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Early diagnosis of leaf diseases is a fundamental tool in precision agriculture, thanks to its high correlation with food safety and
environmental sustainability. It is proven that plant diseases are responsible for serious economic losses every year.*e aim of this
work is to study an efficient network capable of assisting farmers in recognizing pear leaf symptoms and providing targeted
information for rational use of pesticides. *e proposed model consists of a multioutput system based on convolutional neural
networks. *e deep learning approach considers five pretrained CNN architectures, namely, VGG-16, VGG-19, ResNet50,
InceptionV3, MobileNetV2, and EfficientNetB0, as feature extractors to classify three diseases and six severity levels. Com-
putational experiments are conducted to evaluate the model on the DiaMOS Plant dataset, a self-collected dataset in the field. *e
results obtained confirm the robustness of the proposed model in automatically extracting the discriminating features of diseased
leaves by adopting the multitasking learning paradigm.

1. Introduction

Plant diseases are one of the most affecting factors in ag-
ricultural production, as they represent the principal cause
of severe economic losses. *e Food and Agriculture Or-
ganization of the United Nations (FAO) estimates that up to
40% of food crops are lost due to plant pests and diseases
annually [1]. As investigated by the study in [2], plant disease
protection has become a research hotspot, because it is a
highly correlated problem with food security, environmental
sustainability, and climate change. *us, it is crucial and
impactful in production, so much to be a pivotal tool in
precision agriculture (PA) [3].

Prediction of plant and crop disease is a complex and
interconnected problem to be solved, requiring considerable
and different technical skills. Plant health is increasingly
under threat. In the last years, the spread of noxious plant
diseases is further aggravated and accelerated by global trade
[1]. Pests and diseases can disseminate in different ways and
symptoms, outside their native place, along new frontiers,
where there are no previous skills to contrast them. *is

inevitably involves treating the disease with tools that are
sometimes ineffective, aggressive, and superfluous as well as
impacting on environmental sustainability. Indeed, disease
identification typically sees the involvement of a field spe-
cialist, who, through a careful analysis of the canopy, is able
to make a diagnosis from the onset of the first symptoms.
However, even an experienced eye can make mistakes.
Furthermore, not all farmers can afford counseling, because
it is expensive financially and temporally. *erefore, it is
necessary to adopt an ecosystem approach, supported by
effective tools capable of providing more precise and timely
assistance in the treatment of leaf diseases, such as Decision
Support Systems (DSS) [4] or Computer-Aided Diagnosis
(CAD) systems, that allow any farmer with access to a
smartphone to enjoy expert knowledge in a practical and
low-cost way [5].

*e literature has explored plant disease diagnosis using
various state-of-the-art techniques. Some studies have
addressed it with Machine Learning and Artificial Intelli-
gence methods such as Neural Network [6], Support Vector
Machine [7], Random Forest, and K-nearest neighbor
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[8–10]. While more recent studies have applied deep
learning models, in detail Convolutional Neural Networks
(CNNs), since they have shown relevant results in the image
recognition task. In most works, the research focused on
solving the problem by identifying only leaf disease.

Sladojevic et al. [11] studied a convolutional neural
network to recognize plant disease. *e network was able to
recognize 13 different types of plant diseases out of healthy
leaves, with the ability to distinguish plant leaves from their
surroundings. *e images were collected by the authors
searching for the name of the disease and the plant on the
Internet. Liu et al. [12] designed a novel architecture based
on AlexNet and GoogLeNet’s inception networks to identify
four common apple leaf diseases. Using a dataset of 13,689
synthetic images, the developed model provided a feasible
solution for the identification and recognition of apple leaf
diseases. Similarly, Yan et al. [13] proposed a method based
on an improved VGG-16 network to identify four apple leaf
diseases. *e model trained on a lab-built dataset of 2446
achieved a high accuracy rate and a fast convergence speed.
*e work was based on the “2018 AI Challenger Global
Challenge” dataset. For other contributions, the reader is
referred to [14–16].

On the other hand, a more limited effort has focused on
identifying severity stress, considered by Kranz [17] and
Bock et al. [18], an important task to manage pests and
diseases, to predict yield, and to recommend control
treatments, but also for understanding fundamental pro-
cesses in biology, including coevolution and plant disease
epidemiology [18]. *is limited contribution is due to the
lack of representative data containing such essential infor-
mation. Wang et al. [19] proposed a deep learning approach
to automatically discover the discriminative features for
estimating apple black rot disease severity. *e images la-
beled with four degrees of severity were extracted from
PlantVillage dataset. *e authors compared different state-
of-the-art architectures as VGG-16, VGG-19, Inception-v3,
and ResNet50, where VGG-16 achieved better performance
than the other models. A different approach was performed
by Barbedo [20], who manually extracted the symptoms
from the entire leaf to identify multiple lesions from the
same leaf. For other contributions, the reader is referred to
[21, 22].

As can be observed from the reported literature, the
research has widely explored the diagnosis of plant diseases,
considering the problem in two subproblems. *e com-
monly adopted approach trains two separate networks, one
for diagnosing the disease and one for estimating severity.

Recently, an alternative method is emerging that explores
the problem as two joint sets using the potential of Multitask
Learning (MTL). MTL is a learning paradigm that solves
multiple tasks employing a shared architecture. Its application
potential in precision agriculture is starting to be an object of
study only recently through modern analysis techniques. *is
observation is inferred and reinforced from the currently
limited number of scientific contributions, briefly described as
follows. Ghosal et al. [23] developed a deep machine vision
framework to identify, classify, and quantify eight stresses,
divided into biotic and abiotic stress, affecting soybean leaves.

*e designed framework also included an unsupervised
method to extract high-resolution feature maps that isolate
visual symptoms used to measure stress severity. Liang et al.
[24] proposed a multitasking system, called PD2SE-Net, able
to recognize plant species, to diagnose diseases, and to esti-
mate the severity of diseases. *e experiments based on
PlantVillage dataset estimated the stress severity classifying
the leaves in one out of three classes: healthy, general, and
serious. *e results confirmed the robustness of the proposed
architecture in classifying all three problems. Similarly,
Esgario et al. [25] estimated the disease and severity of coffee
leaves using a multitask system based on a convolutional
neural network. *e results demonstrated the effectiveness of
this approach in solving the problem.

In this study, we investigate the potential of MTL in the
diagnosis of pear leaf disease, based on the assumption that
disease diagnosis and severity estimation are two closely
related tasks. *e main contributions of this work are as
follows:

(1) *e firstly large and representative image dataset of
healthy and diseased pear leaves is presented into the
literature, called DiaMOS Plant dataset.

(2) An image-based multioutput convolutional neural
network to classify biotic stress and identify the
related severity affecting pear leaves is studied.

(3) Comparative studies of different deep learning ar-
chitectures are conducted.

2. Materials and Methods

*e entire procedure to diagnose plant disease and stress
severity considered several CNNs deep learning architec-
tures, which are described further in detail. *e approach is
divided into several steps illustrated in the sections below.
Figure 1 illustrates the flowchart below. Based on the data
collected, we firstly perform preprocessing and data aug-
mentation to improve the model generalization. Secondly,
we train different improved pretrained CNNs to conduct the
identification and classification tasks in plant leaves.

2.1. Dataset Collection. An issue that can be inferred in the
literature is the lack of representative datasets for the des-
ignated problem. Most of the proposed techniques are
trained using lab-built datasets, such as PlantVillage [26], in
which foliar diseases are portrayed only on the ventral side of
the leaf, on a homogeneous background. However, in the
real world, it is not possible to have a controlled environ-
ment to take photos in perfect conditions, i.e., with the right
lighting and angle. Besides, a system should be able to
analyze the disease as it occurs directly on the plant. *e
scarcity of images is certainly due to the fact that the
construction of a dataset is an expensive and costly process.

In this work, we collected a field dataset to diagnose and
monitor plants’ symptoms called DiaMOS Plant. DiaMOS
Plant dataset contains pear leaves images affected by three
main biotic stresses, mainly occurring on foliage (Figure 2).
*e images were gathered using different devices including a

2 Complexity



smartphone (Honor 6x) and DSRL camera (Canon EOS
60D).*e leaves were captured from the adaxial (upper) leaf
side, in a real-world condition without any criteria to make
the dataset more heterogeneous. In addition, the images
were collected at different times of the year, from February to
July, in order to capture the disease evolution from the first
symptoms.*us, it means that the models trained with it can
monitor the plant health status and make better decisions to
improve precision agriculture management. A total of 3057
images were collected, including healthy leaves and diseased
leaves, affected by one or more of the following biotic
stresses: leaf spot, leaf curl, and slug damage. *e stress
severity was calculated identifying five classes expressed as
no risk (0%), very low (1–5%), low (6–20%), medium
(21–25%), and high (>50%) in a range from 0 to 4. A detailed
summary of the dataset is provided in Table 1.

2.2. Data Augmentation. Deep learning models have a high
learning capacity that allows them to solve classification and
prediction tasks with relevant results, particularly on per-
ceptual problems that receive as input high-dimensional
samples as images. However, complex models tend to de-
crease their generalization capability when trained with a
small dataset, an issue known as overfitting. Data aug-
mentation is a technique adopted to mitigate overfitting in
computer vision. It takes the approach of generating more

training data from existing training samples, by augmenting
the samples via a number of random transformations that
yield believable-looking images [27]. In the literature, there
are several methods to introduce more variability into the
dataset. *e standard techniques include rotation, shearing,
zooming, cropping, flipping, and color variation. In this work,
we focused on standard augmentation in order to improve the
performance and ability of the model to generalize.

2.3. Deep Learning Networks. We adopt six well-known
convolutional neural network architectures, including VGG
(VGG-16, VGG-19), residual neural network (ResNet50),
InceptionV3, MobileNetV2, and EfficientNetB0, since they
showed good generalization skills in previous works where
the problem was treated as a single task, i.e., disease diag-
nosis or severity estimation.

Data collection 
in the pear

orchard

Data annotation

Test
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Validate

Data
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Data 
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stress

Severity 
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Training
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Figure 1: System overview of the proposed deep-learning-based approach to diagnose plant diseases.
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Figure 2: Examples of pear leaves affected by different symptoms.

Table 1: Dataset details. It presents the number of images for each
biotic stress and severity.

Biotic stress Leaf dataset Severity Leaf dataset
Healthy 43 0 43
Spot 884 1 682
Curl 105 2 1139
Slug 2025 3 699
Total 3.057 4 390
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2.3.1. VGG. *e VGG network follows the archetypal pat-
tern of classic convolutional networks. Proposed by Visual
Geometric Group (VGG) at the University of Oxford [28] in
the year of 2014, it scored first place on the image localization
task and second place on the image classification task in the
ImageNet Large-Scale Visual Recognition Challenge
(ILSVRC). *e novelty of VGGNet was its simplicity in
using a deeper layer with smaller filters. *e model requires
as input a fixed-size 224× 224 RGB image. *e pre-
processing was performed, which consisted in subtracting
the mean RGB value from each pixel. An operation was
computed over the whole training set. *e analysis is per-
formed by a stack of 5 convolutional layers, each of which is
followed by a Max Pooling layer in order to reduce the
volume size. *e final Max Pooling layer is followed by three
fully connected (FC) layers. VGG network presents different
variants as VGG-16 and VGG-19, which use the same ar-
chitecture with different number of layers. VGG-14 uses 14
layers, whereas VGG-16 uses 19 layers.

2.3.2. ResNet. He et al. [29] developed the residual neural
network (ResNet) to address the problem of vanishing/
exploding gradients and accuracy degradation by intro-
ducing the concept of residual learning. In general, both
problems occur with increasing depth. *e first issue, as
the number of layers increases, the gradient of propaga-
tion in the network may become tenuous or even be lost
entirely, rendering the network untrainable. While the
second issue, with the network depth increasing, the
accuracy gets saturated and then degrades rapidly. To
solve these phenomena, the researchers proposed residual
connections. A residual connection consists of making the
output of an earlier layer available as an input to a later
layer, effectively creating a shortcut in a sequential net-
work. Rather than being concatenated to the later acti-
vation, the earlier output is summed with the later
activation, which assumes that both activations are the
same size [27] (Figure 3).

2.3.3. Inception. It is a popular network introduced by
Szegedy et al. [30] in 2014. It achieved a milestone in the
development of CNN classifiers when previous architectures
focused only on improving the performance compromising
the computational cost. Differently from VGG, which has
achieved remarkable accuracy with a highly computationally
expensive architecture, inception implements several ex-
pedients to efficiently manage computational resources in
terms of cost as well as the number of parameters.*emodel
is relied on a directed acyclic graph, where the input is
processed by several parallel convolutional branches whose
outputs are then merged back into a single tensor. *is
structure helps the network separately learn spatial feature
sand channel-wise features, which is more efficient than
learning them jointly [27].

2.3.4. MobileNet. It is a class of convolutional neural net-
works designed for mobile and embedded vision

applications, which are structured to reduce the computa-
tional complexity required by each convolutional layer.
Ideated by Howard et al. [31], they are based on a
streamlined architecture that uses depthwise separable
convolutions to build lightweight deep neural networks.
*ese improvements have achieved introducing two simple
global hyperparameters that allow the model builder to
choose the right-size model for their application based on
the constraints of the problem.

2.3.5. EfficientNet. It is a new family of convolutional neural
networks released in 2019 by Tan and Le [32]. Inspired by
MobileNet network, the authors examined the scaling of
neural networks. *ey discovered that the best gains come
from scaling the width, resolution (like the MobileNets), and
depth of the network simultaneously. To this end, the authors
used Neural Architecture Search to design a new baseline
network and scale it up to obtain a family of models, which
achieve much better accuracy and efficiency than previous
convolutional neural networks such asMobileNet and ResNet.

2.4. Transfer Learning. Deep learning models typically re-
quire a large image dataset to achieve high predictive results.
However, a situation common to complex-real problems is
the lack of data, especially in precision agriculture sector.
Data collection and labeling are onerous tasks that often
require considerable technical expertise. In light of these
challenges, transfer learning represents a strategy that yields
reasonable results despite a relative lack of data. Indeed, it
consists of taking features learned on one problem and
leveraging them on a new, similar problem [27]. At the state
of the art, it has proven to be a well-established and efficient
technique in many previous studies for solving several
image-based computer vision problems [33, 34]. *ere are
distinct transfer learning methods, which can be applied
based on the domain task at hand and the availability of data.
*e most common are as follows:

(1) Feature Extraction. It uses the representations
learned by a previous network to extract relevant
features from new samples. To this end, it freezes the
first layers of the pretrained network to avoid
destroying any of the information previously
learned, and it removes the last layers, which are
replaced by a new classifier trained from scratch.

(2) Fine-Tuning. It consists of unfreezing a few of the top
layers of a frozen model base used for feature ex-
traction and jointly training both the newly added
part of the model and these top layers [27].

Because of the small amount of data in this study, we
adopted the feature extraction technique in conjunction
with the data augmentation in order to optimize and im-
prove the model robustness.

2.5. Multioutput Convolutional Neural Network.
Multioutput (multitask) learning is a paradigm based on the
simultaneous prediction of multiple outputs given a single
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input, as shown in Figure 4. Recently, its modeling algo-
rithms have increasingly attracted interest from researchers
due to its wide application, particularly on problems related
to decision-making. Decisions in the real world often involve
multiple complex factors and criteria [35].

*e intertwining of these factors leads to the branching
of studies in different forms according to the nature of the
learning problem. Typical cases of multioutput learning
include multilabel learning, multidimensional learning, and
multitarget regression.

As aforementioned, the goal of our research work is to
identify and develop a network architecture able to diagnose
biotic stress and its degree of severity in pear leaves. From
the technical point of view, it is a multitask learning
problem, while in the field point of view, it is a multitasking
problem that proves to be crucial in supporting farmers to
deal with pathological adversities promptly. At the state of
the art, several studies were carried out for the classification
of the disease of different crops [13, 19], but not as many for
the identification of the crop risk. *e approach adopted in
the pursuit of the objectives typically sees the use of two
separate models.

In our study, we applied several CNN architectures to
solve the problem jointly, similarly to what has been done by
Esgario et al. [25] for coffee cultivation.*is choice is dictated
by the fact that the tasks are considered closely related. *e
problem requires predicting multiple target attributes of the
input data. *e use of two separate networks would be
suboptimal, since the information extracted from the models
could be redundant. A joint model would learn richer and
more accurate representations of the space of the various
diseases and vice versa. To this end, we developed a multi-
output convolutional neural network which uses an improved
convolutional base of a pretrained model (see Figure 5).

To enhance the robustness of the network to the CNN
architectures, we added a global average pooling 2D layer, a
batch normalization layer, and a fully connected layer.

A Global Average Pooling (GAP) is an operation that
computes the average output of each feature map in the
previous layer. We introduced it instead of the fully con-
nected layer to prepare the model for the final classification
as well as reduce parameters, as it was proven in [36] for its
effectiveness as a regularizer.

*e Batch Normalization (BN) layer [37] consists of
normalizing the output of a previous activation layer by
subtracting the batch mean and dividing by the batch
standard deviation. *en, the layer shifts the input by a
learnable offset β and scales it by a learnable scale factor c. Its
integration allowed us to enhance the stability of the model
leading to faster learning rates.

Fully connected layers (FC) in a convolutional net-
work consist of layers where all the inputs from one layer
are connected to every activation unit of the next layer.
*e aim of the fully connected structure is to take the
results of the convolution/pooling layer and use them to
classify the data into various classes (labels). *e result of
convolution/pooling is flattened into a single vector of
values, each representing a probability that a certain
feature belongs to a label. *rough the backpropagation
process, it determines the most accurate weights for each
neuron in order to formulate the classification decision. In
our work, we introduced two fully connected layers to
predict biotic stress and severity, respectively. Further-
more, a dropout regularization is added in the fully
connected layer, since as demonstrated by Srivastava et al.
[38], this strategy prevents complex coadaptations on the
training data.

Dropout performs randomly dropping out a number of
output features of the layer during training. *is operation
enhances the generalization because it forces the layer to
learn with different neurons the same “concept.” To this end,
we added it to reduce overfitting and improve the gener-
alization of the model.

Figure 5 shows graphically the proposed framework.*e
foliar images are given as input to the modified CNN ar-
chitecture with the addition of a global average pooling
(GAP), a convolutional layer (Conv), a batch normalization
layer (BN), and a new fully connected layer (FC).

In the first phase of the process, the convolutional neural
network, through the use of increasingly refined and diver-
sified filters according to the architecture in use (VGG-16,
VGG-19, ResNet50, InceptionV3, MobileNetV2, or Effi-
cientNetB0), acts as a sieve for image processing. At each step,
the layers learn and extract increasingly complex represen-
tations as well as abstract visual concepts relevant for the
problem at hand. From Figure 6, we can graphically observe
the representations learned from the network at each step. In

Feature extractor

Input

Output

Classifier

Output

Classifier

Figure 4: A multioutput (or multihead) model. In our study, as
feature extractor, we used a pretrained convolutional neural net-
work; as classifier, we adopted a fully connected layer.
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Figure 3: Residual learning: a building block. Source: [26].
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the first layer, the edges are identified, so much so that ac-
tivations retain almost all the information present in the
initial image. Proceeding in the subsequent levels, activations
become more abstract and begin to encode higher-level
concepts, such as the shape of the leaf. Moreover, the con-
volutional base shared by both classification problems allows
the network to jointly learn data representations useful to
both tasks, optimizing the resources in use.

In the second step, the classification process is carried
out by two fully connected layers, which uses a ReLu and
softmax activation function. *e two fully connected layers
performed in parallel flatten the results of the features ex-
tractor into a single vector of values, each of which repre-
sents a probability that a certain feature belongs to a class
representing the disease and severity, respectively. Finally,
during the training, using a fraction rate equal to 0.5, a
certain number of elements contained in the vector are
randomly zeroed by the dropout technique in order to
provide more accurate results.

3. Results and Discussion

In this section, we present the experimental setup and
strategy as well as the obtained results.

3.1. Experimental Setup. *e experimental framework
written in Python language exploits the Keras deep learning
2.4.3 library based on TensorFlow 2.2.1 environment, exe-
cuted on a server equipped with a 3.000GHz Intel® Xeon®Gold.*e dataset contains 3057 images categorized into four
types of different pear leaf diseases, where only healthy, leaf
spot and slug damage are considered for this work. *e
detailed summary dataset is provided in Table 1.

3.2. Experimental Analysis. To carry out the study, we di-
vided the dataset into training, validation, and test datasets
with a ratio of 7:2:1, respectively. To preserve the percentage
of samples for each class, the dataset is split using the
ShuffleSplit strategy provided by scikit-learn 0.23.2 library.
Before training, we preprocessed the data to meet the re-
quirements of CNN networks. All images are resized to
224× 224× 3, which are reshaped into the shape the net-
works expect and scaled them so that all values are in the
[0,1] interval. Subsequently, we transformed them into a
float32 array with values between 0 and 1. To improve the
robustness of our model, the data augmentation technique is
applied in real time during the training phase, performing
horizontal and vertical mirroring, rotation, and color var-
iation. *e CNN networks receive for each batch slightly
different images, whose analysis allows them to adjust the
network’s weights until the network learns the most relevant
features for the given problem. To avoid a long training time,
the transfer learning method is applied. *e training was
performed by adapting CNN networks trained using
ImageNet dataset [39], which consists of images from a large
variety of objects (1,000 categories). During this phase, the
top layers are freezed for preventing their weights from
being updated during training. *us, with this setup, the
representations that were previously learned from the
convolutional base were not lost. *e hyperparameters
configurations used are presented in Table 2.

Furthermore, we monitored the model’s validation loss
to reduce the learning rate when it has stopped improving.
*is strategy allowed us to get out of local minima during
training, a phenomenon known as Plateau [40].*e learning
rate is decreased when the validation loss has stopped im-
proving for 4 epochs, dividing it by 10. Finally, the states (set
of weights) in which the networks presented the lowest loss

Fully connected 
layers

Fully connected 
layers

Biotic 
stress

Severity
Image

GAP BN

Convolution and pooling layers

GAP: Global average pooling

BN: Batch normalization DP: Dropout

FC: Fully connected layer

Figure 5: A schematic of the proposed image-based multioutput convolutional neural network.

6 Complexity



value for the validation set are saved. *e saved models are
evaluated with the test dataset, and the results are computed
in terms of accuracy and training time.

3.3. ExperimentalResults. *e obtained results are presented
in Table 3, divided by category (biotic stress and severity)
and CNN architecture.
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Figure 6: *e outputs of the first blocks of convolutional layers of the EfficientNet architecture.
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Most of the models demonstrated a relevant general-
ization capacity for the identification of biotic stresses. Both
versions of the VGG network achieved an accuracy of 81.12%
and 83.91%, respectively. InceptionV3, MobileNetV2, and
EfficientNetB0 performed better with an accuracy of 90.68%,
90.01%, 90.18%, respectively. Lowered accurate results were
obtained by ResNet50 network with an accuracy of 80.51%.
*e ResNet50 classification results of biotic stress were
consistent only for pear slug damage (see Figure 7). *e
network was unable to distinguish the different symptoms.
*ese misclassifications may be associated with similarity
with other diseases and with the dataset imbalance, pear slug
damage represents the majority class. However, generally
speaking, from the obtained results, we can infer that clas-
sifiers get confused when faced withmultiple classes of similar
shape. Indeed, infected leaf images at different stages or
against different backgrounds may also lead to the high
complexity of the patterns that are displayed in the same class,
which results in lower performance [41].

Less accurate results were obtained for the severity
estimation, despite the ranking has remained unchanged
compared to the first task. As for biotic stress, there are no
particular differences in the two versions of the VGG
network, both of which have reached an accuracy of 64.23%
(VGG-16) and 65.93% (VGG-19). Moreover, for this task,
the ResNet50 network scored the lowest (52.71%). Incep-
tionV3, MobileNetV2, and EfficientNetB0 performed
better with an accuracy of 74.07%, 73.56%, and 78.31%,
respectively. EfficientNetB0 proved to be the most robust
model in identifying biotic stress (90.18%) and the level of
severity (78.31%) on par with InceptionV3 and
MobileNetV2.

It is evident that the estimation of severity is a more
challenging problem. *e decline in performance for the
resolution of this task corroborates with the experiments of
Esgario et al. [25], which record a lower accuracy for the
classification of stress. Looking at the confusion matrix for
the EfficientNetB0 and MobileNetV2 networks in Figure 8,
it can be seen that the models do not present particular
difficulties in separating the low and medium classes. More
misclassifications occur for the no risk class because it
probably represents the minority class. Considering the
very low class, EfficientNetB0 gets better classifications,
while MobileNetV2 tends to classify it with the low class.
*is may be due to the fact that the symptoms at this level
are mild and small. Due to the size of the image, models

may have difficulty capturing relevant features. An inverse
behavior is seen in the estimation of the high class, where
MobileNetV2 makes less serious errors than EfficientNetB0
as this class is more confused with the medium class.
Similarly, comparing MobileNetV2 with InceptionV3, the
latter achieves a better result in recognizing the medium
and high classes. Although the three models have made
considerable errors, we note that these errors are located in
the main diagonal, so some of them can be considered
minor.

*e ranking of the models is further confirmed by the
computational performance or the time required for

Table 2: CNN training hyperparameters.

Parameter Value
Optimizer RMSprop
Loss function Cross-entropy
Learning rate 2e− 5
Momentum 0.9

Table 3: Test results obtained with different CNNs architectures.

Category Architecture Accuracy

Biotic stress

VGG16 81.12
VGG19 83.91
ResNet50 80.51

InceptionV3 90.68
MobileNetV2 90.01
EfficientNetB0 90.18

Severity

VGG16 64.23
VGG19 65.93
ResNet50 52.71

InceptionV3 74.07
MobileNetV2 73.56
EfficientNetB0 78.31
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Figure 7: Biotic stress confusion matrix of ResNet50.
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training. As expected, given the nature of networks
specifically designed to make the most of resources,
EfficientNetB0 and MobileNetV2 required shorter time
frames, followed by InceptionV3, ResNet50, VGG-19, and

VGG-16. Table 4 details the training time required for
each model.

Finally, we can conclude that the EfficientNetB0 per-
formed better since it presented a tradeoff between
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Figure 8: Severity confusion matrix. MobileNetV2 (a), EfficientNetB0 (b), and InceptionV3 (c).
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computational cost, performance, and robustness in solving
the problem with an imbalanced dataset.

4. Conclusions

*e present work proposed an image-based multioutput
convolutional neural network for biotic stress classification
and severity estimation of pear tree diseases. *e complete
procedure was described, respectively, from gathering the
pictures to image preprocessing and augmentation and to
training and evaluation of deep networks. *e deep learning
approach based on multitask learning paradigm has proven
its effectiveness in automatically extracting the discrimi-
nating features of diseased leaves using a shared architecture.
Different CNN architectures were used in the experiments,
whereas the network EfficientNetB0 was the one that
achieved the best results, followed by InceptionV3 network.

To ensure a satisfactory generalization performance of
the proposedmodel, a dataset of 3057 pear leaf images, called
DiaMOS Plant, was collected in real-world conditions
without any criteria to make it more representative and
heterogeneous. Furthermore, pictures were gathered at
different times of the year, from February to July, in order to
capture the disease evolution from the first symptoms. A
limitation of this work is related to the unbalanced data,
which introduces a further level of complexity to the
problem under examination. Indeed, misclassifications are
found in the elements belonging to the minority class.
However, the results obtained are consistent and confirm the
robustness of the model in predicting three biotic stresses
and five levels of severity in nonoptimal conditions.

As a future line of research, we foresee an extension of
the current dataset to balance the classes and to enrich its
representativeness with more biotic stresses, in order to train
better models. Furthermore, based on the work done, we will
integrate the diagnosis model into our Decision Support
System called LANDS DSS [4] to recognize biotic stresses
and gravity in real time through a mobile application. *is
device will assist farmers (regardless of experience level) in
the rapid recognition of foliar symptoms as well as in the
decision-making process for the use of pesticides.

Data Availability

*e dataset used to support the findings of this study are
available from the corresponding author upon request. *e
source code is available at https://github.com/malloci-
Francesca/leaf-disease-toolbox.

Conflicts of Interest

*e authors declare that there are no conflicts of interest
regarding the publication of this paper.

Acknowledgments

Francesca Maridina Malloci gratefully acknowledges the
Department of Mathematics and Computer Science of the
University of Cagliari for the financial support of her Ph.D.
scholarship.

References

[1] Food and Agriculture Organization of the United Nations,
Plant Health and Food Security, International Plant Protection
Convention, Rome, Italy, 2017.

[2] G. Fenu and F. M. Malloci, “Forecasting plant and crop
disease: an explorative study on current algorithms,” Big Data
and Cognitive Computing, vol. 5, no. 1, p. 2, 2021.

[3] C. A. Harvey, Z. L. Rakotobe, N. Rao et al., “Extreme vul-
nerability of smallholder farmers to agricultural risks and
climate change in Madagascar,” Philosophical Transactions of
the Royal Society B: Biological Sciences, vol. 369, no. 1639,
Article ID 20130089, 2014.

[4] G. Fenu and F. M. Malloci, “Lands DSS: a decision support
system for forecasting crop disease in Southern Sardinia,”
International Journal of Decision Support System Technology,
vol. 13, no. 1, pp. 21–33, 2021.

[5] K. Dehnen-Schmutz, G. L. Foster, L. Owen, and S. Persello,
“Exploring the role of smartphone technology for citizen
science in agriculture,” Agronomy for Sustainable Develop-
ment, vol. 36, no. 2, p. 25, 2016.

[6] G. Fenu and F.M.Malloci, “Artificial intelligence technique in
crop disease forecasting: a case study on potato late blight
prediction,” in Smart Innovation Systems and Technologies,
pp. 79–89, Springer, Singapore, 2020.

[7] G. Fenu and F. M. Malloci, “An application of machine
learning technique in forecasting crop disease,” in Proceedings
of the 2019 3rd International Conference on Big Data Research,
Paris, France, November 2019.

[8] P. B. Padol and A. A. Yadav, “SVM classifier based grape leaf
disease detection,” in Proceedings of the 2016 Conference on
Advances in Signal Processing (CASP), Pune, India, June 2016.

[9] F. Qin, D. Liu, B. Sun, L. Ruan, Z. Ma, and H. Wang,
“Identification of alfalfa leaf diseases using image recognition
technology,” PLoS One, vol. 11, no. 12, Article ID e0168274,
2016.

[10] M. Islam, A. Dinh, K. Wahid, and P. Bhowmik, “Detection of
potato diseases using image segmentation and multiclass
support vector machine,” in Proceedings of the 2017 IEEE 30th
Canadian Conference on Electrical and Computer Engineering
(CCECE), Windsor, Canada, April 2017.

[11] S. Sladojevic, M. Arsenovic, A. Anderla, D. Culibrk, and
D. Stefanovic, “Deep neural networks based recognition of
plant diseases by leaf image classification,” Computational
Intelligence and Neuroscience, vol. 2016, Article ID 3289801,
11 pages, 2016.

[12] B. Liu, Y. Zhang, D. He, and Y. Li, “Identification of apple leaf
diseases based on deep convolutional neural networks,”
Symmetry, vol. 10, no. 1, p. 11, 2018.

[13] Q. Yan, B. Yang, W. Wang, B. Wang, P. Chen, and J. Zhang,
“Apple leaf diseases recognition based on an improved

Table 4: Comparison of the training time.

Architecture Training time
VGG16 321.30
VGG19 320.78
ResNet50 320.58
InceptionV3 323.53
MobileNetV2 319.56
EfficientNetB0 316.03

10 Complexity



convolutional neural network,” Sensors, vol. 20, no. 12,
p. 3535, 2020.

[14] I. Ahmad, M. Hamid, S. Yousaf, S. T. Shah, andM. O. Ahmad,
“Optimizing pretrained convolutional neural networks for
tomato leaf disease detection,” Complexity, vol. 2020, Article
ID 8812019, 6 pages, 2020.

[15] S. P. Mohanty, D. P. Hughes, and M. Salathé, “Using deep
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