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1 Introduction

The purpose of this tutorial is to explain how lagrange multipliers work in
the context of Support Vector Machines (SVMs). During my research on
SVMs, I have read many papers and tutorials that talk about SVMs in de-
tail, but when they get to the part about solving the constrained optimiza-
tion equations they just say . . .and this can be solved easily using Lagrange
Multipliers. . .. This tutorial aims to answer the questions that the others
don’t - at least the questions that I had when learning about SVMs. If you
have any other questions that should go here, please let me know.

I’ll begin with a very simple tutorial on lagrange multipliers. I’ll tell
what they are and why one would use them. I’ll also give a few examples
on using them with equality contraints. Then, I’ll give an explanation on
how to use them with inequality contraints, since this is how they are used
in the context of SVMs. I’ll give examples here also - one solving the Primal
Lagrangian and one solving the Dual Lagrangian. The last section contains
a list of Frequently Asked Questions that I had on Lagrange Multipliers. If
you have any others, please email me and I’ll add them.
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2 Lagrange Multipliers

Lagrange Multipliers are a mathematical method used to solve constrained
optimization problems of differentiable functions. What does this mean?
Well, basically you have some function f(x1, . . . , xn) : Rn → R that you
want to optimize (ie find the min or max extremes). Hold on, if it were this
simple, you could just use the second derivative test. Well, in addition to
this function, you also have a constraint g(x1, . . . , xn) = 0. So, we are trying
to optimize f , while constraining f with g. You can think of a constraint
as a boundary. As a laymans terms example, say we are in a room and we
want to find out the highest distance that we can throw a ball. Well, we are
constrained by the ceiling!!! We can’t throw the ball any higher than that.

At the heart of Lagrange Multipliers is the following equation:

∇f(x) = λ∇g(x) (1)

This says that the gradient of f is equal to some multiplier (lagrange multi-
plier) times the gradient of g. How this equation came about is explained in
Section 6. Also, remember the form of g:

g(x) = 0 (2)

Often, and especially in the context of SVMs, equations 1 and 2 are combined
into one equation called the Lagrangian:

L(x, λ) = f(x)− λg(x) (3)

Using this equation, we look for points where:

∇L(x, λ) = 0 (4)

That is essentially it. I’ll give an example or two to illustrate.

2.1 Example 1: One Equality Constraint

Problem: Given,

f(x, y) = 2− x2 − 2y2 (5)

g(x, y) = x + y − 1 = 0 (6)

Find the extreme values.

4



Solution: First, we put the equations into the form of a Lagrangian:

L(x, y, λ) = f(x, y)− λg(x, y) (7)

= 2− x2 − 2y2 − λ(x + y − 1) (8)

and we solve for the gradient of the Lagrangian (Equation 4):

∇L(x, y, λ) = ∇f(x, y)− λ∇g(x, y) = 0 (9)

which gives us:

∂

∂x
L(x, y, λ) = −2x− λ = 0 (10)

∂

∂y
L(x, y, λ) = −4y − λ = 0 (11)

∂

∂λ
L(x, y, λ) = x + y − 1 = 0 (12)

From Equation 10 and 11, we have x = 2y. Substituting this into Equation
12 gives x = 2

3
, y = 1

3
. These values give λ = −4

3
and f = 4

3
.

2.2 Example 2: One Equality Constraint

Problem: Given,

f(x, y) = x + 2y (13)

g(x, y) = y2 + xy − 1 = 0 (14)

Find the extreme values.

Solution: First, we put the equations into the form of a Lagrangian:

L(x, y, λ) = f(x, y)− λg(x, y) (15)

= x + 2y − λ(y2 + xy − 1) (16)

and we solve for the gradient of the Lagrangian (Equation 4):

∇L(x, y, λ) = ∇f(x, y)− λ∇g(x, y) = 0 (17)
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which gives us:

∂

∂x
L(x, y, λ) = 1− λy = 0 (18)

∂

∂y
L(x, y, λ) = 2− 2λy − λx = 0 (19)

∂

∂λ
L(x, y, λ) = y2 + xy − 1 = 0 (20)

This gives x = 0, y = ±1, λ = ±1 and f = ±2.
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3 Multiple Constraints

Lagrange Multipliers works just as well with multiple constraints. In essence,
we are just adding another boundary to the problem. Keep in mind that with
equality constraints, we are not staying within a boundary, we are actually
touching the boundary. We’ll get to staying within a boundary in Section
4. A simple re-wording of the Lagrangian takes into account multiple con-
straints:

L(x, λ) = f(x)−
∑

i

λigi(x) (21)

Here gi(x) and λi are the multiple constraints (denoted by i), and associ-
ated Lagrange Multipliers. Note that each constraint has its own multiplier.
Again, we look for points where:

∇L(x, λ) = 0 (22)

It is not much different to solve than the single constraint case. Here is an
example to illustrate.

3.1 Example 3: Two Equality Constraints

Problem: Given,

f(x, y) = x2 + y2 (23)

g1(x, y) = x + 1 = 0 (24)

g2(x, y) = y + 1 = 0 (25)

Find the extreme values.

Solution: First, we put the equations into the form of a Lagrangian:

L(x, y, λ) = f(x, y)− λ1g1(x, y)− λ2g2(x, y) (26)

= x2 + y2 − λ1(x + 1)− λ2(y + 1) (27)

and we solve for the gradient of the Lagrangian (Equation 22):

∇L(x, y, λ) = ∇f(x, y)− λ1∇g1(x, y)− λ2∇g2(x, y) = 0 (28)
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which gives us:

∂

∂x
L(x, y, λ) = 2x− λ1 = 0 (29)

∂

∂y
L(x, y, λ) = 2y − λ2 = 0 (30)

∂

∂λ1

L(x, y, λ) = x + 1 = 0 (31)

∂

∂λ2

L(x, y, λ) = y + 1 = 0 (32)

Equation 31 gives x = −1. Equation 32 gives y = −1. Substituting this
into Equation 29 and 30 gives λ1 = −2, λ2 = −2 and f = 2.
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4 Inequality Constraints

Now we are getting closer to the Lagrange Multipliers representation of
SVMs. This section details using Lagrange Multipliers with Inequality Con-
straints (ie g(x) ≤ 0,g(x) ≥ 0). For these types of problems, the formulation
of the Lagrangian remains the same as in Equation 3. The constraints are
handled by the Lagrange Multipliers themselves. The following equations
details the rules on how the Lagrange Multipliers encode the inequality con-
straints:

g(x) ≥ 0 ⇒ λ ≥ 0 (33)

g(x) ≤ 0 ⇒ λ ≤ 0 (34)

g(x) = 0 ⇒ λ is unconstrained (35)

So, handling inequality constraints isn’t any harder than handling equality
constraints. All we have to do is restrict the values of the Lagrange Multi-
pliers accordingly. Time for an example.

4.1 Example 4: One Inequality Constraint

Problem: Given,

f(x, y) = x3 + y2 (36)

g(x, y) = x2 − 1 ≥ 0 (37)

Find the extreme values.

Solution: First, we put the equations into the form of a Lagrangian:

L(x, y, λ) = f(x, y)− λg(x, y) (38)

= x3 + y2 − λ(x2 − 1) (39)

and we solve for the gradient of the Lagrangian (Equation 4):

∇L(x, y, λ) = ∇f(x, y)− λ∇g(x, y) = 0 (40)

which gives us:

∂

∂x
L(x, y, λ) = 3x2 − 2λx = 0 (41)
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∂

∂y
L(x, y, λ) = 2y = 0 (42)

∂

∂λ
L(x, y, λ) = x2 − 1 = 0 (43)

Furthermore, we require that:
λ ≥ 0 (44)

since we are dealing with an inequality constraint.
From Equation 42, we have y = 0. From Equation 43, we have x = ±1.

Substituting this into Equation 41 gives λ = ±3
2
. Since we require that

λ ≥ 0, then λ = 3
2
. This gives x = 1, y = 0 and f = 1.

4.2 Example 5: Two Inequality Constraints

Problem: Given,

f(x, y) = x3 + y3 (45)

g1(x, y) = x2 − 1 ≥ 0 (46)

g2(x, y) = y2 − 1 ≥ 0 (47)

Find the extreme values.

Solution: First, we put the equations into the form of a Lagrangian:

L(x, y, λ) = f(x, y)− λ1g1(x, y)− λ2g2(x, y) (48)

= x3 + y3 − λ1(x
2 − 1)− λ2(y

2 − 1) (49)

and we solve for the gradient of the Lagrangian (Equation 4):

∇L(x, y, λ) = ∇f(x, y)− λ1∇g1(x, y)− λ2∇g2(x, y) = 0 (50)

which gives us:

∂

∂x
L(x, y, λ) = 3x2 − 2λ1x = 0 (51)

∂

∂y
L(x, y, λ) = 3y2 − 2λ2y = 0 (52)

∂

∂λ1

L(x, y, λ) = x2 − 1 = 0 (53)

∂

∂λ2

L(x, y, λ) = y2 − 1 = 0 (54)
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Furthermore, we require that:

λ1 ≥ 0 (55)

λ2 ≥ 0 (56)

since we are dealing with a inequality constraints.
From Equations 53 and 54, we have x = ±1 and y = ±1. Substituting

x = ±1 into Equation 51 gives λ1 = ±3
2
. Since we require that λ1 ≥ 0, then

λ1 = 3
2

is the only valid choice for λ1. Likewise, substituting y = ±1 into
Equation 52 gives λ2 = ±3

2
. Since we require that λ2 ≥ 0, then λ2 = 3

2
. This

gives x = 1, y = 1 and f = 2.

4.3 Example 6: Two Inequality Constraints

Problem: Given,

f(x, y) = x3 + y3 (57)

g1(x, y) = x2 − 1 ≥ 0 (58)

g2(x, y) = y2 − 1 ≤ 0 (59)

Find the extreme values.

Solution: First, we put the equations into the form of a Lagrangian:

L(x, y, λ) = f(x, y)− λ1g1(x, y)− λ2g2(x, y) (60)

= x3 + y3 − λ1(x
2 − 1)− λ2(y

2 − 1) (61)

and we solve for the gradient of the Lagrangian (Equation 4):

∇L(x, y, λ) = ∇f(x, y)− λ1∇g1(x, y)− λ2∇g2(x, y) = 0 (62)

which gives us:

∂

∂x
L(x, y, λ) = 3x2 − 2λ1x = 0 (63)

∂

∂y
L(x, y, λ) = 3y2 − 2λ2y = 0 (64)

∂

∂λ1

L(x, y, λ) = x2 − 1 = 0 (65)

∂

∂λ2

L(x, y, λ) = y2 − 1 = 0 (66)
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Furthermore, we require that:

λ1 ≥ 0 (67)

λ2 ≤ 0 (68)

since we are dealing with a inequality constraints.
From Equations 65 and 66, we have x = ±1 and y = ±1. Substituting

x = ±1 into Equation 63 gives λ1 = ±3
2
. Since we require that λ1 ≥ 0, then

λ1 = 3
2

is the only valid choice for λ1. Likewise, substituting y = ±1 into
Equation 64 gives λ2 = ±3

2
. Since we require that λ2 ≤ 0, then λ2 = −3

2
.

This gives x = 1, y = −1 and f = 0.
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5 Application to SVMs

This section will go over detailed examples of how Lagrange Multipliers work
with SVMs. Applying Lagrange Multipliers to SVMs is exactly the same
as we did above. Before we jump into an example, I want to present the
Karush-Kuhn-Tucker (KKT) conditions. These conditions must also be sat-
isfied when performing any constraint-based optimization. I didn’t mention
it before, because we didn’t need it to solve the simple equations, but you
can verify for yourself that they apply to the above examples as well.

5.1 Karush-Kuhn-Tucker Conditions

There are five KKT conditions that affect all of our constraint based opti-
mizations. I won’t go into a proof, I’ll just present them. They are:

∂

∂w
L(w, b, λ) = w −

∑
i

λiyixi = 0 (69)

∂

∂b
L(w, b, λ) = −

∑
i

λiyi = 0 (70)

yi [〈w, x〉+ b]− 1 ≥ 0 (71)

λi ≥ 0 (72)

λi(yi [〈w, x〉+ b]− 1) = 0 (73)

So, anytime we apply a constraint-based optimization, we must ensure that
these conditions are satisfied.

5.2 Example 7: Applying Lagrange Multipliers Di-
rectly to SVMs

Problem: Lets assume that we have two classes of two-dimensional data
to separate. Lets also assume that each class consists of only one point.
These points are:

x1 = A1 = (1, 1)

x2 = B1 = (2, 2) (74)

Find the hyperplane that separates these two classes.
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Solution: From SVM theory, we know that the equations are:

f(w) =
1

2
‖w‖2 (75)

gi(w, b) = yi [〈w, xi〉+ b]− 1 ≥ 0 (76)

A common question here is Why isn’t gi a function of xi?. The answer of
course is that xi isn’t a variable - each xi has a value which we know from
Equation 74. We can expand gi(w, b) a bit further:

g1(w, b) = [〈w, x1〉+ b]− 1 ≥ 0 (77)

g2(w, b) = − [〈w, x2〉+ b]− 1 ≥ 0 (78)

Next, we put the equations into the form of a Lagrangian:

L(w, b, λ) = f(w)− λ1g1(w, b)− λ2g2(w, b)

=
1

2
‖w‖2 − λ1([〈w, x1〉+ b]− 1)− λ2(− [〈w, x2〉+ b]− 1)

=
1

2
‖w‖2 − λ1([〈w, x1〉+ b]− 1) + λ2([〈w, x2〉+ b] + 1) (79)

and we solve for the gradient of the Lagrangian (Equation 4):

∇L(w, b, λ) = ∇f(w)− λ1∇g1(w, b)− λ2∇g2(w, b) = 0 (80)

which gives us:

∂

∂w
L(w, b, λ) = w − λ1x1 + λ2x2 = 0 (81)

∂

∂b
L(w, b, λ) = −λ1 + λ2 = 0 (82)

∂

∂λ1

L(w, b, λ) = [〈w, x1〉+ b]− 1 = 0 (83)

∂

∂λ2

L(w, b, λ) = [〈w, x2〉+ b] + 1 = 0 (84)

This gives us enough equations to solve this analytically. Equating Equations
83 and 84 we get:

[〈w, x1〉+ b]− 1 = [〈w, x2〉+ b] + 1 = 0 (85)

〈w, x1〉+ b− 1 = 〈w, x2〉+ b + 1 (86)

〈w, x1〉 − 1 = 〈w, x2〉+ 1 (87)

〈w, x1〉 − 〈w, x2〉 = 2 (88)

〈w, [x1 − x2]〉 = 2 (89)
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We have the values of x1 and x2 from Equation 74. This leaves w as the
unknown. We can break w down into its components:

w = (w1, w2) (90)

Adding these into the mix we get:

〈w, [x1 − x2]〉 = 2 (91)

〈(w1, w2), [(1, 1)− (2, 2)]〉 = 2 (92)

〈(w1, w2), (−1,−1)〉 = 2 (93)

−w1 − w2 = 2 (94)

w1 = −(2 + w2) (95)

Adding values to Equation 81 and combining with Equation 82 gives us:

(w1, w2)− λ1(1, 1) + λ2(2, 2) = 0 (96)

(w1, w2)− λ1(1, 1) + λ1(2, 2) = 0 (97)

(w1, w2) + λ1(1, 1) = 0 (98)

Which yields:
w1 + λ1 = 0 (99)

and
w2 + λ1 = 0 (100)

Equating these we get:
w1 = w2 (101)

Putting this result back into Equation 95 gives:

w1 = w2 = −1 (102)

Using this in either of Equations 99 or 100 will give:

λ1 = λ2 = 1 (103)

And finally, using this in Equations 83 and 84 give:

b = 1− 〈w, x1〉 (104)

= −1− 〈w, x2〉 (105)

= 1− 〈(−1,−1), (1, 1)〉 (106)

= −1− 〈(−1,−1), (2, 2)〉 (107)

= 3 (108)
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Note that this result also satisfies all of the KKT conditions including:

λi(yi [〈w, xi〉+ b]− 1) = 0 (109)

ie:

λ1([〈w, x1〉+ b]− 1) = 0 (110)

λ2([〈w, x2〉+ b] + 1) = 0 (111)

([〈(−1,−1), (1, 1)〉+ 3]− 1) = −2 + 3− 1 = 0 (112)

([〈(−1,−1), (2, 2)〉+ 3] + 1) = −4 + 3 + 1 = 0 (113)

and the inequality constaints:

λ1 ≥ 0 (114)

λ2 ≥ 0 (115)

This two point problem seems overly complicated. In general, it is. Any-
thing greater than a few points cannot be solved analytically. Usually, the
SVM optimization problem can be solved analytically only when the number
of training data is very small, or for the separable case when it is known
beforehand which of the training data become support vectors. In most
real-world problems, this must be solved numerically.

5.3 Example 8: Using the Wolfe Dual to Apply La-
grange Multipliers to SVMs

Problem: Lets assume that we have two classes of two-dimensional data
to separate. Lets also assume that each class consists of only one point.
These points are:

x1 = A1 = (1, 1)

x2 = B1 = (2, 2) (116)

Find the hyperplane that separates these two classes.

Solution: Note that this is the same problem as the previous one, but
we are going to solve it in a different way. This time we are going to use
the Wolfe dual of the Lagrangian to to it. It is supposed to make things
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simpler. Lets see if it does. The equation for the primal representation of
the Lagrangian for a SVM is:

L(w, b, λ) =
1

2
‖w‖2 − λ1([〈w, x1〉+ b]− 1) + λ2([〈w, x2〉+ b] + 1) (117)

=
1

2
‖w‖2 − λ1(〈w, x1〉+ b− 1) + λ2(〈w, x2〉+ b + 1) (118)

=
1

2
‖w‖2 − λ1 〈w, x1〉 − λ1b + λ1 + λ2 〈w, x2〉+ λ2b + λ2) (119)

=
1

2
‖w‖2 − λ1 〈w, x1〉+ λ2 〈w, x2〉 − λ1b + λ2b + λ1 + λ2 (120)

If we substitute Equations 81 and 82 into this formulation we get:

L(λ) =
1

2
‖λ1x1 − λ2x2‖2

− λ1 〈λ1x1 − λ2x2, x1〉+ λ2 〈λ1x1 − λ2x2, x2〉 (121)

+ b(λ2 − λ1)

+ λ1 + λ2

=
1

2
(λ2

1 〈x1, x1〉 − 2λ1λ2 〈x1, x2〉+ λ2
2 〈x2, x2〉)

− λ2
1 〈x1, x1〉+ λ1λ2 〈x1, x2〉+ λ1λ2 〈x1, x2〉 − λ2

2 〈x2, x2〉(122)

+ b(0)

+ λ1 + λ2

= λ1 + λ2 + λ1λ2 〈x1, x2〉 −
1

2
λ2

1 〈x1, x1〉 −
1

2
λ2

2 〈x2, x2〉 (123)

which is the equation for the Wolfe Dual Lagrangian. Keep in mind that this
is also subject to λi ≥ 0 and all the KKT constraints [69-73]. Equation 82,
which is a KKT constraint, can be rewritten as:

−
∑

i

λiyi = 0 (124)

and since it is a constraint, we must also take it into account when taking the
gradient of the Lagrangian. We add it the same way we add any constraint.
Thus the Dual Lagrangian becomes:

L(λ, γ) = λ1 + λ2 + λ1λ2 〈x1, x2〉 −
1

2
λ2

1 〈x1, x1〉 −
1

2
λ2

2 〈x2, x2〉

− γ(λ1 − λ2) (125)
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= λ1 + λ2 + λ1λ2 〈x1, x2〉 −
1

2
λ2

1 〈x1, x1〉 −
1

2
λ2

2 〈x2, x2〉

− γλ1 + γλ2 (126)

Now we just need to find the Lagrange Multipliers, λ1 and λ2. To do this
we solve for the gradient of the Dual Lagrangian which gives us:

∂

∂λ1

L(λ, γ) = 1 + λ2 〈x1, x2〉 − λ1 〈x1, x1〉 − γ = 0 (127)

∂

∂λ2

L(λ, γ) = 1 + λ1 〈x1, x2〉 − λ2 〈x2, x2〉+ γ = 0 (128)

∂

∂γ
L(λ, γ) = −λ1 + λ2 = 0 (129)

Solving this gives λ1 = λ2 = 1 and γ = 3. It is interesting to note that we
don’t need to solve for γ explicitly. That is, we don’t need it to solve for w
or b. We can use KKT conditions 69 and 73 to solve for these.
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6 Why do Lagrange Multipliers Work?

This is actually quite interesting. When we have a function, f , constrained by
another function, g, we have an extremum (max or min) when the normals to
these functions are parallel, that is, the functions are tangent to each other.
This gives the fundamental equation for Lagrange Multipliers:

∇f(x) = λ∇g(x) (130)

where λ is the lagrange multiplier. The equation says that the gradients are
parallel, but may be of different sizes or different directions ie λ is a scaling
factor.
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7 FAQ

What are SVMs? SVMs stands for Support Vector Machines.

Where does the name Support Vector Machines come from?
Support Vector Machines are a type of learning machine that uses kernels
to extend linear discriminant machines into the nonlinear domain. As such
they can be used to discriminate, or tell the difference, between two classes
of data. In laymans terms, they draw a line or plane between the two sets of
data and whatever is on one side is of class A and whatever is on the other
side is on class B.

What are Lagrange Multipliers? The Lagrange Multipliers are a
scaling factor by which the gradient of the function, f that you want to find
the extremem of is equal to the gradient of the constraints, gi.

Where does the name Lagrange Multipliers come from? Some
dude named Lagrange. Did you think it was from some dude named Multi-
plier? If so, please let me know.

When would I use Lagrange Multipliers? You can use Lagrange
Multipliers whenever you have a function, f , that is constrained by a func-
tion, g, or functions, gi, and you want to find the extremum (largest or
smallest value) of that function.

Are there methods to use for constrained optimization other than
Lagrange Multipliers? Yes. For instance, the method of Parametrizing
the Constraint Set. Its explanation is beyond the scope of this paper, but
you can look it up.

Why use Lagrange Multipliers instead of other methods for con-
strained optimization? The main reason for using Lagrange Multipliers
is that once you know how they work it is very easy to setup the problem.
The result, is a fairly complicated system of equations, but there are meth-
ods to solve these. Plus, if you use a computer then they are fairly simple to
solve. A method like parametrizing the constraint set is harder to get started,
because it can be hard to find a parametrization of the given constraint set.
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My constraint isn’t in the correct form. It looks like: g(x1, . . . , xn) =
c, where c is a constant. How do I put it in the correct form?
Just move the constant, c, to the left: g(x1, . . . , xn)− c = 0.

How do I get from the Primal to the Dual form of the SVM
Lagrangian? There are two equations that we use to get from the Primal
to the Dual form of the Lagrangian. They are Equations 69 and 70 from the
KKT conditions. We just substitute these into the Primal Equation and
rearrange. Also, note that the constraints must also be applied to the Dual
form using additional Lagrange Multipliers. See Example 8.

Solving Example 8 using the Dual form of the SVM Lagrangian
didn’t seem any easier than just using the Primal form. So, why do
we bother to use it? It doesn’t seem any easier for this simple problem
when solving analytically, but it does make solving easier when using more
complicated situations and when solving numerically.

What is the Second Derivative Test? This is outside the scope of
this tutorial. It is helpful to know it though. Maybe I’ll give a tutorial on
that later.

What material did you derive this tutorial from? There are several
other tutorials and papers that I derived this tutorial from. Dan Klein’s
Lagrange Multipliers without Permanent Scarring, and more...

I have a question about Lagrange Multipliers in the Context of
SVMs that you didn’t cover here. Where do I find the answer?
Email me your question.
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