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Abstract: Quadrature compressive sampling (QuadCS) is a newly introduced 

sub-Nyquist sampling for acquiring inphase and quadrature (I/Q) components of 

radio-frequency signals. For applications to pulse-Doppler radars, the QuadCS 

outputs can be arranged in 2-dimensional data similar to that by Nyquist sampling. 

This paper develops a compressive sampling pulse-Doppler (CoSaPD) processing 

scheme from the sub-Nyquist samples. The CoSaPD scheme follows Doppler 

estimation/detection and range estimation and is conducted on the sub-Nyquist 

samples without recovering the Nyquist samples. The Doppler estimation is realized 

through spectrum analyzer as in classic processing. The detection is done on the 

Doppler bin data. The range estimation is performed through sparse recovery 

algorithms on the detected targets and thus the computational load is reduced. The 

detection threshold can be set at a low value for improving detection probability and 

then the introduced false targets are removed in the range estimation stage through 

inherent detection characteristic in the recovery algorithms. Simulation results 

confirm our findings. The CoSaPD scheme with the data at one eighth the Nyquist 

rate and for SNR above -25dB can achieve performance of the classic processing with 

Nyquist samples. 

 

Key words: Compressive sensing; Quadrature sampling; Pulsed-Doppler processing 

 



2 
 

I.  Introduction 

Pulse-Doppler processing has the ability to detect moving targets in strong clutter 

environments by exploiting the differential Doppler shifts between the real targets and 

the clutter, and has acquired wide applications in civil and military air surveillance 

radars [1, 2]. A common processing scheme using quadrature sampling [3, 4] is shown 

in Fig.1. The radar echoes are sampled to obtain baseband inphase and quadrature 

(denoted by I and Q) components. After processing the baseband signal through a 

matched filter and discrete Fourier transform (DFT), the detection threshold is applied 

for constant false alarm rate (CFAR). The detected target plots are given to the data 

processor for tracking and other functions. 
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Fig.1:	The	block	schematic	of	the	classic	processing.	

 

Assume that the radar echoes are down-converted at intermediate frequency (IF) 

0f  with bandwidth B . Then the Nyquist sampling rate for analog-to-digital 

conversion (ADC) is given by [5] 
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where 0 / 2Lf f B   and l  is a positive integer satisfying 2Ll f B    . In the 

case of wide and ultra-wide band applications, high rate ADC is required and in turn, 

the intensive processing of high dimensional sequences should be conducted. 

Currently available ADC technology limits the development of ultra-wideband, 
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high-resolution radar systems. 

The newly introduced compressed sensing (CS) [6~8], or compressive sampling, 

brings us new concepts on the sub-Nyquist data acquisition. The CS theory exploits 

the sparsity of signals and samples signals closer to their information rate instead of 

their bandwidth. With high probability, the CS can recover sparse signals from far 

fewer samples or measurements than the Nyquist samples. The fewer samples lead to 

a reduced sampling rate and, hence, to a reduced processing load in radar applications. 

Along with the CS theory, several schemes have been proposed to implement the CS 

of the analog signals (Analog-to-information conversion, AIC). These include random 

sampling [9], random demodulation [10], random-modulation pre-integrator [11], 

segmented compressed sampling [12], Xampling [13], and so on. These schemes have 

general applicability to signals sparse in time domain, frequency domain or 

time-frequency domain. Although applicable to the bandpass signals, they do not 

exploit the characteristics of radar signals and could not directly extract I and Q 

components from the IF waveform. 

Recently, we proposed a quadrature compressive sampling (QuadCS) scheme [14, 

15] which merges the CS theory and the digital quadrature sampling. The QuadCS 

assumes that the echo signals have some sparsity in the waveform-matched dictionary 

[16] and can directly extract the I and Q components of the bandpass signals. Similar 

to random demodulation scheme, the QuadCS implements the demodulation through 

the chipping sequences. However, instead of by the upper frequency of the bandpass 

signals, the chipping rate is determined by the bandwidth of the bandpass signals. 
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Therefore, the QuadCS reduces the implementation complexity in comparison with 

random demodulation scheme.  

However, the digital signals obtained through AIC are quite different from that 

by the Nyquist sampling. The conventional signal processing techniques cannot be 

directly used for the information extraction. In general, there are two fundamental 

ways to perform the information processing. One is to do the recovery of the Nyquist 

sampling signals and process the recovered signals as usual. This kind of processing 

has the conventional problems of large sampling data and does not utilize the 

characteristics of the sub-Nyquist data in CS. Another is to process the discrete signals 

in CS domain. The CS data is small and the direct processing can solve the large data 

problem in the conventional processing. Signal processing in CS domain, also called 

as compressive signal processing (CSP), has acquired attention. Some fundamental 

works, for example, signal detection, parameter estimation, filtering and so on, have 

been reported [17]. In comparison with conventional techniques, CSP is still in its 

infancy and much work should be done before practical applications can be 

developed. 

Applications of AIC and CSP to the radar system have been exploited. Some 

works [18, 19] are towards detection of targets from the sub-Nyquist samples. Others 

[11, 20~25] are about the extraction of radar target’s information (Doppler, range and 

amplitude) from AIC data. All of these studies demonstrate that the AIC’s are 

effective for radar signal acquisition and the processing load are greatly reduced.  

In this paper we discuss the applications of QuadCS to radar and develop a 
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compressive sampling pulse-Doppler (CoSaPD) processing scheme. We are mainly 

concerned with non-fluctuating moving point targets with additive white Gaussian 

noise (AWGN). The CoSaPD in clutters is also briefly discussed. It is assumed that 

the radar transmits consecutive pulse trains and target echoes are sampled by the 

QuadCS. In the range dimension, the QuadCS outputs the discrete data at the 

sub-Nyquist rate. In the Doppler dimension, the target echoes are sampled at the pulse 

repetition frequency. Then in a coherent processing interval (CPI), the sampled data 

can be formulated in a matrix similar to that by the classic sampling (Section IV) [1,2]. 

Because of the low rate sampling during the intra pulses, the data size is greatly 

reduced. The targets’ information (amplitudes, Doppler frequencies and ranges) are 

completely contained in the compressive data matrix. Then the target detection and 

estimation can be performed on the data matrix. The CoSaPD scheme follows the 

procedures of the Doppler estimation, the target detection and the range estimation. 

As discussed in Section V, the procedure is irreversible, which is different from the 

classic processing. Simulations in Section VI show that when the signal-to-noise ratio 

(SNR) is above -25dB, the CoSaPD scheme at one-eighth the Nyquist rate achieves 

the performance of classical processing at the Nyquist rate. 

The remainder of this paper is organized as follows. In Section II we describe the 

radar model and the assumptions for our discussion. Section III introduces the 

fundamentals of the QuadCS system. Section IV describes the proposed processing 

scheme. The target detection is discussed in Section V, and numerical results are 

presented in Section VI. We conclude this paper in Section VII. 
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We denote vectors by boldface lower case letters and matrices by boldface upper 

case letters.  H  denotes the operation conjugate transpose and  l  denotes the 

l -th column of matrix “  ”.  Re   and  Im   represent the real part and the 

imaginary part of “  ”, respectively. ,( )i j  denotes the i -th row, j -th column 

element of “  ”. 

II. Radar Model and Problem Statement 

In pulse-Doppler signal processing, we usually transmit multiple periodic pulses and 

perform coherent samples at the range bins to obtain the estimation of target 

information. We consider the case of K  non-fluctuating moving point targets which 

are sparsely located in the radar’s vision and satisfy the stop-and-hop assumption [1]. 

Assume that the radar transmits a pulse modulated waveform with pulse repetition 

interval (PRI) T  and pulse width bT . Consider the case of L  periodic pulses. After 

downconverting to an intermediate frequency 0f , the target echo from the k -th 

target due to the l -th transmitting pulse can be described as 

 0( ) ( )cos[2 ( ) 2 ( 1) ]l d
k k k k k kr t a t t f t t t f l T           , [( 1) , ]t l T lT   (1)   

where ( )a t  and ( )t  represent amplitude and phase modulations, respectively; k , 

kt , d
kf  and k  are reflecting coefficient, the delay, Doppler frequency and random 

phase shift of the k -th target，respectively. (1) has a bandpass spectrum with center 

frequency 0f  and bandwidth B , where B  is the bandwidth of transmitting 

waveform. The received radar echoes due to the l -th transmitting pulse is given by 

 
1
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   (2) 

which can be can be expanded as 
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0 0( ) ( ) cos(2 ) ( )sin(2 )l l lr t I t f t Q t f t    

where ( )lI t  and ( )lQ t  are called as I and Q components of the signal ( )lr t , 
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with ' 2 ( 1)d
k k kf l T     . Let ( )

0 ( )= ( ) j ts t a t e   be the complex baseband signal of 

the radar transmitting signal. Then the complex envelope ( )ls t  of ( )lr t  is given by 
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 (4) 

where  = exp j 2 ( 1)l d
k k k kf l T       . 

The target information, kt , d
kf  and k , is completely contained in the 

complex baseband envelope ( )ls t ( 1,2, ,l L  ). In the radar signal processing, we 

usually sample (2) by the quadrature sampling and perform the analysis to obtain the 

target information, as shown in Fig.1. This paper studies the target estimation through 

the sub-Nyquist QuadCS data.  

To simplify the analysis, we assume that the radar works in unambiguous 

time-frequency region, i.e., 1/ 2df T  and kt T , and that the target remains in a 

range bin and keeps constant velocity in a coherent processing interval. 

In practical scenarios, the received radar signal inevitably contains noise and 

clutter in addition to the target echoes1. Among various noise sources, thermal noise is 

nominally dominant. Clutter is often due to echoes from volume or surface scatters 

[26]. In our study, we assume that the noise is AWGN and the surface clutter is 

                                                        
1 Unintentional electromagnetic interference and intentional jamming are not included in our discussion. 
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Rayleigh-distributed in amplitude and obeys the two-sided exponential law in Doppler 

spreading. Then the received radar signal due to the l -th transmitting pulse is given 

by 

 
1

( ) ( ) ( ) ( )
K

l l
k

k

r t r t n t c t


   , [( 1) , ]t l T lT   (5) 

where ( )n t  is bandlimited noise with power spectrum density 0 2N  and bandwidth 

B , and ( )c t  is Rayleigh-distributed clutter with average clutter power 2
c . We 

define the received SNR for the k -th target as 

 

2

( 1)

0

1
( )

SNR

lT l
kl T

IN b
k

r t dt
T

N B





                       (6) 

and under the assumption of unit transmitting power, 
2

0

SNR IN k
k N B


 . Similarly, the 

received signal-to-clutter ratio (SCR) can be defined and is given for the k -th target 

by 
2

2
SCR IN k

k
c




 . 

In most part of the paper, we consider the case of target echoes contaminated in 

the thermal noise ( )n t . The effects of clutter are analyzed in Section IV and 

simulated in Section VI. 

III. Fundamentals of Quadrature Compressed Sensing 

Now we introduce QuadCS system to perform sub-Nyquist sampling of the received 

radar signal (5). Different from the system in [14, 15], this work adds the Doppler to 

the echo model. To simplify the notation, we consider the received signal in a single 

pulse interval and denote the signal as ( )r t .  

We first consider the case of noise free. CS assumes that the signals ( )s t  should 
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be sparse in some dictionary. In radar applications, the transmitting waveforms are 

known in advance. A natural one is the waveform-matched dictionary [16]. For the 

radar baseband waveform 0 ( )s t  of the bandwidth B , the waveform-matched 

dictionary consists of all the time-delay versions of  0s t  at integral multiples of 

0 1 B  , i.e.,       0 0 , 0,1, , 1n nt t s t n n N         , where 0N T      is 

the size of the dictionary. The dictionary discretizes the observation time T  of a 

pulse with resolution 0 1/ B  . This discretization of the time-delay is reasonable, 

because the time resolution of the bandlimited signal  0s t
 
is 1 B . 

Assume that the target delays are at the integral multiples of 0 1 B  , i.e., 

  0 00, , , 1kt N   . Given the waveform-matched dictionary, the complex 

envelope  s t  in (4) can be represented as follows: 

     
1

0

N

n n
n

s t t 




     (7) 

If there is a target at the delay kt , 0k  ; otherwise, 0k  . For K N ,  s t
 
is 

said to be K -sparse in the waveform-matched dictionary. The sparsity level K  

exactly equals to the number of the targets. 
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2sin( 2)k
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Fig.2: The structure of QuadCS system. 
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The QuadCS system is shown in Fig.2, which consists of two subsystems: a 

sub-Nyquist sampling subsystem and a quadrature demodulation subsystem. In the 

first subsystem, the received radar signal ( )r t  is modulated by a random chipping 

sequence  p t  of 1' s , which alternates between values at or above the Nyquist 

rate of the baseband signal. The mixing operation will spread the frequency content of 

the baseband signal to full spectrum of  p t . Then the mixing output is filtered by a 

bandpass filter  bph t  with the center frequency 0f  and bandwidth csB B . The 

filter outputs a compressive bandpass signal ( )y t , 

            0j2Re f t
bp csy t h p t r t d s t e    




       (8) 

where  css t  is the compressive complex envelope 

        0j2 f
cs bps t h e p t s t d    

 


     (9) 

with     Recs csI t s t   and     Imcs csQ t s t   denoting the compressive I and Q 

components, respectively. The filter output ( )y t  is then sampled by a sub-Nyquist 

ADC to generate a low-rate sequence  y k . The sampling rate is set according to 

bandpass sampling theorem as    4 2 4 1cs
IF L csf f B l   , where 0 2L csf f B   

and l  be a positive integer satisfying 2L csl f B    .  

The second subsystem is to extract digital compressive I and Q sequences from 

the sub-Nyquist sampling sequence  y k . Its operation is the same as in classic 

quadrature sampling [3]. Because of the down-sampling operation, the rate of the 

digital compressive I and Q sequences,    cs cs csI m I mT  and    cs cs csQ m Q mT , 

is half that of  y k , 2 cs
cs IFT f . In the observation interval T , we obtain 

csM T T     complex samples      jcs cs css m I m Q m   of  css t  or 2M  
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compressive samples of I and Q components, which is much less than 2BT  by the 

digital quadrature demodulation. 

Although the QuadCS system works on analog bandpass signals, its output  

 css m  can be characterized as a linear combination of the sparse coefficient vector 

0 1 1[ , , , ]T
N   ρ    . Substituting (7) into (9), we have 

        0

1
j2

0

N
f

cs n bp n
n

s t h e p t t d      
  




      (10) 

Then 

        0

1
j2

0

N
f

cs n bp cs n cs
n

s m h e p mT mT d      
  




      (11) 

In the discrete CS framework, we have 

 cs s Mρ   (12) 

where    0 , , 1
T

cs cs css s M   s    and M N
mnM    M    with 

      0j2 f
mn bp cs n csM h e p mT mT d     

 


        (13) 

The recovery of the sparse coefficient vector ρ  can be achieved through 

optimization [27] as 

 1
min

s. t . cs






ρ

s Mρ


 

 (14) 

The matrix M  is called the system measurement matrix. For a radar signal 

having flat spectrum, the matrix M  is approximately column-by-column orthogonal 

and has nearly same column energy 22 /b csT B B  under the assumption of unit 

transmitting power. The k -th target power after the QuadCS system becomes 

2
2 /k csB B . 

When the received signals are contaminated in noise, the QuadCS sampling of 
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(11) is corrupted by a compressive noise sampling  csn m , which is obtained by 

passing the received noise ( )n t  through the QuadCS system as above. For the 

additive, white and bandlimited Gaussian noise ( )n t  with power spectrum density 

0 2N  and the bandwidth B , the compressive noise sampling  csn m  is an 

independently, identically distributed (i.i.d) complex Gaussian process with 

zero-mean and variance 02 csN B . Then output SNR of the QuadCS system from the 

k -th target, the compressive SNRCS
k , keeps intact. 

 In the noisy case, (12) is given as 

  cs cs s Mρ n     (15) 

where    0 , , 1
T

cs cs csn n M   n   . The representation is reasonable because the 

QuadCS is a linear system. The reconstruction of the sparse coefficient vector ρ  in 

noise case is to solve [28],  

 
2

12

1
min  

2 cs  
ρ

s Mρ ρ


       (16) 

where 0   is the regularization parameter which is used to establish the cost of 

complexity relative to the least-squares error 
2

2
0.5 cs s Mρ  . 

There are a wide variety of approaches to solve (14) and (16), including the 

greedy iteration algorithms [29, 30] and convex optimization algorithms [28, 31] (see 

[32] for a review). In the simulation study, we use basis pursuit denoising (BPDN) [28] 

to find the sparse vector ρ . 

IV. Pulse-Doppler Processing in QuadCS Domain 

This section discusses the extraction of the target information, ranges and Doppler 

frequencies, with the data given by (15). 
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Consider a coherent processing interval consisting of L  periodic pulses and 

denote the output of the QuadCS system from the l -th echo as 

 
l l l
cs cs s Mρ n     (17) 

Define 1 2[ , , , ]L
cs cs cs csS s s s    ，

1 2, , , L   Θ ρ ρ ρ     and 1 2, , , L
cs cs cs cs   N n n n    . Then 

the sampling data of the L  consecutive echoes can be expressed in a matrix form as 

 cs cs S MΘ N    (18) 

1 L
1

M

interval
1

/
cs

IF
f



&cs csI Q

        

1 L
1

N

F
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t t
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e 
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ge

 b
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)
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1

/2B


N
yquistsam

pling

&I Q

 
                (a)                                     (b) 

Fig.3: Notional 2-dimensional data matrix generated by the QuadCS system (a)  

and classic sampling (b). 

 

Fig.3(a) shows 2-dimensional data matrix generated by the QuadCS system. To 

make a comparison, Fig.3(b) gives the 2-dimentional data matrix by the classic 

sampling [1,2]. It can be seen that the sub-Nyquist samples by the QuadCS system 

correspond to the fast time samples (range bins) in the classic sampling. For 

convenience, we also call the sub-Nyquist samples as the virtual range bins. The 

samples in each column are successive samples of the echoes from a single pulse, i.e., 

successive virtual range bins. Each element of a column is one complex number, 

representing the real and imaginary ( csI  and csQ ) components of one virtual range 
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bin. Consequently, each row represents a series of measurements from the same 

virtual range bin over successive pulses. Because of the sub-Nyquist rate in the range 

dimension, the data size in range dimension is greatly smaller than that by the classic 

fast time sampling.  

As seen from (18), the target information is completely included in the N L  

data matrix Θ . In fact, the data matrix (18) will degenerate to the classic data matrix 

when NM I . Then if we would obtain Θ , we could estimate the target information 

as usual. However, the data which is available is actually an M L  underdetermined 

data matrix csS  because of M N . It is impossible to obtain the target information 

directly. In ideal case, each column of Θ  is sparse because the number of targets is 

much less than that of the range bins or the dictionary size. We can firstly obtain the 

sparse estimates of Θ  in (18) by solving 1l -norm optimization 

 
2

2 1

1
min   1,2, ,

2l

l l l
cs l L  

ρ
s Mρ ρ


     (19) 

Then the target information can be estimated from row DFT of the estimated Θ . In 

practice, due to the influence of noise and clutters, we can hardly obtain the exact 

information of the targets and may derive false targets. In addition, it takes large 

computational load by directly solving (19), which is not feasible for real-time 

processing. 

It is seen that each row of the data matrix csS  represents a series of 

measurements over successive pulses from the same virtual range bin. Then the target 

Doppler frequencies can be estimated by the spectral analysis of the slow-time data 

for each virtual range bin. A simple technique is to conduct the DFT. Denote ( )  as 
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the DFT of “  ” in row vectors. We have 

 
( ) ( ) ( )

( ) ( )

cs cs

cs

 

 

S MΘ N

M Θ N

  

 
  

 
 (20) 

Each element of the matrix ( )csS   is a Doppler spectrum sample, corresponding to 

the virtual range bin and the frequency bin. Then each Doppler spectrum sample can 

be detected to determine whether the target is present at the virtual range bin and the 

Doppler bin. 

The DFT plays a role of a matched filter for slow-time samples in the assumed 

scenarios. After DFT processing, the k -th target power becomes 
222 /k csL B B  

and noise variance becomes 02 csLN B . Then the SNR after DFT from the k -th target, 

SNR DFT
k , is enhanced to L  times the received SNR IN

k . In fact, from the point view 

of the target detection, we can further improve the detection performance by 

performing the matched filter for the sub-Nyquist samples, which corresponds to the 

matching filtering at each Doppler bin. The details are discussed in the next section. 

However, the detection process only detects the existence of targets in the 

specific Doppler bins. We cannot derive the number of the targets and the 

corresponding ranges. Note that the sparsity of ( )Θ  can be greatly enhanced even 

for practically non-sparse Θ  after the DFT processing. Then for the 

under-determined data csS , we may obtain the estimates of the number and ranges of 

the targets by solving the sparse solution of each column of (20). But the estimation 

methods will take large computational load because we have to perform the sparse 

estimates for each column of (20). Since we have detected the targets from the 

Doppler spectrum samples, we just need to perform the estimation of the target ranges 
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for the detected targets in the specific Doppler bin. In this way, we can greatly reduce 

the computational load because the estimation of the target ranges only takes place in 

the corresponding columns. 

QuadCS

Formulate data matrix

DFT in each row

Matched filtering in each column

Threshold detection and Doppler estimation

Range estimation

Echo 
signals 

 

Fig.4: The block schematic of the CoSaPD processing. 
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Range estimation:

 

Fig.5: The mathematical procedure of the CoSaPD processing. 

The block schematic of processing steps that are involved in the CoSaPD 

processing is given in Fig.4. The mathematical procedure corresponding to the 

processing blocks is given in Fig.5. It should be noted that the CoSaPD scheme firstly 

performs the estimation of the target velocities and then the estimation of the ranges. 

The operations are not reversible. The details of the detection process are depicted in 
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the next section. 

We now briefly discuss Doppler estimation in clutter. Different from thermal 

noise, the clutter has non-white power spectrum which is affected by radar and 

scenario parameters [1, 2, 26]. For stationary transceiver, clutter spectrum is around 

zero Doppler frequency. With this property, as in classic pulse-Doppler processing, 

the CoSaPD scheme can isolate the clutter from the moving target. If the target is 

away from the clutter spectrum, only thermal noise will interfere with its detection 

and then, each Doppler spectrum sample in the no-clutter area can be detected without 

clutter interference. If the target is in the clutter dominated area, the target power is 

not enough to perform detection. Then the Doppler spectrum samples in the area are 

simply discarded. However, because of clutter sidelobe, there is some clutter power at 

all Doppler frequencies, even though the clutter power is very small at high Doppler 

frequencies. To reduce the effects, we can add a data window [33] to weight the 

slow-time data for each virtual range bin, prior to computing the DFT. With the 

windowed data, the clutter has little effects on the estimation of targets as simulated in 

Section VI. 

V. Threshold Detection and Its Performance 

This section describes the threshold detection used in the proposed CoSaPD 

processing and analyzes its performance. 

Consider the l -th column or Doppler bin data derived from (20) 

      ( ) ( ) ( )
l l l

cs cs S M Θ N      (21) 

Our purpose is to detect if there exists (at least) a target in the l -th Doppler bin. That 
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is to determine if the vector  ( )
l

Θ  is a zero vector through detecting  ( )
l

csS .  

First we assume that the received noise is known. With the data (21), to further 

enhance the detection performance, we can perform the matched filtering of (21) as 

            H H H( ) ( ) ( )
l l l

cs cs M S M M Θ M N         (22) 

which corresponds to the operation “Matched filtering” in the Fig. 4. For simplicity, 

let us define  H ( )
l

csx M S  ,  H ( )
l

y M M Θ    and  H ( )
l

csw Μ N   . Then 

(22) is simply represented as 

                               x y w                              (23) 

Note that the noise term w  in (23) is Gaussian but not independently 

distributed, because of the matched filtering. As illustrated in Section III, the matrix 

Μ  is approximately column-by-column orthogonal. Then we can still assume that 

w  is an i.i.d. Gaussian process. For the matched filtering data (22), the k -th target 

peak power is 
22 2 4 24 /k b csL T B B  and noise variance is 3

04 /b csLN T B B . Then the 

SNR after the matched filter from the k -th target, SNRMF
k , becomes to b csT B L  

times the received SNR IN
k . 

The detection problem is to detect the targets from data x . The binary detection 

problem of each nx (1 n N  ) can be formulated as 

 
0

1

:

:

n n

n n n

H x w

H x y w



 

 

  
 (24) 

The detection probability and false alarm probability are given respectively by 

 
1 1| ( | )

n
D

n
D n nx HT

P f x H d x


      (25) 

 
0 0| ( | )

n
D

n
F n nx HT

P f x H d x


      (26) 

where DT  is the detection threshold and 
1 1| ( | )

n nx Hf x H   and 
0 0| ( | )

n nx Hf x H   are 
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respectively the probability density functions of nx  given that a target is present and 

not present. Then the false alarm probability and the detection probability of y  are 

given by 

                       
1

1 (1 )
N

n
F F

n

P P


                        (27)       

                        
1

1 (1 )
N

n
D D

n

P P


                        (28)               

Define 2 3
02 /b csLN T B B  . The nw  has a Rayleigh density with mean 2   

and variance 2(4 ) 2  . Under hypothesis 0H , the target is absent, the pdf of nx  

is given by 
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Under hypothesis 1H , the target is present, n n nx y w     is complex Gaussian 

distributed with mean ny  and variance 22 . Then the pdf of nx  follows Rician 

distribution, 
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where 0I ( )  is the modified Bessel function of the first kind [34]. 

With the known noise power 2 , the Neyman-Pearson optimal detector can be 

derived from the likelihood ratio test 
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                 (31) 

For the monotonically increasing function  0I  , we have equivalent and simple 

expression of (31) as 
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where 0 2 ln( )n
FP    is the scale factor used to control the false alarm rate. Thus 

we can derive the joint detector for a vector data x  as 
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u 1
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n
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                           (33) 

where  u   represents unit step function. The detection process for a Doppler bin is 

shown in Fig.6. 
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Fig.6: The block schematic of the detection process for a Doppler bin. 

With (26), (29) and (32), we can derive 2
0exp( / 2)n

FP   . Then we have the 

false alarm probability as 

                    2
01 1 exp( / 2)

N

FP                         (34) 

We are not able to derive the closed form of the detection probability DP . However, it 

is noted that the CoSaPD detector can achieve the processing gain of b csT B L , which 

is less than the gain of classic processing, bTB L . Then it is expected that the 

performance of the proposed detector will degrade in a comparison with the classic 

detector at the low SNR. 

After the target detection, the CoSaPD processing conducts the range estimation 

through the sparse recovery algorithms, as discussed in last Section. As is well-known, 
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an inherent characteristic of the recovery algorithms [35, 36] is to detect the non-zero 

elements in the sparse vector. Then to improve the system detection performance, we 

may set low detection threshold for each Doppler bin. The low threshold will increase 

the false alarm probability and thus may introduce false targets. However, the detected 

false targets can be removed through the detection process in the recovery algorithms. 

The recovery algorithm strives for a minimum number of non-zero cells at its output. 

From the system point of view, the false alarm probability of the radar system will not 

increase, although we set the low detection threshold. The observations are confirmed 

in the next simulations. 

In practice, it is impossible to know the noise parameter   in advance. To 

make the false alarm rate constant, we should estimate the parameter   to obtain an 

adaptive threshold. Following the assumptions on the measurement matrix M , it is 

seen that the noise matrix H ( )csM N   is independent and identically distributed and 

its element absolute  H

,
( )cs i j

M N  (1 i N  , 1 j L  ) follows the Rayleigh 

distribution. Then the maximum likelihood estimation of   is just the average of the 

available data [37],  

                 
 H

,
( , )

( )
2

ˆ
cs i j

i j





 M N 

                   (35) 

where   is the set consisting of all available i  and j , and   is the size of  . 

For sparse targets, the accumulative strength of signals  H

,
( , )

( )
i j

i j 
 M M Θ    is 

much smaller than that of noise  H

,
( , )

( )cs i j
i j 
 M N  , and then the following 
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approximation is appropriate when   is large  
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In the simulation study, we set NL   and have the estimated ̂  as 
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Then the detection threshold is given as 0 ˆDT   . 

VI. Simulations 

In this section we present simulation performance of the proposed CoSaPD 

processing and make a comparison with classic processing [1,2] and direct processing 

by (19). Subsection A introduces simulation scenarios. Subsections B and C simulate 

detection and estimation performance in an additive white Gaussian noise. The effects 

of clutter are simulated in Subsection D. 

A. Simulation scenarios 

It is assumed that the radar transmits a linear frequency modulation pulse train 

with carrier frequency 10GHzcf  , signal bandwidth 200MHzB  , pulse width 

-510 sbT  , pulse repetition interval 410 sT  . The coherent processing interval 

consists of 100L   pulses. For the assumed parameters, the unambiguous target 

ranges and Doppler frequencies are in 1500m ~ 3466.5m  and 5KHz ~ 5KHz , 

respectively. The range resolution is 0.75m  and the Doppler resolution is 0.1KHz .  

For the QuadCS system, the chipping sequence  p t  is generated by random 

1' s  with rate 1/ B  and the bandpass filter is set to be an ideal one with bandwidth 
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csB . Two bandpass filters with 50MHzcsB   and 25MHzcsB   are considered. For 

the two filters, the sampling rates in the low-rate samples are one fourth and one 

eighth the Nyquist rate, respectively. The basis pursuit denoising (BPDN) algorithm 

[28] is used for the sparse target recovery. 

The simulated radar signal has a flat spectrum. The QuadCS measurement matrix 

Μ  is approximately column-by-column orthogonal. Fig.7 shows the distribution of 

the averaged Gram matrix HΜ Μ   over 1000 independent trials for 25MHzcsB  . 

The maximum off-diagonal element of the Gram matrix is 0.015. The Gram matrix 

clearly demonstrates that the assumption is reasonable.  
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Fig.7: The distribution of the averaged Gram matrix HΜ Μ  . 

B. Detection performance  

We assume that there are three targets with the same signal-to-noise ratio. The 

target delays and the Doppler frequencies are randomly set in the unambiguous region. 

We present three simulation results. For the first two results, the delays and the 

Doppler frequencies are in resolution grids. For the third result, the delays and the 

Doppler frequencies are arbitrarily set. To test the detectability of the multiple targets, 

the Doppler frequencies are set in the same Doppler bin. All results are obtained by 
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averaging 1000 independent trials. 

Firstly, we show that the CoSaPD detector is of the constant false alarm rate in a 

Doppler bin. Fig.8 shows the variations of the false alarm probabilities versus the 

scale factors for different signal-to-noise ratios when 25MHzcsB  . It is seen that the 

change of the noise powers does not have effect on the false alarm probabilities for a 

specified scale factor, which is consistent with the theoretical result in (34). The same 

conclusion can be drawn for 50MHzcsB  . 
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Fig.8: The false alarm probability versus the scale factor 

Next, we simulate the receiver operating characteristic (ROC) of the CoSaPD 

detector. Fig.9 shows the averaged ROC curves with a comparison with classic 

processing. It is seen that the performance of the CoSaPD detector is not as good as 

that of the classic detection. The performance degradation of the proposed detector is 

due to the decrease of the SNR gains. In Nyquist-rate case, after the matched filtering 

and DFT processing, the processing gain can achieve bT BL . While in the QuadCS 

system, it only realizes a gain of b csT B L . As the bandpass width csB  increases, the 

processing gain b csT B L  increases and then the detection performance gets better. In 

the simulated example, the processing gains achieve 53dB, 47dB and 44dB for classic 

processing and CoSaPD detector with 50MHzcsB   and 25MHzcsB  , 



25 
 

respectively. The SNRs for detection are 23dB, 17dB and 14dB, respectively. There 

are reductions of 6dB and 9dB in SNR relative to the classic processing for the 

50MHz and 25MHz cases, respectively. For 50MHzcsB   or the compressive 

sampling rate equal to one fourth the Nyquist rate, the detection performance of the 

CoSaPD detector almost achieves that of the classic detector in the simulated range of 

FP .  

10
-9

10
-8

10
-7

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

0

0.2

0.4

0.6

0.8

1

PF

P
D

K=3, SNR=-30dB, L=100

 

 

Classic
Bcs   =50MHz

Bcs=25MHz

 

Fig.9: ROC of the CoSaPD detector. 
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Fig.10: System false alarm probability versus detector false alarm probability. 

As discussed in last Section and noted in Fig.9, we can set high false alarm 

probability to increase the detection probability. However, simply doing so will 

increase false targets. The problem can be resolved in the recovery stage of the target 

range following the detector. This is because the sparse recovery algorithm has the 

inherent detection ability [35, 36]. Fig.10 shows the false alarm rate of the system 
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after the recovery stage versus that of the detector. Although the detector has high 

false alarm probability in the detection stage, the recovery algorithm can keep low 

false alarm probability of the system. Processing the system detection in this way will 

slightly increase the computational burden in the range estimation. 

Fig.11 further shows the changes of detection performance as SNR varies when 

210FP  . It can be seen that even at SNR=-30dB, the CoSaPD detector can approach 

to the performance in classic detection with one eighth the Nyquist rate.   
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Fig.11: The detection performance versus SNR. 

Finally, we consider a realistic scenario in which the ranges and Doppler 

frequencies of the targets are continuous and may not fall on the resolution grids. 

Fig.12 shows the ROC in this case. In comparison with Fig.9, the detection 

performance degrades. It is noted that when the target is not on Doppler bin, the target 

energy for the detection is from the Doppler leakage which is smaller than that of the 

target on the Doppler bin. When the target is away from the range bin, the 

measurement matrix contains errors which will degenerate the matched filter in (22). 

Then the detection performance is poorer than that of the targets on the resolution 

grids. 
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Fig.12: ROC in realistic case. 

C. Estimation performance 

After detecting the existence of the targets in a specific Doppler bin, we 

perform the estimation of the corresponding target ranges. The CoSaPD method is 

depicted in the last stage of Fig.5 and is realized through the recovery algorithms. The 

rate of successful estimation is used as the performance metric. When the targets are 

at the resolution grids, a successful estimation refers to that the ranges and Doppler 

frequencies are correctly estimated; when the target ranges and Doppler frequencies 

are chosen randomly at the unambiguous region, a successful estimation is declared if 

the difference between the estimated and real ranges and/or Doppler frequencies is in 

half resolution cell. 

In the simulation study, we set five targets with the same SNRs. To discuss the 

ability of discrimination, we assume that the first two targets are at the same range bin, 

the other two targets are at the same Doppler bin, the fifth target is randomly set for 

its range and Doppler. All results are obtained by averaging 1000 independent trials. 

Firstly, we depict the estimation performance when the five targets are set at the 

discrete grids. Fig.13 shows the rates of successful estimation at different SNRs. For 

the CoSaPD method, the false alarm probability is set as 210FP   with 0 5  . It is 
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seen that the CoSaPD method greatly outperforms the direct method and can achieve 

the performance of the classic method even at -25dB for one eighth the Nyquist rate. 

The performance improvement of the CoSaPD method is due to that the range 

estimation is performed in Doppler domain. The SNR of Doppler domain data is 

enhanced because of the DFT processing. Setting 210FP   will result in high false 

alarm probability in detection stage. However, the setting does not affect the system 

detection. 
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Fig.13: Rates of successful estimation for different methods. 

Another advantage of the CoSaPD method over the direct method is the 

reduction of the computational burden. For the simulated parameters, the direct 

method needs to call 100 times recovery algorithms while the CoSaPD method only 

needs at most 12 times recovery algorithms, as shown in Fig.14.  
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Fig.14: Times of the recovery algorithms used for range estimation. 
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Next, we present the simulation performance when the target ranges and Doppler 

frequencies are randomly set in the unambiguous region. Fig.15 shows the rates of 

successful estimation. In comparison with Fig.13, the estimation performance 

degrades. However, the CoSaPD method is more applicable to the realistic case than 

the direct method. As noted in Section IV, the direct method first estimates the 

complex amplitudes of the targets from the compressive data. The estimation may 

introduce errors in amplitude and phase. In particular, the phase error will greatly 

affect the Doppler estimation in DFT operation. Then the direct method is much 

poorer in the estimation performance. For the CoSaPD method, the Doppler 

estimation is performed in Doppler domain data which is from DFT of the 

compressive data. The range estimation by recovery algorithm contains no Doppler 

phase. Thus the CoSaPD method is robust in the practical case.     
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Fig.15: The rate of successful estimation in practical case. 

Finally, we simulate the performance for estimating a smaller target around a 

stronger target. In the classic processing, the output of the matched filtering will have 

side lobes in range, which makes the smaller target barely visible above the side lobes 

of the stronger target. We assume that the two targets are in the same Doppler bin and 
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the smaller target is randomly set in the first side lobe of the stronger target. Fig.16 

shows the estimation performance, where 1SNR IN  and 2SNR IN  denote the SNRs of 

the stronger target and the smaller target, respectively. It is seen that the CoSaPD 

method outperforms the classic method when the two targets have large SNR 

difference. 
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Fig.16: Estimation performance of the smaller target. 

D. The Effects of Clutter 

We now demonstrate the performance of the CoSaPD processing in surface 

clutter. The received target signals are contaminated in both noise and clutter as in (5). 

The signals and noise are simulated as in Fig.13. The surface clutter is assumed to be 

Rayleigh-distributed in amplitude and obey the two-sided exponential law in Doppler 

spreading 

( ) exp( ), 
2cS v v v
        

The Doppler model well describes windblown ground clutter with   corresponding 

to the wind conditions [26]. In the simulation, 4.3  , a wind condition about 60 

miles per hour. The SCR is -40dB. To reduce the effect of clutter, a Taylor window 

with 10 nearly constant-level sidelobes adjacent to the mainlobe and a peak sidelobe 
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level of -70 dB relative to the mainlobe peak is used before DFT processing.  
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                (a)                                 (b) 
Fig.17: Rates of successful estimation in clutter for discarding 

5 Doppler bins (a) and 13 Doppler bins (b). 
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Fig.18: Usable Doppler space fraction versus SNR. 

As discussed in Section IV, the Doppler spectrum samples will be discarded if 

the targets are in the clutter dominated area. Then we evaluate the rates of successful 

estimation at different SNRs for discarding different Doppler bins around zero 

Doppler shift. Fig.17 shows simulation results for discarding 5 and 13 Doppler bins, 

respectively. The effect of clutter is clear from Fig.17 (a). Because of clutter sidelobe, 

we cannot obtain 100% successful estimation rates both for the classic and CoSaPD 

methods. If we discard more Doppler bins, as shown in Fig.17 (b), we can almost 

completely remove the effect of the clutter on the signals with high Doppler shifts. 
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Fig.18 further shows usable Doppler space fraction [2] versus SNRs. In the simulation, 

we set one target with randomly distributed range bin and variable Doppler bin. When 

the target is successfully estimated, we claim that the Doppler bin is usable. It is seen 

that there is sharp drop of the usable Doppler space when the SNR is lower than some 

threshold. This is because the recovery algorithms are not workable in such low 

SNRs2. Both Fig.17 (b) and Fig.18 indicate that the CoSaPD method can achieve the 

performance of the classic method even at -25dB for one eighth the Nyquist rate. This 

is consistent with the observation from Fig.13.  

VII. Conclusion 

This paper has developed a pulse-Doppler processing scheme, CoSaPD, with the 

sub-Nyquist data delivered from the QuadCS system. Owing to the data structure 

parallel to the classic sampling, the CoSaPD takes some ideas from the classic 

processing. The scheme follows the procedure of Doppler estimation/detection and 

range estimation, which is irreversible in the processing order. Theoretical analyses 

and computer simulations show its performance advantages. When sampling at one 

eighth the Nyquist rate and for SNR above -25dB, the CoSaPD achieves the 

performance of the classic processing with Nyquist samples. 

In comparison with other related schemes utilizing CS data, the CoSaPD scheme 

has four distinct characteristics. One is small size dictionary. In other CS-based radar 

data processing, the dictionary is often 2-dimensional by discretizing both radar range 

                                                        
2  The 1l -norm minimization algorithms in noise case can derive the sparse solutions only when 

   
22

2 2
( ) ( )

ll

cs csN S   [38]. 
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and Doppler [21]. The CoSaPD scheme adopts 1-dimensional dictionary by only 

discretizing the radar range. The second one is the combination of estimation and 

detection processes. The combination has two advantages over separate estimation 

and detection: the improvement of detection performance and the cut-down of 

computational burden. The third characteristic is the ability to detect the smaller target 

around the stronger target. The last one is the ability to cancel the clutter echoes as in 

classic processing. 
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