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A deep reinforcement learning-based computational guidance method is presented, which is used to identify and resolve the
problem of collision avoidance for a variable number of fixed-wing UAVs in limited airspace. The cooperative guidance process is
first analyzed for multiple aircraft by formulating flight scenarios using multiagent Markov game theory and solving it by machine
learning algorithm. Furthermore, a self-learning framework is established by using the actor-critic model, which is proposed to
train collision avoidance decision-making neural networks. To achieve higher scalability, the neural network is customized to
incorporate long short-term memory networks, and a coordination strategy is given. Additionally, a simulator suitable for
multiagent high-density route scene is designed for validation, in which all UAVs run the proposed algorithm onboard. Simulated
experiment results from several case studies show that the real-time guidance algorithm can reduce the collision probability of

multiple UAVs in flight effectively even with a large number of aircraft.

1. Introduction

With the rapid development of unmanned aerial vehicle
(UAV) technology, fixed-wing UAVs have been playing an
increasingly important role in both modern life and military
affairs [1, 2]. Due to the technical characteristics of fixed-
wing UAVs such as unable to hover and limited speed
control range, it is easy to cause safety accidents which can
lead to property losses and even personal injuries in envi-
ronments with high route density [3]. Therefore, a large
number of fixed-wing UAV flight conflicts in the given
airspace have become a prominent problem that needs to be
solved in related fields [4]. The pilot of a conventional
aircraft can judge the distance to other aircraft by visual
inspection and make collision avoidance operations timely
[5]. However, UAV operators cannot obtain direct vision in
time, and there is always a delay or lag in data transmission
processes [6]. Therefore, it is necessary to study the intel-
ligent autonomous guidance method of UAVs to prevent
collision.

Many recent research studies for limited airspace op-
erations, such as the unmanned aircraft system traffic

management (UTM) [7] and air traffic management (ATM)
[8], require an autonomous collision avoidance guidance
system to maintain safety and efficiency. There are many
contributions to the topic of real-time collision avoidance
methods, and most of the studies are focused on ground
robots [9]. One of the most well-known works in air traffic
control is the Autoresolver program developed by NASA
scientists [10]. Kuchar and his colleagues presented a
comprehensive summary of more than 30 different methods
for flight conflict resolution, in which the key methods such
as artificial potential field approach, biological evolution
method, and optimization algorithm are given in detail [11].
Zhou et al. proposed a model predictive control method
integrated with trajectory prediction of obstacles and targets,
which considers the overall design of multi-UAV cooper-
ative anticollision [12]. The overall decision making of
UAVS’ collision-free flight was optimized in their research.
Although the above algorithms perform well in specific
scenarios, they cannot adapt to stochastic dynamic models.
Yang and Wei presented a message-based decentralized
computational guidance algorithm which is implemented by
the Monte Carlo tree search technique [13]. Their work
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requires a lot of computing resources onboard, and complete
conflict-free flight is not achieved in some cases. This paper
focuses on designing an onboard guidance system that is
able to provide real-time flight commands to UAVs to
ensure safe distance along air routes.

Multiagent approaches have been used in airspace
conflict resolution for a long time. In an earlier article [14],
Tomlin considered the evasive maneuver as a hybrid control
system so that separation is assured in the actions of the
other aircraft. Kravris et al. recently used the multiagent
method to solve the congestion problem in the field of air
traffic management [15]. They formalized the problem as a
multiagent Markov game in which the aircraft needs to reach
an equilibrium. In this paper, a similar idea is used to ab-
stract every fixed-wing UAV as an agent that can interact
with other agents. Each agent has the capability of auton-
omous decision-making guidance and makes decisions by
obtaining the current airspace information. Therefore, the
problem of UAV collision avoidance guidance can be
transformed into a multiagent sequence decision process
with clear targets. Reinforcement learning is a prevailing way
to solve such problems.

Artificial intelligence (AI) techniques have achieved
superior performance in a lot of engineering applications
nowadays. Reinforcement learning, as the mainstream al-
gorithm of AI, has been widely studied in many fields.
Crespo presented a comparative study of air traffic flow
management measures obtained by a program based on
reinforcement learning [16]. The computational agent is
used to establish delays upon schedules of departing from
restricted airspace so as to avoid congestion or saturation in
the air traffic control work. Keong et al. used the deep
Q-value network (DQN) algorithm to replace the traditional
control method of aerial collision resolution [17]. The DQN
was trained in a customized scenario to get a stable policy
which provides actions for collision avoidance. This paper
studies the guidance application that involves the interaction
between multiple UAVs, where emergent behavior and
complexity arise from multiple agents together. The tradi-
tional reinforcement learning algorithms such as DQN and
other methods mentioned above are poorly suited to mul-
tiagent environments [18]. We present an extension of the
actor-critic (AC) model in reinforcement learning where the
critics have access to global information, while the actors
only receive the current overall states of the environment.
The optimal policy is formed by training decision-making
neural network in this AC framework. The actors are used at
the computational guidance process after training is com-
pleted, acting in a decentralized operation.

In this work, a deep multiagent reinforcement learning
(MARL) framework is proposed to solve the real-time flight
collision avoidance guidance problem of multiple fixed-wing
UAVs in the same altitude and common airspace, where
each UAV is abstracted by an agent. Each agent receives the
situations from the simulator environment and performs
online sequential decision making to select turning actions
in real time to avoid conflicts along routes. In order to realize
the function of the guidance decision-making neural net-
work, a multiagent reinforcement learning-based self-
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training system with actor-critic framework consisting of
centralized training with decentralized execution is pro-
posed. The proposed system can handle a variable number of
UAVs in the limited airspace. To achieve this, a custom
decision-making neural network with long short-term
memory (LSTM) networks is used to encode and control the
information about the whole environment into a fixed-
length vector [19]. We also design the Q-value estimation
network of evaluating joint action in the critic which takes all
other agents’ actions as input and give the relevant training
process description based on logit coordination mechanism.
This research provides a novel potential solution to enable
multiple UAVS’ coordinated collision avoidance flight in a
given airspace. Due to the advantages of simulation calcu-
lation, the training of decision-making neural network can
be realized with the development of “digital twin” and other
technologies. The trained guidance system can be trans-
planted to the physical system, and the application re-
quirements can be met after a small amount of training.
This research uses the common full connection network
and LSTM network, but the number of neural nodes and
hidden states in the network is specially designed according
to the route problems. The difference between this work and
the previous research is that the multiagent system is used to
simulate the flight environment of UAV. Aiming at the
dynamic change of the number of entities in the environ-
ment, a solution based on LSTM network is proposed. The
structure of this paper is as follows. In Section 2, the ki-
nematics of fixed-wing UAVs, dynamics constraints, and
multiagent Markov game theory model are given. In Section
3, the description of the guidance problem and its mathe-
matical formulation of multiagent AC framework are pre-
sented. Section 4 proposes the designed self-training system
to solve this problem. The simulation experiments and re-
sults are shown in Section 5. Section 6 gives the conclusion.

2. Preliminaries

2.1. Kinematics Model and Dynamics Constraints. Many
scholars have carried out detailed research on the structure
and related dynamics of fixed-wing UAVs [20, 21]. In order
to simplify the complexity of the guidance problem, this
paper only considers horizontal actions in the process of
controlling the UAVs. This assumption makes it possible to
deal with the high-density air traffic of UAVs by dis-
tinguishing the multiple flight altitudes. This assumption can
also effectively limit the range of state space, which is
beneficial to reinforcement learning system training. State
transition for every UAV in the simulator environment can
use the kinematics model as follows:

x =V cosy,
y =Vsiny, (1)
¥ =ac.

where (x,y) denotes the position of an UAV, V is the
cruising flight velocity, v stands for the flight path angle, and
a. is the controlled variable which represents the selected
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action describing the changing rate of flight path angle for an
UAV.

At the beginning of the simulation, the flight path angle
of each aircraft is set to point to its goal position and keep
flying for a certain amount of time. At each time step, for 1
second, the UAV can choose to turn its flight path angle at a
certain rate. The changing rate of this angle is less than 5
degrees per second. The proposed algorithm will run
onboard to determine a precise action, which corresponds to
the changing rate of the angle, for the UAV based on the
current state. After running the algorithm, the UAV will
maintain the chosen action during this time step.

In each episode, the simulator will generate 200 UAV's
randomly. The time interval for two flights to be generated is
uniformly distributed between 50 seconds and 200 seconds.
The specific number of UAVs in the simulation and related
conditions will be described in detail in Section 5.

2.2. Multiagent Markov Games. 1If there is only one UAV in
the environment, its guidance problem en route can be
formulated by a single agent sequence decision model.
However, there are multiple interactive entities in the
specified airspace in this study. The traditional Markov
decision process (MDP) method is no longer suitable for this
scenario. A multiagent extension of MDP called Markov
games is considered in this work.

A Markov game can be defined as a tuple {n, S,A,
n, R, T}, in which n is a scalar to represent the total number of
agents in the system. S is a finite set of system possible states.
A,,i € 1,...,ndenotes the actions set of agent i. Each agent i
will obtain an instant reward as a function R, when the system
state changes under the influence of the joint actions
a, x---xa,,a; €A, where a; is the action chosen by agent i
using a stochastic policy ;. The joint actions a will produce
the next state according to the transition function T.

The agents are trying to maximize their future average
reward under the joint policy 7 over time, which can be
defined as

T
1 m
T (s) = lim T—E”{nyzz(t +1) } s, €8, (2
m t=0

where T, is the total time, y is a discount factor, and ¢
denotes the index of time step in a simulation.

The goal of Markov games is to find an optimal joint
policy n* that maximizes the expected cumulative rewards
followed from an initial state.

The nonstationarity of multiagent Markov game is due to
the fact that the best policy of a single agent changes as the
other agents’ policies change. Most studies of this problem
focus on Nash equilibrium or long-term stable behaviors.
However, it is difficult to get the Nash equilibrium when the
calculation time is limited for a system with only one
equilibrium [22]. All the agents in this research follow the
logit strategy, which is one of our methods to solve the above
problems.

More specifically, in the logit model, a high-level agent
assumes that all the others adopt original actions. There is

only one UAV at a high level and all the others are still at a
low level until the high-level agent has made its decision.
After receiving the action information from the high-level
agent, the next UAV begins making decision onboard as-
suming all the others are following the most recent joint
action. This process will iterate over all the UAVs until the
joint action is completely updated. In this way, the actions of
other agents become fixed except the selected actor; thus, the
algorithm can avoid the action explosion issue.

3. MARL-Based Computational
Guidance Approach

3.1. Problem Statement. The purpose of this study is to
develop a distributed autonomous decision-making algo-
rithm that runs on each UAV to provide guidance com-
mands in the route. The goals of these commands are
twofold: the first is to avoid collision among all the UAVs in
the scene and the second is to guide the UAVs to their
respective destinations during the flight. In order to make
the algorithm use a scenario closer to the actual application,
it is assumed that there are a variable number of UAV's flying
at the same altitude in the limited airspace. To test the
performance of the proposed algorithm, we only consider
the case that the restricted airspace is a regular shape in our
research. Each flight is generated at the vertex of a regular
polygon, and any vertex, except the neighborhoods, can be
randomly selected as the destination of this UAV. Figure 1 is
a schematic diagram of the training case in this paper. A
more detailed explanation of the scenario will be given in
Section 5.

We assume that all the UAVs are cooperative in the
limited airspace. They can exchange their own information
such as position, speed, and selected actions through wireless
communication without delay. The onboard algorithm of
each UAV may choose an action that is available based on
current global states at each time step.

The multiagent computational guidance (MACG)
problem will be mathematically formulated in the next
section based on the aforementioned description.

3.2. MACG Algorithm Formulation. Here we formulate the
MACG case studies as a multiagent reinforcement learning
process by treating each UAV as an agent. The objective in
case study is to avoid collision by choosing actions and to
maintain a safe separation between aircraft. The UAVs enter
the limited airspace stochastically, so the scenarios studied in
this paper are dynamic. For this reason, agents are required
to provide a policy instead of memorizing the reactive ac-
tions. Although the speed of an UAV has upper and lower
limits and there is noise, each UAV can only achieve col-
lision avoidance by changing the flight path angle. The
changing rate of the angle is less than 5 deg/s as mentioned
above, which means that the optional action set is bounded.

In the following, we will define the state space, action
space, reward function, and some other parameters of re-
inforcement learning algorithm which are used in this paper.



(1) State Space. The state information of an UAV in-

cludes the position (x, y), the speed V, the flight
path angle y, and the goal position (g,, g,). We will
get the current environment complete state s, by
stacking all the agent states at one time step ¢. s, is an
n x 6 matrix, where n is the number of UAVs. We
define si as the state of the ith UAV at the time ;
thus:

S :{stl,sf,...,s:'}, s €8S, (3)

We assume that s, is available to all the agents in the
simulation environment.

(2) Action Space. The UAV can choose to turn its flight

path angle at a certain rate at each time step. The
turning rate of the angle for each aircraft constitutes
the action set A; € [-5,5]deg/s, where positive
corresponds to right turn and negative corresponds
to left turn. However, continuous action space will
take too much time to train the neural networks of
MACG algorithm. We discretize the action space to
be A; = {-5,-3,0,3,5} deg/s, in which 0 means no
turning occurs.

(3) Reward Function. The goal of our MACG algorithm

is to maintain safety while guiding the UAV's to their
destinations during the flight. Cooperation is en-
couraged by defining a same reward function for all
UAVs, and it composes of a sum of the reward for
each individual aircraft.

We define a minimum separation distance
Tsep=0.5km to warn aircraft that they are about to
collide. If the distance between UAVs is less than 0.1
km, collisions will take place. If there is a collision
between two UAVs, they will both receive a penalty
and be removed from the simulator. If a UAV losses
its separation or reaches the boundary, it will receive
a penalty.

Based on the above settings, the reward function for
the i™ UAV can be defined as follows:

(-2, collision,
-1, loss separation/boundary,
ri(s) =1 2, reach the goal,
d,IT,
—M, otherwise,
dg max

(4)

where d is the distance from the UAV to its goal

position, d; ,, is set to be the diagonal distance of the
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map, and T¢ __ denotes the max time step of agent i
which is set before the simulation runs. Adding the
constraint with losing separation event can effectively
improve the training efficiency. The reward function of
the environment state can be defined like this:

n
R(s,) = Z 7 (s,)- (5)
i=1
With this reward setting, maximizing the cumulative

reward will correspondingly improve the perfor-
mance of the MACG algorithm.

(4) Other Parameters. Since the reward function and the
dynamics function (transition function) have been
determined, the goal of reinforcement learning is to
find the optimal policy for the multiagent problem in
this paper. To solve this stochastic game, we need to
find a policy n;7 that can maximize UAV s dis-
counted future reward with a discount factor y.
Obviously, this is a fully cooperative game, since all
the agents have the same reward function. The state-
value function at the time step ¢ can be represented as
V (sp 75 .. .>m,). We also define the action-value
function Q(s;,a,,...,a,) as the expected sum of
discounted rewards given the current state and the
joint action of all the agents.

In each episode of a case studied simulation, a certain
number of UAVs will be generated. If an UAV reaches its
destination, collides with other aircraft, or touches the
boundary of the map, it will be removed from the simulation
environment. In order to avoid UAVs to fly in an infinite
loop in the early training period, the maximum action
duration T',, is set for aircraft. Each UAV with a flight time
of T, will also be removed. The episode will terminate
when all the UAVs have been removed from the limited
airspace.

4. Design of Self-Training System

In this paper, the most popular method, the actor-critic
model, will be used in the reinforcement learning field to
solve the MACG problem formulated previously. A new
deep MARL framework is designed and developed in this
paper, and we call it MACG framework for convenience.

As discussed previously, the MACG framework is a
centralized learning with decentralized execution frame-
work with four neural networks corresponding to two actors
and two critics. All agents (UAVs) will share one team of
neural networks during the training period, which en-
courages cooperation. By this way, we can train an actor that
improves the cumulative reward of all agents in the envi-
ronment. In the decentralized execution scenario, each UAV
has a private actor neural network, which allows it to make
decisions independently without being affected by other
aircraft.
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FIGURE 1: A simplified scenario of the training case.

The next part of this section will introduce the design
details of neural networks structure and simulation system
structure explicitly.

4.1. Neural Network Structure Design. In the collision
avoidance scenario studied in this paper, the number of
UAVs in each time step is not fixed. For the variable number
of agents in the environment, agents need to process many
input states. Recall that one of the key limitations of many
reinforcement learning approaches is that the feedforward
neural networks typically used require a fixed number of
neurons of input. Two kinds of network structures are
designed to deal with the above problems. The first is to fix
the maximum number of input states, which we call it the
FixN method, and the other is to encode the varying size of
input states into a fixed-length vector by using LSTM net-
works. The schematic diagram of the two structures is shown
in Figure 2.

Figure 2 is illustrated by the example of the guidance
decision actor network of agent i, where s! is the state in-
formation of agent i at time . (s},...,s!) represent the
current states of all agents except agent i in the environment.
They are combined to form the information of complete
environment states. In the FixN structure, s; represents the
united states after sorting and integrating by the filter. The
output of the LSTM structure is a fixed-length, encoded
hidden state h,. s; and h, have the same data structure in
theory, and they will be used as an input data (s}) to feed
back-end network.

For FixN neural network structures, we take the states of
N UAVs, (s,... ,sf), which are closest to the current de-
cision-making agent in the environment, combined with the
agent’s state s! as the input states. However, a considerable
amount of experiments are needed to select the hyper-
parameter N, which limits the transferability of the neural
network structure to migrate to new environments. From
the simulation results in the following section, we can also
see that although FixN method can accelerate the conver-
gence speed of training curves, it is difficult to find the
optimal policy even in simple scenarios because agents do
not take all the environmental states into account in the
decision-making process.

Although LSTM networks are often used to handle time
sequence data, here we only use its ability to store the relevant
information between sequence input states which is not time
dependent. Every state except the current decision agent’s own
state in the environment will be fed into the LSTM cell se-
quentially at each time step, as shown in Figure 3. After
importing all the agents’ states, the LSTM network stores the
relevant information in its hidden states, (h,,. .., h,). We can
regard the last hidden state of LSTM network as a fixed-length,
encoded global state for an agent to make a decision. In the case
of a variable number of agent states, the states are fed from far
to near according to the distance from the agent, meaning that
the closest agent will have the biggest effect on the last hidden
state of the LSTM network.

The neural networks of actor and critic designed in this
paper have similar front-end structures. They all have a
LSTM network, an input layer, and two fully connected
hidden layers. But the difference between the actor and the
critic is the case that the LSTM network input of the critic
contains not only the current states of all agents in the
environment but also the current selected actions of all
agents. The function of actor neural network is to ap-
proximate the policy function so as to select a suitable action
for agent. Since the action space in this paper is discrete, a
Gumbel-Softmax estimator should be added at the end of the
actor network as the output layer [23]. The function of the
critic network is to approximate the action-state value (also
known as the Q-value) function, so its output layer can be
selected as a single neuron.

4.2. Simulation System Structure Design. In order to solve the
cooperative collision avoidance guidance problem above, we
design and develop a MACG algorithm. Lowe et al. [18]
proposed a similar idea of using the actor-critic method to
solve the guidance case study. Our approach differs from
theirs in the following ways: (1) they designed a critic for
each agent, whereas agents share a single actor and a single
critic during the learning process in our work, (2) in
principle, the actions for different agents are updated in an
asynchronous way in this paper, and (3) they learned cases
with fixed number of agents in the environment, whereas we
learned variable number of agents in scenarios.

There are four neural networks involved in the learning
process of MACG algorithm in this paper. They are named
as decision actor (or ActorD for short), estimation actor (or
ActorE for short), decision critic (or CriticD for short), and
estimation critic (or CriticE for short). ActorD is used to
approximate the guidance policy, which can be parame-
terized by 6. It is the only network that will be used in both
agents’ training and execution. CriticD network is used to
approach Q-value, and it is parameterized by w. Taking agent
i as an example, the training framework of self-learning
system is shown in Figure 3.

During the training period, ActorD may generate imme-
diate decisions, that is, it selects actions for the agent according
to the current global states in the environment. In each time step
t, all agents customize their actions 7(s;*,0) = al,i€ 1,...,n
through the same ActorD, and all selected actions integrate into
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Figure 2: Illustration of the actor neural network architecture.

LSTM h, h, h

FIGURE 3: LSTM unrolled diagram.

the joint action seta, = (a},...,a). At the time step ¢, agents
receive representation of the environment’s state “st”, and on
that basis select actions “at”. As a consequence of their actions,
agents receive a reward “Rt” and update the environment to a
new state “st, ”. The set (s;,a,, R,,s;) of each step will be stored
in the experience pool D. When the number of cases in the
experience pool reaches a certain number, we randomly sample
M groups of sets from D to train all networks. CriticD first
generates Q-value (Q,) according to the state s, and the joint
action a,. Then, ActorE generates joint action a; according to the
state s;. Then, CriticE generates Q; based on s; and a’. Thus, the
error (loss) value of CriticD network can be calculated by the
following formula:

L(w) = E[(Q (spa,) - R, —yQ(shap))’].  (6)

The network parameters of CriticD are updated by
minimizing the loss.

The policy gradient of ActorD network is calculated by
the following equation:

Vol (1) = E[V,Q(s;»a,) - Vor (s,)], (7)

where J () = E[R] as shown in (2). We use Adam optimizer
to update the network parameters of ActorD with V] (7). It
should be noted that all LSTM networks are uniformly
updated using the AdaGrad optimizer with VgJ ().

We provide the multiagent computational guidance
algorithm in Algorithm 1.

During the execution period, only an independent
ActorD network on each UAV will be used to make deci-
sions and select actions onboard.
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5. Simulation and Result Analysis

5.1. Simulator and Interface. To train the agents and test the
performance of the MACG algorithm, we built a simulator
in an OpenAl Gym environment where a large number of
UAVs can fly in the 2D airspace. The limited airspace has
34km width and 34km length. As shown in Figure 4, the
UAVs will be initialized at the vertices in a regular polygon.
In each episode, the simulator will generate a fixed number
of UAVs stochastically.

In this study, the cruising speed of an UAV is set to 60 m/
s to verify the effectiveness of the algorithm in the high-
speed scene [24]. Because there is uncertainty in flight ve-
locity, the initial velocity is restricted to be between
Vmax =80m/s and Vmin=40m/s, and the cruising speed
will be with a standard deviation of 5 m/s for the duration of
the flight. The noises here aim to account for the uncer-
tainties because fixed-wing UA Vs are flying at a higher speed
than quadrotors.

In the simulator, a collision is defined when the distance
between two UAVs is less than 0.1km. There will be a
warning if the shortest distance between UAVs is less than
0.5km, which means that they have lost the separation.
During the running of this simulator, the number of col-
lisions and warnings will be recorded and returned at the
end of a simulation.

Then, the simulator will keep running until max_num of
UAVs have been generated or the episode time runs out. The
max time step in an episode is usually set as

T hax = 500 * max _num. (8)

m;

The output of this simulator is a current reward and a
state’s sequence of all UAVs in the environment. The input is
the joint action sequence of all UAVs.

Two kinds of network structures, FixN and LSTM, are
used to carry out simulation experiments in this paper.
According to Figure 2, we choose N =3 for the FixN-
MACG algorithm, so the input layer will be 24 neurons. For
the LSTM-MACG algorithm, we let the LSTM network have
a hidden layer with 32 nodes and limit its output to 18
parameters. Softsign function is selected as LSTM network
activation function, and the input data need to be regu-
larized. The policy of the actor is parameterized by a two-
layer ReLU MLP with 128 units per layer.

The hardware environment used in this paper includes
Intel i5-9600k, GTX1060, DDR4 16 GB, and 240 GB SSD.
The operation system is Windows10 x64, and the toolkit
version is TensorFlow 2.1.0 based on Python 3.7.

5.2. Training Case and Results. In this training case, we
design a scenario that generates UAVs randomly. There are
six birthplaces distributed at the vertexes of a regular
hexagon, and the distance between them is 16 km. At each
birthplace, after the previous UAV flies away, the time in-
terval for the next UAV to be generated is uniformly dis-
tributed between 1 and 3 minutes, and the new flight will
select a nonneighbor vertex as its destination stochastically.
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(1) Initialize ActorD 7 (s) and CriticD Q(s,a) with the weights 8 and w randomly chosen.
) Initialize ActorE 7' (s) and CriticE Q' (s, a) with the weights 6' = 6 and @’ = .
) Initialize the experience pool D and a counter C; = 0.

) for episode=1 to Max-Episode do

) Initialize the joint action set a = (0,...,0) € R".

(6) Reset the environment S.

(7)  Set the max time steps in an episode, T,
(8) fort=1toT,,, do

9) Generate UAVs randomly.

(2
3
(4
(5

x*

(10) For each agent i, select action a; by ActorD and combine the actions, a, = (a},..
(11) Execute a, and obtain s,, R,, s;.
(12) Store (s;,a,,R;,s;) in D, Cy + +.

(13) Replace s, with s;.
(14) if (C,; > batch_size) and (¢ % sample_time =0) do

@15) Sample a random minibatch of M from D.

(16) Use CriticD to get Q,, use ActorE to get a,, and use CriticE to get Q.
@17) Update CriticD by minimizing the loss L(w) in equation (6).

(18) Update ActorD using the sampled policy gradient VyJ (77) in equation (7).
19) if t% replace_time =0 do . ,

(20) Update the ActorE and CriticE networks: 0 . 10+ (1-7)6

_ _ !
(21)  (19) T if number of UAVs > max_num do W =tw+ (1-7w

(22) (20) break
(23)  end for (t)
(24) end for (episode)

. ap).

ALGORITHM 1: MACG algorithm.
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FIGURE 4: Training framework diagram.

A screenshot of the simulation running scenario is shown in
Figure 5(a).

In the case study, the max number of episodes is set to be
4 x 10 In each episode, there will be 200 UAVs generated,
and the max time step is T, = 10°. The reinforcement
learning system includes these parameters: 7 =0.01,
y = 0.98, batch_size = 10%, and M =10°, and the optimizers

use default parameters. The neural networks will be stored
every 100 episodes during the training process.

Figure 6 plots the learning curve of the relationship
between cumulative reward and episodes of the two MACG
algorithms. From this figure, we can see that the FixN-
MACG has a faster convergence rate, but the final average
cumulative reward is lower than that of LSTM-MACG. This
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FIGURE 5: Screenshots in simulation running scenarios. (a) Training case. (b) Stress test case.
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FIGURE 6: Cumulative reward after the training episodes.

is because the FixN-MACG algorithm does not consider the
global states, so the training speed is better than the other
variant. We can see the process starts to converge around
37000 episodes for LSTM-MACG algorithm. These curves
show that LSTM-MACG algorithm has good performance in
guidance and collision avoidance, and it can effectively
reduce the conflict risk for UAVs. The FixN-MACG method
cannot guarantee that there is no collision at all.

After the training, to provide a fair comparison, we
analyze the final policy of each variant for 1000 independent
episodes. We also change the number of UAVs in the air-
space from 4 to 200 to evaluate the performance of different
frameworks. It should be noted that each UAV uses an
independent guidance policy to select actions onboard in
these execution simulation processes.

Figure 7 shows the total computation time required
for all the UAVs to run the onboard algorithms in a
simulation time step. Figure 8 shows the relationship
between the number of collisions and the number of
UAVs in the airspace when two MACG methods are used
to guide aircraft. By discussing these two figures, we can
know that LSTM-MACG can achieve UAV collision

avoidance guidance in high-density route airspace. FixN-
MACG can only achieve complete conflict avoidance in
case of a small number of UAVs. However, the operation
speed of the former is much lower because the LSTM
network structure needs to process the status of all UAV's
in the environment. The computation time for both
methods is growing with the increase of the number of
UAVs, and the calculation time of LSTM-MACG in-
creases exponentially.

We recorded the number of UAVs at each time step in
Figure 9. From this figure, we can see that there are more
than 20 UAVs flying in the limited airspace most of the time,
which further proved the effectiveness of LSTM-MACG
algorithm to avoid collision of multiple UAVs in high-
density route airspace.

5.3. Stress Test Case and Results. To further test the per-
formance of the proposed LSTM-MACG algorithm, we
design a multithreat stress test scenario of randomly gen-
erated UAVs. Compared with the previous case, the total
number of UAVs in the environment ranged from 100 to
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400 in this case study. The number of birth points has in-
creased from 6 to 12, and the time interval of newly gen-
erated aircraft has been expanded to 50 s to 200s. UAVs are
still randomly generated at each vertex. Figure 5(b) shows an
example of the stress test scenario.

Here we also recorded the number of UAVs per step
and plotted the histogram in Figure 10. We can see that
the maximum UAYV density in the airspace is more than
50 per time step. Figure 11 presents the performance of

the proposed LSTM-MACG algorithm in the stress test
case study, where the curves denotes the average of result
data in 1000 episodes. From the figure, we can see that the
collision probability is less than 0.1% for UAVs by using
the LSTM-MACG onboard. We also give the result curve
of the baseline, where all the UAVs take no actions and
they just fly to their destinations straightly. The com-
parison of two curves in this figure shows that the pro-
posed method has good performance even in the case of
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high-density route airspace. This result is helpful to in-
crease the total number of fixed-wing UAVs in a limited
airspace.

6. Conclusions

In this paper, a novel approach has been proposed to
provide a solution to the problem of collision avoidance
guidance of UAVs in a limited airspace. For this purpose,
two kinds of decision-making networks have been
designed, specifically trained for the decentralized com-
putational guidance scenarios. The algorithm can be
scaled to multiple cooperative UAVs, where we formulate
the problem as a Markov game. A flight airspace simulator
is built to validate the performance of the proposed al-
gorithm. A stress test is carried out to evaluate the al-
gorithm. The simulation results show that this algorithm
has good performance to guide the UAVs to reach their
destinations and avoid conflicts even for the high-density
route airspace. The contributions of this paper include the
following: (1) a self-learning system is designed for
training guidance decision networks onboard; (2) LSTM
networks and deep neural networks are incorporated to
handle a variable number of UAVs in a limited airspace to
enable an automated and safe environment; and (3) the
concept of computational guidance is explored for fixed-
wing UAVs. However, the designed framework is still in
the exploratory phase. Further research should focus on
making the algorithm more practical in real-world
applications.
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