time.
This encoding is most effective when the group changes remain
limited, otherwise the evolution of connections between groups
become difficult to perceive.

Coloring the dots produces a more subtle encoding but
highlights the topology of the network better, such as inter-group
relationships. In the example of Figure 5-right, the blue group has
just one connection with the purple group in the first time slot,
while in the second time slot, the number of connections between
the groups increases.

Visual attributes of hyperedges. If color is not used to show
the group attribute, consecutive hyperedges can be shown using
alternate colors in the hope of facilitating the visual tracking of
long lines. By default, we use green and purple. This may help the
eye following long lines involving multiple visual saccades, and be
useful for large printed hypergraphs. This option is turned off by
default. Its effectiveness needs to be tested, but the participants of
the usability test found it confusing. We have also experimented
with providing multiple options such as dashed lines or varying
line widths, but our participants also found them distracting or
confusing so we ended-up not providing them by default.

Visual attributes at the intersection. The role of a vertex of
a hyperedge can be marked with a symbol that can depict, e.g., the
first author on a publication. The use of symbols for representing
roles was implemented after a suggestion of one of the practitioners
who worked with us in one of the case studies (section 5.2). She
was interested in knowing the role of the persons who appeared
in contracts, as either primary contractor, secondary, or witness.
Currently, we only support one vertex to have a different role in
each hyperedge, but we will support more roles in the future.

3.5 Numerical Summaries
The grid-like design of PAOH lends itself naturally to the inclusion
of summaries on the side of the display. In our prototype, bars are
placed on the left of vertices labels. They can indicate the number
of hyperedges or the number of time slots where a vertex is present.
Similarly, at the top of the time slot labels, bars indicate for each
time slot either: the number of hyperedges, the number of nodes, or
the average number of nodes per hyperedge. Other metrics could
easily be added if asked by our partners.

3.6 Interaction
We now describe the interaction methods, from simple to advanced.

Highlighting relationships. Hovering on a vertex label (e.g.,
John) highlights in bold all the hyperedges and all the vertices it
is connected to (e.g., Figure 6-left). Hovering over the area at the
intersection of John’s vertical line and a time slot highlights all
his contracts in that particular period. Finally, hovering over the
label of a time slot highlights all the contracts and all the people
active in this time slot. Highlighting also updates the numerical
summaries according to the selected items (Figure 6).

Revealing similar edges. Hovering over a hyperedge (e.g., a
contract) highlights all the vertices it connects to and also highlights
similar hyperedges. By default it highlights all the other hyperedges
that have the same vertices and more, using a thicker line (Figure 6-
right). A tooltip option can be enabled to display additional details
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Fig. 6: Highlighting in PAOH. Left: Hovering over John highlights
all his contracts and the names of the people involved. Right:
Hovering over a contract between John and Joseph reveals contracts
including at least John and Joseph, also in other time slots).

of a highlighted item (details on demand). It reveals exact dates
and all the information related to the highlighted item (vertex
or hyperedge). Finally, the arrow keys of the keyboard can be
used to help users systematically review all vertices or hyperedges,
browsing through the items one by one.

Selection. Selection has a similar behavior as hovering but the
highlighting is persistent. Multiple selections reveal the union of
all the edges (in bold), their intersection (bolder), and the dots
corresponding to the selected nodes in the intersection are filled
with black to make them easier to spot.

Filtering. A quick way to reduce the size of the dataset is
to filter by one or more vertices. A double click on a vertex or
searching a vertex name in the search box filters out all the vertices
that are not connected to it (Figure 10). Hyperedges between
remaining vertices that do not involve the selected vertex can either
be removed entirely, or be grayed out (default). Grayed-out dots
reveal that visible vertices have relations with other vertices that
have been filtered out.

Zooming and Scrolling. Before scrolling becomes needed,
users can reduce the vertices height and the time slot width. They
can also choose to temporarily fit all the data in the available
horizontal and/or vertical space to get an overview, even at the cost
of reducing the readability of labels. When items that should be
highlighted fall outside the visible portion of the display, colored
hints are shown in the scroll bars. Small green bars for highlights,
orange bars for selections, so that users know that scrolling is
needed to see all the highlighted items.

Fig. 7: Packing (orange arrows) and collapsing multiple occurrences
of the same hyperedge (blue) reduces horizontal space. On the left
is a view before packing, and the right is after packing.

Packing. Packing optimizes the horizontal space and limits
scrolling by reorganizing hyperedges in each time slot indepen-
dently. It reuses the same horizontal position for hyperedges that do

not overlap vertically. Optimizing packing is an NP-hard problem,
but we use the first fit bin packing approximation algorithm [47]
that inserts each edge in turn, from left to right, where they can fit
without overlap. This heuristic offers an excellent trade-off between
speed and effectiveness. The orange arrows in Figure 7 highlight
how packing changes the order of edges. In particular, the rightmost
edges in the first time slot, labeled with “1803”, are shifted to the
first three positions, because there is room to accommodate the
edges. This shift saves the horizontal space of three edges. The
resulting layout will depend on the vertex and edge ordering, and
on the dataset but packing is always detrimental to readability. If
the hypergraph associated with time slot (Ti) is sparse, then the
packing will have a great impact in reducing the horizontal space
needed to render it (see Figure 2 in supplementary materials).

3.7 Implementation
Our prototype is available at https://aviz.fr/paohvis. It is imple-
mented in about 5000 lines of Dart [48], a language compiled to
JavaScript to run inside web browsers. It uses the Canvas API
for fast drawing; our implementation can visualize hundreds of
vertices (limited by vertical scrolling) and thousands of hyperedges
(limited by horizontal scrolling). The orderings are computed using
the reorder.js library [49].

4 FORMATIVE USABILITY STUDY

To identify usability problems, gather feedback, and improve the
prototype, we have performed a formative user study. A secondary
goal was to verify that users could interpret the PAOH visualization,
and perform complex tasks by combining multiple features and
functionalities of PAOH without training. Before the study, we
conducted a pilot with 2 participants to test the procedure. As we
conducted the study, we fixed bugs and improved the prototype
to address the problems encountered by participants or their
suggestions. Examples of improvements include placement of
labels, the addition of summary charts, highlighting similar edges,
depicting vertices roles, and choosing better default values for
options.

4.1 Procedure
Nine participants were recruited from our local research community
(students or more senior researchers) and told that they were going
to be looking at co-authorship networks. The participants used a
desktop computer with an ordinary keyboard and mouse, and were
encouraged to think-aloud at all time. The study was organized in
2 main phases and every participant followed the same procedure.
Each session lasted for about 20 minutes.

In the first phase (Discovery): participants were shown a small
publication dataset using the PAOH visualization. Participants were
initially asked to describe what they were seeing in the visualization
without receiving any training. Then they were encouraged to
explore and interact with the toolbar and the visualization on their
own and discover how the tool works. If participants needed help,
the observer answered their questions and noted the difficulty
participants had encountered.

In the second phase (Task): participants were asked to perform
a list of tasks, as reported in Section 4.2. At the end of each session,
participants were asked to provide feedback.

To provide a meaningful situation and encourage participants
to explore the data, we used two datasets of publications from

https://aviz.fr/paohvis
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Fig. 8: Co-authorship network of the small lab’s publications—used
in the Discovery phase of the usability study. Co-authors with only
one paper are filtered out.

two local research labs. Participants were familiar with those labs
and many current members—but not all, and had not looked at
the history of publications. During the Discovery phase, the co-
authorship network of people from the smallest lab was used, with
57 authors and 36 publications over 6 semesters, from 2015 to 2017
(Figure 8). The whole dataset fits in the screen, so no scrolling was
required. A larger dataset was used for the Tasks phase, with the
publications of both labs, i.e., 371 authors and 312 publications
over a time span of 20 semesters, from 2008 to 2017 (Figure 9).
Users had to zoom or scroll to see the entire dataset.

We selected realistic tasks, from simple to complex, that
someone interested in analyzing co-authorship networks would
have in real life. The complexity of tasks is discussed in Ahn et
al. [36], and relates to “analysts [who] . . . often combine tasks
into compound tasks in order to explore more complex questions”.
We focused on tasks that used the hypergraph nature of the data.
In order to provide answers, tasks required the combination of
multiple elements and features of the design, so we could observe
what strategies users would use.

4.2 Results
Discovering how to interpret a PAOH visualization. At the start
(i.e., without any interaction), all participants guessed correctly that
authors were arranged in rows and publications in columns. They
guessed that a dot on a line meant that the author associated with the
row was a co-author of the publication. No one seemed confused
by the varying width of the semester time slots. Three participants
immediately guessed that drips meant filtered-out people, and all
participants understood it after they interacted with the system.

Once they were able to interact with the system, participants
understood the color coding. However, there was some confusion
about special cases where an author had left a team but remained
co-author on later papers; no background color was interpreted as a
bug by some participants—the observer had to clarify the meaning.

In the early pilot, the (default) use of alternate colors for the
edges was confusing participants. Seven participants commented
that alternating colors might help to differentiate neighboring lines.

Two said that it would not be useful anyway. Only two kept the
alternate colors, so we turned it off by default.

There was no issue with the barcharts on the sides and the
scrollbars. The four participants who noticed the hints on the
scrollbars found them useful. At first, zooming was challenging, so
we improved the controls and added two buttons to fit the display
to the screen size, horizontally and vertically.

At first, the interface used the technical terms of vertex,
hyperedge, time slot, and group. Several participants were not
familiar with those terms so we included the definition of domain
dependent terms—author, publication, semester, and team—in the
dataset to customize the interface. This eliminated the confusion.

Filtering was more challenging to understand. We added a
simple animation to reveal how the display changed when filtering,
which was helpful. The presence of grayed out edges, i.e., edges
one hop away from selected vertices, was confusing to some
participants, so we added an option to hide them to simplify the
results. They are now hidden by default. Finally, some participants
did not understand how filtering an author affected the drips and we
still need to improve the feedback of filtering. We plan to modify
the drip labeling and to group authors visible as drips according to
the reason they were filtered out, i.e., either because of filtering by
degree or by one or more specific vertices.

Tasks. In the following, we review each task one by one.
T1. Find all the papers Petra Isenberg and Danyel Fisher wrote
together.

All participants were able to answer correctly. Many strategies
were used to solve this task; one participant even listed 4 strategies,
but all of them were trivial to perform. They usually searched for
one of the authors (either with the search function or by sorting
the authors alphabetically), then visually answered the task or by
watching the barcharts while using highlighting on the second
author. Multiple selection also helped.
T2. Find the 3 people Petra Isenberg has written papers with the
most often.

The first part of the task was trivial to perform: all participants
immediately selected and filtered on Petra. For the second part,
the first two participants attempted the task visually by looking at
rows with many dots, and carefully counted the dots. The other
participants all used the barcharts, which were changed to update
when highlighting or selecting to simplify this seemingly generic
task, and got the correct answer.
T3. Looking at Petra’s network, are there papers with the exact
same co-authors in different semesters? Tell me the names.

We had selected this task to be difficult, in the sense of Ahn et
al. [36]. To perform this tasks, users had to split the high-level task
into simpler sub-tasks, and there were multiple ways of performing
this decomposition, none of them being trivial. We were surprised
that 5 participants were able to answer it correctly. Indeed all
participants reported it to be challenging. Most participants did not
have access to the highlighting of similar edges (which was just
added recently). One early participant abandoned without trying,
the others devised a valid strategy but did not always complete the
task when it was tedious. One strategy used to give the correct
answer by three participants was to first look for lines of the same
length and then check if they had the same dots, either visually or
by highlighting the names of the co-authors associated with the
edge. One participant reordered the names by one of the heuristics
that reduce line length, guessing that shorter edges would have
more chances to share the same coauthors. An effective strategy
(used correctly by two participants who had access to the feature)
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Fig. 9: Co-authorship network from the two labs combined publications—used in the Tasks phase of the usability study. Coauthors with
only one or two papers were moved to the drips.

was to use the highlighting of similar edges. They would hover
over an edge—which highlighted other edges with at least the same
authors—and then repeated for all edges one by one. After locating
the edges, they used the tooltip to get the name of the publication.

Of course tools designed specifically for co-authorship net-
works may provide a custom function for this complex task, but
our usability study suggests that users are able to combine basic
PAOH functionalities to answer very complex task.
T4. Anything else you can say about Petra’s publications and how
her co-authorship evolved?

To solve this open-ended question all participants filtered on
Petra. They correctly commented that Petra was quite active, and
published regularly except on the second semesters of 2011 or
2012, proposing hypotheses as to why. They remarked that Petra’s
long term collaborations involved mainly senior researchers. They
noticed that no publication had Petra as a single author. Several
participants commented that they would prefer to remove all grayed
out publications entirely since it made it harder to focus only on
Petra’s network. This option was introduced for the last participant,
who used it while answering several tasks.
T5. Can you tell if over time papers have more co-authors than
before, less, or about the same?

T5 was quite difficult as well; it is described as an Inferential
Compound Tasks in Ahn et al. [36]. All the information is visible to
answer but users need to carefully count and average the dots. Early
participants only “guess-estimated”, so after the third participant,
we introduced the option “average # of authors per publications” to
the time slot summary charts. The bars—and the menu to change
to the appropriate metric—were successfully used by 4 out of
the 6 participants who had access to them. The remaining two
participants did not think of using the summary bars.
T6. What can you tell me about the collaboration between teams?

This was also an open question. All participants tried one of
the color by group options (background or dots) and then used

the author ordering by group (team). Participants reported that
some authors changed team; that the smallest team was created
on 2015; that there was more collaboration within teams than
collaborations between teams, and that one author from the smallest
team (who had belonged to the largest team in the past), was mainly
responsible for the collaboration.

After completing the tasks, participants could explore further
and comment on the overall experience. Many participants ex-
pressed that they liked the filtering because it reduced the amount
of information displayed. Participants who had access to the
highlighting of similar edges said that this was very helpful; one of
them pointed out that it could be helpful in other contexts. Some
participants suggested improvements to the control panel layout
and the layout was improved, even though we aim at continuously
improving the UI.

In summary, while most participants were able to interpret
all basic features of the PAOH visualization without any training,
some interactive features were more challenging and should be the
focus of a training video to be accessible to all. Many participants
were able to complete even the most challenging tasks, and most
devised adequate strategies that would lead to the correct answer.
Some participants were clearly not motivated enough to complete
complex tasks.

In addition to structured formative usability study, we also
collected feedback from about fifty additional users during demon-
strations, labs, and exploration of possible case studies, which
generally confirmed the study results and provided suggestions
for improvements. Examples are the use of different icons of the
dots in order to identify the role of the vertex in the hyperedge
(e.g. a star for the lead author), or aggregating vertices according
to an attribute, in order to scale further. As is always the case,
users wish to be able to access the source documents directly from
the visualization, and possibly correct mistakes in the coded data.
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During labs, they understood the benefit of the simplicity of PAOH,
and that external tools such as spreadsheets were appropriate and
effective for cleaning-up and transforming their data, instead of
bloating PAOH with data manipulation functions. In the future, we
hope that PAOH can be integrated into visualization suites such
as the Vistorian [30], allowing users to analyze their data from
complementary visual representations and perspectives.

5 USE CASES

Simple graphs can be found in abundance in open data repositories,
but dynamic hypergraphs data are less common. To motivate and
showcase the PAOH representation, we describe two use cases: a
trade network in the 17th century, a study on the circulation of
entrepreneurs in Piedmont during the 18th century.

5.1 Trade Network in the 17th Century
We worked with a professional historian studying the role and
power of a non-married woman, Marie Boucher, a merchant living
in the 17th century in Nantes, France. Dufournaud et al. [1] analyzed
the trade relations among people linked to her from contracts (called
Actes in the visualization) found in multiple archives. An important
part of the work was to understand—and present—the changing
relationships that Boucher had with other merchants over time.

This case study is representative of a large category of studies
in social history in which people are connected through dated
documents where they are mentioned, such as contracts, but also
diaries, and justice decisions. Such datasets are then carefully
curated and studied in great depth and details by humanists, over
long periods of time as the research progresses. The acquisition
and curation process is very tedious: documents may have to
be discovered in archives, transcribed, and annotated manually
(because transcription and entity extraction algorithms do not work
with old French or old English manuscripts). As a result, many
studies generate moderately large datasets with twenty to a hundred
person, and hyperedges connecting two to a dozen people. The
Boucher dataset is representative of this large category of studies.
It is composed of 59 contracts mentioning 90 persons overall. Each
contract can be modeled as a hyperedge linking several persons.
Each contract has a signature date (no duration). Modeling the same
data as a standard graph, these 59 hyperedges would become 488
edges, one for each relation between a pair of persons. Modeling
the hypergraph as a bipartite graph would generate an additional
59 nodes and 322 edges.

Our case study partner had already studied the dataset at length
(see work [1]). The relationships had been visualized using two
separate representations: node-link diagrams and TimeArcs [33],
shown in the supplementary material. The TimeArcs visualization
shows the dynamic graph that revealed the connections between
persons over time, but not showing the documents. The initial
analysis had been done using these two representations only.

Our collaborator found the PAOH representation clear and was
able to understand it after a very brief description. She quickly
commented that the same analysis required only one visualization
and could be done more accurately. Some new findings were
identified. For example in 1667, Marie Boucher had two contracts
with Jean Boucher (line 3) and two others with Julien Gérard
Seigneur de Nays (line 9)—while Dufournaud et al. had assumed
that two persons connected during the same year appeared in
only one contract. Using the highlighting of similar hyperedges,
she noted surprising repetitions over the years. Our collaborator

also explained that three main phases had been identified after
the lengthy prior analysis and inspection of original documents:
an initial phase from 1660 to 64 with mostly French trading, a
second phase with cross Atlantic trade from 1666 to 68, and a third
expansion phase until 1675, after which Marie disappears from the
records until a 1689 mention of her being deceased. She stated that
those phases were clearly apparent in the PAOH visualization that
represents time and connections simultaneously. She commented
that it provided good narrative support, and would be useful to
communicate the findings during talks and in print. In addition,
the color coding was found useful to represent the strong—and
changing—family connections.

5.2 Circulation of Entrepreneurs in Piedmont During
the 18th Century
We worked with two professional historians analyzing the evolution
of a network of entrepreneurs in Piedmont (a region of Italy) in the
18th century [50]. The aim of the study was to understand the ties
between building contractors and their mobility through contracts
established by cities. Cristofoli and Rolla analyzed 330 archived
contracts, extracting the contractors involved and their professions,
roles, cities of origin, as well as the city and location of the projects
during the 1711–1742 period. It included 594 different individuals.
To make sense of their data, the authors had originally used several
visualizations such as Figure 10-left, using a bipartite network
clustered by work location and linking to the construction sites.
They thought they knew their dataset well.

Using PAOH, the historians were able to make new obser-
vations. For example, construction appears clearly as a seasonal
activity with breaks in winter (Figure 10-right), where September
to December is almost empty except in 1713. The original analysis
missed both the seasonal pattern and the 1713 exception deserving
further investigation. The visualization also revealed that the
collaborations included people from more diverse origins over
time. This insight was unexpected as it goes against dominant
beliefs in history according to [50].

Coloring by the profession of contractors, the historians saw
that only a few professions, usually two, were present in each
contract. In addition, they saw that some contractors reported
different professions over time so our collaborators are now
researching whether this is tied to an underlying strategy used
to win contracts or a simple inconsistency in reporting professions.
In a few sessions, PAOH was able to deeply engage the researchers
and generate new insights. The rich data they gathered suggested
many improvements to PAOH, such as the possibility to encode
more than one role per hyperedge, and to dynamically choose the
attribute that should be visualized as group using colors. Initially,
we chose to represent the region of origin, but it could be mapped to
other attributes, such as the current region or the stated profession.

6 CONCLUSION

In this article, we introduced Parallel Aggregated Ordered Hyper-
graph, a technique to visualize dynamic hypergraphs. We described
the technique as well as its visual encodings, interactions, layout
and simplification operations, with examples using real data from
two application domains. A usability study with 9 participants
demonstrates that the technique is easy to learn, and can be
used to answer complex questions. Finally, two case studies with
historians suggest that PAOH provides a new and effective way
to analyze the medium size hypergraphs commonly produced
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Fig. 10: On the left, the static bipartite node-link diagram originally published by [50] connecting the contractors and contracts in which
they are mentioned, clustered by region of origin, and also linked to their construction site visualized as large round points. On the right,
a selection of the network showing the contracts signed by at least one member of the “Menafoglio” family, visualized using Paohvis
with monthly time slots, colored by region of origin of the contractors.

by digital humanities projects and that modeling relationships as
dynamic hypergraphs can lead to more accurate analyses.

Future work include all the improvements asked by our partners
related to roles, managing multiple groups, and integration with
the suite of visualizations of the Vistorian. Longer term plans
include working on scalability. One good property of hypergraphs is
that, when aggregating multiple vertices, they remain hypergraphs.
Dynamic hypergraph visualization is still in its infancy but we hope
that PAOH will stimulate additional innovation in this area.
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