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The prediction of sensor data can help the exoskeleton control system to get the human motion intention and target position in
advance, so as to reduce the human-machine interaction force. In this paper, an improved method for the prediction algorithm
of exoskeleton sensor data is proposed. Through an algorithm simulation test and two-link simulation experiment, the
algorithm improves the prediction accuracy by 14.23 +0.5%, and the sensor data is smooth. Input the predicted signal into the
two-link model, and use the calculated torque method to verify the prediction accuracy data and smoothness. The simulation
results showed that the algorithm can predict the joint angle of the human body and can be used for the follow-up control of

the swinging legs of the exoskeleton.

1. Introduction

The exoskeleton is a wearable device that combines human
intelligence and mechanical power, widely appearing in the
fields of assistance, rehabilitation training, and disability
assistance. In recent years, with the continuous development
of drive technology and sensor technology, more and more
exoskeletons have appeared in the market [1]. Exoskeletons
are often designed to perform specific functions such as walk-
ing, weight-bearing, lumbar support, and spinal support. In
order to assist the specific movements of the human body,
a very critical point for the exoskeleton is to realize the recog-
nition of the human motion intention.

1.1. Introduction to Exoskeleton Classification. There are
many ways to classify active exoskeletons. One classification
way is based on the methods of the exoskeleton acquiring
the intention of human motion, which can be roughly
divided into four categories: The first is preprogrammed.
The gait of the exoskeleton system is designed, so the wearer
can only intervene in limited ways with devices such as but-

tons or HMI (Human Machine Interface). However, only
relying on some external devices to obtain the motion inten-
tion of the human body limits the use scope of the exoskele-
ton, which makes this kind of exoskeleton often appear in the
rehabilitation and correction equipment with fixed gait [2].
The second is the use of EEG (electroencephalogram) signals
to identify the intention of human movement. Such systems
are susceptible to interference from the external environment
and are not suitable for the wearer to perform multibrain
tasks [3]. The third method uses the surface EMG (electro-
myography) signals of the human body to capture the move-
ment intention of the human body. Obtaining surface EMG
signals is usually done by attaching electrodes on the skin
of the human body, which is also vulnerable to the environ-
ment. Sweat on the surface of the skin often affects the accu-
racy of the signals [4], and long-term wear is easy to cause the
surface electrode to fall off; some teams have developed exo-
skeletons (e.g., HAL) that recognize the body’s intentions
based on electromyographic signals. The fourth way is to col-
lect human body motion mechanics information to identify
human body motion intentions. Such systems have installed
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a large number of kinematics and dynamics sensing devices
on the exoskeleton and human body to obtain the interaction
information of the human body and the motion intention of
the human body. Many lower limb exoskeletons, such as
WEAR [5], MEBOTX-EXO [6], and HUALEX [7], use kine-
matic information to capture the human body’s intention
and kinetic information to control the motion of the exoskel-
eton. This type of exoskeleton has the characteristics of easy
to put on and take off, and the system sensor signal is stable,
which makes it become the main research direction of exo-
skeleton. However, the kinematic sensor requires the human
body to drive the exoskeleton movement, inevitably causing
the delay of motion intention perception and control.

Since the exoskeleton involved in this paper is the fourth
method to obtain the human movement intention and the
sensor data is collected by the sensor network, it takes some
time until the control signal is generated. The actuators (typ-
ically motors or hydraulic) cause time delay, too [8]. Mean-
while, the motion signal of the human body is behind the
motion intention of the human body. Therefore, it is neces-
sary to solve the time delay in the fourth exoskeleton system.

1.2. Introduction to Prediction Algorithm. In the exoskeleton
control strategies, only relying on the sensor data detected by
the sensors of the system and giving the exoskeleton drive
structure motion instruction will cause the exoskeleton and
the human body a position deviation. The position deviation
is the main source of human-machine interaction. An appro-
priate prediction algorithm needs to be added to help the
control strategies judge the wearer’s motion intention and
the possible motion position at the next moment according
to the current and historical motion sensing data, so as to
give the system appropriate control commands. Due to the
significant difference in the delay between the exoskeleton
and the wearer due to different wearing methods and the
tightness of the binding, some prediction methods can only
predict the one step size, such as Kalman prediction [9], need
to continuously iterate the Kalman gain coefficient according
to the measured value, and cannot deal with the longer step
size prediction. Similar problems also exist in the prediction
methods based on the ARMA model, such as LMS linear pre-
diction [10] and RLS linear prediction [11, 12]. When the
prediction step size becomes longer, the accuracy of the pre-
diction will decrease significantly [13]. Moreover, LMS linear
prediction and RLS linear prediction require more historical
data and a large amount of computation, and the prediction
curve is not smooth, which makes it difficult to implement
such prediction algorithm in an embedded system.

Yang [13] et al. compared the performance of LMS and
Takens prediction algorithms in the prediction of human gait
data. The results showed that Takens is more stable, accurate,
and suitable than LMS, but it did not solve the zero dead time
problem of the prediction algorithm. So, Duan et al. [14] use
the combination of the Takens prediction algorithm and
Newton-based-method to solve the problem of the zero dead
time of the prediction algorithm but did not make progress in
solving the parameter tuning process.

In this work, we have made improvements to the predic-
tion algorithm for exoskeleton, so that the parameters of the
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prediction algorithm can be optimally determined. Applying
it to exoskeleton gait prediction can accurately predict the
joint angle of the exoskeleton, making joints motor reach
the aim position in advance.

The reminder of this paper is organized as follows:

In Section 2.1, we introduce the IMU-based pose capture
system. In Section 2.2, we briefly introduce the Takens pre-
diction algorithm. In Section 2.3, we introduce the process
of the PSO-Takens algorithm. Section 2.4 is mainly about
the simulation of the control of the prediction algorithm in
the two-link model.

In Section 3, the experimental results are analyzed. We
mainly discussed the performance of the improved predic-
tion algorithm and the original prediction algorithm in exo-
skeleton gait data prediction.

In Section 4, we conclude the paper.

2. Materials and Methods

2.1. Motion Capture System. The process of human lower
limb movement has the characteristics of high autonomy,
complex information, diverse movements, and multiple
degrees of freedom. Biomechanical simulation and experi-
mental studies have shown that the motion consumption
power in the sagittal plane of the human body is the largest
relative to the frontal plane and horizontal plane [15], so
the three-dimensional walking motion of human hip joint
often can be simplified to a single plane motion in the sagittal
plane. The corresponding position sensor used in the exo-
skeleton is usually placed in a position parallel to the sagittal
plane of the human body, which describes the motion angle
of the sagittal plane of the lower limb joints of the human
body. With the development of inertial measurement units,
more and more IMUs (inertial measurement units) were
used as examples of kinematic sensors, beginning to appear
in the motion capture system. Compared with the method
of collecting joint angles using an absolute encoder, IMU
has an advantage of flexible installation and cheap price,
and its measurement accuracy can reach 0.1°, which can meet
the needs of the human motion capture system.

In order to collect human gait information and verify the
accuracy of the prediction algorithm, we designed a flexible
motion capture system for human sagittal plane motion
based on IMUs. The system will automatically capture the
sagittal plane motion data of the human body at 50 Hz sam-
pling frequency and transmit the motion data through CAN
(Controller Area Network) (Figure 1(a)) to the data collec-
tion and processing module. As shown in Figure 1(b), the
system mainly collected the pitch angle data of the back,
thigh, shank, and the pressure sensor data of the heel. The
system also includes power module, data collection and pro-
cessing module, and data transmission module. Figure 1(c)
shows the actual mechanical structure of the exoskeleton sys-
tem, a hinged structure is adopted between the thigh and
shank, and this structure can support the exoskeleton system
and reduce the load on the body while standing upright, but
it also leads to the inability to directly measure the motion
angle of the human knee joint through the angle sensor.
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FIGURE 1: Motion capture system and exoskeleton structure. (a) Nets of the motion capture system. (b) Motion capture system. (c)

Mechanical structure of the exoskeleton.

Therefore, IMUs were placed on the thighs, shanks, and back
to calculate the angle of the human joints.

The formula for calculating the angle of the hip and knee
joints is as follows:

(1)

T
6hip = 5 - eh’

Oknee = eh - 91 .

0, 0, represents the pitch angle of thigh and shank, respec-
tively; due to the mirror relationship between the left and right
legs, the calculated angle values are opposite, and there is a
phase difference between the hip joints and knee joints.

2.2. Takens Prediction Algorithm. The continuous walking of
the human body is periodic and nonlinear. The left and right
leg sensor data are only different in phases and directions.
Therefore, the algorithms used in the prediction of the joint
angle are the same; the prediction algorithms discussed in
this section are nonlinear time series Takens prediction algo-
rithm of the lower limb hip and knee joint data.

The Takens algorithm for nonlinear time series forecast-
ing is based on the Takens embedding theorem, which is also
called the weighted zero-order local prediction method. This
method is closely related to Takens’ reconstruction theorem.
It is essentially a nonlinear time series analysis method,
which requires historical data of the system to obtain the best
performance. The main idea is to find several historical data
vectors that are the most similar to the current reconstruc-
tion delay vector by traversing the sensor data for a period
of time, and the historical data vector is normalized and
weighted according to the similarity with the current sam-
pling data. The prediction data at a specific time is deter-

mined through function fitting or search. The predicted
data of each vector are multiplied by their respective weights
to obtain the final predicted value at the determined moment.
The algorithm implementation steps are as follows:

(1) According to the Takens embedding theorem, for a
given time series y(t), select the appropriate sampling
interval At and embedding dimension n, and collect
and store n data; the adjacent data differ in time At;
constitute the reconstruction delay vector D(¢). The
time series y(¢) can be any type of sensor data in
the motion capture system, such as angle, angular
velocity, or heel pressure data. The contents of D(t) is

D(t) = [y(£), y(t = A1), y(t = 248), y(t = 3A¢t) - y(t = (n = 1)At)]
(2)

(2) Calculate the similarity between the current recon-
struction delay vector D(t) obtained by sampling at
the current time and the historical reconstruction
delay vector D,(t) obtained from all previous obser-
vations; the methods for calculating similarity in
reconstruction delay vectors are usually Euclidean
distance, Pearson’s correlation coefficient, Manhat-
tan distance, and hash distance. The Euclidean dis-
tance has the following expression in this algorithm:

8(i)= kz (- (k= 1)At) = y,(t - (k= 1)At))> (1<i<N).

(3)
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FIGURE 2: Flow chart of the Takens algorithm.

In formula (3), the value of i represents the position of the
currently traversed vector, N is the reconstruction delay vector
length. The smaller the Euclidean distance is, the more similar
the two reconstruction delay vectors are, and the more accu-
rate when the historical reconstruction delay vector is used
to predict the data of the subsequent period of time. While
Pearson’s correlation coefficient or Manhattan distance is used
as a similarity calculation, the expression becomes

oo lu<t—< - 1)At=5)(y(t - (k- 1)At - 7))
¢zk L(t=(k = 1)t =32\ [S (e - (k= 1)Ae -7

(i)=Y y(t - (k=1)At) =y (t - (k= 1)A)|
k=1

(1<i<N),

(1<i<N). (4)

In formula (4), y is the average value of the reconstructed
delay vector, Pearson’s correlation coefficient and Manhattan
distance can also be used as a similarity calculation function,
and the difference is only the amount of calculation. Among
the three calculation methods, Manhattan has the smallest
amount of calculation and Pearson’s correlation coefficient is
the largest

(3) From the observed historical reconstruction delay
vector D;(t), the best matching M sets of reconstruc-
tion delay vectors {D(t), -, Dy (t)} are selected
according to the similarity with the reconstruction
delay vector D(¢) at the current moment. The corre-
sponding Euclidean distances are {§(1),---,8(M)}.
The predicted value {y, (¢ + bAt), -+, y,,(t + bAt)} of
each group of reconstruction delay vectors is deter-
mined by searching, T = bAt is the predicted dura-
tion. The weighting factor formula of each best
matching amount in the final prediction amount cal-
culation formula is as follows:

—

w,= ]Mi (sjsmy  (3)

(4) According to the predicted values and weight factors
of each historical reconstruction delay vector group,
the estimated predicted values at time bAf after the
current moment y(t) are calculated as follows:

Z wy

V(t+bAt) = L(t+ bAL) (6)

The flow chart of the algorithm is shown in Figure 2.

The Takens algorithm is to make predictions on the sen-
sor data for a period of time by searching historical sensor
data, which means that the prediction algorithm is to find
the most similar data out of the current motion situation
from the historical vectors. The sensor data of the human
walking motion detected on the sagittal plane has obvious
periodicity, so the Takens algorithm has a well performance
in predicting such signals. Among multiple optimal recon-
struction delay vectors, the algorithm can dynamically adjust
the weight factor through the Euclidean distance, which can
adjust the proportion of the optimal reconstruction delay
vector in the final prediction data.

2.3. PSO-Takens Prediction Algorithm Design. Although the
Takens algorithm cannot predict that all motion sensor data
are completely correct, some papers also give an optimization
method based on this algorithm [14], which makes the
Takens algorithm used in embedded systems become possi-
ble. Whitney’s topological embedding theorem shows that
the phase space of the original system can be reconstructed
by any value of the delay time of the single variable time
series in the case of noiseless and infinitely long time series.
In fact, the measured time series is of limited length and is
inevitably polluted by noise. Therefore, arbitrary delay time
cannot reconstruct the phase space of the system; the key to
reconstruct the phase space using the measured time series
is how to select these reconstruction parameters. However,
the Takens embedding theorem does not indicate how to
select these parameters. This problem has become an impor-
tant issue in nonlinear time series analysis.

Duan et al. have found that inappropriate historical vec-
tor dimension and embedding dimension will cause irrele-
vant data to enter the reconstruction delay vector, resulting
in lower prediction accuracy [14]. While inappropriate pre-
diction duration and optimal matching number will cause
data jitter and affect the smoothness of the predicted data.
Fortunately, the predicted duration, which is also called delay
time, is a constant we want to compensate. It is mainly caused
by inertial sensors and inherent defects of the system, and the
duration can be measured by wearing exoskeletons. The
delay time is expressed as the angle difference between the
human body and the exoskeleton.

In order to evaluate the algorithm performance and
adjust the parameters of the algorithm, the following two for-
mulas were introduced which are aimed at judging the pros
and cons of the prediction effect:
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2.3.1. Prediction Accuracy Rate (PR).

ex(t) = y(t) = y(t |t = bAL),

1S (7)
RMS(¢;) = nl e(t)”

e, (t) records the error between the predicted value and
the actual value at each sampling point, and RMS(e;) (Root
Mean Square error) characterizes the degree of deviation of
the overall predicted value from the actual value. The greater
the RMS(e,) is, the greater the deviation of the predicted data
from sensor data and the worse the predicted performance.
By normalizing the RMS(e;), the prediction accuracy rate
(PR) is defined as

. RMS(e(t)) .
PR(y(t), e (t)) =1~ Wyk(t)) x 100%. (8)

2.3.2. Smooth Factor (SF).

SE(y(1)) =

1 Lend R
tnq(max (3()) — min (3(£))) JO lf(t) =y(t)].
)

In formula (9), £, 4 is the duration of the algorithm, and a
5Hz low-pass filter is used to filter y(¢) to obtain f(¢). The
parameter smooth factor (SF) indicates whether the data is
smooth or not. In the course of human gait walking, the pre-
dicted sensor data is smooth and stable to match the actual
walking data. Therefore, the smaller the SF is, the closer the
predicted sensor data is to the sensor data measured by the
actual gait walking. Since the data actually collected in the
algorithm is discrete, when calculating the SF, formula (12)
is usually discretized to the following formula:

1 N

Nmax () ~min Gy 2@ 70
(10)

The parameters affecting the prediction effect of the
Takens algorithm are as follows: (i) the predicted duration
(T), (ii) historical reconstruction delay vector length (P),
(iii) optimal matching reconstruction vector number (M),
and (iv) embedding dimension (N).

We introduced PSO (Particle Swarm Optimization) on
the basis of Takens prediction algorithms, which is a swarm
intelligence optimization algorithm in addition to an ant col-
ony algorithm and a genetic algorithm in the field of com-
puter intelligence. It originated from the study of bird
predation behavior, and the basic idea is to solve and cooper-
ate with individuals in the group to achieve the search for the
optimal solution in a complex space [16]. Compared with
other intelligent adjustment algorithms [17-18], such as
derivative-based or derivative-based (or gradient-based)
(e.g., backpropagation (BP), Levenberg-Marquardt (LM),
Kalman filter, least square methods, and sliding-mode learn-

SE(y(1)) =

ing algorithm), hybrid learning methods, it belongs to the
derivative-free method and does not need to update complex
parameter equations, making it more suitable for nonlinear
output situations. Meanwhile, it has the advantages of strong
global search ability and easy implementation and has strong
convergence and robustness in the process of solving. In the
PSO algorithm, each particle represents a potential solution,
and the velocity of the particle represents the direction and
distance of each potential solution, which can be used to seek
the optimal value in the multidimensional space.

The PSO-Takens algorithm flow chart is shown in
Figure 3.

Step 1. Initialize a swarm of particles (population size m),
including the random position and velocity, and limit the
upper and lower limits of the particle’s velocity and position.
The optimized parameters in the Takens algorithm are as
follows: historical vector dimension P, optimal matching
number M, and embedding dimension N; therefore, the pop-
ulation of particles is {x1,x2, x3 --- Xm}, and the position of
the i-th particle is {XP;, XM, XN,}, The velocity of the i-th
particle is {VP;, VN,, VM,}.

Step 2. Use the evaluation function to calculate the fitness of
each particle.

Step 3. For each particle, comparing its fitness with the opti-
mal value pbest, it has passed through. If the current value is
better than pbest, the pbest will be set to the current value,
and the position of pbest is set as the current position in
the n-dimensional space.

Step 4. For each particle, comparing its fitness value with the
best position gbest, all particles passed through. If the current
value is better, the current position will be regarded as the
best position gbest.

Step 5. After updating the local and global optimal values of
the current iteration, the particle adjusts its velocity and posi-
tion through the following formulas.

Via = Vi+¢ xrand() x (pbest; — x;) + ¢, X rand()
X (gbest; — x;),

X =X+ Vi (11)

When the inertia factor is added, the velocity expression
becomes

Vi =@V, + ¢ xrand() x (pbest; — x;) + ¢, x rand() (12)
X (gbest; — x;).

Step 6. If the condition to terminate the iteration is not
reached, go to Step2, until the iteration termination condi-
tion is met.

According to the specific issue, the iteration termination
condition is generally to reach the maximum iteration num-
ber Gk or the optimal value of the evaluation function to
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FIGURE 3: Flow chart of the PSO-Takens algorithm.

meet the established threshold. The condition for the algo-
rithm to stop iteration is as follows: the number of iterations
over 50, or the fitness calculated by the evaluation function
over 100. The fitness (Y ;) evaluation function expression is
follows:

Yo=w; x o twa X PR. (13)
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FIGURE 4: Lower extremity exoskeleton leg’s simplified second link
kinetic model.

In formula (15), w, and w, are constants (0.5), which
means that we believe that the accuracy of data is as impor-
tant as the smooth factor in the human lower limb prediction
algorithm. The goal of the PSO-Takens prediction algorithm
is to adjust the complex parameter tuning problem of the
Takens algorithm in gait prediction, so as to achieve the opti-
mal prediction effect.

2.4. Follow-Up Control Design

2.4.1. Dynamic Model of Swing Leg. The movement of the
lower limbs of the human body can be regarded as a combi-
nation of swing phase and support phase. Usually, the swing
phase accounts for 60% of the gait cycle and the support
phase accounts for 40% [19]. For the swinging phase, the
swinging legs of the human body can be regarded as an
inverted two-link with uniform mass distribution. During
the support phase, the leg and the upper body of the human
body can be regarded as three links fixed at the bottom. This
division method can simplify the complexity of torque calcu-
lation in inverse dynamics, making it easy to implement on
embedded systems.

The lower limb-assisted exoskeleton single leg model is
shown in Figure 4. L, and L, are the length of thigh and
shank, and the ankle joint is omitted.

Assuming that the mass distribution of the exoskeleton
lower limb members is uniform, the centroid coordinates
G;(x;, z;) of the exoskeleton thigh and shank are as follows:

{ X = g sin g, (14)

Zy = —ay oS g,

(15)

{ x; =Ly sin g, +a, sin g

z; =—(Ly cos g, + a; cos q;).

The kinetic energy of the two connecting rods of lower
limb swing is the sum of the rotational kinetic energy and
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kinetic energy of the connecting rod, which can be expressed ~ around the sagittal plane of the joint. The expression
as follows:

isl; = (1/3)m,L}, and g, is the angular acceleration of the
joint. z; and x; are the velocities of the linkage in the x and z

Lo PR directions, and the total potential energy of the lower limb
E= 5 Z‘qui +mi(5°+57) | (16)  linkage is as follows:
i=0

In formula (16), I; is the moment of inertia when the exo- P= z m;gz;. (17)
skeleton is the i-th lower extremity connecting rod rotating i
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Comparison of knee joint prediction angle.

By defining the Lagrangian function L =E — P and the
Lagrangian formula, the expression of the joint torque in
the two-link can be expressed as

H(q)4; + C(q,9)q + G(q) = 7;- (18)

In formula (18), 7; is the joint torque between the links,
H(q) is the inertia matrix, C(q, q) is the friction matrix, and
G(q) is the gravity vector. The expressions of the matrix H(
q), C(g, q), and the gravity vector G(q) are as follows:

7
Emolé + mll% mylyly cos (qy +q;)
H(q) = ; ,
I 0 Emllf
Clad) [ 0 —-mylyl; sin (g, +q;)
| —my kol sin (g, + q)) 0
3 mygl, sin g, + m, gl, sin g,
G(q) = )
Emlgl1 sin g,

(19)

2.4.2. Follow-Up Control Strategy. After obtaining the inverse
dynamics model of the joint, we use the prediction angle
obtained by the prediction algorithm to do Simulink simula-
tion of the two-link model in MATLAB. The follow-up con-
trol strategy block diagram is shown in Figure 5.

TaBLE 1: Parameter changes of hip joint prediction algorithm under
nonstandard gait data.

# T P M L PR SF Fitness
Takens 10 80 10 300 73.23% 0.2226  38.86
PSO-Takens 10 26 7 644 87.74% 02196 46.14

TaBLE 2: Parameter changes of knee joint prediction algorithm
under nonstandard gait data.

# T P M L PR SF Fitness
Takens 10 80 10 300 71.80% 0.2317  38.05
PSO-Takens 10 48 12 536 85.75% 0.2388  44.97

The input of the control system is the angle of the human
joint g, and the angle sensor placed on the exoskeleton ¢, and
the joint torque is as the output of the controller and output-
ted by the motor driver. It is not necessary and convenient to
install an angle sensor on the lower limbs of the human body.
Since the angle deviation between the exoskeleton and the
human body is usually a constant value, this means we can
predict the angle of the human body through the position
sensor of the exoskeleton, instead of placing the inertial sen-
sor outside the human body, which is the role of the predict
algorithm played in follow-up control strategy.

For the angle data predicted by an algorithm, we used the
calculated torque method for systematic control, aiming at
making the lower extremity two-link of the exoskeleton fol-
low the changing joint curve predicted by the algorithm.
Compared with PD control and PD control with gravity
compensation terms, the calculated torque method changes
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FIGURe 9: Comparison of Takens and PSO-Takens in prediction of standard gait data. (a) Comparison of hip joint prediction angle. (b)

Comparison of knee joint prediction angle.

the lower extremity joints of the exoskeleton into a linear time-
invariant system that is easier to control due to the introduc-
tion of nonlinear compensation. Huo [20] proved the stability
of the control method. Based on the inverse dynamics equa-
tion, the system can follow the target position well. The con-
trol block diagram of this method is shown in Figure 6.

The torque expression calculated by the system control
output to the hip and knee joints is as follows:

T=H(q) (q+Kdé+er) +C(q,9)q + G(q). (20)

In formula (20), the parameters H(q), C(q, q), and G(q)
are the matrixes of inverse dynamics in the two-link model;
K, and K, are diagonal matrices, which are proportional
and differential terms for the tracking error e.

3. Results and Discussion
3.1. Experimental Results

3.1.1. Prediction Algorithm Experiment Result. Figure 7 rep-
resents the sensor data of the motion angle data of the joints
in the continuous walking movement. Compared with the
sensor data of the wearing exoskeleton, we found that the
angle detected from the exoskeleton and the actual motion
angle detected from the human body are generally delayed
by 200 ms, about 10 sampling cycles. Therefore, in a predic-
tion algorithm, the sensor data at 200 ms after the current
sampling point will be predicted based on EXO historical

TaBLE 3: Parameter changes of hip joint prediction algorithm under
standard gait data.

# T P M L PR SF Fitness
Takens 10 120 10 900 77.52% 0.2133  41.10
PSO-Takens 10 69 3 767 88.19% 0.2091 46.48

TaBLE 4: Parameter changes of knee joint prediction algorithm
under standard gait data.

# T P M L PR SF Fitness
Takens 10 120 15 900 87.14% 0.2063 45.99
PSO-Takens 10 77 15 1296 95.50% 0.2051 50.18

data. The angle sensor data obtained by three participants
(65+5kg, 170 £ 5cm) continuously walking at a speed of
3.6km/h on a treadmill was recorded and predicted. None
of the participants reported healthy problems in the previous
three months.

From the analysis of the accuracy of the prediction angle
data shown in Figure 8 and Tables 1 and 2, for both joints, the
PSO-Takens has increased the accuracy of the prediction
nearly 14.23 +0.5% (n =3, two-sided paired t-test, p=0<
0.05), while the smoothing factor is almost unchanged. Due
to the fact that the algorithm needs to store historical data,
the algorithm will not immediately predict when the algo-
rithm starts to execute. The area where the predicted value
is 0 is the dead zone.
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Figure 9 and Tables 3 and 4 show the performance of the
two prediction algorithms under the standard and fixed fre-
quency of the joint angle (data from [21]). The prediction
accuracy in Tables 3 and 4 shows that the accuracy of the pre-
diction is improved (hip joint from 77.85% to 88.19%, knee
joint from 87.14% to 95.50%), while the smooth factor
remains almost unchanged. Therefore, after the PSO-
Takens algorithm is executed, for the movement data of the
lower limbs, the prediction algorithm with optimized param-
eters becomes accurate and stable.

3.2. Prediction Algorithm Experiment Result. Since the cur-
rent pose and the motion-sensing data of the previous period

can only reflect the current motion state, to achieve better
performance, the exoskeleton system needs to predict the
posture data of the following period of time. After processing
and analyzing the predicted pose data, the motion intention
was judged in advance. By predicting the motion angle of
the human body and introducing it into the control of the
exoskeleton, the human-machine coordinated motion pro-
cess of the exoskeleton can be more flexible and smoother.
In order to compare the performance of prediction algo-
rithms and algorithm optimization in simulation, the joint
data during motion and the predicted joint data were
imported into the two-link model simulation system for a
comparative experiment, and the evaluation method of the
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algorithm mentioned in the second section was used to eval-
uate the performance of the algorithm. The experimental
results are shown in Figure 10.

It can be found that the predicted data lags behind the
sensor data of human motion when the system’s lower limb
joints are controlled to follow the human body at the begin-
ning. Over time, the torque control algorithm with gravity
compensation can control the two links to the angle pre-
dicted by the two prediction algorithms. When the state or
frequency of the motion changes, the prediction error occurs,
but the PSO-Takens algorithm shows a better antidistur-
bance ability, and the maximum error during movement is
also better than the original algorithm.

It can be found from Figure 10, in the case of control the
movement of the exoskeleton following the lower limbs of
the human body without using prediction algorithm, due to
the large deviation of the angle, a large interaction force of
human-computer interaction force may occur. If the method
of prediction is adopted in the control loop of the exoskele-
ton, the movement of the exoskeleton will be at an angle dif-
ferent from the actual movement of the human body at the
initial stage. With the increase of time, the two links of the
lower limbs of the exoskeleton gradually follow the move-
ment of the human body and maintain a high consistency
with the movement of the human body. It is undeniable that
there is still a deviation between the exoskeleton and the
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human body. According to formula (8), the accuracy of the
prediction using the Takens method for hip joint and knee
joint is 65.10% and 66.71%, while the PSO-Takens has
increased to 82.13% and 83.03%. When the gait becomes sta-
ble, the error of Takens algorithms ranges from -0.13 rad to
0.18rad (hip) and from -0.17rad to 0.11rad (knee). While
the error of PSO-Takens ranges from -0.04rad to 0.07 rad
(hip) and from -0.05rad to 0.09 rad (knee).

For standard gait data with a fixed frequency, inappropri-
ate parameters of the Takens algorithm will have obvious
errors at the beginning of the prediction, while the PSO-
Takens algorithm will not have this problem. Figure 11
shows that the error of Takens algorithms ranges from
-0.14rad to 0.10rad (hip) and from -0.12rad to 0.09rad
(knee), the error of PSO-Takens algorithms ranges from
-0.05rad to 0.06rad (hip) and from -0.03rad to 0.04rad
(knee). According to formula (8), the Takens algorithm pre-
diction accuracy rates of the hip and knee joints are calcu-
lated as 72.10% and 83.73%, and the PSO-Takens algorithm
prediction accuracy rates are 86.07% and 94.01%, which also
shows the PSO-Takens algorithm performs better in predict-
ing such data.

4. Discussion

In the case of ignoring the elasticity coeflicient and inertia
coeflicient, the human-computer interaction model can be
simplified; in this situation, Racine [22] proposed the interac-
tion force can be calculated as follows:

FezK(qh_qe)' (21)

In formula (24), F, is the human-machine interaction
force and g, q, represent the human joint angle and EXO
joint angle detected by a sensor, while K equals K,/L,
(Nm/rad-m), L, indicates the distance between the measure-
ment point and the joint rotation center, and K, is a constant
that varies from the system. Formula (24) means that if there
is no angle deviation between the human body and the exo-
skeleton, it can be considered that the exoskeleton will not
hinder the movement of the human body in the walking state
of the human body, and the human-machine interaction
force will close to 0.

The difficulty of the exoskeleton system controller is how
to control the system to move to the target posture of the
human body at the next moment. Relying on the installation
of an inertial sensor on the exoskeleton has hysteresis and
cannot judge the posture of the human body at the subse-
quent moment. This paper is devoted to the realization of
human body motion prediction angle algorithm and intro-
duces it to the control system. The simulation experiment
results show that, for the angle prediction of exoskeleton,
the PSO-Takens algorithm has the function of improving
algorithm parameters. Whether it is linear prediction based
on ARMA model LMS, RLS, or DMP [23], the algorithm
parameters need to be optimized according to different sys-
tems. The PSO-Takens algorithm can deal with periodic dur-
ing gait walking data, and when the body’s movement law
changes, such as from walking to jumping or stopping, the
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accuracy of the prediction algorithm will be reduced, which
is the point that the prediction algorithm needs to be
improved in the future study.

5. Conclusions

In this paper, a human motion capture system is designed to
acquire human walking joint data, and a method for optimiz-
ing parameters of Takens nonlinear prediction algorithm is
proposed. Compared with the original Takens prediction
algorithm, the prediction angle obtained by the improved
prediction PSO-Takens algorithm is more closely related to
the actual motion angle data of the human body, with a
smaller error rate and smooth features. When the predicted
sensor data from the PSO-Takens algorithm were applied
to the joint angle prediction algorithm of the lower extremity
exoskeleton, it can improve the accuracy of prediction and
enhance the adaptability of the exoskeleton and human body.
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