Fermilab Content of Science

Current Status of Muon g-2 Experiment at Fermilab

Esra Barlas-Yucel FPCP 10 June 2020

Outline

- Anomalous Magnetic
 Moment of Muon
- Muon g-2 Experiment
- Experiment Status
- What's Next?

Muon Magnetic Moment and Defining the Anomaly

Magnetic Moment of Muon

$$\overrightarrow{\mu} = g_{\mu} \frac{e}{2m} \overrightarrow{s}$$

g: Proportionality constant between spin and magnetic moment

Anomalous Magnetic Moment of Muon

$$a_{\mu} = \frac{g_{\mu} - 2}{2}, \qquad \overrightarrow{\mu} = (1 + a_{\mu}) \frac{e}{m} \overrightarrow{s}$$

Shows how much g differs fractionally from 2!

Muon Magnetic Moment and Measuring the Anomaly

uniform magnetic field

Measuring the Muon Anomaly

Muon g-2 Experiment at Fermilab

Muons are useful!

- $(m_{\mu}/m_{e})^{2} = 40000$ -> More sensitive to new physics.
- Muon beams from pion decays.
- Relatively long lifetime (2.2 μs) -> In the lab frame 64.4 μs

Why measure the muon anomaly

- An accurate way to test SM validity
- BNL measurement hints at the possibility of new physics.

Muon g-2 Experiment Goals:

- Measuring a_{μ} with 4 times better accuracy requires
 - Recording 21.5 X BNL statistics
 - Reducing the systematics uncertainty

See Dominik Stoeckinger's talk for latest g-2 theory status

Keshavarzi et al.,2020

Muon Campus at Fermilab

- 8 GeV protons are delivered to Recycler Ring from Booster
- Split the proton bunch into four bunches with RF system.
- Direct the proton punches to pion production target and obtain pions.
- Muons produced by pion decays circulate in the delivery ring until proton contamination is removed.
- Deliver muons to g-2 storage ring.

Muons at the Experimental Hall

Final focusing by magnetic quads before injecting 3.1 GeV/c muons

Monitoring the Injected Beam

- T0 Counter
 - Thin scintillator with 2 PMT readouts
 - Provides beam time profile before beam enters the storage ring

- IBMS (Inflector beam monitoring systems)
 - Check beam injection characteristics
 - 2 planes of scintillation fibers

Storing the Muons : Inflector and Kickers

- Inflector
 - Cancels B field in the magnet gap and let the beam enter the storage ring without being deflected.
 - They are at r=77mm outside central closed orbit

Storing the Muons : Inflector and Kickers

- Magnetic Kickers
 - Kick some more to direct the muons into ideal orbit.
 - Use 10.8 mrad pulsed kicks (<149 ns)

Storing the Muons: Electrostatic Quadrupoles

- Electrostatic Quadrupoles
 - 4 sets of quads
 - Storage ring field provides horizontal focusing
 - Electrostatic quadrupoles which cover 43% of the ring are used to focus the beam vertically
 - Cancels out leading order of electric field contribution running at magic momentum p = 3.094 GeV/c

$$\vec{\omega}_a = -\frac{q}{m} \left(a_\mu \vec{B} - \left(a_\mu - \frac{1}{\gamma^2 - 1} \right) \frac{\vec{\beta} \times \vec{E}}{c} \right)$$

E-field correction is applied due to 0.5% momentum acceptance

Magnet

Achieved 25 ppm on field uniformity

g-2 Magnet in Cross Section

Superconducting C shaped magnet

Provides 1.45T B field(vertical and uniform)

- **12 Yokes**: Open on the inside, allows the decay positrons to reach to the detectors.
- **72 poles:**Low-carbon steel to minimize the impurity
- **144 Edge shims:** Minimize the local sextupole field by changing edge shim thickness
- 864 Steel wedges: Angle adjustment (compensate quadrupole component), radial adjustment (shim local dipole field).
- **Surface correction coil:** Reduces nonuniformities on higher moment of field.

Measuring ω_p : Monitoring and Measuring the Magnetic Field

- Fixed probes:
 - 378 probes located on vacuum chamber
 - Measure the magnetic field while muons are inside the storage ring

- Trolley(Motorized cart):
 - 17 NMR probes
 - Circles around the ring on periodically
 - Measures the magnetic field in the storage region
 - Used to calibrate FP measurements

Measuring ω_p : Monitoring and Measuring the Magnetic Field

To determine ω_p at all times:

- Map the magnetic field in the storage region with trolley runs every 3 days
- Use fixed probes to interpolate the field between trolley runs

$$egin{aligned} a_{\mu} &= \left(rac{g_e}{2}
ight) \left(rac{\omega_a}{\langle \omega_p
angle}
ight) \left(rac{\mu_p}{\mu_e}
ight) \left(rac{m_{\mu}}{m_e}
ight) \ &\left\langle \omega_p
ight
angle pprox oldsymbol{\omega}_p \otimes
ho(r) \end{aligned}$$

Detectors: Trackers

 $a_{\mu} = \left(\frac{g_e}{2}\right) \left(\frac{\omega_a}{\langle \omega_p \rangle}\right) \left(\frac{\mu_p}{\mu_e}\right) \left(\frac{m_{\mu}}{m_e}\right)$

- Trackers
 - 2 straw-tracker stations
 - 8 modules per station each with 128 straws
 - Reconstruct muon beam profile from positron trajectories

 $\left\langle \omega_p \right\rangle \approx \omega_p \otimes \rho(r)$

Detectors : Calorimeters

- Calorimeters
 - 24 segmented PbF₂ crystal calorimeters stationed around the ring
 - Detects energy and arrival time of e^+ decayed from muons: $\mu^+ \rightarrow e^+ \bar{\nu_{\mu}} \nu_e$

- Laser System
 - Calibrates calorimeter gain response
 - Provides time synchronization

Measuring ω_a : Different analysis techniques to reduce systematic errors

Fitting Methods

- **T** method:
 - Apply an energy threshold to choose
- Asymmetry-Weighted Method
 - Apply a smaller energy threshold and weight energy bin by g-2 Asymmetry.
- Ratio method:
 - Remove the exponential decay of the positron spectrum by sorting the positron time spectra into four equal subsets and then combining them again.
- **Q-**method:
 - A unique energy integrated method where you use sum over digitizer traces.

Requires reconstructing

the positron time and energy information

Measuring ω_a : An example of Fitting Method- Ratio

Measuring ω_a : Example of fitting positron time spectra

Experiment Data Collection Status

- Total of 6.5 X BNL statistics collected (after the cuts):
 - Run-1 ~ 1 BNL
 - Run-2 ~ 2.2 BNL
 - Run-3 ~ 3.2 BNL
- Run-3 ended in March 2020
 - Improved kick: Most recent part of Run-3 had a perfectly centered beam owing to improved kicker system.
 - Improved field stability:More stable temperature

Run-1 Analysis Status

- During Run 1:
 - Collected nearly 1xBNL equivalent of data
 - Total statistical error ~ 450 ppb
 - Systematic Error is still being worked through. Major systematics studies are almost completed.
- 6 different ω_a analysis team look at the precession data and performed a commonly software blinded analysis
 - Still blinded on hardware and software
 - 4 different fitting methods
 - 2 independent reconstruction algorithms
 - All agree with each other
- 2 different ω_p analysis team is looking at the field data
 - Blinded on software
 - Have just done a relative unblinding
 - Both agree on each other on all relative trends for all Run-1 sub-datasets.

Independent Analyses

Systematics (TDR)

Systematics on ω_a

Category	E821	E989 Improvement Plans	Goal
	[ppb]		[ppb]
Gain changes	120	Better laser calibration	
		low-energy threshold	20
Pileup	80	Low-energy samples recorded	
		calorimeter segmentation	40
Lost muons	90	Better collimation in ring	20
CBO	70	Higher n value (frequency)	
		Better match of beamline to ring	< 30
E and pitch	50	Improved tracker	
		Precise storage ring simulations	30
Total	180	Quadrature sum	70

- 100 ppb statistical
- » 70 ppb field systematics
- » 70 ppb precession systematics/

Systematics on ω_p

1		· · · · · · · · · · · · · · · · · · ·	
Category	E821	Main E989 Improvement Plans	Goal
	[ppb]		[ppb]
Absolute field calibra-	50	Special 1.45 T calibration magnet	35
tion		with thermal enclosure; additional	
		probes; better electronics	
Trolley probe calibra-	90	Plunging probes that can cross cal-	30
tions		ibrate off-central probes; better po-	
		sition accuracy by physical stops	
		and/or optical survey; more frequent	
		calibrations	
Trolley measurements	50	Reduced position uncertainty by fac-	30
of B_0		tor of 2; improved rail irregularities;	
		stabilized magnet field during mea-	
		surements*	
Fixed probe interpola-	70	Better temperature stability of the	30
tion		magnet; more frequent trolley runs	
Muon distribution	30	Additional probes at larger radii;	10
		improved field uniformity; improved	
		muon tracking	
Time-dependent exter-	_	Direct measurement of external	5
nal magnetic fields		fields; simulations of impact; active	
		feedback	
Others †	100	Improved trolley power supply; trol-	30
		ley probes extended to larger radii;	
		reduced temperature effects on trol-	
		ley; measure kicker field transients	
Total systematic error	170		70
on ω_p			

140 ppb uncertainty in total

Understanding the systematics with:

- Sophisticated modeling tools
- Hardware based tests backed up with data driven approaches

What's Next

- Run-1 is close to being published
- Run-2 first phase of analysis has started.
- Calibration program in the summer
 → Better understanding of
 systematics
- Run-4 is expected to begin Fall 2020
- Expect to have achieve 21.5 X BNL with Run-4 and Run-5
- Stay Tuned for Run-1 results!

Extrapolated raw positron counts

Thanks!

Muon g-2 Collaboration 7 Countries, 33 Institutions, 203 Collaborators

- USA – Boston
 - Cornell
- Illinois
- James Madison
- Kentucky
- Massachusetts
- Michigan
- Michigan State
- Mississippi
- North Central
- Northern Illinois
- Regis
- Virginia
- Washington

USA National Labs

- Argonne
- Brookhaven
- Fermilab

China

- Shanghai Jiao Tong
- Germany

Italy

- Frascati
- Molise
- Naples
- Pisa
- Roma Tor Vergata
- Trieste
- Udine

Korea

_

- CAPP/ISB
 - KAIST

Russia

- Budker/Novosibirsk
- JINR Dubna

United Kingdom

- Lancaster/Cockcroft
- Liverpool
- Manchester
- University College London

	E821	E989
Number of positrons	9x10 ⁹	2x10 ¹¹ (x 20 BNL)
Statistical Uncertainty	480 ppb	100 ppb
Systematic Uncertainty	248 ppb	100 ppb
Total Uncertainty	540 ppb	140 ppb

Muon Beamline at Fermilab

Monitoring the Injected Beam

Y Profile Monitor at 180 degree position

- Fiber Harps
 - Scintillating Fibers
 - x and y profile monitoring
 - Tool for beam commissioning

E-field and Pitch Corrections

$$\omega_a = \left\langle \left(\vec{\omega}_s - \vec{\omega}_c\right)_y \right\rangle = -\frac{e}{m} a_\mu \langle B \rangle + \frac{e}{m} a_\mu \left\langle \left(\left(\frac{\gamma}{\gamma+1}\right) \left(\vec{\beta} \cdot \vec{B}\right) \vec{\beta} + \left(1 - \frac{1}{(1+\delta)^2}\right) \frac{\vec{\beta} \times \vec{E}}{c} \right)_y \right\rangle$$

.

