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The investigation of abstract cognitive tasks, e.g., semantic processing of speech,

requires the simultaneous use of a carefully selected stimulus design and sensitive

tools for the analysis of corresponding neural activity that are comparable across

different studies investigating similar research questions. Multi-voxel pattern analysis

(MVPA) methods are commonly used in neuroimaging to investigate BOLD responses

corresponding to neural activation associated with specific cognitive tasks. Regions

of significant activation are identified by a thresholding operation during multivariate

pattern analysis, the results of which are susceptible to the applied threshold value.

Investigation of analysis approaches that are robust to a large extent with respect to

thresholding, is thus an important goal pursued here. The present paper contributes

a novel statistical analysis method for fMRI experiments, searchlight classification

informative region mixture model (SCIM), that is based on the assumption that the whole

brain volume can be subdivided into two groups of voxels: spatial voxel positions around

which recorded BOLD activity does convey information about the present stimulus

condition and those that do not. A generative statistical model is proposed that assigns a

probability of being informative to each position in the brain, based on a combination of

a support vector machine searchlight analysis and Gaussian mixture models. Results

from an auditory fMRI study investigating cortical regions that are engaged in the

semantic processing of speech indicate that the SCIM method identifies physiologically

plausible brain regions as informative, similar to those from two standard methods as

reference that we compare to, with two important differences. SCIM-identified regions

are very robust to the choice of the threshold for significance, i.e., less “noisy,” in

contrast to, e.g., the binomial test whose results in the present experiment are highly

dependent on the chosen significance threshold or random permutation tests that are

additionally bound to very high computational costs. In group analyses, the SCIMmethod

identifies a physiologically plausible pre-frontal region, anterior cingulate sulcus, to be

involved in semantic processing that other methods succeed to identify only in single

subject analyses.
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1. INTRODUCTION

Multi-voxel pattern analysis is a tool that has been established
in functional magnetic resonance imaging (fMRI) analyses
investigating acquired data obtained from cognitive studies.
The approach provides multiple advantages compared to
conventional univariate analyses strategies, e.g., general linear
models (GLM, Friston et al., 1995) due to its’ higher sensitivity
(Norman et al., 2006). Information from comparably weak
functional BOLD signals in single voxels are accumulated to
better discriminable patterns of BOLD responses, which can
increase the statistical power (Kriegeskorte et al., 2006). However,
a standard for evaluation and interpretation of outcomes from
theses multivariate analyses has not been established yet. Since
the statistical nature of results from multivariate analyses (e.g.,

classification accuracies or area under the ROC curve for
classification analyses) differs from those obtained by univariate
analyses (e.g., z-scores, t-scores, beta-values), different statistical
tests need to be applied to distinguish statistically significant
results. In this paper we present the searchlight classification
informative regions mixture model (SCIM) algorithm, a
procedure to statistically evaluate multivariate pattern analysis
(MVPA) results obtained from fMRI data that is robust against
threshold choices while being less computationally expensive in

comparison to commonly used random permutation tests.
To identify cortical regions that show distinguishable

BOLD patterns for contrasted conditions, one method is the

searchlight classification algorithm (Kriegeskorte et al., 2006).
Local patterns of BOLD responses in spherically shaped spatial
data subsets are evaluated in a classification analysis, resulting
in three dimensional maps representing the local informational
content about the contrasted conditions, with a classification
performance value for each searchlight’s center-voxel. To separate
informative searchlight regions from those without information,
classification results need to be tested for statistical significance.
Different approaches have been used for evaluating classification
performance results.

In some neuroimaging studies the single subjects results
of secondary interest compared to group-level analyses due
to the high variability across humans. In these cases one
approach to extract informative regions from searchlight analyses
are voxelwise t-tests across subjects for the classification
performance against chance level (Bode and Haynes, 2009; Kahnt
et al., 2010; Carlin et al., 2012). Since the number of subjects and
therefore the samples per test are limited to low numbers in most
studies, this approach for information-like measures was often
criticized (Brodersen et al., 2013; Stelzer et al., 2013; Allefeld et al.,
2016).

Under the null hypothesis that a classifier cannot find
information about differences between two conditions in the
BOLD data for underlying cognitive tasks, the classification
of these data can be modeled as a Bernoulli trial, resulting
in a binomial distribution for n independent tests, requiring
independence of trials (Pereira et al., 2009). The binomial test
was utilized by multiple fMRI studies (Oosterhof et al., 2010;
Abrams et al., 2012; Akama et al., 2012, 2014). Most fMRI
MVPA studies, however, compensate for the low number of trials

accessible per subject with cross-validation in the classification
analysis, violating the independence of trials in the analysis
leading to too optimistic results in statistical evaluation with
the binomial test. Random permutation test are a frequently
used alternative to binomial tests (Allefeld and Haynes, 2014;
Hausfeld et al., 2014; Arsenault and Buchsbaum, 2015) motivated
by the few assumptions about the data they require (Pereira
et al., 2009; Pereira and Botvinick, 2011; Stelzer et al., 2013;
Allefeld et al., 2016). Under the assumption that data samples
are independent of class labels, the null hypothesis expects
the original classification performance to be drawn from a
distribution derived by repetitions of classification analysis with
randomly permuted class labels. The probability for the null
hypothesis, respective, p-value is determined by the number of
permutations that lead to an equally high or higher classification
performance than the original analysis. However, the smallest
p-value that can be achieved is one divided by the number of
repetitions. Due to the high dimensionality of fMRI data, these
test are computationally very expensive.

Instead of artificially creating a distribution of classification
performance values that are obtained from classification of
non-informative searchlight volumes by permutation of class
labels, we propose to use the assumption that, for cognitive tasks,
only specific brain regions will be involved while large cortical
regions remain unaffected. The distribution of classification
performance values obtained from all searchlight regions from
the brain can then be decomposed into a non-informative
searchlight distribution and an informative searchlight
distribution with a two-component Gaussian mixture model
(GMM, Dempster et al., 1977), assuming a Gaussian nature of the
sub-distribution due to the high dimensionality of the searchlight
numbers (about 105 searchlights/voxels, respectively). In mass-
univariate fMRI analyses similar approaches have been applied
to decompose activated voxel distributions and non-activated
voxel distribution, using, e.g., fundamental power frequency for
decomposition (Everitt and Bullmore, 1999; Hartvig and Jensen,
2000; Vincent et al., 2010) or activation clusters (Penny and
Friston, 2003; Kim et al., 2010; Oikonomou and Blekas, 2013).
Pendse et al. (2009) used three-component Gaussian mixture
models for this purpose—in addition to the non-activated
and activated distribution, and they assumed a deactivated
distribution with a decreased BOLD response for specific
conditions. Given the non-directional nature of classification
results, we propose to apply a two-component GMM for
MVPA results.

A reliable and robust statistical evaluation is of increasing
importance for the investigation of rather complex and abstract
cognitive tasks, e.g., the semantic interpretation while listening
to spoken language. We therefore show the applicability of the
proposed method not only on artificial simulation data but
also on data from an auditory fMRI study, investigating the
differences in cortical regions involved in the processing of
semantically valid speech utterances compared to an acoustic
signal that is physically identical to normal speech but without
any semantic content. The amount of literature covering speech
processing by humans indicates the importance of this topic
for research on human communication. Studies range from
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very fundamental tasks like voiced pitch or vowel perception
(Liebenthal et al., 2005; Uppenkamp et al., 2006; Formisano
et al., 2008) and speech recognition to more abstract tasks like
phoneme recognition and finally semantic interpretation on a
lexical word level (LoCasto et al., 2004; Handjaras et al., 2016)
and sentence level (Friederici et al., 2000). However, abstract
tasks require very careful study designs and more research
is required to obtain reliable results to understand human
communication basics.

The comparison of the proposed SCIM method to the
binomial test shows a high robustness of SCIM against
threshold choices, leading to similar results to those obtained
by the frequently proposed permutation test. However, the
computational cost is considerably reduced, allowing for an
increased number of comparisons of conditions and better
insights into cognitive processes.

2. METHODS

2.1. Algorithm Architecture
The proposed algorithm computes for each voxel the a-
posteriori probability of how likely it is that the small brain
volume surrounding this voxel conveys information about
the experimental condition. The resulting three-dimensional
probability map is subsequently referred to as the informative
region map (IRM). Figure 1 provides an overview of the
algorithm’s main steps, described in detail in subsequent sections.

A-posteriori probabilities are computed based on a
two-component Gaussian mixture model, which models
the distribution of decoding accuracy (area-under-curve values,
AUC) across spatial analysis positions. Decoding is performed
using searchlight classification with linear support vector
machines (SVM), from which the classification accuracy for
each voxel position, averaged across all stimulus presentations,
is obtained.

2.2. Informative vs. Non-informative
Region Mixture Model
We hypothesize that brain volumes, containing results from
searchlight analyses, can be divided into two populations: (1)
searchlights that carry information about a condition contrast
and (2) searchlights that do not contain this information.
Classification performance of the former is expected to
be on average higher than chance level, albeit it may
fluctuate considerably among informative searchlight volumes.
Classification performance associated with the non-informative
searchlight volumes, instead, necessarily fluctuates around
chance level.

To construct a generative probabilistic model that reflects
the diversity of observed classifier performance within the two
groups, we adopt a two-component Gaussian mixture model
where one mixture component models the non-informative
searchlight distribution and the second component models the
informative distribution.

Component distributions for searchlight area-under-
curve (AUC) performance values, shown in Figure 2, for
the informative (NI , blue) and non-informative (NN , red)

components are computed from the whole brain AUC histogram
using the expectation-maximization (EM) algorithm (Dempster
et al., 1977). The underlying mixture model links the component
distributions to the joint distribution P (black) according to

P(ρk|µI ,µN , σI , σN ,πI ,πn) = πINI(ρk)+ πNNN(ρk)

= πIN (ρk|µI , σI)+ πNN (ρk|µN , σN),
(1)

where ρk is the classification performance AUC reached by the
k-th SVM classifier, operating on the k-th searchlight volume.
Estimated values of prior probabilities πI , πN , distribution
means µI , µN , and standard deviations σI , σN are obtained
from subsequent iterations of expectation-step (E-step) and the
maximization-step (M-step) of the EM-algorithm thatmaximizes
the logarithmic likelihood function

lnP({ρk}
K
k=1 |µI ,µN , σI , σN ,πI ,πn)

=

K
∑

k=1

ln
{

πIN (ρk|µI , σI)+ πNN (ρk|µN , σN)
}

.
(2)

The a-posteriori probability for the k-th searchlight to belong to
the subset CI of informative searchlight volumes is given by,

p(k informative|ρk) ≡ p(CI |ρk)

=
p(CI)p(ρk|CI)

p(CI)p(ρk|CI)+ p(CN)p(ρk|CN)

=
πIN (ρk|µI , σI)

πIN (ρk|µI , σI)+ πNN (ρk|µN , σN)
.

(3)

Conversely, the probability of k being from the subset CN of
non-informative searchlight volumes is

pSCIM(k) ≡ p(k non-informative|ρk) = p(CN |ρk)

=
πNN (ρk|µN , σN)

πIN (ρk|µI , σI)+ πNN (ρk|µN , σN)

= 1− p(CI |ρk).

(4)

The latter quantity, pSCIM, is used throughout the manuscript
since it facilitates comparison with the classic p-value of
reference methods that denotes the probability of accepting the
Null-hypothesis. Thus, searchlight volumes with pSCIM below
threshold indicate informative searchlight volumes and in their
entity constitute the informative region map (IRM).

2.3. Searchlight Classification
The searchlight algorithm requires the spatial division of the
data set into overlapping, near spherically shaped searchlight
volumes centered around each voxel, the center-voxel of the
respective searchlight sphere, with the radius set to three voxels.
BOLD activations of voxels within a particular searchlight
span a multidimensional feature-space vector x from which
the corresponding experiment condition label y = ±1 is to
be predicted.

Subsequent to all searchlight volumes being analyzed
independently of each other, classification performance results
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FIGURE 1 | Proposed searchlight classification informative region (SCIM) algorithm procedure. Subsequent to fMRI data classification with the searchlight algorithm,

the resulting area-under-curve (AUC) performance values are spatially smoothed and decomposed into a non-informative and an informative searchlight distribution

using a two-component GMM. Searchlights with a-posteriori probability for the informative distribution above threshold, equivalent to the non-informative distribution

posterior below threshold, define the informative region map (IRM).

are mapped to the respective center-voxel of each searchlight,
resulting in a three-dimensional information-based map
(Kriegeskorte et al., 2006) that reflects the information conveyed
within local BOLD regions about the experimental contrast.
Information-based maps reflect the informational content in
local BOLD patterns based on their separability in a high-
dimensional feature space. The absolute activation strength is
not important for the interpretation.

2.4. Support Vector Machine
The classification analysis was based on linear support vector
machine analysis (SVM, Schölkopf and Smola, 2001), which
is a suitable and robust classification method for fMRI data
(e.g., Misaki et al., 2010). A logistic regression model in pilot
experiments led to comparable but slightly lower classification
performance results. SVMs are discriminative classifiers, finding
a separating hyper-plane in feature space with maximum
distance to the respective class-samples. The resulting model is
parameterized by an optimum weight-vector w∗ that projects
data-samples xi orthogonally to the separating hyper-plane. To
allow for overlapping class-distributions, the soft-margin linear
SVM solution is obtained by minimizing a cost function that
includes the projection term wTxi as well as a regularization term
wTw, resulting in the optimum

w∗ = argmin
w

(1

2
wTw+ C

l
∑

i=1

max(1− yiw
Txi, 0)

2
)

. (5)

To avoid overfitting, the regularization parameter C is
determined from experimental data by nested cross-validation
in which an inner cross-validation loop is employed to find

the optimal C through grid-search, and an outer cross-
validation loop repeatedly estimates classifier performance on
held-out data.

2.5. Area Under the Curve (AUC) Analysis
Performance of the classifier at each searchlight’s spatial position
is measured as the area under the curve (AUC), a quantity that
is independent of a specific classifier threshold value since it is
computed by integrating the area under the receiver operating
characteristic (ROC) curve of true- and false-positive rates. AUC
has been shown to provide a reliable performance measure with
advantageous properties in a number of classification problems,
as confirmed by, e.g., Bradley (1997), and can be interpreted
as the probability of a correct classifier decision in a pairwise
comparison task of one positive and one negative example
being drawn at random from the data ensemble (Green and
Swets, 1966). In a number of analyses performed here (cf.
results), the overall accuracy measure of the percentage of correct
classifications is used as an alternative to AUC, to investigate the
impact on the overall SCIM system’s analysis results.

2.6. Spatial Smoothing
To decrease the effect of inter-individual anatomical differences
across participants and to avoid destroying potential fine
grained structure that might support classification, classification
performance maps were spatially smoothed with Gaussian
kernel (FWHM 3 mm) instead of a spatial smoothing step
during the pre-processing as it is common in multivariate
analysis procedures.

2.7. Metrics for Separation of Informative
and Non-informative Distributions
The degree to which our hypothesis of underlying informative
and non-informative voxel distributions is fulfilled can be
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estimated by the separation of the informative distribution (mean
µI , standard deviation σI) and the non-informative distribution
(µN , σN) after the two-component mixture model has been fit to
the searchlight AUC performance values. The classic metric for
the separation of two normal distributions is the sensitivity index,
which is given by

d′ =
µI − µN

√

1
2 (σ

2
I + σ

2
N)

. (6)

The resulting d′ values are included as a model selection
parameter in the cross-validation procedure for regularization.

We note that a number of separation criteria have been
evaluated as alternatives to the sensitivity index, including
several mean- and variance-based measures, geometric
distribution overlap, and Kullback-Leibler divergence. The
corresponding results showed no systematic differences to the d′

sensitivity index.

2.8. Baseline Statistical Tests
Previous studies have applied a number of different statistical
tests to obtain thresholded result maps from multivariate fMRI
analyses, two commonly used tests being the binomial test
(Oosterhof et al., 2010; Abrams et al., 2012; Akama et al., 2012)
and the random permutation test (Allefeld and Haynes, 2014;
Hausfeld et al., 2014; Kumar et al., 2016).

In the binomial test, p-values are computed as the probability
for n coincidentally correct classifications in N trials according
to Equation (7), with pT the a priori probability of the target
class, i.e., the prior probability of a semantic speech stimulus, and
pF = 1− pT the probability of a non-target stimulus,

pbin(k) =

(

N

n

)

pnT p
(N−n)
F . (7)

The random permutation test is based on repeated application of
the entire classification procedure (cf. searchlight classification)
on data with label-independent data. In each of Nr repetitions,
target labels are shuffled randomly to simulate independence of
samples and targets. p-values are subsequently obtained from
the number of repetitions nh, that led to an equal or higher
classification performance than the performance obtained from
the original (unshuffled) data set, divided by the total number of
repetitions Nr ,

prp(k) =
nh

Nr
. (8)

A direct comparison for the two reference evaluation tests can be
found in Stelzer et al. (2013).

2.9. Speech Stimuli
The aim of the present study is the identification of cortical
structures that are engaged in semantic processing of speech.
To disambiguate simultaneous physical and semantic stimulus
differences that occur, e.g., when contrasting speech with noise,
we employed two stimulus sets, semantic and non-semantic
speech, that are characterized by largely identical acoustic

properties while differing only in the presence vs. absence of
semantic meaning.

Non-semantic speech utterances were taken from the
“International Speech Test Signal” (ISTS, Holube et al., 2010),
originally designed as a test signal for language-independent
hearing aid evaluation. ISTS is constructed from speech material
from six female speakers with different native languages (Arabic,
English, French, German, Mandarin, and Spanish), each reading
a text in her mother tongue. It has been subdivided into segments
of 100–600 ms duration, that were subsequently rearranged in
a pseudo-random order to form a continuous stream of speech
utterances. The resulting ISTS generates the percept of nonsense
speech that does not contain any semantically valid statements.

Semantic speech stimuli are sentences chosen at random from
the Göttingen sentence test (Kollmeier and Wesselkamp, 1997),
a speech intelligibility test comprised of phonetically balanced
sentences, that each convey a short semantically valid statement.
To achieve perceptual comparability to the ISTS, the sentence
test’s male voice was transformed to a female voice percept by
pitch-shifting and digitally changing the vocal tract using the
tandem straight (Kawahara and Morise, 2011) method.

2.10. Data Acquisition
FMRI data were recorded in a 3T SiemensMRI scanner. Nineteen
subjects participated in the study (11 male, 8 female, 23.5 ± 2.6
years in age), 18 of them with German as mother tongue. The
latter participants were considered for further data analysis. All
subjects participated voluntarily with an expense allowance.

Subjects were presented with semantic and non-semantic
speech stimuli, as described above, in a passive listening
paradigm. A sparse imaging design was employed with a time
of repetition (TR) of 9 s, including 6.1 s of sound presentation
followed by 2.9 s of EPI sequence data acquisition of a complete
brain volume in 21 slices with a voxel size of 3.125 × 3.125 ×

3.9 mm, a field of view of 20 × 20 cm, a matrix size of 64 × 64
and an echo time (TE) of 55 ms. Sparse imaging allows for the
separation of the presentation of auditory stimuli and the scanner
noise in time. In addition, the temporal overlap of measured
BOLD responses for different stimuli is decreased, which has
proved to be an advantage for auditory fMRI experiments
(Edmister et al., 1999; Hall et al., 1999) and is also a big advantage
for fMRI classification analysis. We note that semantic and non-
semantic trial conditions were interleaved with five additional
acoustic stimulus conditions, whose analysis is beyond the
current scope and will be reported in a subsequent publication.
One session comprised 50 min, including four runs with 70
trials (10 trials per condition). A T1-weighted anatomical image
was recorded for each participant to allow for localization of
resulting active brain regions. Pre-processing including fMRI
time series motion correction, realignment and normalization
to the standard MNI brain, was performed with SPM8 software
(Friston et al., 1995).

2.11. Simulation Data
Ten simulation data sets have been created to evaluate how
accurate the proposed SCIM method and the reference methods
can identify regions in a data set that has been manipulated
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FIGURE 2 | The histogram of searchlight area under the curve (AUC) values in an example map from single-subject results analysis is overlain with the respective

GMM and the corresponding informative and non-informative searchlight distributions. Additionally means and variances of distributions as basis of metrics for

separation criteria are displayed.

by position information about different conditions at specific
locations. These spatial locations define a template map that
is compared to the result maps obtained from the different
evaluation methods.

A total of 80 experimental trials, 40 each per target and
non-target condition, were simulated that carried information
about the experimental condition only within a spatially limited
template mask area, resembling the SCIM method’s informative
region map from one subject. In voxel regions outside of the
template mask, simulated voxel activations were generated at
random from a normal distribution with voxel-wise mean and
variance that was identical to mean and variance computed
across all experimental fMRI data across target and non-target
condition. For voxels within the template mask region, voxel-
wise class-specific mean and variance values were identical to
mean and variance computed across all experimental fMRI data
computed separately for the target and non-target condition,
respectively. Obtained normal distribution voxel activations
in the template mask region were spatially smoothed with a
Gaussian kernel, full-width-half-maximum 3 mm, to simulate
dependencies across adjacent voxels.

2.12. Group Level Analysis
For all three considered analysis methods, SCIM, permutation
test, and binomial test, group results are obtained by
pooling classification performance values separately for
every voxel-position.

For the SCIM method, classification performance results are
averaged across subjects, resulting in one map that represents
for each voxel the mean classification performance value.
Subsequently, the distribution of averaged performance values
is decomposed into a non-informative and an informative
searchlight distribution, similar to single subject analysis,
resulting in a-posteriori probabilities for the non-informative

searchlight distribution that are comparable to p-values from
other statistical evaluation methods.

Permutation test group results are calculated similar to
the proposed method in Stelzer et al. (2013). Classification
performance values are averaged voxelwise. For every subject a
set of r = 100 analysis repetitions with randomized labels is
performed and the classification performance results are stored in
r separate maps per subject. In the subsequent voxelwise analysis,
one random sample from the set of r samples per subjects
is selected and the corresponding classification performance at
the spatial location is averaged across subjects. This procedure
is repeated 100,000 times, resulting in a Null-distribution
containing 100,000 samples per voxel. The resulting prp-value is
calculated as the number of samples within this Null-distribution
that are higher or equal to the original average classification
performance divided by the number of trials (100,000).

For the binomial test, the number of correct samples
per searchlight/voxel is summed voxelwise. Now the assumption
for one subject that the probability for the null-hypothesis’ is
equal to the binomial probability for n correct classifications inN
samples is adapted to the sum of all correct classifications

∑

nm
in M × N samples with a group size of M subjects, with nm the
number of correct classifications from the data of subject m. The
resulting pbin-value is determined by,

pbin =

(

M × N
∑

nm

)

p
∑

nm
T p

(M×N−
∑

nm)
F . (9)

3. RESULTS

3.1. Simulations
The reliability of the searchlight classification informative region
mixture model (SCIM) was verified with a classification analysis
of simulated data. We compared informative region maps
(IRMs) obtained from the SCIM method analysis to maps from
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searchlight classification with subsequent binomial test, random
permutation test (n = 100 repetitions) and to the template map
that underlies the simulation data.

Ten repetitions of simulation data analysis were carried
out, with procedures identical to those used for experimental
fMRI data, including both smoothed (Figure 3) and unsmoothed
AUCs (Figure 4).

Both figures show results from one simulation run for the
SCIM method, the random permutation test and the binomial
test (red maps), as well as the ground-truth template map (cyan
map). After spatial smoothing of the AUC maps (Figure 3),
simulation data analyzed with the SCIMmethod and the random
permutation test lead to comparable results. Informative regions
obtained from these methods are slightly larger than those in
the template map, which can be explained by the searchlight
algorithm that spatially smears over information contained in
voxels and additional spatial smoothing of AUCmaps subsequent
to the searchlight classification step. However, the random
permutation test result map shows small additional informative
regions that are not present in the template map. Results obtained
with the binomial method are only valid for high significance
thresholds (p < 0.01). For unsmoothed AUC maps (Figure 4),
both reference methods, the random permutation test and the
binomial test, exhibit informative regions not present in the
template map. While these false positive results could be handled
with cluster thresholds for the random permutation test results,
the binomial test leads to invalid results. Results obtainedwith the
SCIMmethod on unsmoothed AUCmaps is slightly less sensitive
compared to those obtained from smoothed AUC maps. Still,
in comparison to the reference methods, the SCIM method best
reproduces the template map.

The overlap of simulation result maps and the template map
was defined as the number of voxels active in template and result
maps, relative to the average total number of active voxels,

Overlap =
nt∩r

0.5(nt + nr)
, (10)

with nt∩r the number of voxels that were active in both maps,
nt active voxels in the template map, and nr active voxels in the
result map.

The statistical evaluation of simulation analysis results
supports the advantage of the SCIM method compared to
the reference methods. Spatial overlap of IRMs with the
underlying template map for different significance thresholds is
shown in Figure 5 with correction for the false discovery rate
(FDR, Benjamini and Hochberg, 1995, panel A) and without
correction for multiple comparisons (panel B). Medians across
ten repetitions are displayed as lines and the inter-quartile range
is shown as semi-transparent plane, however, not visible due to
very small variance across repetitions. For low p-value thresholds,
the overlap values are comparable for the SCIM and the binomial
results, while the random permutation test results include no
informative regions for very low p-values due to the upper
limitation of resulting prp-values, restricted by the number of

repetitions (pmin = 1
nrep

). For increasing threshold values, the

overlap with results obtained by the reference methods decreases

significantly, while the overlap of SCIM results with the template
map stays almost constant. Even though p-values larger than 0.05
have little relevance in practice, the corresponding result range is
shown for values up to p =1 in order to prove the robustness of
the proposed method.

The sensitivity, the specificity and the ROC curves for the
different methods are depicted in Figure 6 for result maps with
and without correction for multiple comparison. Except for the
SCIM method with unsmoothed AUC maps, all methods reach
a high sensitivity for p-values larger than 0.01. The difference
between the specificity for smoothed and unsmoothed maps
in the SCIM algorithm, however, is comparably small. The
specificity of the permutation test and the binomial test decreases
comparably fast for p-values larger than 0.01. The ROC curves
for the corrected tests show an advantageous curve course of
the permutation test with the smoothed AUC maps for p-values
larger than 0.01. However, for smaller p-values the sensitivity of
the permutation test is zero. For unsmoothed AUC maps, the
curve courses can be separated in two groups, where the methods
are applied to smoothed and unsmoothed maps, respectively.

3.2. Single Subject Results
In this section analyses of single subject results are presented.
For the spatial distribution of classification analysis results,
single slices from single subject results are displayed for three
different participants. Quantitative analyses are performed across
all subjects.

3.2.1. Spatial P-Value Distribution
In Figure 7 the spatial distribution of a-posteriori probabilities
from the SCIM analysis and p-values from the random
permutation test and the binomial test are displayed for a
single slice (at z = 6 mm) for three single subject results.
Transparent slices are located at p = 0.05, separating informative
from non-informative searchlights for non-corrected analyses.
The SCIM analysis provides plateaus of high significance levels
for all displayed single subject results, while non-informative
searchlights correspond to regions of significance levels larger
than p = 0.4, that are not displayed in the plots. The described
effects below are true for all slices and all subjects, the plots
are limited to one slice of three subjects, respectively, due to
space limitations.

Informative regions obtained from permutation tests are
predominantly similar to those obtained from the SCIM analysis,
with the exception of isolated small informative regions that
occur in the permutation test results. However, significance levels
for informative and non-informative regions are not as clearly
separated as in the SCIM analysis and the presence of the
previously mentioned small informative regions is dependent on
the applied significance thresholds.

The distribution of p-values resulting from the binomial test
analysis shows a gradual transition from informative to non-
informative searchlight areas in a narrow interval of p-values.
This leads to high dependence of informative regions on the
applied significance threshold.

Frontiers in Neuroscience | www.frontiersin.org 7 February 2021 | Volume 14 | Article 616906

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles


Urbschat et al. SCIM

FIGURE 3 | Results obtained from simulated data on smoothed AUC maps. Template map (A) for comparison with simulation result maps obtained from analysis with

SCIM method (B), random permutation test (C), and binomial test (D) of spatially smoothed AUC maps. Due to spatial smearing effects based on the searchlight

algorithm, results obtained from all methods show larger spatial extent than the template map. The map based on SCIM analysis is most similar to the template map.

The map obtained from random permutation test shows larger smearing effects, while binomial test results in informative regions that are not present in the template

map. The locations of the transversal slices are depicted on a sagittal slice (x = 0).

3.2.2. Single Subject Informative Region Maps
Single slices (at z = 6 mm) of IRMs obtained from single subject
analyses and the corresponding statistical distribution of results
in the whole result map are displayed in Figure 8. Result maps
obtained with the SCIM method, the random permutation test
and the binomial test were thresholded at p < 0.05, respectively.
Informative regions obtained without correction for multiple
comparisons are colored in red, the corresponding informative
regions with FDR correction are colored in orange. Permutation
test results show no informative regions after FDR correction for
subjects 2 and 3, while with other methods (and for subject 1
also with random permutation) FDR correction leads to slightly

decreased sizes of informative regions. Anatomical regions
identified to be engaged in the semantic processing task are
qualitatively similar for all methods. The right panels of Figure 8
show the histograms of classification performance values across
all brain-searchlights, the assumed Null-distribution for the
SCIM method (blue line) and the corresponding a-posteriori
probabilities for classification performance values obtained with
the SCIM method. Black dots show p-values obtained from
random permutation tests, and the dashed lines show the Null-
distributions for one voxel with high (red), mid (green) and low
(blue) classification performance, respectively. Null-distributions
obtained from the random permutation test are comparable
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FIGURE 4 | Results obtained from simulated data on unsmoothed AUC maps. The SCIM result maps (B) are comparable to those obtained with spatial smoothing

(Figure 3) while in the permutation test results (C) and in the binomial test results (D) numerous small informative regions can be found that are not in line with the

template map (A).

for all three subjects, while the original distribution of AUC
values is different. AUC maps resulting from the analysis of data
from Subject 1 (A) are shifted toward lower values, maxima of
distributions from Subject 2 (B) and Subject 3 (C) are located at
chance level (pchance = 50%). Only searchlights with AUC > 50%
are considered to be informative, and less searchlights satisfying
this criterion involve less comparisons to be corrected for in the
FDR procedure. Therefore, the FDR corrected IRM for Subject 1
is comparable to the uncorrected one, while IRMs for Subject 2
and 3, with more searchlights being associated to the distribution
of searchlights with AUC > 50% show no informative regions
after FDR correction. The dark red dotted lines show the
binomial distribution resulting from study design with N = 80
samples and pchance = 0.5. This distribution also shows p-values

for accomplished classification performance results as well as the
assumed Null-distribution for the binomial test.

3.2.3. Influence of Significance Threshold
Quantitative analyses of single subject results are displayed
in Figure 9. The left panels show the portion of informative
searchlights from all brain searchlights for different applied
significance thresholds for the three evaluation methods, (1)
SCIM, (2) random permutation, and (3) binomial test and
classification performance measures, AUC and accuracy. Lines
represent the median across subjects, while semi-transparent
areas display the inter-quartile range. FDR corrected SCIM
analysis results are approximately constant up to threshold
levels of p = 0.1. For higher thresholds the number
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FIGURE 5 | Overlap of simulation result maps with underlying ground truth map obtained from SCIM analysis, random permutation test and binomial test for 10

repetitions of simulation analysis and different applied significance p-value thresholds, respectively. (A) depicts the results with FDR correction and (B) depicts the

results without correction for multiple comparison. Median values across 10 repetitions are presented as lines, inter-quartile ranges are displayed as semi-transparent

plane but not visible due to the very small variance across repetitions. For very small p-values, SCIM and binomial test results show comparable overlap with ground

truth maps. However, overlap decreases for binomial results with increasing p-values, while SCIM results stay almost constant. Result maps obtained from random

permutation test show minimum p-values of prp = 0.01 (resulting from 100 repetitions) and exhibit no informative regions for lower p-value thresholds. For p-values

higher than 0.5, both reference methods, random permutation test and binomial test, are limited by the additional criterion of AUC > 0.5 for searchlights to be

informative and overlap values converge to a constant value. For results obtained with the SCIM method, this value is achieved for p-value threshold close to 1.

of informative searchlights increases only marginally. The
number of informative searchlights obtained from the random
permutation tests differ across subjects. For higher thresholds
than p = 0.05 the upper quartile of the group shows a strongly
increasing number of informative searchlights with increasing
p-value thresholds, while the median of the group shows an
almost constant trend, similar to the results obtained with the
SCIM method.

Since searchlights that lead to very low classification
performance results are associated with low p-values but are
not expected to be highly informational, only searchlights with
higher classification performance than 50% are considered to be
informative. This additional criterion is the limiting factor for
thresholds around prp = 0.5 for the random permutation test
and pbin = 0.08 for the binomial test. For higher significance
thresholds all searchlights with a higher performance value than
50% are considered to be informative, irrespective of the exact
applied p-value thresholds.

Corresponding statistics for non-corrected maps in the
lower left panel show strong dependencies on applied p-value
thresholds for both performance measures, AUC and accuracy
for the binomial test, and AUC measure for the random
permutation test. SCIMmethod results and random permutation
results obtained from the accuracy analysis are nearly constant
up to p-values of 0.05. The number of informative searchlights
obtained from the SCIM analysis increases slowly for higher
thresholds, while IRMs obtained from the random permutation
analysis show a sharply increasing number of searchlights with
increasing p-value thresholds.

Usual p-value thresholds vary between p = 0.01 and p =

0.05 across studies. The impact of different applied thresholds
for significance is represented in the right panels (B and D)

of Figure 9 as the inverse slope of median curves from panels
A and C in the range between p = 0.01 and p = 0.05,
respectively. The red lines show the median, the boxes the inter-
quartile range, the dashed lines 5- and 95%-quantiles and the red
crosses show outliers. For FDR corrected maps (panel B), the
SCIM results show very low differences in this range. Random
permutation tests lead to no informative searchlight with FDR
correction, except for two subjects, that show larger differences
in the mentioned range than SCIM results. Binomial tests
show larger differences across thresholds than both, SCIM and
random permutation results. Without correction for multiple
comparisons (panel D) inverse slopes for SCIM results only
differ marginally from those obtained with FDR correction.
For the random permutation test on AUC values, the absolute
value of the inverse slope and therefore the change of numbers
of informative searchlights is significantly larger than for the
SCIM analysis. Results obtained with the accuracy measure are
comparable for SCIM analysis and random permutation tests.
Binomial test results lead to significantly larger absolute values
of inverse slopes for both, AUC and accuracy measure.

3.3. Group Level Results
3.3.1. Summary of Evaluation Methods and

Classification Measures
Figure 10 shows the group level informative region maps (IRMs)
obtained with the three different approaches SCIM method,
random permutation test, and binomial test. Informative regions
obtained with an applied p-value threshold of p < 0.05 are
colored in red, respective informative regions for p < 0.01 in
dark violet and p < 0.001 in pale violet. For AUCmeasures (panel
A) the informative regions do not differ considerably for the
different applied thresholds and with or without FDR correction
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FIGURE 6 | Comparison of the sensitivity (A,B), specificity (C,D), and ROC curves (E,F) for the different methods SCIM, permutation test and binomial test. All

methods were tested with smoothed and unsmoothed AUC maps. The results with FDR correction are depicted in the left panels and results without correction for

multiple comparison are depicted in the right panels.

when significance evaluation is performed with SCIM or
random permutation test. Binomial test results show additional
informative regions to those obtained with the previous two
methods in anatomical areas that do not overlap with results
known from literature for the investigated cognitive task, both
with and without FDR correction. However, informative regions
obtained with the binomial test methods with significance
thresholds lower than p = 0.01 are similar to those obtained
with the two other methods. For accuracy measures (panel
B), the IRMs obtained with the random permutation test and
the binomial test for p-value thresholds at p < 0.05 include
informative regions in anatomical areas that are not consistent
with areas known from the literature. Informative regions

obtained with thresholds p < 0.01 are consistent with those
obtained from AUC analysis and SCIM analysis.

3.3.2. Group Level P-Value Distribution
The spatial distribution of a-posteriori probabilities pSCIM
obtained from the SCIM analysis and prp-values from the random
permutation test as well as pbin-values from the binomial test
are displayed for a single slice (z = 6 mm) of group result
maps in Figure 11. Other slices show similar effects, but are
not shown here due to space restrictions. The semi-transparent
slices are located at thresholds of p = 0.001. Informative
regions, i.e., the segments above a semi-transparent plane, are
comparable for results obtained from SCIM and the random
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FIGURE 7 | Spatial distribution of a-posteriori probabilities pSCIM (SCIM) and p-values (random permutation test and binomial test) across a single slice (z = 6 mm,

single subject, evaluation measure AUC, spatial smoothing for SCIM, random permutation, and binomial) of single subject results from three different subjects. (A)

depicts the results for subject 1, (B) shows the results for subject 2, and (C) shows the results for subject 3. Left panels: distribution of pSCIM-values resulting from the

Searchlight Classification Informative Region Mixture Model (SCIM, semi-transparent plane located at pSCIM = 0.05) has plateaus of high significance levels for

informative searchlight regions and a low noise floor across non-informative areas. Center panels: p-values resulting from random permutation analysis

(semi-transparent plane located at pperm = 0.05). Right panels: The distribution of binomial-test p-values (semi-transparent plane located at pbin = 0.05) shows

gradual transition from informative to non-informative searchlight areas in a narrow p-value interval. Differences between informative and non-informative areas are

best delineated by the SCIM method and less pronounced with random permutation and binomial methods.

permutation test. However, the random permutation test on
accuracy measures leads to just below threshold results that are
not as clearly separated from informative regions as compared
to results obtained from AUC measures or the SCIM analysis
on both measures, AUC and accuracy. The pbin-values obtained
from the binomial test lie in a very small value range that
does not permit a reliable separation of informative from
non-informative regions. While the other methods, SCIM and
random permutation test, show spatially smooth plateaus of
high significance (respectively low p-values), binomial test results
show very homogeneous spatial distributions for both, AUC and
accuracy measure.

3.3.3. Statistical Distribution of Group Level Results
The distribution of group results obtained with the different
approaches can be found in Figure 12 for the AUC measure
(A) and the accuracy measure (B). Light blue bars display the
histogram of the respective average classification performance

results across all subjects. Red circles show the corresponding
a-posteriori probabilities obtained with the SCIM method,
with less data points for the accuracy measure due to the
limited resolution of 80 samples per searchlight. The underlying
assumed Null-distributions for the SCIM analyses are shown
as dark blue lines. The prp-values resulting from the random
permutation tests are displayed as black dots. In comparison
to single subject results (cf. Figure 8D), group result random
permutation prp-values show less variance for respective
performance measures. However, low prp-values are associated
with lower classification performance values compared to
a-posteriori probabilities (pSCIM) obtained from SCIM analyses.
For the binomial test, the assumed distribution is equal to the
resulting pbin-values for respective classification performance
values. These are displayed as dashed dark red lines. For the
AUC measure, the assumed Null-distributions from SCIM
analyses and the random permutation analyses do not peak
at the expected chance level at pchance = 0.5 in contrast
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FIGURE 8 | Single slice (at z = 6 mm) of subject informative region maps (IRMs). (A) depicts the results for subject 1, (B) shows the results for subject 2, and (C)

shows the results for subject 3. IRMs obtained from single subject results with SCIM methods (first column), Permutation test (second column) and binomial test(third

column) for three different subjects at a significance level pSCIM < 0.05, prp < 0.05, and pbin < 0.05, without correction for multiple comparison (red) and with FDR

correction (orange), respectively. For subjects 2 and 3, no informative voxels can be found when FDR correction is applied. For the SCIM method and binomial

method, maps obtained with FDR correction exhibit slightly smaller informative regions. Right panels show the results’ distribution across voxels. A histogram of AUC

values is presented as bar-plot. A-posteriori probabilities obtained from SCIM analysis (red circles) and p-values obtained from permutation test (black dots) and

binomial test (dark red dashed line) are displayed, as well as underlying assumed Null-distributions for the different tests, SCIM method (dark blue line) and

permutation test with one distribution for a voxel with high (blue), middle (green), and low (red) performance, respectively. For subject 1 the distribution peaks for AUC

values lower than 50%, while for the other subjects the maximum is located at chance level AUC = 50%.

to the assumed Null-distribution for accuracy measure.
However, while the SCIM Null-distribution is determined
by the histogram of AUC values the Null-distribution
resulting from random permutation tests does not follow
the histogram of achieved AUC values. The binomial Null-
distribution, on the other hand, that only depends on the
study design but not on analysis results, is distributed around
the expected chance level. For the accuracy measure, all
Null-distributions are centered around chance level. For both
measures, AUC and accuracy, the SCIM analysis provides a
more stringent selector for informative regions in classification
performance maps than the random permutation test and the
binomial test.

3.3.4. Group Level Informative Region Maps
In Figure 13 informative regions are displayed for the contrast
semantic speech vs. non-semantic speech, emerging from fMRI
analysis with the proposed SCIM method based on AUC
measure (A), on accuracy measure (B) and the corresponding
maps obtained from commonly used random permutation
test (C and D).

Informative regions arising from the proposed method
(SCIM) overlap with those arising from random permutation
test with AUC measure to a large extent, with slightly
larger informative regions in the random permutation
test results. The location of informative regions obtained
from the described analyses are in primary auditory and
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FIGURE 9 | Quantitative analysis of single subject maps across subjects. (A,C) Cumulative histograms of fraction on searchlight volumes (in %, abscissa) whose

pSCIM-value is below a chosen threshold pthr-value (ordinate), i.e., which are considered informative. Curves indicate group median for SCIM method, random

permutation method and binomial method with area-under-curve (AUC) and accuracy (acc) measures, respectively. Semi-transparent areas depict the inter-quartile

range. (B,D) Average inverse slopes of curves in (A,C) within the interval 0.05 > pthr > 0.01. (A,B) Show FDR corrected results, (C,D) show respective non-corrected

results. Results indicate that the SCIM method is characterized by a strong separation of informative and non-informative searchlight volumes, both for FDR corrected

and non-corrected maps, while results obtained with AUC measurement and random permutation test are highly dependent on the applied thresholds. Binomial test

results show this dependency in all cases.

adjacent regions ins Heschl’s gyrus and the superior temporal
gyrus, in Broca’s area in the inferior frontal gyrus region
and posterior to the auditory cortex in Wernicke’s area.
Additionally informative regions for semantic processing
have been found in fronto-cortical regions in anterior
cingulate gyrus.

The previous statistical evaluation has shown that the
statistical power of the binomial test is considerably lower than
the power of the SCIM method and the permutation test.
Therefore, and in order to be able to display several slices
of the real data within a reasonable amount of space, the
result maps are focused on those obtained from the SCIM
method and the permutation test. The corresponding result
maps obtained from the binomial test can be found in the
Supplementary Material.

4. DISCUSSION

This paper presents a novel method for the evaluation of
results obtained from multivariate searchlight classification
analysis of fMRI data. Simulation data and data from
a real auditory fMRI experiment are analyzed with the
proposed SCIM method and results are compared to
those obtained from two references methods, the random
permutation test and the binomial test. The evaluation
and comparison of the methods is based on the spatial
distribution of obtained p-values, robustness of results for
different significance thresholds and classification measures
(AUC and accuracy) and consistency with results described
in previous studies investigating semantic processing of
acoustic stimuli.
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FIGURE 10 | Single slices (z = 6 mm, respectively) of group maps with AUC measure (A) and accuracy measures (B). First and third column show results with FDR

correction, second and fourth column respective results without correction for multiple comparison. Group results obtained with the proposed SCIM methods are

displayed in the first row, random permutation test results in the second row. Third row represents results from binomial test group results. Informative regions at a

threshold with p < 0.05 are colored in red, respective results for thresholds p < 0.01 in dark violet and p < 0.01 in light violet.

4.1. SCIM Method for a-posteriori
Probability Estimation
The analyses of simulation data in section 3.1 confirm the
general applicability of the SCIM method and advantages over
reference methods, random permutation test and binomial
test, when results are compared to ground-truth. All methods
reproduce the template map for low p-values with minor
differences depending on certain processing stages, in particular
spatial smoothing (cf. Figure 5). Without spatial smoothing,
the reference methods exhibit false positive informative regions,
not included in the template map, while the SCIM method
shows largest consistency with the template map for both,
smoothed and unsmoothed AUC maps with lower sensitivity
but higher specificity with unsmoothed maps. As reflected in
Figure 6 the SCIM method has a low sensitivity when it is
used without spatial smoothing of the AUC maps and even
with spatial smoothing the sensitivity of the reference methods
is higher for p-values than 0.01. However, these differences

are very small in comparison to the differences in specificity
for p-values > 0.01, where the SCIM method outperform the
reference methods.

For the experimental data, all three methods successfully
identify informative regions, as reflected in low a-posteriori

probabilities (pSCIM) for the SCIM method, and low prp- and
pbin-values for the random permutation and binomial methods,

respectively. Robustness of the spatial extent of informative

region maps (IRMs) with respect to the threshold value applied
during analysis, however, is found to be dependent on the choice
of analysis method. While the spatial map obtained with a
binomial test is highly dependent on the applied threshold and
leads to non-plausible results for increased p-value thresholds
(lower significance levels), the random permutation analysis
test is more robust than the binomial test at the price of
very high computational cost. IRMs obtained with the SCIM
method are characterized by spatially smooth, low pSCIM-
values in informative regions that are clearly separated from
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FIGURE 11 | Spatial distribution of a-posteriori probabilities pSCIM (SCIM) and p-values (random permutation test and binomial test) across a single slice from group

result maps [z = 6 mm, group results, evaluation measure AUC (A–C) and accuracy (D–F), spatial smoothing]. (A,D) Distribution of pSCIM-values resulting from the

Searchlight Classification Informative Region Mixture Model (SCIM, semi-transparent plane located at pSCIM = 0.001) has plateaus of high significance levels for

informative searchlight regions and a low noise floor across non-informative areas. (B,E) P-values resulting from random permutation analysis (semi-transparent plane

located at pperm = 0.001). (C,F) Distribution of binomial-test p-values (semi-transparent plane located at pbin = 0.001) in a very narrow p-value interval. Differences

between informative and non-informative areas are best delineated by the SCIM method, however, very similar to those in results obtained from random permutation

test. For accuracy measure, the random permutation test exhibits sub-threshold non-informative regions, that are not as well-separated from informative regions as

compared to results map from AUC analysis or SCIM analysis. Results obtained from the binomial method are almost non-separable into informative and

non-informative regions, since the range of emerging p-values is very small.

FIGURE 12 | Statistical evaluation of group results based on (A) AUC measures and (B) accuracy measures. Histograms show the distribution of classification

performance results emerging in group mean maps. Red circles show a-posteriori probabilities obtained from SCIM analysis for respective classification performance

values and the blue line the underlying Null-distribution. In random permutation test p-values are calculated independently for all voxels that are shown with black

dots. p-values obtained with the binomial test result from the binomial distribution that also represents the assumed Null-distribution for this test.

non-informative, high pSCIM-regions (cf. Figure 7), and this
partitioning is largely independent of the chosen threshold value.
The same effect is visible for group results, as presented in

Figures 13, 11, when comparing SCIM results with random
permutation test. For AUC measure, a-posteriori probabilities
obtained from group analysis with the SCIM method are
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FIGURE 13 | Group result maps for the contrast semantic speech vs. non-semantic speech, with proposed SCIM method on (A) AUC maps, (B) accuracy maps,

random permutation test on (C) AUC and (D) accuracy maps in five transversal slices and one sagittal slice to display location of transversal slices. Informative regions

for group results obtained with random permutation test and SCIM method on AUC maps are qualitatively consistent, however spatial extent of informative regions

from random permutation test is slightly larger compared to those obtained from SCIM method analysis. While SCIM result maps based on accuracy measure show

spatially smaller informative regions with less reliability, corresponding maps obtained from random permutation test seem to be too optimistic and lead to

non-interpretable informative regions. For AUC measures informative regions are located in primary and secondary auditory cortex, namely in Heschl’s gyrus (HG) and

superior temporal gyrus (sts) as well as adjacent regions, Broca’s area and Wernicke’s area, that have been associated previously with speech processing. Additional

informative regions can be found outside of temporal cortex, in anterior and posterior cingulate gyrus, previously being associated to semantic processing.

comparable to those obtained from the random permutation
test, though computationally of immensely higher efficiency. For
the accuracy measure, the random permutation test is not only
involved with high computational costs but leads also to non-
interpretable results—in contrast to SCIM results, that are similar
to those obtained with AUC measure, however with slightly
smaller informative regions.

The dependence on applied thresholds was quantitatively
illustrated in Figure 9. The number of informative searchlights

in IRMs is almost constant for a-posteriori probabilities smaller
than 0.1. In binomial test result maps, the number of informative
searchlights increases in the range of typically used thresholds
between p = 0.01 and p = 0.05. The same effect can be
observed for random permutation result maps based on the
AUC measure without FDR correction. These results emphasize
the need for false discovery correction in result maps arising
from random permutation and binomial tests. Shifted thresholds
have a small impact on resulting IRM informative areas. In
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most of the quantitative comparisons of the SCIM method
with the reference methods in this paper a value range up
to p = 1 is depicted, even though values of p > 0.05 have
little relevance for the experiment data. This was done to
illustrate the robustness of the SCIM method. Given the
robustness of spatial patterns for large values of p > 0.05,
it is reasonable to expect highly robust results for lower
choices of p-values (or, more specifically: for lower chosen
a-posteriori probability levels). Therefore, the SCIM method
might provide a tool for fMRI analysis that to some degree
maintains sensitivity with increased specificity (Lieberman and
Cunningham, 2009).

Across experiments and simulations presented here, our
analyses failed to identify situations where use of SCIM
would induce a considerable disadvantage compared to
reference methods. Methodological differences, e.g., underlying
assumptions of the methods and associated numerical effort,
also did not negatively affect the range of situations where
SCIM is applicable. Under the scenario of p-values larger
than 0.01 and a simultaneous emphasis on high specificity,
the permutation test might be preferred when its high
computational cost is irrelevant. However, this scenario is
of limited relevance for most studies. We expect that future
studies will contribute to a broader understanding of the
algorithm’s qualities.

4.2. Smoothing of Classification
Performance Maps
Spatial smoothing influences the outcome of statistical tests and
estimated posterior probabilities, since it alters the underlying
AUC (and respectively accuracy) distributions in informative
and non-informative brain regions in different ways. Regions
of high spatial continuity, corresponding to comparably low
standard deviation, are expected to coincide with informative
regions of highmean AUC and accuracy, respectively. Smoothing
further reduces their deviation even more, and thus, reduces
the number of searchlights at the far right-hand tail of the
distribution, as would be detected by a fixed threshold. Non-
informative regions are characterized by lower spatial continuity,
resulting in a comparatively larger reduction of the standard
deviation being induced by spatial smoothing. The proposed
SCIM method adaptively tracks changes in these underlying
distributions since the two-component Gaussian mixture model
adapts to the informative and non-informative distributions
that are implied by the observed data, i.e., smoothed or
unsmoothed AUC and accuracy. Spatial smoothing applied
to the random permutation and binomial reference methods
has predominantly the effect of reducing spatially “noisy”
false positive searchlights (cf. Figures 3, 4, third and fourth
rows), however, occasionally coinciding with a reduction in
informative map extent. The higher sensitivity that can be
achieved with all three methods is also reflected in the
panels A and B of Figure 6 and the ROC curves in panel
F of the same figure. The SCIM method benefits from
smoothing in particular through the inclusion of additional
searchlight volumes into the informative region estimate, with

an overall increase in physiological plausibility (cf. Figures 3, 4,
second row).

4.3. Classification Performance Measure
Group result maps obtained from SCIM analysis in
Figures 13A,B display larger informative regions resulting
from the AUC measure than from the accuracy measure,
with the former providing a better match across the spatial
extent of physiologically task-relevant areas known from
literature (cf. discussion of physiological results below).
Robustness, evaluated as the dependency of the number of
informative searchlights on applied thresholds, shown in
Figure 9, is comparable for both performance measures in
the SCIM method. For random permutation tests, results
based on accuracy are hard to interpret and inconsistent with
informative regions known from literature for the task of
semantic processing.

These observations likely reflect principled advantages of
the AUC measure for classifier evaluation over the accuracy
measure. AUC has been shown to provide a performance
measure that is invariant to a priori class probabilities and
exhibits increased sensitivity and decreased standard error
(Green and Swets, 1966; Spackman, 1989; Bradley, 1997).
In the context of the SCIM method, it provides us with a
tool to perform reliable regularization and model selection
in the SVM learning step and, thus, prevents over-fitting
in the searchlight classification step. The informative and
non-informative distributions, obtained in the GMM step of
the SCIM method, are characterized by a small standard
deviation due to effectively “decreased noise” in the AUC
measure. This facilitates the decomposition into an informative
and non-informative searchlight distribution in the SCIM
method and increases the robustness of informative regions
in IRMs.

4.4. Physiological Results
The analyses presented above consistently found informative
brain regions in auditory cortex areas that are associated with
speech perception. Specifically, we identified superior temporal
sulcus (STS) which was shown to play a role in speech
processing in general (Uppenkamp et al., 2006; Osnes et al.,
2011; Markiewicz and Bohland, 2016) and the processing of
intelligible speech in particular (Davis and Johnsrude, 2003;
Abrams et al., 2012; McGettigan et al., 2012). Heschl’s gyrus,
another brain region labeled as informative by the SCIM
method, has previously been connected with different degrees
of speech clarity (Wild et al., 2012), perception of vowels
(Formisano et al., 2008), intelligible speech (McGettigan et al.,
2012), and syllables (Markiewicz and Bohland, 2016). In auditory
cortical areas associated with higher order auditory processing,
regions in inferior frontal sulcus showed informative content
for the semantic vs. non-semantic speech contrast. They had
previously been reported to be relevant for semantic and
phonological processing, word and syllable counting (Poldrack
et al., 1999), as well as for hierarchical structures and
sentence processing (Makuuchi et al., 2009), speech working
memory (Friederici et al., 2006), and processing of intelligible
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speech (Abrams et al., 2012). In fronto-cortical areas, our
group analyses showed reliable results in cingulate gyrus
(pSCIM < 0.001), which is consistent with findings by
Adank and Devlin (2010) for processing of auditory sentences,
and for output-related vowel information by Markiewicz
and Bohland (2016). In Rissmann et al. (2003), this region
showed higher activation for words compared to non-words.
Binder et al. (2009) described this area in their meta-analysis
as interface between the semantic retrieval and episodic
encoding systems.

5. CONCLUSION

This work explored a novel method to evaluate
neurophysiological data that was tested on data obtained
from an auditory fMRI study, investigating cognitive processes
during the semantic processing of speech. The method is based
on searchlight classification analysis with subsequent division
of searchlight results into informative and non-informative
searchlight regions and permits a more robust discrimination of
informative vs. non-informative cortical regions than common
evaluation methods like random permutation tests or the
binomial test. Informative regions obtained with the method
are qualitatively consistent with those obtained from reference
methods. Yet, a posteriori probabilities resulting from the SCIM
method dissociate into two distinctly separate distributions,
whereas separation of significant from non-significant results
in the reference methods are highly threshold-dependent. Since
changes in applied thresholds change resulting informative
region maps to a lesser degree, the SCIM method provides an
evaluation tool that increases the specificity of multivariate
fMRI analysis without degrading sensitivity in a considerable
manner. The method is applicable to all fMRI studies that
permit a classification of BOLD responses into distinct classes
of tasks or conditions. It is beneficial in particular for fMRI
studies in which sparse imaging is used and the data-set
is rather small. The example data presented in this study
illustrate that the procedure allows for robust identification
of plausible group effects that were not found with univariate
statistical analysis.
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