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ON THE "PROBABLE ERROR" OF A COEFFICIENT OF
CORRELATION DEDUCED FROM A SMALL SAMPLE

Author's Note (CMS 1.2a)

This is the second of three papers dealing with the sampling errors of
correlation coefficients covering the cases (7) ‘“The frequency dis-
tribution of the values of the correlation coefficient in samples from
an indefinitely large population,” Biometrika, Vol. 10, pp. 507-521,
1915.

Here the method of defining the sample by the coordinates of a
point in Euclidean hyperspace was introduced, and it was shown
that the exact sampling distribution could be obtained. The prac-
tical application of these results appears in the second paper in 1921,
here referred to. It was concerned primarily to show that the sam-
pling distribution was different for intraclass and interclass correla-
tions, and to give the exact solution for the former, comparable with
that given for the latter in 1915. The special simplicity of the solu-
tion in the intraclass case was one of the foundations of the recogni-
tion of the z-distribution, and the analysis of variance, in terms of
which it would now be treated.

The third of these papers appeared in 1924, also in Metron: (¢iz)
“The distribution of the partial correlation ecoeflicient,” Metron,
Vol. 3, pp. 329-332, 1924.

It shows that the effect of the elimination of variates by partial
correlation is simply to reduce the effective size of the sample by
unity for each independent variate eliminated.

This group of three papers is part of a larger series appearing from
1915 to 1928, in which exact solutions were found for a variety of
problems of distribution, and the corresponding tests of significance
developed. Although many of these problems had been approached
using statistics called correlation coefficients (e.g., Biserial r, Bi-
serial n, etc.), yet it appears that the term was widely misapplied,
and the problems themselves are now simply treated as comparisons
of means, tests of heterogeneity, or regression problems.

In the final section this paper contains a discussion of the bearing
of the new exact solutions of distribution problems on the nature of

Metron, li 3-32, (1921).
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inductive inference. This is of interest for comparison with the
paper on ‘‘Inverse probability,” published 1930, nine years later.
In 1930 the notion of fiducial probability is first introduced using as
example the distribution found in this paper. In view of this later
development the statement, “We can know nothing of the proba-
bility of hypotheses or hypothetical quantities,” is seen to be hasty
and erroneous, in the light of the different type of argument later
developed. It will be understood, however, as referring only to the
Bayesian probabilities a posterior:.

Reproduced with permission of Metron

Introduction.

The problems of theoretical statistics fall into two main classes:
a) To discover what quantities are required for the adequate description
of a population, which involves the discussion of mathematical express-
ions by which frequency distributions may be represented: &) To de-
termine how much information, and of what kind, respecting these
population-values is afforded by a random sample, or series of random
samples.

Problems of the second class require for their adequate discussion
a knowledge of the distribution in random samples of specified size,
of the statistical derivates used to estimate or evaluate the popu-
lation-characters. Thus in calculating the correlation from a sample
we are making an estimate of the correlation in a theoretical infinite
population from which the sample is drawn. We wish to make the
best possible estimate-and to know as accurately as possible how far
the estimate may be relied upon. To this end we seek to know the
distribution of the values obtained when samples are drawn from an
infinite population, whatever the value of the correlation in such
population may be.

Some years ago, the writer applied a novel method of geometrical
representation to problems of random sampling which had excited
attention in the pages of Biometrika. He was thereby enabled to give
the exact form of the curve of distribution in random samples of the
coefficient of correlation when the latter was calculated in the ordinary
way. His formulae emphasised the fact that in the neighbourhood of
=+ 1, the curves become extremely skew, even for large samples, and
change their form so rapidly that the ordinary statement of the «pro-
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bable error » is practically valueless. It was accordingly suggested
that the variable » was unsuitable for expressing the accuracy of an
observed correlation in these regions but that, by a simple transfor-
- mation, a variable might be obtained the sampling curves of which are
practically normal and of constant standard deviation.

Since that time, the curves of random sampling which arise from
other methods of calculation have been examined, viz., those appro-
priate to intra-class correlations, represented by symmetrical tables.
It was found that these curves while different from those previously
obtained, could be rendered approximately normal by a similar trans-
formation and that the discrepancies between the sampling curves
derived by the two methods were greater than the departure of
either from the normal form. The advantage of the transformation
therefore became more apparent, it not only enabled an intelligible
statement of the « probable error » to be made, even for high corve-
lations, but permitted, and in the simplest possible manner, the making
of allowance for the method of calculation.

In the former paper it was found, by applying a method previously
developed, that the « most likely » value of the correlation of the
population was, numerically, slightly smaller than that of the sample.
This conclusion was adversely criticised in Biometrika, appavently on
the incorrect assumption that I had deduced it from Bayes theorem. It
will be shown in this paper that when the sampling curves are ren-
dered approximately normal, the correction I had proposed is equal fo
the distance between the population-value and the mid-point of the
sampling curve and is accordingly no more than the correction of a
constant bias introduced by the method of calculation. No assumption
as to « priori probability is involved.

The exact forms of a variety of frequency curves serve as an
adequate hasis for discussing methods by which a theoretical or ideal
quantity, such as the population-value of the correlation coefficient,
may be estimated from a sample. The attempt made by Bayrs, upon
which the determination of « inverse probabilities » rests, admittedly
depended upon an arbitrary assumption, so that the whole method has
been widely discredited ; yet the very concept of a frequency curve,
or surface, implies an infinite ideal papulation, the properties of which
can only be estimated from samples. In my opinion, two radically
distinct concepts have been confused under the name of « probability »
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and only by sharply distinguishing these can we state accurately what
information a sample does give us respecting the population from
which it i1s drawn.

1. The curve of random sampling for « intraclass » correlations.

In the calculation of fraternal correlations, and others of a like
nature, in which the mean and standard deviation are presumed to be
the same for both variables, it is usual to obtain the common mean
and standard deviation from the whole of the observations. This pro-
cedure may be expected to give more accurate results than the use
of separate means and standard deviations, when no distinction is
made as to which of one pair of observations corresponds to each of
another pair; this expectation is justified in that the probable ervror
of such correlations is somewhat less than that of a similar correlation
drawn from the same number of pairs of independent quantities, hut
the curve of random sampling is also affected in other ways.

If a1, @1, oy Xyyeee Xy X5 be n pairs of observations of this kind, then

2nx =8 (x+2)
onpt =8 (@ — B) + (2 — D)
npr = 8 (@ — Z)(&' — )

are the equations which determine the statistics @, p and . Correl-
ations found in this way have been termed intraclass correlations.
In other cases of intraclass correlations the observations may occur
in sets of 3, 4 etc., but these cases will not be considered in detail.

The exact form of the curve of random sampling may be obtained
by the method previously used (FisHEr 1915) to determine that of
correlations of the ordinary type, in which the means and standard
deviations of the two variates are calculated separately. In this method
a sample is represented by a point in generalised space, the separate
measurements being the coordinates of the point.

If m, o and p be the values of the mean, standard deviation and
correlation of the hypothetical infinite Gaussian population from which
the sample is drawn, then the frequency with which any pair of
values fall into specified infinitesimal ranges, is

N S VRV .
df = 1 . 20°(1 — p%) (@ — m)*— 2p (@ —m)(2'— m) + (&'— m)Y
f—— QnQYVj — pz | o d's
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hence the chance that all the observations of the sample have given
values 1s
1
5
O 120

@t Y1) dadwidada,.. da.do.,.

| (w—m)—Rp(r—m (&' —m)+(a'—m)*|

The representative point lies on a plane space, specified by 7, and
on a generalised sphere of (2n—1) dimensions lying in that space,
1Y 2n being the radius of that sphere. Its position upon the sphere
is further restricted to a region at a fixed angular distance, 0, from
the space of (n— 1) dimensions, specified by the equations

This angular distance depends upon » in such a way that
r = cos 20

Hence the volume element dx; dx;....dx, dx,. may, neglecting a con-
stant multiplier, be replaced by

AZp>~*dusin®~'0cos*~*0d0,

or by n—? n—3
Azp=2dp (1 —r) T (1 +r) ¢ dr.

The frequency elemént, simplified by substituting the derivates
@, p and » for the coordinates, and by ignoring constant factors, may
now be written

2n —
D ~ 31—oh (@ —m)* (1—p) + p* (1—pr) | . -
e ‘ Az —dp(l—r) * (1+r) * dr
an expression which specifies the relative frequencies with which any
assigned values of @, p and » will occur in the process of random
sampling.

The factor
— 2n

T ?
82&a+wﬂ” m)

ar

involves only the variable Z, and shows it to be normally distributed
about its mean, independently of the other derivates. Its accuracy
depends upon p, and is increased without limit as ¢ approaches — 1,
being reduced, however, when p is positive.
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Since we are concerned merely with the distribution of », the
remaining factor,

nl—or |
) —a T 2 nos n=s
e ° I—e B dp.(1—7r) * (1+7) * dr,

must be integrated with respect to p, from 0 to co. It is easy to see
that the only factors of the integral which involve 7, must be

(IVa) _(n_l) n—2 n—3
(1— or) a—m % qen ®

dr

an expression which gives the relative frequency of occurrence of
different values of ».
For sets of 3 the corresponding expression is

3n—1 2n—2 n—3

B)
(1 +p—2pr) 2 1—r) ~ (‘l;+r> 2 dr

(IVd)

in which it will be noticed that » cannot fall below ——17 Indeed in

A~

general for sets of s it cannot fall below ——8_1_ although there

1)
1Is no restriction upon positive corretations. The expression for the
distribution of the correlation within groups of s being

sn—1 s—1n—2 n—3
ey = T2 2 1 2
(1+5=2p—5—lpr) (1—) (s—:—lM-) dr

2. The transformation of the curves of random sampling of
correlations within classes of 2.

It was noticed in a previous paper (Fisuger, 1915) that the curve
of sampling of the correlation coefficient becomes extremely skew
towards the ends of its range, and in these regions changes its form
rapidly as p i1s changed. It was suggested that this group of curves
could be reduced both to approximate normality and to approximate
constancy of the probable error, by the transformation

p ==tanh ¢

(V) 1 = tanh z
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This transformation has recently been applied (Fisuer, 1919) to the
measure of resemblance employed by TrorNDIKE (1905) in his inves-
tigations of twins. If @ and y are the deviations from their means of
the measurements of two twins, THORNDIKE took

_ Rwy
T+

as a measure of resemblance. If p is the true value of the correlation
the curve of random sampling of » is

]/1——p2 dr
T (I—pmy1—17¢

a curve not unlike that of the correlation derived from 3 pairs of
observations, having infinite values at the extremes, and an antimode.
This curve changes its form rapidly as p is changed. On applying the
transformation (V) the curve becomes

1
- sech (2 —§) dz,

a symmetrical curve centred at {. This curve is of absolutely invariant
form for different values of {. For large values of | 2 —{| the curve
falls off exponentially; it is markedly leptokurtic, having

52:5.

If we apply this transformation to expression (IVa) we obtain

(VD)

after inserting the requisite constant factor. This curve in also abso-
lutely constant in form for all values of ¢, the effect of ' changing §
being merely to shift it bodily. The curve also tends'to normality as n
increases with rapidity sufficient to justify the use of the probable
error as an adequate representation of its distribution due to sampling.

(*) The symbol z! is here used as equivalent to T+ 1) whether z be an
integer or not. / XA ) P
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The approach to normality may be well shown by Prarson’s
method of expansion (Cooperative Study, 1916). Writing o for z—¢,
the ordinate may be expressed as

2 .

L 2 . 2 n—1 |, n—»—lxswn——l‘l Y
1 V> 12 45 288 x)*
(Lt 5 1

X TR TR T awa

whence may be obtained the moments about & = 0

= e 1 ' 1 :
Z 5-—-;141———-2”_1" +2n-1
. % 5
=0 n——l 1zn~—-1?""=
. 3 7
P's— “—Ig _1....$

145
l)?% n~—l 167@——12""%

The distance of the mean, z, from the population value g, though of
higher order than the standard deviation is vet of lower order than
the distance of the mean from the mode. For the mode is where

x =— tanh ér-—l’
that is
Y 1 1
S R ha: Yr P § (R
SR S P !
2n—11 2n—1""}

Evidently the mean, mode and median of this curve approach each
other more rapidly than they approach the population value. The
optimum value of J for a given z, that is to say, that value of S
which gives z with the greatest frequency, is given by the equation
_] 1
C— 2 == tanh 2—_1
The curve being invariant in form, it follows that the modal value of
%, 1s also that value fer which { is an optimum. Now the median
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observation for a given population value, and the optimum population
value for a given observation are, unlike the mode and the mean,
unchanged for all transformations; they differ approximately by

1
3(n—1)

in the scale of 2, and a transformation which renders the sampling
curve invariant is bound to bring the mean and mode into agreement
to the same order. By virtue of this agreement adequate allowance
may be made for the bias towards negative correlations displayed by
small samples. Referred to the mean, the moments are

] 1 1
S 1“"2;72‘1*672—_‘12"".3

1
I3 1
1 5 19
M= " =D =1 ;

so that

X
b=y

2 ]
So—ﬁ3+n-l+(n_—:1')2 .....

The curve therefore hecomes symmetrical with extreme rapidity,
remains slightly leptokurtic, but is sensibly normal for all but the
smallest possible samples.

The standard deviation is independent of p, and very nearly agrees

with the formula:
1

V" — s

the probable error may therefore be read off as %, in Table V of T'ubles
/or Stalisticians (Pearsoxn, 1914) interpolating for the half integer.
It is easy to assign a reason for the negative bias of correlations
of this type; the mean value of the variate deviations are not in these
cases reduced independently to zero, but are equal and of opposite
sign, thus automatically introducing a small negative term into the
product moment. The correction needed, being of higher order than
the probable error, does not sensibly improve the accuracy of a single
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determination, but may become of importance in comparing averages
based on samples of different sizes, or calculated by different methods,
as are parental and fraternal correlations.

Since the method I should adopt in obtaining the population value
and its probable error from an observation of a small sample differs
materially from that developed in the Cooperative Study (1916) a
number of brief examples may serve to illustrate the application of
the principles here laid down.

Ex. I. — A correlation 0.6000 is derived from 13 « fraternal »
paics of observations, find the population value with its probable error.
Using the transformation 7 = tanh 2, we have

r z
Calculated value . . . . + 06000 + 0.6930
Correction L + 0.0417
2n—1
Population value . . . . +0.6259 + 0.7347
Probabdle error of z for given {. 4= 0.1989
Lower quartile . . . . . + 04808 -+ 0.5358
Higher quartile . . . . . --0.7323 + 0.9336
The quartile distances arve 0.1361 and 0.1064; their mean 0.1213 is
PR
in fair agreement with 0.1238 derived from the formula 0.67449 Vln _rl.

The difference between thein reveals the skewness of the curve and
the impossibility of judging accurately, from the values of » alone,
the probability of a difference of observations of two of three times
the probable error.

Ex. II. — Estimate the probability that the above observation
corresponds to a true value (1) 0.3000, (2) 0.93500.

r 2 Differences Standard Ratio P

error
Hypothesis 1. 0.3000 0.3095 . o
4252 2 47 0142
Sample 0.6250 07347 O+ 0.2887 147 0

Hypothesis 1I.  0.9500 1.8318 10971 02887 380 0.00014

Thus the value 0.95 although, when measured on the # scale,
nearer to the population value derived from the sample, is roughly
1000 times less likely than 0.30. The value of P cannot be taken very
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accurately from the probability integral of the normal curve, since
the true curve in z is slightly leptokurtic (B, = 3.17) and extreme
deviations are therefore more common than they would be if the
distribution were strictly normal. However, the increase in accuracy
in expressing the probable error in terms of z, the curve of which is
invariant in form and approximately normal, instead of terms of
the curve of which may be very skew and variable in form, even for
high values of #, is sufficiently striking.

It would of course be possible to render the statement of the

)

:81361 instead of
=+ 0.12]13; that 1s by stating the actual quartile distances. Such "a
change, though certainly more accurate, and giving at any rate a
danger signal as to the nature of the distribution, does not describe it
effectively. Although two numbers are given, they contain less infor-
mation than the single probable error when the distribution is normal ;
nor can they be used with the same facility for those crucial com-
parisons, for which probable errors are necessary.

probable error of » less misleading, by writing

8. The corresponding transformation for simple interclass cor-
relations.

If the data, as is commonly the case, consist of pairs of values of
two variables & and y, which are not presumed to have the same
mean or standard deviation, then the distribution of the correlation
coefficient », has been shown (Fisugr 1915) to be

o0

nn_g 21:1 01—5—1[ dt -
af = T (=) * d=r9 % (Cosht——pr)”"'d'

The application of the transformation (V) to this series of curves,
though not leading to so simple a curve as that indicated by ex-
pression (VI) will be found to be attended by the same practical
advantages. The element of frequency becomes

— dt
df‘:n7r 2sech"—‘gsech”"”z/. [(cosh F— o) dz
0
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which may be expanded in the same manner as before, writing »

for 2 —; then

n-—2 — 1 2+p 4—0p? n—1
Y == s ) = i T e @t : h
Y Vern—1 §1+2€’”+(8nm1* g YTz 9“)
. SN o2 o : . .
‘pr<1§n—il+4:839 x?+n041a¢4>

(4+1292+9p‘ 8—20° 430" | 84—4;‘02—«5')‘0“374 28-—150*

. P Sy B (o W
oR=T " ein=T1 1m0 e ”>+

The form of the transformed curve involves p and is thus not absolutely
constant in shape. Taking moments about, . =0, we have
I g )

0 1+ ¢

I3 =W:2(‘n—-1) %.l+8'——l'n—~ coon |

, 1 8—p® 88 —97" — 9
‘”:n——lg a1 dn=1 $

, 30 13 + 2»°
”3:2(7;——1)2%1”’“ Sn—1 "

.1 3 98 — 352 736 — 84 p* — 51 p*
M= o= YT eaeT :

As with the previous case, the median value of z, differs {rom

that for which { is optimum, only by terms in(;}_——*l)gand higher orders;

and this transformation brings the mean and mode into similar agreement
with those invariant quantities. For the optimum vatue of p has been

shown (Cooperative Study, 1916) to be

r(l —r?) (1 _ 1 -—-51/'?)

A
p:7~_2n—1 n—1

and the median value of # 1s, to the same approximation,

p(l—p?)< _9—14p?>_
2n—1 14612——1 ’

g +

: X 1 : .
both of which agree, as far as the term ooy with the correction
n—

7
2n—1

required to hring the mean of the z curve into agreement with the
population value.

% For 2 + p, read2+p2.
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As before this correction is of a higher order than the standard
deviation, and therefore does not add significantly to the accuracy of
a single determination; its function is to allow for the size of the
sample, and for the method of calculation, in cases where accurate
comparisons are required between correlations or averages of correl-
ations.

This eorrection unlike that obtained in section 2, changes its sign
with #; it always reduces the ohserved value of + numerically, being
positive when # 1s negative.

Taking now moments about the mean

1 4—g® 176 —21 ot — 21 ¢t
P"_n——121+2'n-1"+ Brn—1

9
2-——-———-
e
p.a— "‘(‘n - 1)3 .....
1 224 — 48 p* —3p* 1472 — 280 — 141 p* — 3p° \
}L4——n-_1223+ 16n—1 a Rn—1* "

giving
. 2_2)2
b= (¢ 1) -
L 32—3p 1284 112p2 5T — 99"
B =0 g RA—T

The curves therefore tend to normality as rapidly as those for
correlations of the fraternal type. In addition to containing the divisor
(n— 1), B, vanishes absolutely at the origin, and at two points which,
as 7 increases, approach the limits == 0.75. §, approaches its normal
value at approximately the same rate as before. The value of p 1s
seen to have very little influence on these curves (See Fig. 2); the
weight of an observation is increased to a trifling extent from #—3
to n—21, as p passes from O to == 1; except for the smallest samples
B is to be neglected for all values of g, and when » is small enough
for the leptokurtosis of the curves to be appreciable, it is reduced by
less than 10 %, by the highest possible value of p.

When expressed in terms of z, the curve of random sampling
is therefore sufficiently normal and constant in deviation to be ade-
quately represented by a probable error. This may be obtained from
the same table as before entered with the value n —3.
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The increased accuracy of assuming a common mean and standard
deviation for the variables, when this assumption is justified, iz thus
equivalent to a gain of from 1Y, pairs to 1 pair of observations or
from 3 to 2 measurements according to the value of p.

The application of these methods is illustrated by the followmg
examples.

Ex. ITI. — In a sample of 25 pairs only of parent and child the
correlation for a certain character was found to be 0.6000. What is
the most reasonable value to give p in the sampled population, and
what is its probable error ?

Using the transformation » =tanh z we have

r 2
Calculated value . . . . . 06000 06930
Correction. . . . . . . . . . . —0012
Population value . . . . . 05918 0.6805
Probable error. . . . . . . . . 20,1438
Lower quartile. . . . . . 04905 0.5367
Higher quartile. . . . . . 06774 0.8243

This example was taken by the writers of the Cooperative Study
to 1llustrate the supposed shortcomings of my formula equivalent to
that used above, for the optimum value of the correlation. Their com-
ments upon my methods imply such a serious misunderstanding of my
meaning that a brief reply is necessary. The following passage well
illustrates their attitude (p. 338).

.« If we distributed our ignorance equally the result would he
that stated on p. 357, 1. e.

0.59194

But, in applying Bayes’ Theorem to this case, to what result of exje-
rience do we appeal ? Clearly the only result of experience by which
we could justify this « equal distribution of ignorance » would be the
accumulative experience that in past series the correlation of parent
and child had taken with equal frequency of occurrence every value -
from —1 to + 1. To appeal to such a result is absurd; Baves’ Theorem
ought only to be used where we have in past experience, as for example
in the case of probabilities and other statistical ratios, met with every
admissible value with roughly equal frequency. There is no such expe-
rience in this case. On the contrary the mean value of p for very long
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series of frequencies of 1000 and upwards is known to be -+ 0.46 and
the range is hardly more than 0.40 to 0.52 ». Applying some formulag
the value

0.46225
is finally obtained, which as the authors justly remark, is « a totally
different ‘ most likely value’ from that obtained by *equally distribu-
ting’ our ignorance ».

From this passage a reader, who did not refer to my paper,
which had appeared in the previous year, and to which the Cooperative
Study was called an « Appendix », might imagine that I had used
Boorg’s ironical phrase, « equal distribution of ignorance », and that
I had appealed to « Baves’ theorem ». I must therefore state that I
did neither. What is more important is that what I previously termed
the ‘most likely value’, which I now, for greater precision, term
the ‘optimum ’ value of p, for a given observed r, is merely that
value of » for which the observed # occurs with greatest frequency;
it is obtained by making a maximum df, the frequency of occurrence
of the observed value (Fisuer 1915, p. 520).

It therefore involves no assumption whatsoever as to the probable
distribution of p. The writers of the Cooperative Study appear to
suppose that 1t depends upon the assumption that in past experience
equal intervals, dr, of the range of possible correlations have received
equal numbers of observed parental correlations. As a matter of fact
the above analysis, in which we have used z instead of », leads to
exactly the same value of the optimum. Does the validity of the opti-
mum therefore depend upon equal numbers of pavental correlations
having occurred in equal intervals dz? If so, it should be noted that
this is inconsistant with an equal distribution in the scale of », for

dr

As a matter of fact, as I pointed out in 1912 (Fisuer, 1912) the
optimum is obtained by a criterion which is absolutely imdependent of
any assumption respecting the @ prior: probabi.lity of any particular
value. It is therefore the correct value to use when we wish for the best
value for the given data, unbiassed by any @ priori presuppositions.

Though I am reluctant to criticise the distinguished statisticians
who put their names to the Cooperative Study, 1 do not consider their
treatment of this example justifiable. A correlation 0.6000 is calculated
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from the sample. I suggest that the exact form of the curve of randomn
sampling indicates that in small samples the correlation, positive or
negative, is likely to be exaggerated, and therefore to correct for this
effect, the best value to take is 0.5918. The writers of the Cooperative
Study apparently imagine that my method depends upon « Bayes’
Theorem » (*), or upon an assumption that our experience of parental
correlations is equally distributed on the = scale, (and therefore not so
on the scale of any of the innumerable functions of 7, such as z,
which might equally be used to measure correlation), and consequently
alter my method by adopting what they consider to be a better «
priori assumption as to the distribution of . This they enforce with
such rigour that a sample which expresses the value 0.6000 has its
message so modified in transmission that it is finally reported as 0.462
at a distance of 0.002 only above that value which is assumed a prior¢
to be most probable!

In my opinion 0.462 cannot be regarded as the correlation of the
sample at all. It is in fact a kind of average value made up of the
value for the sample and the values previously obtained from the other
samples of different populations, measured in respect of different cha-
racters, but which have in common that they all refer to parents and
children. As an average it has, of course, some value, though it could
be obtained more simply and more accurately by regarding 1t as such.
Regarded as the contribution which this sample makes to our know-
ledge of parental correlation it is simply misleading; its value depends
almost wholly upon the preconcieved opmions of the computer and
scarcely at all upon the actual data supplied to him.

Ex. IV, — A second sample of 13 from a similar population gives
a correlation 0.7, what is the weighted mean of these two values?

Correlation (3)

r z weight < weight

First sample . 0.6000 0.6930
Correction . . — 00125

0.6805 22 14.971
Second sample 0.7000 0.8673
— 0.0292

0.8381 10 8.381

Mean . . . . 06229 0.7297 32 23.352

(*) More properly upon a postulate analogous to that required to demonstrate
Bavus Rule (Baves, p. 371).
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The weight of each sample measured on the scale of z is taken to
be (n — 3), since the increase in weight due to the magnitude of ¢ is
less than 0.25 in both cases, and can indeed always be ignored save
when exceptional refinement of methods is employed. The weights to
be attached to values of z may therefore be taken straight from the
numbers of observations. By using the z scale the changes in the varia-
bility of 7, which render all means of values of » more or less inac-
curate, are avoided. The mean value of » obtained thus, from that of
z, represents with high accuracy the value of the correlation of the
population which would yield two such sammples with the greatest
frequency.

4. The probable error of intraclass correlations in gencral.

The expression (IVe) gives the distribution of the covrelation coef-
ficient derived from sets of s observations, every pair of each set heing
given a place on the correlation table. Without examining in detail the
approach of these curves to the normal form, they may be used to
obtain adequate expressions for the probable errovs of such correlations.
This is the more necessary because all statisticians who have hitherto
used these correlations, including the writer, have employed formulae
which are not even approximately correct.

The transformation which rectifies this group of curves is

S 2s—Ir=s—2+ stanh(z—9)
VII J2s—1lp=s5—2+ stanh ({ —¢):

: . §—2

in which : tanho :E—S-—-;

this transformation like (V) is applicable without labour mevely by the
use of a table of hyperbolic tangents. Substituting in (IVe), and writing
x for (z—¢), the curve becomes

Sn——3’ s—2n+1
) . "'——2—"‘—(.%‘—-(9) SN -}
e sech 2 (x—9)dx
VI,
o 7 s—1n—2, n—3,
2 . 2 .

the constant multiplier having been inserted to reduce the area of the
curve to unity.
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This curve like its special case when s =2, is absolutely constant
in form irvespective of the value of p; consequently the value of 7 for
which p is an optimum agrees absolutely with the mode. Indeed this
series of curves only differs from those hitherto considered in one ma-
terial respect. The positive and negative infinite values of x, which
give the limiting values of r, correspond to the values

S}_land +1

instead of

—1 and +1
For the mode we obtain
tauh (£ — o) = s—2n+1_ — s—2 25—I
( T sn—1 = $ ssn—1

whence, since
9

S
tanh ¢ = T

we have

tanhx:-———‘z—— (1-—%)
2sn—1 2sn—1

The correction necessary to allow for the bias towards negative
values in small samples is therefore, irrespective of s

1
“on
From the second differential at the mode, we obtain as a first ap-
proximation to the weight of an observation

2s—1,.
s

this value though constant on the scale of z, leads to very different
values of the probable error of ».

If the peculiar nature of this distribution be ignored, and it is
treated as an ovdinary correlation, the standard error, will be appro-

. Ximately

1—17°
—-—‘Vﬁ
o . ar . .
The term (1—17%) is s of transformation (V); increments of z and »

are nearly equal in the neighbourhood of zero, and s is equally acce-
lerated as 7* approaches + 1 and — 1. In transformation (VII) the rela-
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tion between z and » is linear, not in the neighbourhood of zero, but
in that of the point

this is i fact the central point of the range of possible values. In this
neighbourhood

the standard error therefore in this region (where ¢ —p is smalbh is

1 ( s \h
Vn 23—1) '

For corrvelations in the neighbourhood of 0.5, the increase of the nuwi-
bers of members of a class can never increase the accuracy beyond
that obtained from 8 times as many pairs. If the observer has the
choice, he will occupy his time more profitably in observing an in-
creased number of small classes, when, as in the investigations on honio-
typosis, correlations of this order are expected.

In the neighbourhood of zero, the case is quite different. As s is
increased the zero is approached more and more closely by the end of
the range. The distribution curve of » becomes extremely skew, so that
the probable error of » becomes a very inadequate index of the curve
of sampling. However, if we suppose 7 increased indefinitely for a
agiven value of s, we may obtain the standard error as before.

dir s

so that the standard error is
1 2 \L
=)
n\ss—I1
in other words, the probable error in the neighbourhood of zero is the
value obtained by treating every possible pair as an independent pair
of observations.

The general formula, for the standard error of », which includes
these particular cases, is

1—7) --—-—+—1) \/98_1
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Ex. V. — The following values were given (Harris, 1916) for the
covrelations between « ovules failing » in different pods of the same
tree (Cercis Canadensis); 100 pods were taken from each tree.

Meramec Highlands, 60 trees 0.0684 [0.0087]

Lawrence, Kansas, 22 trees 0.0858 [0.0143]
These are the lowest values recorded; the probable errors given by
Harris are placed in parentheses. The author states « There can be no
reasonable question of the statistical trustworthiness of all the direct
homotypic correlations. The lowest is that for ovules failing per pod
and this is in all cases 6 or more times its probable error ».

For both series
s =100

Hence tanh Probable Ratio

7 1 —» s—p Z—7 3 weight error zfp.e.
0.0684 0.9316 —0.8446 — 1.2370 1.0605 1188  0.06188 17.14
0.0858 09142 — 08101 —1.1273 1.1702 4356 0.10221 11.45

The values of » are 7.86 and 6.00 times the probable errors given
by Harris; the true ratios are 17.14 and 11.45. Thus Hagrris is amply
Jjustified in regarding these values as significant.

The formulae used above are

tanh: —o=1— 23*"1(1 — )
D

~and for the weight

2 —_
N(SS l)n;

for such large values of s it would indeed be sufficient to use 2n as
the weight.

Ex. VI. — The following values are given in the same table for
the correlation between number of ovules in different pods on the same

tree. :
Meramec Highlands G0 trees + 0.3527 [0.0076]

Lawrence, Kansas 22 trees + 0.3999 [0.0121]
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From these values we obtain the difference
0.0472 +=[0.0142]
which might well be regarded as significant.

In this case we shall use the correction -+ 2—17—,;

1 A

1 —r tanh(z—¢) z2—¢ o ) difference
06473 —02817 —028%6 +0.0083 02813
06001 —0.1882 —0.1905 +0.0227 —0.1678

0.1135  =0.1195

In spite of the correction which tends to increase the difference, -
the latter is now quite insignificant. The probable errors in this region
are about three times as great as those stated, The accuracy of these
higher values is but little increased by using such a large number of
pods from each tree.

Ex. VII. In Homotyposis in the Vegetable Kingdoni (Prarson
1900) there are many examples of correlations found from groups of
correlated values. The uncertainty of the probable errors is indicated
by placing them in parentheses. The correlation between the numbers
of leaflets in different leaves from the same ash tree, will serve as a
good example.

s =206 ¢ =.9231
Buckinghamshire Dorsetshire Monmouthshire
n = 108 ' n =120 n = 100
r z—9 r I » Z—9
Correlations +03743 —02067 +0.39%64 —0.1622 +0.4047 —0.1458
Probable error +0.0466 #-0.0444 +0.0486
Lower quartile +0.3513 —-0.2528 +0.3740 —02066 +03802 —0.1944
Upper quartile +0.3977 —0.1596 +0.4191 —0.1178 +0.4296 —0.0972
Mean quartile distance  0.0232 0.0225 -+0,0247
Probable error given  [0.0109] [0.0102] [0.0111]
0.67449 0.0228 0.0218 0.0238

All these lie in the region where z— o is small, and where an
increased number of trees rather than an increased number of leaves
per tree is required to give greater accuracy. The estimated probable
errors are less than half their true values; while the value found by
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entering the probable error table (Pearson, 1914) with 8» gives a
good approximation. Since s is not very large the latter approximation
is too small when z is close to ¢ and is more nearly accurate at some
distance from the centre; it would, of course, be much too large at
greater distances, as in the neighbourhood of zero. '

The interquartile ranges of all these observations overlap, the obser-
ved differences are therefore quite insignificant. Pearson’s conclusion
that they are « fairly alike » is thus greatly strengthened.

L. VIII. — An example of an observed correlation near to zero
is afforded by the resemblances of human twins. It occurred to the
writer (Fisusg, 1919) that if there really were two types of twins
differing greatly in their degree of resemblance, a positive correlation
should be found between the likeness of the same pair of twins in
different traits. The degree of correlation to be expected depends on
the proportionate numbers of the two types, and the correlations of
the two types. For the group of measurements available (THORNDIKE,
1905) it was estimated at + 0.18. If only one type of twins were
present it should be very nearly zero. The measure of resemblance
used was that explained in Section 2 of this paper.

The value found from 39 pairs of twins each measured in 6 traits
0.016 - [0.048] the probable error having been calculated on a
basis of 195 independent pairs. Using transformation VII we have

was

¢ == 8047
Probable
7 z Weight error
Observation — 0.016  — 0.0497 65 0.0837

Hypothesis 0.18 + 0.4201

The probable error was therefore greatly exaggerated, but the
observation is still sensibly zero. Its difference from the point

o=10.18

15 now much more significantly appavent; for using the original
estimate, this difference is only 4.1 times its probable error, for which
P =0.0051, while correctly measured it is 5.6 times its probable
error, for which P = 0.000,14.

The evidence in favour of a single type of origin for this group
of twins is thus stronger than I had previously imagined.
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Nole on the confusion between BaYES Rule and my method of
the evaluation of the optimum,

My treatment of this problem differs radically from that of Bayes.
Bavss (1763) attempted to find, by observing a sample, the actual
probability that the population value lay in any given range. In the
present instance the complete solution of this problem would be to
find the probability integral of the distribution of g. Such a problem
is indeterminate without knowing the statistical mechanism under
which different values of o come into existence; it cannot he solved
from the data supplied by a sample, or any number of samples, of
the population. What we can find from a sample is the [ikelthood
of any particular value of p, if we define the likelihood as a quantity
proportional to the probability that, from a population having that
particular value of p, a sample having the observed value 7, should
be obtained.

So defined, probability and likelithood are quantities of an entirely
different nature. Probability is transformable as a differential element;
thus if the probability that = falls in the range d»

y dar
and we use the transformation

r =tanh 3
then the probability that =z falls nto the range ds, is
ysech‘%dz.

The likelihood of a particular value of - on the other hand, 1s
equal to the likelihood of the corrresponding value of J, being un-
changed by any transformation. It is not a differential element, and
is incapable of integration. Again the mode of a frequency curve
may be arbitravily shifted by transforming the variable, in terms of
which the observations are measured, as by transformation (V) the
wmode of the distribution of observations has been brought into close
approximation to the median; but no transformation can alter the
value of the optimum, or in any way affect the likelihood of any
suggested value of p.

Numerically the likelihood may be measured in terms of its
maximum value: the likelihood of the optimum being taken as unity.
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This must not be confused with the statement the probability of a
supposition is unity, which would amount to certainty that the hypo-
thetical supposition were true. « Probable errors» attached to hypothetical
quantities should not be interpreted as giving any information as to the
probability that the quantity lies within any particular limits. When
the sampling curves are normal and equivariant the « quartiles » obtained
by adding and sub-tracting the probable error, express in reality the
Limits within which the likelihood exceeds 0.796,542, within twice,
thrice and four times the probable error the values of the likelihood
exceed 0.402,577, 0.129,098, and 0.026.267 ; within once, twice and thrice
the standard error, they exceed 0.606,051, 0.135,335 and 0.011,109,

The concepts of probability and likelihood are applicable to two
mutually exclusive categories of quantities.

We may discuss the probability of occurrence of quantities which
can be observed or deduced from observations, in relation to any
hypotheses which may be suggested to explain these observations. We
can know nothing of the probability of hypotheses or hypothetical

~ quantities. On the other hand we may ascertain the likelihood of

hypotheses and hypothetical quantities by calculation from observations:
while to speak of the likelihood (as here defined) of an observable
quantity has no meaning.

Rothamsted Experimental Slation
Harpenden. England. Oclober 1920.
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_ ) E— SR
2z == tanh ‘rzé(log1+7'-logl~——7')

For interpolation to seven decimal places apply Everett's Central
Difference Formula:

fla -+ Uw):ﬂ/}+:p/},—%g(8+1);\9/",+(cp+1).32/},

¢ BODEED | oy aA s

in which w is the increment in », fo=/(a), i=/f(a +v), and p=1—6.

r z Atz » z Az Atz
.00 0 0 .50 .549,3086.1 1779 3
.01 .010,000,3 9 51 .562,729.8 1863 7
02 .020,002.7 39 .52 .576,339.8 1954 5
.03 .030,009,0 61 | . .53 .590,145,2 2050 7
04 .040,091,4 79 54 604,155,6 2153 6
05 .050,041,7 102 .55 .618.381,3 2262 6
06 .060 07“- 120 .56 .632.833,2 2377 11
.07 .070,114,7 141 57 647522.8 2503 6
.08 0801713 163 .58 662,462,7 2635 10
09 .090,244,2 182 .59 6771,666,1 2771 12
A0 .100,335,3 W5 60 BY3,147,2 2931 10
A1 A10,446,9 295 .61 708,921 4 3095 14
49 .120,581,0 248 .62 .725.005,1 3273 15
A3 .130,739.9 268 .63 AL 4161 3466 15
A4 .140,925.6 291 64 58,1737 3674 17
A5 A51.140,4 315 .65 .775,298,7 3899 22
16 .161,386,7 337 66 .792.813,6 4146 21
A7 A71,666.7 360 .67 810,743,1 4414 27
A8 81,9827 385 .68 899.114,0 4709 25
A9 A62.337,2 409 .69 .347.955,8 5029 33
.20 202.732.6 433 .70 867.300.5 5387 32
2 2134713 461 1 .887.183,9 5771 46
929 .293.656,1 486 12 .907,645,0 6213 47
.28 .234,189.5 517 138 .998,797.4 6696 58
.24 244,7740 541 74 950.479.4 7937 65
2% .265,412,8 569 .75 972 955,1 7843 78
.26 .266,108,4 598 .76 996 215, 8577 89
.27 .976.,863.,8 629 a7 1.020,327.8 9300 112
.28 .287,682,1 659 18 1.045,370.5 10185 124
.99 .298,566.,3 691 19 1.071,431.7 11194 158
.30 .309,519.6 725 80 1.098,612.3 12361 190
31 .320,545,4 759 81 1.127,029.0 13718 229
.32 .331,647,4 795 82 1.156.817.5 15304 29
.33 .342,828.3 820 .83 1.188,136.4 17182 362
34 .354,092.5 871 .84 1.291,173.5 19429 464
.35 365,443.8 908 85 1.256.152,8 22196 600
.36 .376,885,9 951 .86 1.293,344,7 25430 798
37 .388,423,1 994 .87 1.333,079.6 29532 1067
.38 400,059.7 | 1037 .88 1.375,767,7 34701 1484
.39 411.800.0 | 1086 .89 1.421,995.9 41354 2106
A0 4936489 | 1134 .90 1.472,219.5 50113 3104
Al 435.614,2 | 1185 91 1,527,524.4
42 4476920 | 19239 .92 1.589.026,9
A3 459,896,7 | 1294 .93 1.658.390,0
44 4722308 | 1354 94 1.738,049.3
45 4847003 | 1415 .95 1.831,780.8
46 4973113 | 1480 96 1.945,910.1
AT 510,0703 | 1550 .97 2.092,295.7
.48 522,9843 | 1620 .98 2.297.559.9
49 .536,060,3 | 1698 .99 2.646,652,4

229



230

27

r

-900
.901
.902
.903
-904
905
-906
907
908
909
910
91
912
0143
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
P93
[ 932
. 2933
934
935
936
937
.938
939
940
941
i 942
943
944
.945
.946
947
918
949

Z

1.472,249,5
1.477,507,7
1.482,846,9
1.488,237.9
1.493,682,0
1.499.180,2
1.504,733,7
15103436

e e e e e e
RN ..%;
3 = <o

[J%]

3

2

1.563,589,1
1.564,838,4
1.576,154.6
1.582,555,2
1.589,026,9
1.595,576,7
1.602,206,4
1.608,918,2
1.615,714
1.622.596,6
1.629,567,7
1.636.630,1
1.643,786,2
1.651,038,6
1.658,390,0
1.665,843,4
1.673,401,7
1.681,067,9
1.688,845,5
16967377

- -

Oomooq\)\quqqsx M P
-~
().4
U‘
-~
D O
oo

Vo -

8984h
9?2736
0]8765

w0~
=Y

TABLE 1 (continued).

A%z

498
510
518
531
541
553
564
576
591
601t
617
629
645
659
675
691
707
725
744
761
781
799
821
841
866
836
913
937
963
990
1020
1049

1079.

1114
1146
+182
1220
1258
1300
1342
1389
1434
1486
1537
1594
1652
1713
1780
1847
1922

r

.950
951
.952
953
954
955
.956
957
958
959
960
961
.962
.963
964
965
966
967
968
969
970
A7t
972
973
974
475
976
977
478
979
980
981
98¢
983
984
985
486
987
988
989
90
991
992
993
994
.995
996
997
998
1999

z

1.831,780,8
1.842,138.5
1.852,704.4
1.863,487,2
1.874,496,2
1,885,741 .5
1.897,233,6
1.908,983.9
1.921,004.6
1.933,308,7
1°945,910,1
1.958,824,1
1.972,066,7
1.985,655,6
1.999.609.8
2.013.949.7
92.028,697.9
2.043.878.6
2.059,518.6
2.075.646,9
9.092,295.7
2.409.500.2
9.127.299.5
2.145,736,8
2164.,860.3
2.184.723.9
2.905.388.0
2.2?6,920,8

~.314 713 9
?.55\’4‘988,9
2.598,746.0
9.646,652,4
2.699,583.9
2.758,726.4
2.825,743.1
2.903,069.2
2.994.480.7
3.106.303,0
3.250,394.5
3.453.377.4
| 3.800,201,2

Az
1999

2082

2169
2262
2363
2468
2582
2704
2834
2973
3126
3286
3463
3653
3857
4083
4325
4593
41883
5203
5557
5948
6380
06862
7401
8005
8687
9459
10341
11348
12515
13869
15454
17330
19568
29271

~A

25573
99674
34841
41493
50251
62110
78742
103094
141034
204108
322692
588914
1438409

Az

e p D) e e st
D OD IO W WO =T =2 b 2O 00 00 O SO CH B OO0

L0 W DD
Eali=Re-i R e

o O
~-~o

65

78
Y0
110
125
160
187
231
291
362
465
599
799
1066
1485
2106
3101
4773
7720
13588
20134
55510
147648
583273

27

Above .990, for accuracy to seven decimal places, and generally

above 995, the exact formula, 2 =

be enuﬂdyed.
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O 0 =1 O Ut i~ WO 1D -

10

¥

0
.346,573.6
.549,306,1
693,147,2
804,719,0
.895.879,7
.972.9551

1.039,720,8
1.098,612,3
1.151,292,5
1.198.9476
1.242,453,3

1.354,025,1
1.386,294,4
1.416,606,7
1.445,185,9
1.472,219.5
1.49,7,866,1

1. 589.0‘26,9

TasLe Il
¢ =tanh ! ‘L_,.%:%
s P s
26 | 1.609,437,9 | 51
27 | 1.629, 048 3 52
28 | 1.647.91814 | 53
29 | 1.666, 10~,3 54
30 | 1.683.647.9 | 55
31| 17005987 | 56
32 | 17169936 | 57
33| 1.732,8680 | 58
34| 1.748,253,8 | 59
35| 1.763,1803 | 60
36| 1.777,674.0 61
37| 1.791,7595 | 62
38 | 1.805,459,0 | 63
39 | 1.818,793,1 64
40 | 1.831,7808 | 65
41 | 1.844,439,7 66
42 | 1.856,786,0 { 67
43 | 1.868,8348 | 68
441 1.880.600.1 | 69
451 1.892,094,8 | 70
46 | 19033312 | 7
47 | 19143207 | 72
48 1 1.925,073.8 73
49 1 935,600,5 T4
50 | 1.945.910.0 | 75

.003,66

0794415
.087,193,6
094, 8‘77 4
102 346 3
409,753, 9
17,0533
J124,247.6
131,339,9
138 333 1
445 ?29,7
152,032.5

OIS PO DD D OO IS RO PO LD D PO PO LD PO PO PO D i e i e e
.a,_;......_._.a_ocoocogcoooowwcoww
v -}
‘P-)
-3
»
w

S

76
77
78
79
80
81
82
83
84

86
87
88
89
90
91
99

- 93

94
95
96
97
98
99

100

28

?

2. 158 7441
?.-16:),366,7
2.471,902,7
2.178,354,4
2.184, 7"3 9.
‘).191,0!3,3
A97.224,6
.203,359,6
.209,420,3
215,408,4
2.2?|,3‘25,6
2.227,173,6
2,232,954 1
2,238,668,4
2,214,318.2
2.249,904,8
2.255,429.8
2.260,894,3
2.266,299,7
2,271,647 4
2.276.938,4
2. 282,4174.1
‘3.‘.‘87,355,9
2.292,483,7

I
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Fie. 1. Correlation between classes of 1

n=28 p==08

e Pl "
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r
Fia. 3. Correlation within classes of 2
n=8

p=0.8
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Fia., 2. Correlation between classes of 1
n==\
2=0 =038 4 1.0
4 0.8
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Fia. 4. Correlation within classes of 2
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31 31
EXPLANATION OF DIAGRAMS

The diagrams illustrate the curves of random sampling of the
correlation coefficient. Figures 1 and 2 illustrate the ordinary case in
which it is not assumed that the two variables have thé same mean
and standard deviation; these have been called interclass correlations,
the number in each class being unity. In each case the number of
pairs of observations is 8. Figures 3 and 4 give the corresponding
curves for intraclass correlations within classes of 2: as when mea-
surements of pairs of brothers are arranged in a symmetrical table. In
figures 1 and 3.it will be seen that when these correlations ave distri-
buted over the scale of 7, the curves are far from normal even when
p =0, and when p=08 they become extremely skew; the probable
error, based on the standard deviation of these curves, gives no ade-
quate notion of the chances of random sampling; partly because the
curves are skew, and may be infinitely skew even for high values
of n; partly because the curves change greatly in standard deviation,
and in form, as p changes. The population value, p, is marked in each
case by an ordinate.

In figures 2 and 4 are shown the curves of random sampling on
the scale of z; to the eye these curves appear symmetrical, and even
for 8 pairs of ohservations are sufficiently near to normality to be
effectively represented by a probable error. For the intraclass cor-
relations the probable error, and indeed the entire curve is identical
for all values of p; for the interclass correlations. the probable error
is somewhat larger, and is shightly variable; the higher mode of the
curve for p==0.8 indicating that the standard error of high correl-

: 1
ations is slightly exaggerated by the formula P The greater ac-

curacy obtained by assuming a common mean and standard deviation,
when this assumption is justified, is shown in figures 1 and 3, by the
higher mode of the curve for p==0, but it is entirely masked in the
curve p =08, by the negative bias of the interclass correlation and
the positive bias of the interclass correlation, which owing to the rapid
changes of form of the curves on the » scale, obscure the increased

For interclass, read intraclass.
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x accuracy of the interclass value. In figure 3 that negative bias is
seen from the displaced mode of the curve p=0.

In figures 2 and 4 the nature of the bias due to the method of
calculation is clearly shown, for although the curves are all to the
eye symmetrical, the population value is centrally placed only for
p =0, of the interclass curves; for these the bias is proportional to p,
being negative when p is negative; the mean inode, median and the
value of z for which p is an optimum all lie close together at the

. . o
centre of the curve, exceeding the population value by about g
which is the correction necessary for this case. For the intraclass

correlations the bias is negative and independent of p, and is adequately

allowed for by adding 5—;&1::1 to all observed values of z. These

corrections are not derived from any supposed distribution of 7, or &,
the distribution of which is regarded as completely unknown; and
about which it is most undesirable to make assumptions, if an objective

value for the correlation is to be obtained from the sample.

It should be clear that the correction adds little to the likelihood
of an mdividual value, but 1s needed when accurate comparisons are
made between correlations, and especially averages of correlations,
which have perhaps been calculated from samples of different sizes,
or by different methods.

* For interclass, read intraclass.
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