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Abstract
Determine age-specific infection fatality rates for COVID-19 to inform public health policies and communications that help 
protect vulnerable age groups. Studies of COVID-19 prevalence were collected by conducting an online search of published 
articles, preprints, and government reports that were publicly disseminated prior to 18 September 2020. The systematic 
review encompassed 113 studies, of which 27 studies (covering 34 geographical locations) satisfied the inclusion criteria and 
were included in the meta-analysis. Age-specific IFRs were computed using the prevalence data in conjunction with reported 
fatalities 4 weeks after the midpoint date of the study, reflecting typical lags in fatalities and reporting. Meta-regression 
procedures in Stata were used to analyze the infection fatality rate (IFR) by age. Our analysis finds a exponential relation-
ship between age and IFR for COVID-19. The estimated age-specific IFR is very low for children and younger adults (e.g., 
0.002% at age 10 and 0.01% at age 25) but increases progressively to 0.4% at age 55, 1.4% at age 65, 4.6% at age 75, and 
15% at age 85. Moreover, our results indicate that about 90% of the variation in population IFR across geographical locations 
reflects differences in the age composition of the population and the extent to which relatively vulnerable age groups were 
exposed to the virus. These results indicate that COVID-19 is hazardous not only for the elderly but also for middle-aged 
adults, for whom the infection fatality rate is two orders of magnitude greater than the annualized risk of a fatal automobile 
accident and far more dangerous than seasonal influenza. Moreover, the overall IFR for COVID-19 should not be viewed as 
a fixed parameter but as intrinsically linked to the age-specific pattern of infections. Consequently, public health measures 
to mitigate infections in older adults could substantially decrease total deaths.
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Introduction

Since the onset of the COVID-19 pandemic in winter 2020, 
it has been evident that the severity of the disease varies 
markedly across infected individuals [1]. Some remain 
asymptomatic throughout the course of infection or expe-
rience only mild symptoms such as headache or ageusia, 
whereas others experience much more severe illness, hos-
pitalization, or even death [2]. Thus, official case reporting 
may tend to encompass a high fraction of severe cases but 
only a small fraction of asymptomatic or mildly sympto-
matic cases [3]. Moreover, the availability of live virus tests 
has varied significantly across locations and over time, and 
the deployment of such tests may differ markedly across 
demographic groups.

Consequently, assessments of the case fatality rate 
(CFR), the ratio of deaths to reported cases, are fraught with 
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pitfalls in gauging the severity of COVID-19. For example, 
early case reports from Wuhan noted a preponderance of 
older people among hospital admissions and a high CFR 
[4]. Subsequent studies have documented that children and 
young adults tend to exhibit fewer and milder symptoms and 
a far lower CFR than middle-aged and older adults [5, 6]. 
Nonetheless, the link between age and severity of COVID-
19 infections has remained unclear for the reasons noted 
above.

To provide more accurate assessments of the spread of 
COVID-19, researchers have conducted seroprevalence 
studies in numerous locations [7, 8]. Such studies analyze 
samples of serum to detect antibodies in those infected with 
SARS-CoV-2, the virus that causes COVID-19. Estimates 
of prevalence (which includes asymptomatic and mildly 
symptomatic infections) can be used to estimate the infection 
fatality rate (IFR), the ratio of fatalities to total infections, 
thereby facilitating the identification of vulnerable segments 
of the population and informing key policy decisions aimed 
at mitigating the consequences of the pandemic [9].

For example, as shown in Table 1, the New York Depart-
ment of Health conducted a large-scale seroprevalence 
study and estimated about 1.6 million SARS-CoV-2 infec-
tions among the 8 million residents of New York City [10]. 
However, only one-tenth of those infections were captured 
in reported COVID-19 cases, about one-fourth of which 
required hospitalization, and a substantial fraction of cases 
had fatal outcomes [11]. All told, COVID-19 fatalities in 
NYC represented a tenth of reported cases but only one-
hundredth of all SARS-CoV-2 infections.

Nonetheless, divergences in study design and reporting 
have hampered comparisons of seroprevalence and IFRs 
across locations and demographic groups. For example, a 

number of studies have analyzed a representative sample 
of the general population, while other studies have made 
use of “convenience samples” of residual sera collected for 
other purposes (such as laboratory tests or blood donations) 
[12–14]. Some studies have simply reported results for raw 
prevalence (the fraction of seropositive results), whereas 
other studies have reported results adjusted for antibody test 
characteristics (sensitivity and specificity).

While the NYC data indicate a population IFR of about 
1%, seroprevalence estimates from other locations have 
yielded a wide array of population IFR estimates, ranging 
from about 0.6% in Geneva to levels exceeding 2% in north-
ern Italy. Such estimates have fueled intense controversy 
about the severity of COVID-19 and the appropriate design 
of public health measures to contain it, which in turn hinges 
on whether the hazards of this disease are mostly limited to 
the elderly and infirm. Indeed, a recent meta-analysis noted 
the high degree of heterogeneity across aggregate estimates 
of IFR and concluded that research on age-stratified IFR is 
“urgently needed to inform policymaking.” [15]

This paper reports on a systematic review and meta-
analysis of age-specific IFRs for COVID-19. We specifically 
consider the hypothesis that the observed variation in IFR 
across locations may primarily reflect the age specificity of 
COVID-19 infections and fatalities. Based on these find-
ings, we are able to assess and contextualize the severity of 
COVID-19 and examine how age-specific prevalence affects 
the population IFR and the total incidence of fatalities.

Methodology

To perform the present meta-analysis, we collected pub-
lished papers and preprints on the seroprevalence and/or 
infection fatality rate of COVID-19 that were publicly dis-
seminated prior to 18 September 2020. As described in Sup-
plementary Appendix B, we systematically performed online 
searches in MedRxiv, Medline, PubMed, Google Scholar, 
and EMBASE, and we identified other studies listed in 
reports by government institutions such as the U.K. Parlia-
ment Office [16]. Data was extracted from studies by three 
authors and verified prior to inclusion.

We restricted our meta-analysis to studies of advanced 
economies, based on current membership in the Organiza-
tion for Economic Cooperation and Development (OECD), 
in light of the distinct challenges of health care provision and 
reporting of fatalities in developing economies [17]. We also 
excluded studies aimed at measuring prevalence in specific 
groups such as health care workers.

Our meta-analysis encompasses two distinct approaches 
for assessing the prevalence of.

COVID-19: (1) seroprevalence studies that test for 
antibodies produced in response to the virus, and (2) 

Table 1   COVID-19 in New York City during spring 2020

This table reports on the characteristics of COVID-19 infections in 
New York City (NYC). Infection prevalence was estimated by the 
New York Department of Health using samples collected on April 
19–28, 2020 [10]. The ratio of symptomatic to total infections reflects 
a recent assessment by the U.S. Center for Disease Control and Pre-
vention [38]. The number of cases, hospitalized patients, and fatal 
outcomes is reported by the NYC Department of Health; as of May 
22 (4 weeks after the midpoint of the seroprevalence study), NYC had 
17,336 confirmed COVID-19 deaths [11]

Number Share of 
infections 
(%)

NYC residents 8 million NA
Estimated infections 1.6 million 100
Symptomatic infections 1.1 million 65
Reported cases 220 thousand 12
Hospitalized patients 55 thousand 3
Fatal outcomes 17 thousand 1
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comprehensive tracing programs using extensive live-virus 
testing of everyone who has had contact with a potentially 
infected individual. Seroprevalence estimates are associated 
with uncertainty related to the sensitivity and specificity of 
the test method and the extent to which the sampling frame 
provides an accurate representation of prevalence in the 
general population; see Supplementary Appendix C. Preva-
lence measures from comprehensive tracing programs are 
associated with uncertainty about the extent of inclusion of 
infected individuals, especially those who are asymptomatic.

Sampling frame

To assess prevalence in the general population, a study 
should be specifically designed to utilize a random sample 
using standard survey procedures such as stratification and 
weighting by demographic characteristics. Other sampling 
frames may be useful for specific purposes such as sentinel 
surveillance but not well-suited for assessing prevalence due 
to substantial risk of systemic bias. Consequently, our meta-
analysis excludes the following types of studies:

•	 Blood donors. Only a small fraction of blood donors 
are ages 60 and above—a fundamental limitation in 
assessing COVID-19 prevalence and IFRs for older age 
groups—and the social behavior of blood donors may be 
systematically different from their peers [13, 18]. These 
concerns can be directly investigated by comparing alter-
native seroprevalence surveys of the same geographical 
location. As of early June, Public Health England (PHE) 
reported seroprevalence of 8.5% based on specimens 
from blood donors, whereas the U.K. Office of National 
Statistics (ONS) reported markedly lower seroprevalence 
of 5.4% (CI: 4.3–6.5%) based on its monitoring of a rep-
resentative sample of the English population [19, 20].

•	 Dialysis centers. Assessing seroprevalence of dialysis 
patients using residual sera collected at dialysis centers 
is crucial for gauging the infection risks faced by these 
individuals, of which a disproportionately high fraction 
tend to be underrepresented minorities. Nonetheless, the 
seroprevalence within this group may be markedly dif-
ferent from that of the general population. For example, 
a study of U.K. dialysis patients found seroprevalence of 
about 36%, several times higher than that obtained using 
a very large random sample of the English population 
[21, 22]. Similarly, a recent U.S. study found a seroposi-
tive rate of 34% for dialysis patients in New York state 
that was more than twice as high as the seroprevalence 
in a random sample of New York residents [10, 23].

•	 Hospitals and urgent care clinics. Estimates of sero-
prevalence among current medical patients are subject 
to substantial bias, as evident from a pair of studies con-
ducted in Tokyo, Japan: One study found 41 positive 

cases among 1071 urgent care clinic patients, whereas 
the other study found only two confirmed positive results 
in a random sample of nearly 2000 Tokyo residents (sero-
prevalence estimates of 3.8% vs. 0.1%) [24, 25].

•	 Active recruitment. Soliciting participants is particularly 
problematic in contexts of low prevalence, because sero-
prevalence can be markedly affected by a few individuals 
who volunteer due to concerns about prior exposure. For 
example, a Luxembourg study obtained positive antibody 
results for 35 out of 1807 participants, but nearly half of 
those individuals (15 of 35) had previously had a posi-
tive live virus test, were residing in a household with 
someone who had a confirmed positive test, or had direct 
contact with someone else who had been infected [26].

Our critical review has also underscored the pitfalls of 
seroprevalence studies based on “convenience samples” of 
residual sera collected for other purposes. For example, two 
studies assessed seroprevalence of Utah residents during 
spring 2020. The first study analyzed residual sera from two 
commercial laboratories and obtained a prevalence estimate 
of 2.2% (CI: 1.2–3.4%), whereas the second study collected 
specimens from a representative sample and obtained a 
markedly lower prevalence estimate of 0.96% (CI: 0.4–1.8%) 
[27, 28]. In light of these issues, our meta-analysis includes 
residual serum studies but we flag such studies as having an 
elevated risk of bias.

Comprehensive tracing programs

Our meta-analysis incorporates data on COVID-19 preva-
lence and fatalities in countries that have consistently main-
tained comprehensive tracing programs since the early stages 
of the pandemic. Such a program was only feasible in places 
where public health officials could conduct repeated tests of 
potentially infected individuals and trace those whom they 
had direct contact. We identify such countries using a thresh-
old of 300 for the ratio of cumulative tests to reported cases 
as of 30 April 2020, based on comparisons of prevalence 
estimates and reported cases in Czech Republic, Korea, and 
Iceland; see Supplementary Appendices D and E [29]. Stud-
ies of Iceland and Korea found that estimated prevalence was 
moderately higher than the number of reported cases, espe-
cially for younger age groups; hence we make corresponding 
adjustments for other countries with comprehensive tracing 
programs, and we identify these estimates as subject to an 
elevated risk of bias [30–32].

Measurement of fatalities

Accurately measuring total deaths is a substantial issue in 
assessing IFR due to time lags from onset of symptoms 
to death and from death to official reporting. Symptoms 



1126	 A. T. Levin et al.

1 3

typically develop within 6 days after exposure but may 
develop as early as 2 days or as late as 14 days [1, 33]. 
More than 95% of symptomatic COVID patients have posi-
tive antibody (IgG) titres within 17–19 days of symptom 
onset, and those antibodies remain elevated over a sustained 
period [34–37]. The mean time interval from symptom onset 
to death is 15 days for ages 18–64 and 12 days for ages 
65 + , with interquartile ranges of 9–24 days and 7–19 days, 
respectively, while the mean interval from date of death to 
the reporting of that person’s death is about 7 days with an 
IQR of 2–19 days; thus, the upper bound of the 95% con-
fidence interval between symptom onset and reporting of 
fatalities is about 6 weeks (41 days) [38].

Figure 1 illustrates these findings in a hypothetical sce-
nario where the pandemic was curtailed 2 weeks prior to 
the date of the seroprevalence study. This figure shows the 
results of a simulation calibrated to reflect the estimated dis-
tribution for time lags between symptom onset, death, and 
inclusion in official fatality reports. The histogram shows 
the frequency of deaths and reported fatalities associated 
with the infections that occurred on the last day prior to 
full containment. Consistent with the confidence intervals 
noted above, 95% of cumulative fatalities are reported within 
roughly 4 weeks of the date of the seroprevalence study.

As shown in Table 2, the precise timing of the count of 
cumulative fatalities is relatively innocuous in locations 
where the outbreak had been contained for more than a 

month prior to the date of the seroprevalence study. By 
contrast, in instances where the outbreak had only recently 
been contained, the death count continued rising markedly 
for several more weeks after the midpoint of the seropreva-
lence study.

Therefore, we construct age-specific IFRs using the 
seroprevalence data in conjunction with cumulative 
fatalities 4 weeks after the midpoint date of each study; 
see Supplementary Appendix F. We have also conducted 
sensitivity analysis using cumulative fatalities 5 weeks 
after the midpoint date, and we flag studies as having an 
elevated risk of bias if the change in cumulative fatalities 
between weeks 4 and 5 exceeds 10%.

By contrast, matching prevalence estimates with subse-
quent fatalities is not feasible if a seroprevalence study was 
conducted in the midst of an accelerating outbreak. There-
fore, our meta-analysis excludes seroprevalence studies for 
which the change in cumulative fatalities from week 0 to 
week 4 exceeds 200%.

Metaregression procedure

To analyze IFR by age, we use meta-regression with ran-
dom effects, using the meta regress procedure in Stata v16 
[39, 40]. In the metaregression, the dependent variable is 
the IFR for a specific age group in a specific geographical 
location, and the explanatory variable is the median age of 
that particular age group. We used a random-effects proce-
dures to allow for residual heterogeneity between studies 
and across age groups by assuming that these divergences 
are drawn from a Gaussian distribution.

To assess the robustness of the metaregression results, 
we conduct several forms of sensitivity analysis:

•	 Analyze whether the metaregression coefficients 
exhibit any significant differences across three broad 
age categories (ages 0–34, 35–59, and 60 + years);

•	 Analyze whether the results are sensitive to exclusion 
of the oldest age group in each location (e.g., ages 
65 + years), given that such groups may span a rela-
tively wide age range and hence not fully capture their 
vulnerability to the virus;

•	 Conduct out-of-sample analysis using small-scale sero-
prevalence studies as well as studies not included in 
the metaregression due to overlapping geographical 
regions;

•	 Compare the actual population IFR in each location 
(based on estimated prevalence and confirmed deaths 
across all age groups) with the population IFR predicted 
by the metaregression (computed using the estimated 
prevalence and the predicted number of deaths within 
each reported age group).

Fig. 1   Time lags in the incidence and reporting of COVID-19 fatali-
ties. Note: This figure illustrates time lags in the incidence and report-
ing of COVID-19 fatalities using the results of a simulation calibrated 
to reflect the estimated distribution for time lags between symptom 
onset, death, and inclusion in official fatality reports [38]. As indi-
cated by the vertical green line, this simulation assumes that the sero-
prevalence study was conducted two weeks after the pandemic was 
curtailed. The histogram shows the frequency of deaths and reported 
fatalities associated with the infections that occurred on the last day 
prior to full containment. As indicated by the orange vertical line, 
95% of cumulative fatalities are reported within about 4 weeks after 
the midpoint date of the seroprevalence study
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Finally, publication bias is assessed using Egger’s regres-
sion and the trim-and-fill method.

Results

As shown in fig. 2, after an initial screening of 1146 studies, 
we reviewed the full texts of 113 studies, of which 54 studies 
were excluded due to lack of age-specific data on COVID-19 
prevalence or fatalities [20, 24, 25, 41–91]. Seroprevalence 
estimates for two locations were excluded because the out-
break was still accelerating during the period when the spec-
imens were being collected and from two other locations for 
which age-specific seroprevalence was not distinguishable 
from zero [27, 92–94]. Studies of non-representative sam-
ples were excluded as follows: 13 studies of blood donors; 5 
studies of patients of hospitals, outpatient clinics, and dialy-
sis centers; 4 studies with active recruitment of participants, 
and 6 narrow sample groups such as elementary schools [19, 
23, 25, 26, 92, 95–117]. Supplementary Appendix H lists all 
excluded studies.

Consequently, our meta-analysis encompasses 27 studies 
of 34 geographical locations, of which 28 are included in our 
metaregression and 6 are used for out-of-sample analysis. 
The metaregression observations can be categorized into 
three distinct groups:

•	 Representative samples from studies of England, France, 
Ireland, Italy, Netherlands, Portugal, Spain, Geneva 
(Switzerland), and four U.S. locations (Atlanta, Indiana, 
New York, and Salt Lake City) [10, 22, 28, 118–127].

•	 Convenience samples from studies of Belgium, Sweden, 
Ontario (Canada), and eight U.S. locations (Connecticut, 
Louisiana, Miami, Minneapolis, Missouri, Philadelphia, 
San Francisco, and Seattle) [27, 128–130].

•	 Comprehensive tracing programs for Australia, Iceland, 
Korea, Lithuania, and New Zealand [131–135].

The metaregression includes results from the very large 
REACT-2 seroprevalence study of the English population 
[22]. Thus, to avoid pitfalls of nested or overlapping sam-
ples, two other somewhat smaller studies conducted by U.K. 
Biobank and the U.K. Office of National Statistics are not 
included in the metaregression but are instead used in out-
of-sample analysis of the metaregression results [20, 136]. 
Similarly, the metaregression includes two large-scale stud-
ies involving representative samples from three French prov-
inces and from Salt Lake City, and hence two other studies 
using convenience samples from laboratories in France and 
in Utah are used in the out-of-sample analysis along with 
two other small-scale studies [27, 28, 137–139].

Data taken from included studies is shown in Supple-
mentary Appendix I. Supplementary Appendix J assesses 

the risk of bias for each individual study. As indicated in 
Supplementary Appendix K, no publication bias was found 
using Egger’s test (p > 0.10), and the trim-and-fill method 
produced the same estimate as the metaregression.

We obtain the following metaregression results:

where the standard error for each estimated coefficient is 
given in parentheses. These estimates are highly significant 
with t-statistics of −44.5 and 40.4, respectively, and p-val-
ues below 0.0001. The residual heterogeneity τ2 = 0.071 
(p-value < 0.0001) and I2 = 97.0, confirming that the random 
effects are essential for capturing unexplained variations 
across studies and age groups. The adjusted R2 is 94.7%.

As noted above, the validity of this metaregression rests 
on the condition that the data are consistent with a Gauss-
ian distribution. The validity of that assumption is evident 
in Fig. 3: Nearly all of the observations fall within the 95% 
prediction interval of the metaregression, and the remain-
der are moderate outliers.

This specification of the metaregression also assumes 
that the intercept and slope parameters are stable across 
the entire age distribution. We have confirmed the validity 
of that assumption by estimating alternative specifications 
in which the parameters are allowed to differ between three 
distinct age categories (ages 0–34, 35–59, and 60 + years). 
The estimated parameters are similar across all three age 
categories, and the null hypothesis of parameter constancy 
is consistent with the metaregression data. We have also 
confirmed that the metaregression results are not sensitive 
to exclusion of open-ended top age groups. (See Supple-
mentary Appendix L for details.)

Figure 4 depicts the exponential relationship between 
age and the level of IFR in percent, and Fig. 5 shows the 
corresponding forest plot. Evidently, the SARS-CoV-2 
virus poses a substantial mortality risk for middle-aged 
adults and even higher risks for elderly people: The IFR 
is very low for children and young adults (e.g., 0.002% at 
age 10 and 0.01% at age 25) but rises to 0.4% at age 55, 
1.4% at age 65, 4.6% at age 75, 15% at age 85, and exceeds 
25% for ages 90 and above. These metaregression predic-
tions are well aligned with the out-of-sample IFRs; see 
Supplementary Appendix M.

As shown in Fig. 6, population IFR (computed across 
all ages) ranges from about 0.5% in Salt Lake City and 
Geneva to 1.5% in Australia and England and 2.7% in Italy. 
The metaregression results indicate that about 90% of the 
variation in population IFR across geographical locations 
reflects differences in the age composition of the popu-
lation and the extent to which relatively vulnerable age 
groups were exposed to the virus.

log10(IFR) = −3.27 + 0.0524 ∗ age

(0.07) (0.0013)
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Discussion

The IFR is central to our understanding of the public health 
impact of the COVID-19 pandemic and the appropriate poli-
cies for mitigating those consequences. In the absence of 
effective therapies or vaccines, such policies will primar-
ily involve non-pharmaceutical interventions (NPIs). NPIs 
may include relatively mild measures (such as prohibitions 
on large gatherings) or more draconian restrictions such as 
shelter-in-place edicts, popularly known as “lockdowns.”

Unfortunately, public debate on these issues has been 
hampered by diverging assessments of the severity of 
COVID-19. For example, some early seroprevalence stud-
ies (using relatively small and non-representative samples, 
often in areas of low prevalence) yielded miniscule estimates 
of population IFR similar to those of seasonal influenza. 
Such estimates implied that strict NPIs would be completely 

irrational given the limited benefits and severe economic 
and social costs. With the dissemination of many more 
seroprevalence studies over recent months, a wide array 
of hypotheses have been mooted to explain the diverging 
implications for IFR, including regional variations in the 
quality of treatment or the extent of T-cell immunity to other 
betacoronaviruses.

By contrast, our critical review identifies the key charac-
teristics of seroprevalence studies that can be used to provide 
reliable assessments of IFR. Indeed, once we focus on this 
group of studies (which includes nine national seropreva-
lence studies), our metaregression reveals a remarkably high 
degree of consistency in the implications for age-specific 
IFR. Moreover, our results indicate that most of the varia-
tion in population IFR across locations reflects differences 
in the extent to which vulnerable age groups were exposed 
to the virus.

Fig. 2   Study selection 
(PRISMA flow diagram)
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One key implication of our findings is that the incidence 
of fatalities from a COVID-19 outbreak depends crucially 
on the age groups that are infected, which in turn reflects the 
age structure of that population and the extent to which pub-
lic health measures limit the incidence of infections among 
vulnerable age groups [140]. Indeed, even if an outbreak is 
mainly concentrated among younger people, it may be very 
difficult to prevent the virus from spreading among older 
adults [141].

To gauge the benefits of age-stratified public health strat-
egies for COVID-19, we have constructed two illustrative 
scenarios for the U.S. trajectory of infections and fatalities 
(see Supplementary Appendix N). Each scenario assumes 
that U.S. prevalence rises to a plateau of around 20% but 
with different patterns of age-specific prevalence. In par-
ticular, if prevalence becomes uniform across age groups, 
this analysis projects that total U.S. fatalities would rise to 
nearly 900 thousand and that population IFR would converge 
to around 1.3%. By contrast, a scenario with relatively low 
incidence of new infections among vulnerable age groups 
would be associated with a much lower number of fatalities 
(about 350 thousand) and a correspondingly lower popula-
tion IFR of about 0.5%.

A further implication of our results is that the risks of 
infection to the middle aged cannot be neglected. This is 
important for pandemic management strategies that aim to 

avoid large influxes of patients to healthcare. Indeed, it is 
likely that an unmitigated outbreak among middle-aged and 
older adults could have severe consequences on the health-
care system.

Public health communications can be helpful for persuad-
ing individuals to take steps to mitigate the risk of infection 
for themselves as well as others with whom they have direct 
contact (family members, friends, and colleagues). For this 
purpose, it is helpful to contextualize the magnitude of age-
specific IFRs for COVID-19 relative to annualized fatal-
ity rates for other routine activities; that annual timeframe 
reflects the premise that effective vaccines and/or treatments 
for COVID-19 would hopefully become widely available 
sometime within the next year or two.

In particular, Table 3 compares the age-specific IFRs 
from our meta-regression analysis to the annualized risks 
of fatal automobile accidents or other unintentional injuries 
in England and in the United States [142, 143]. For exam-
ple, an English person aged 55–64 years who gets infected 
with SARS-CoV-2 faces a fatality risk that is more than 200 
times higher than the annual risk of dying in a fatal car acci-
dent. These results also confirm that COVID-19 is far more 
deadly than seasonal flu; indeed, the World Health Organi-
zation indicates that seasonal influenza mortality is usually 
well below 0.1% unless access to health care is constrained 
[144]. (See Supplementary Appendix O for further details.) 

Table 2   Timing of reported 
fatalities for selected 
seroprevalence studies

This table shows data on confirmed COVID-19 deaths for 4 European locations and 11 U.S. locations 
where seroprevalence has been assessed [27, 124, 129, 163–165]. Sources of fatality data are given in Sup-
plementary Appendix F. For each location, the second column shows cumulative fatalities from the onset 
of the pandemic until the midpoint date of that seroprevalence study, while the next two columns report 
cumulative deaths 4 and 5  weeks later, respectively. The last two columns show the percent change in 
cumulative fatalities over each specified time interval (weeks 0–4 and weeks 4–5, respectively)

Location Cumulative fatalities Change (%)

Study midpoint 4 weeks later 5 weeks later Weeks 0–4 Weeks 4–5

Europe
Belgium 6262 8843 9150 41 3
Geneva, Switzerland 255 287 291 13 1
Spain 26,834 27,136 28,324 1 4
Sweden 2586 3831 3940 48 3
USA
Connecticut 2257 3637 3686 61 1
Indiana 932 1984 2142 113 8
Louisiana 477 2012 2286 322 14
Miami 513 1160 1290 126 11
Minneapolis 393 964 1093 145 13
Missouri 218 562 661 158 18
New York 20,212 28,663 29,438 42 3
Philadelphia 456 1509 1754 231 16
San Francisco 265 424 449 60 6
Seattle 536 732 775 37 6
Utah 41 96 98 134 2
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Moreover, mortality from seasonal influenza outbreaks is 
mitigated by prior immunity and vaccinations, whereas that 
is not the case for SARS-CoV-2.

Our critical review highlights the benefits of assess-
ing prevalence using large-scale studies of representative 
samples of the general population rather than convenience 
samples of blood donors or medical patients. Conducting 
such studies on an ongoing basis will enable public health 
officials to monitor changes in prevalence among vulnerable 
age groups and gauge the efficacy of public policy meas-
ures. Moreover, such studies enable researchers to assess the 
extent to which antibodies to SARS-CoV-2 may gradually 
diminish over time as well as the extent to which advances 
in treatment facilitate the reduction of age-specific IFRs.

Our critical review also underscores the importance of 
methodological issues in assessing IFR. For example, the 
raw prevalence results reported by a national study of Italy 
would imply a population IFR of about 2.3%, whereas test-
adjusted prevalence implies a substantially higher IFR of 
2.7%. Likewise, a few recent studies have excluded all deaths 
occurring in nursing homes and retirement communities and 
have obtained estimates of population IFR that are markedly 
lower than our estimates based on all confirmed COVID-19 
fatalities, whereas assessments of IFR based on measures 

of excess mortality are broadly similar to our estimates 
[120, 145–147]. See Supplementary Appendix P for further 
discussion.

Our metaregression results are generally consistent with 
the study of Verity et al. [148] and Ferguson et al. [149], 
which were completed at an early stage of the COVID-19 
pandemic and characterized an exponential pattern of age-
specific IFRs (see Supplementary Appendix Q). Other sub-
sequent studies have obtained broadly similar patterns of 
age-specific IFRs using statistical models to describe the 
dynamics of transmission and mortality using surveillance 
data in specific locations [69, 150].

Our findings are well-aligned with a recent meta-analysis 
of population IFR and indeed explain a high proportion of 
the dispersion in population IFRs highlighted by that study 
[151]. In contrast, our findings are markedly different from 
those of another review of population IFR that includes sam-
ples that did not satisfy our inclusion criteria [152].

The exponential pattern of our age-specific IFR estimates 
is qualitatively similar to that of case fatality rates (CFRs). 
However, the relative magnitudes are systematically differ-
ent, reflecting the extent to which asymptomatic or mildly 
symptomatic cases are much more common in younger 
adults than in middle-aged and older adults. For example, 
the ratio of CFR to IFR is about 15:1 for ages 30–49, about 

Fig. 3   The log-linear relationship between IFR and age. Note: 
Our metaregression indicates that the infection fatality rate (IFR) 
increases exponentially with age, and hence this figure uses a base-
10 logarithmic scale so that the relationship is evident across all ages 
from 5 to 95  years. Each marker denotes a specific metaregression 
observation, that is, the IFR for a particular age group in a particular 
location. The marker style reflects the type of observation: circles for 
observations from seroprevalence studies of representative samples, 
diamonds for seroprevalence studies of convenience samples, and 
squares for countries with comprehensive tracing programs. The red 
line denotes the metaregression estimate of IFR as a function of age, 
the shaded region depicts the 95% confidence interval for that esti-
mate. The dashed lines denote the prediction interval (which includes 
random variations across studies and age groups), and almost all of 
the 108 metaregression observations lie within that interval.

Fig. 4   Benchmark analysis of the link between age and IFR. Note: 
This figure depicts the relationship between the infection fatality rate 
(IFR) and age, where IFR is shown in percentage terms. Each marker 
denotes a specific metaregression observation, that is, the IFR for a 
particular age group in a particular location. The marker style reflects 
the type of observation: circles for observations from seroprevalence 
studies of representative samples, diamonds for seroprevalence stud-
ies of convenience samples, and squares for countries with compre-
hensive tracing programs. The red line denotes the metaregression 
estimate of IFR as a function of age, the shaded region depicts the 
95% confidence interval for that estimate. The dashed lines denote the 
prediction interval (which includes random variations across studies 
and age groups); almost all of the 104 metaregression observations lie 
within that interval
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Fig. 5   Forest plot of metar-
egression data
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7:1 for ages 50–69, and about 5:1 for ages 70–79 years (see 
Supplementary Appendix R).

A potential concern about measuring IFR based on sero-
prevalence is that antibody titers may diminish over time, 
leading to underestimation of true prevalence and corre-
sponding overestimation of IFR. This concern is particularly 
relevant for seroprevalence studies conducted many months 
after the outbreak was contained [153]. However, recent 
research has confirmed that production of spike-specific 
antibodies to SARS-CoV-2 persists in a very high proportion 
of individuals for at least 3 or 4 months, which is the rel-
evant timeframe for nearly all of the seroprevalence studies 
used in our metaregression [91, 154]. Moreover, one recent 
study has demonstrated that incorporating seroreversion into 
measures of prevalence does not have a material impact on 
estimates of age-specific IFRs [155].

Moreover, a key feature of our metaregression analysis 
is that we also utilize age-specific IFR data based on RT-
PCR results (not seroprevalence) for five countries that have 
maintained comprehensive tracing programs since the onset 
of the pandemic, namely, Australia, Iceland, Korea, Lithu-
ania, and New Zealand. As shown in Fig. 3, the age-specific 
IFRs for those five countries are well aligned with the metar-
egression predictions, indicating that these findings do not 
rely upon any specific method of gauging prevalence.

A substantial limitation of our work is that we have not 
considered factors apart from age that affect the IFR of 
COVID-19. For example, we have not considered the extent 
to which IFRs may vary with demographic factors such as 
race and ethnicity or potential causal interactions between 
these factors [41, 70]. Likewise, our metaregression does 
not include measures of comorbidities such as diabetes or 
obesity [156]. However, a recent study of data from a large 
representative and longitudinal sample collected by U.K. 
Biobank found that measures of frailty and comorbidity had 
only moderate effects in predicting COVID-19 mortality risk 
(i.e., increased odds of about 10%); moreover, that link was 
negligible among positive COVID-19 cases after account-
ing for age and sex [157]. See Supplementary Appendix S 
for additional evidence. Further research on these issues is 
clearly warranted.

Another limitation of our meta-analysis is that we have 
focused exclusively on assessing IFRs in advanced econo-
mies to facilitate comparability regarding health care provi-
sion and reporting of fatalities. Nonetheless, it is absolutely 
clear that the COVID-19 pandemic has had devastating 
consequences for lower-income and developing countries. 
For example, as of late October 2020, the reported COVID-
19 death counts were nearly 160 thousand in Brazil, 120 
thousand in India, and 90 thousand in Mexico. And in many 

Fig. 5   (continued)
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countries, measures of excess mortality are much higher 
than official tabulations of COVID-19 fatalities.

Consequently, analysis of prevalence and IFR is urgently 
needed to provide guidance to public health officials in 
developing countries [155, 158, 159]. However, the core 
findings of our meta-analysis may well be relevant even 
in those contexts. For example, recent prevalence studies 
of Manaus, Brazil found that about 66% of the population 
was infected with the SARS-CoV-2 virus between March 
and August 2020 [160, 161]. As of October, Manaus (a city 
with 1.8 million inhabitants) had 2853 confirmed COVID-19 
deaths [162]. That outcome is remarkably consistent with 
our analysis, because nearly 90% of Manaus residents are 
under 50 years of age. Indeed, using the age structure of 
the Manaus population and assuming uniform prevalence of 
infections across age groups, our metaregression predicts a 
population IFR of 0.22% that is practically indistinguishable 
from the observed outcome of 0.2%. (See Supplementary 
Appendix T.) Thus, our analysis provides a coherent expla-
nation why Manaus was much less severely impacted by the 
pandemic compared to other locations with larger numbers 
of middle-aged and older adults.

Finally, it should be noted that our analysis has focused 
on assessing fatality risks but has not captured the full spec-
trum of adverse health consequences of COVID-19, some of 
which may be very severe and persistent. Further research is 
needed to assess age-stratified rates of hospitalization as well 
as longer-term sequelae attributable to SARS-CoV-2 infec-
tions. These factors are likely to be particularly important in 
quantifying overall risks to health care.

In summary, our analysis demonstrates that COVID-19 
is not only dangerous for the elderly and infirm but also for 
healthy middle-aged adults. The metaregression explains 
nearly 90% of the geographical variation in population IFR, 
indicating that the population IFR is intrinsically linked to 
the age-specific pattern of infections. Consequently, public 
health measures to protect vulnerable age groups could sub-
stantially reduce the incidence of mortality.
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Fig. 6   Variations in population IFR across geographical locations. 
Note: This figure depicts the extent to which the metaregression 
results account for variations in population IFR across geographi-
cal locations. The blue circles denote seroprevalence studies of rep-
resentative samples, and the green diamonds denote countries with 
comprehensive tracing programs. For each observation, its position 
on the horizontal axis denotes its predicted IFR obtained by aggregat-
ing across the age-specific predictions of the metaregression, and its 
position on the vertical axis denotes the actual population IFR for that 
location. The dashed segments denote the estimated line obtained by 
fitting a regression to these 16 observations. The R2 of this regression 
is 0.87, indicating that nearly 90% of the variation in population IFR 
can be explained by variations in age composition and age-specific 
prevalence of COVID-19

Table 3   Age-specific fatality rates for COVID-19 infections vs. acci-
dental deaths (%)

This table compares IFRs for COVID-19 with the incidence of acci-
dental deaths in England and in the USA. For each age group, the 
second column shows the metaregression estimate of the age-specific 
IFR with its 95% confidence interval enclosed in parentheses. The 
final four columns report the annual incidence of automobile fatalities 
and other accidental fatalities as a percent of the population of each 
age group in each country. The accidental fatality data for England as 
of 2019 is reported by the U.K. Office of National Statistics, while the 
corresponding U.S. data are reported as of 2018 by the U.S. National 
Center for Health Statistics [142, 143]

Age group COVID-19 IFR 
(95% CI)

Automobile 
fatalities

Other acciden-
tal fatalities

England USA England USA

0–34 0.004 (0.003–0.005) 0.002 0.015 0.004 0.032
35–44 0.068 (0.058–0.078) 0.002 0.012 0.017 0.043
45–54 0.23 (0.20–0.26) 0.002 0..013 0.019 0.043
55–64 0.75 (0.66–0.87) 0.003 0.013 0.014 0.043
65–74 2.5 (2.1–3.0) 0.003 0.013 0.020 0.040
75–84 8.5 (6.9–10.4) 0.005 0.017 0.069 0.094
85 +  28.3 (21.8–36.6) 0.007 0.019 0.329 0.349

https://www.medrxiv.org/content/10.1101/2020.07.23.20160895v3
https://www.medrxiv.org/content/10.1101/2020.07.23.20160895v3
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